xref: /linux/drivers/block/loop.c (revision 8ec3b8432e4fe8d452f88f1ed9a3450e715bb797)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 
79 #include <asm/uaccess.h>
80 
81 static LIST_HEAD(loop_devices);
82 static DEFINE_MUTEX(loop_devices_mutex);
83 
84 static int max_part;
85 static int part_shift;
86 
87 /*
88  * Transfer functions
89  */
90 static int transfer_none(struct loop_device *lo, int cmd,
91 			 struct page *raw_page, unsigned raw_off,
92 			 struct page *loop_page, unsigned loop_off,
93 			 int size, sector_t real_block)
94 {
95 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
97 
98 	if (cmd == READ)
99 		memcpy(loop_buf, raw_buf, size);
100 	else
101 		memcpy(raw_buf, loop_buf, size);
102 
103 	kunmap_atomic(loop_buf, KM_USER1);
104 	kunmap_atomic(raw_buf, KM_USER0);
105 	cond_resched();
106 	return 0;
107 }
108 
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 			struct page *raw_page, unsigned raw_off,
111 			struct page *loop_page, unsigned loop_off,
112 			int size, sector_t real_block)
113 {
114 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 	char *in, *out, *key;
117 	int i, keysize;
118 
119 	if (cmd == READ) {
120 		in = raw_buf;
121 		out = loop_buf;
122 	} else {
123 		in = loop_buf;
124 		out = raw_buf;
125 	}
126 
127 	key = lo->lo_encrypt_key;
128 	keysize = lo->lo_encrypt_key_size;
129 	for (i = 0; i < size; i++)
130 		*out++ = *in++ ^ key[(i & 511) % keysize];
131 
132 	kunmap_atomic(loop_buf, KM_USER1);
133 	kunmap_atomic(raw_buf, KM_USER0);
134 	cond_resched();
135 	return 0;
136 }
137 
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
139 {
140 	if (unlikely(info->lo_encrypt_key_size <= 0))
141 		return -EINVAL;
142 	return 0;
143 }
144 
145 static struct loop_func_table none_funcs = {
146 	.number = LO_CRYPT_NONE,
147 	.transfer = transfer_none,
148 };
149 
150 static struct loop_func_table xor_funcs = {
151 	.number = LO_CRYPT_XOR,
152 	.transfer = transfer_xor,
153 	.init = xor_init
154 };
155 
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 	&none_funcs,
159 	&xor_funcs
160 };
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	loff_t size, offset, loopsize;
165 
166 	/* Compute loopsize in bytes */
167 	size = i_size_read(file->f_mapping->host);
168 	offset = lo->lo_offset;
169 	loopsize = size - offset;
170 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 		loopsize = lo->lo_sizelimit;
172 
173 	/*
174 	 * Unfortunately, if we want to do I/O on the device,
175 	 * the number of 512-byte sectors has to fit into a sector_t.
176 	 */
177 	return loopsize >> 9;
178 }
179 
180 static int
181 figure_loop_size(struct loop_device *lo)
182 {
183 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 	sector_t x = (sector_t)size;
185 
186 	if (unlikely((loff_t)x != size))
187 		return -EFBIG;
188 
189 	set_capacity(lo->lo_disk, x);
190 	return 0;
191 }
192 
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 	       struct page *rpage, unsigned roffs,
196 	       struct page *lpage, unsigned loffs,
197 	       int size, sector_t rblock)
198 {
199 	if (unlikely(!lo->transfer))
200 		return 0;
201 
202 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
203 }
204 
205 /**
206  * do_lo_send_aops - helper for writing data to a loop device
207  *
208  * This is the fast version for backing filesystems which implement the address
209  * space operations write_begin and write_end.
210  */
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 		loff_t pos, struct page *unused)
213 {
214 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 	struct address_space *mapping = file->f_mapping;
216 	pgoff_t index;
217 	unsigned offset, bv_offs;
218 	int len, ret;
219 
220 	mutex_lock(&mapping->host->i_mutex);
221 	index = pos >> PAGE_CACHE_SHIFT;
222 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 	bv_offs = bvec->bv_offset;
224 	len = bvec->bv_len;
225 	while (len > 0) {
226 		sector_t IV;
227 		unsigned size, copied;
228 		int transfer_result;
229 		struct page *page;
230 		void *fsdata;
231 
232 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 		size = PAGE_CACHE_SIZE - offset;
234 		if (size > len)
235 			size = len;
236 
237 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 							&page, &fsdata);
239 		if (ret)
240 			goto fail;
241 
242 		file_update_time(file);
243 
244 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
245 				bvec->bv_page, bv_offs, size, IV);
246 		copied = size;
247 		if (unlikely(transfer_result))
248 			copied = 0;
249 
250 		ret = pagecache_write_end(file, mapping, pos, size, copied,
251 							page, fsdata);
252 		if (ret < 0 || ret != copied)
253 			goto fail;
254 
255 		if (unlikely(transfer_result))
256 			goto fail;
257 
258 		bv_offs += copied;
259 		len -= copied;
260 		offset = 0;
261 		index++;
262 		pos += copied;
263 	}
264 	ret = 0;
265 out:
266 	mutex_unlock(&mapping->host->i_mutex);
267 	return ret;
268 fail:
269 	ret = -1;
270 	goto out;
271 }
272 
273 /**
274  * __do_lo_send_write - helper for writing data to a loop device
275  *
276  * This helper just factors out common code between do_lo_send_direct_write()
277  * and do_lo_send_write().
278  */
279 static int __do_lo_send_write(struct file *file,
280 		u8 *buf, const int len, loff_t pos)
281 {
282 	ssize_t bw;
283 	mm_segment_t old_fs = get_fs();
284 
285 	set_fs(get_ds());
286 	bw = file->f_op->write(file, buf, len, &pos);
287 	set_fs(old_fs);
288 	if (likely(bw == len))
289 		return 0;
290 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
291 			(unsigned long long)pos, len);
292 	if (bw >= 0)
293 		bw = -EIO;
294 	return bw;
295 }
296 
297 /**
298  * do_lo_send_direct_write - helper for writing data to a loop device
299  *
300  * This is the fast, non-transforming version for backing filesystems which do
301  * not implement the address space operations write_begin and write_end.
302  * It uses the write file operation which should be present on all writeable
303  * filesystems.
304  */
305 static int do_lo_send_direct_write(struct loop_device *lo,
306 		struct bio_vec *bvec, loff_t pos, struct page *page)
307 {
308 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
309 			kmap(bvec->bv_page) + bvec->bv_offset,
310 			bvec->bv_len, pos);
311 	kunmap(bvec->bv_page);
312 	cond_resched();
313 	return bw;
314 }
315 
316 /**
317  * do_lo_send_write - helper for writing data to a loop device
318  *
319  * This is the slow, transforming version for filesystems which do not
320  * implement the address space operations write_begin and write_end.  It
321  * uses the write file operation which should be present on all writeable
322  * filesystems.
323  *
324  * Using fops->write is slower than using aops->{prepare,commit}_write in the
325  * transforming case because we need to double buffer the data as we cannot do
326  * the transformations in place as we do not have direct access to the
327  * destination pages of the backing file.
328  */
329 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
330 		loff_t pos, struct page *page)
331 {
332 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
333 			bvec->bv_offset, bvec->bv_len, pos >> 9);
334 	if (likely(!ret))
335 		return __do_lo_send_write(lo->lo_backing_file,
336 				page_address(page), bvec->bv_len,
337 				pos);
338 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
339 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
340 	if (ret > 0)
341 		ret = -EIO;
342 	return ret;
343 }
344 
345 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
346 {
347 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
348 			struct page *page);
349 	struct bio_vec *bvec;
350 	struct page *page = NULL;
351 	int i, ret = 0;
352 
353 	do_lo_send = do_lo_send_aops;
354 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
355 		do_lo_send = do_lo_send_direct_write;
356 		if (lo->transfer != transfer_none) {
357 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
358 			if (unlikely(!page))
359 				goto fail;
360 			kmap(page);
361 			do_lo_send = do_lo_send_write;
362 		}
363 	}
364 	bio_for_each_segment(bvec, bio, i) {
365 		ret = do_lo_send(lo, bvec, pos, page);
366 		if (ret < 0)
367 			break;
368 		pos += bvec->bv_len;
369 	}
370 	if (page) {
371 		kunmap(page);
372 		__free_page(page);
373 	}
374 out:
375 	return ret;
376 fail:
377 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
378 	ret = -ENOMEM;
379 	goto out;
380 }
381 
382 struct lo_read_data {
383 	struct loop_device *lo;
384 	struct page *page;
385 	unsigned offset;
386 	int bsize;
387 };
388 
389 static int
390 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
391 		struct splice_desc *sd)
392 {
393 	struct lo_read_data *p = sd->u.data;
394 	struct loop_device *lo = p->lo;
395 	struct page *page = buf->page;
396 	sector_t IV;
397 	int size;
398 
399 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
400 							(buf->offset >> 9);
401 	size = sd->len;
402 	if (size > p->bsize)
403 		size = p->bsize;
404 
405 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
406 		printk(KERN_ERR "loop: transfer error block %ld\n",
407 		       page->index);
408 		size = -EINVAL;
409 	}
410 
411 	flush_dcache_page(p->page);
412 
413 	if (size > 0)
414 		p->offset += size;
415 
416 	return size;
417 }
418 
419 static int
420 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
421 {
422 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
423 }
424 
425 static int
426 do_lo_receive(struct loop_device *lo,
427 	      struct bio_vec *bvec, int bsize, loff_t pos)
428 {
429 	struct lo_read_data cookie;
430 	struct splice_desc sd;
431 	struct file *file;
432 	long retval;
433 
434 	cookie.lo = lo;
435 	cookie.page = bvec->bv_page;
436 	cookie.offset = bvec->bv_offset;
437 	cookie.bsize = bsize;
438 
439 	sd.len = 0;
440 	sd.total_len = bvec->bv_len;
441 	sd.flags = 0;
442 	sd.pos = pos;
443 	sd.u.data = &cookie;
444 
445 	file = lo->lo_backing_file;
446 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
447 
448 	if (retval < 0)
449 		return retval;
450 
451 	return 0;
452 }
453 
454 static int
455 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
456 {
457 	struct bio_vec *bvec;
458 	int i, ret = 0;
459 
460 	bio_for_each_segment(bvec, bio, i) {
461 		ret = do_lo_receive(lo, bvec, bsize, pos);
462 		if (ret < 0)
463 			break;
464 		pos += bvec->bv_len;
465 	}
466 	return ret;
467 }
468 
469 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
470 {
471 	loff_t pos;
472 	int ret;
473 
474 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
475 
476 	if (bio_rw(bio) == WRITE) {
477 		struct file *file = lo->lo_backing_file;
478 
479 		if (bio->bi_rw & REQ_FLUSH) {
480 			ret = vfs_fsync(file, 0);
481 			if (unlikely(ret && ret != -EINVAL)) {
482 				ret = -EIO;
483 				goto out;
484 			}
485 		}
486 
487 		ret = lo_send(lo, bio, pos);
488 
489 		if ((bio->bi_rw & REQ_FUA) && !ret) {
490 			ret = vfs_fsync(file, 0);
491 			if (unlikely(ret && ret != -EINVAL))
492 				ret = -EIO;
493 		}
494 	} else
495 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
496 
497 out:
498 	return ret;
499 }
500 
501 /*
502  * Add bio to back of pending list
503  */
504 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
505 {
506 	bio_list_add(&lo->lo_bio_list, bio);
507 }
508 
509 /*
510  * Grab first pending buffer
511  */
512 static struct bio *loop_get_bio(struct loop_device *lo)
513 {
514 	return bio_list_pop(&lo->lo_bio_list);
515 }
516 
517 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
518 {
519 	struct loop_device *lo = q->queuedata;
520 	int rw = bio_rw(old_bio);
521 
522 	if (rw == READA)
523 		rw = READ;
524 
525 	BUG_ON(!lo || (rw != READ && rw != WRITE));
526 
527 	spin_lock_irq(&lo->lo_lock);
528 	if (lo->lo_state != Lo_bound)
529 		goto out;
530 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
531 		goto out;
532 	loop_add_bio(lo, old_bio);
533 	wake_up(&lo->lo_event);
534 	spin_unlock_irq(&lo->lo_lock);
535 	return 0;
536 
537 out:
538 	spin_unlock_irq(&lo->lo_lock);
539 	bio_io_error(old_bio);
540 	return 0;
541 }
542 
543 /*
544  * kick off io on the underlying address space
545  */
546 static void loop_unplug(struct request_queue *q)
547 {
548 	struct loop_device *lo = q->queuedata;
549 
550 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
551 	blk_run_address_space(lo->lo_backing_file->f_mapping);
552 }
553 
554 struct switch_request {
555 	struct file *file;
556 	struct completion wait;
557 };
558 
559 static void do_loop_switch(struct loop_device *, struct switch_request *);
560 
561 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
562 {
563 	if (unlikely(!bio->bi_bdev)) {
564 		do_loop_switch(lo, bio->bi_private);
565 		bio_put(bio);
566 	} else {
567 		int ret = do_bio_filebacked(lo, bio);
568 		bio_endio(bio, ret);
569 	}
570 }
571 
572 /*
573  * worker thread that handles reads/writes to file backed loop devices,
574  * to avoid blocking in our make_request_fn. it also does loop decrypting
575  * on reads for block backed loop, as that is too heavy to do from
576  * b_end_io context where irqs may be disabled.
577  *
578  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
579  * calling kthread_stop().  Therefore once kthread_should_stop() is
580  * true, make_request will not place any more requests.  Therefore
581  * once kthread_should_stop() is true and lo_bio is NULL, we are
582  * done with the loop.
583  */
584 static int loop_thread(void *data)
585 {
586 	struct loop_device *lo = data;
587 	struct bio *bio;
588 
589 	set_user_nice(current, -20);
590 
591 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
592 
593 		wait_event_interruptible(lo->lo_event,
594 				!bio_list_empty(&lo->lo_bio_list) ||
595 				kthread_should_stop());
596 
597 		if (bio_list_empty(&lo->lo_bio_list))
598 			continue;
599 		spin_lock_irq(&lo->lo_lock);
600 		bio = loop_get_bio(lo);
601 		spin_unlock_irq(&lo->lo_lock);
602 
603 		BUG_ON(!bio);
604 		loop_handle_bio(lo, bio);
605 	}
606 
607 	return 0;
608 }
609 
610 /*
611  * loop_switch performs the hard work of switching a backing store.
612  * First it needs to flush existing IO, it does this by sending a magic
613  * BIO down the pipe. The completion of this BIO does the actual switch.
614  */
615 static int loop_switch(struct loop_device *lo, struct file *file)
616 {
617 	struct switch_request w;
618 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
619 	if (!bio)
620 		return -ENOMEM;
621 	init_completion(&w.wait);
622 	w.file = file;
623 	bio->bi_private = &w;
624 	bio->bi_bdev = NULL;
625 	loop_make_request(lo->lo_queue, bio);
626 	wait_for_completion(&w.wait);
627 	return 0;
628 }
629 
630 /*
631  * Helper to flush the IOs in loop, but keeping loop thread running
632  */
633 static int loop_flush(struct loop_device *lo)
634 {
635 	/* loop not yet configured, no running thread, nothing to flush */
636 	if (!lo->lo_thread)
637 		return 0;
638 
639 	return loop_switch(lo, NULL);
640 }
641 
642 /*
643  * Do the actual switch; called from the BIO completion routine
644  */
645 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
646 {
647 	struct file *file = p->file;
648 	struct file *old_file = lo->lo_backing_file;
649 	struct address_space *mapping;
650 
651 	/* if no new file, only flush of queued bios requested */
652 	if (!file)
653 		goto out;
654 
655 	mapping = file->f_mapping;
656 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
657 	lo->lo_backing_file = file;
658 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
659 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
660 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
661 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
662 out:
663 	complete(&p->wait);
664 }
665 
666 
667 /*
668  * loop_change_fd switched the backing store of a loopback device to
669  * a new file. This is useful for operating system installers to free up
670  * the original file and in High Availability environments to switch to
671  * an alternative location for the content in case of server meltdown.
672  * This can only work if the loop device is used read-only, and if the
673  * new backing store is the same size and type as the old backing store.
674  */
675 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
676 			  unsigned int arg)
677 {
678 	struct file	*file, *old_file;
679 	struct inode	*inode;
680 	int		error;
681 
682 	error = -ENXIO;
683 	if (lo->lo_state != Lo_bound)
684 		goto out;
685 
686 	/* the loop device has to be read-only */
687 	error = -EINVAL;
688 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
689 		goto out;
690 
691 	error = -EBADF;
692 	file = fget(arg);
693 	if (!file)
694 		goto out;
695 
696 	inode = file->f_mapping->host;
697 	old_file = lo->lo_backing_file;
698 
699 	error = -EINVAL;
700 
701 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
702 		goto out_putf;
703 
704 	/* size of the new backing store needs to be the same */
705 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
706 		goto out_putf;
707 
708 	/* and ... switch */
709 	error = loop_switch(lo, file);
710 	if (error)
711 		goto out_putf;
712 
713 	fput(old_file);
714 	if (max_part > 0)
715 		ioctl_by_bdev(bdev, BLKRRPART, 0);
716 	return 0;
717 
718  out_putf:
719 	fput(file);
720  out:
721 	return error;
722 }
723 
724 static inline int is_loop_device(struct file *file)
725 {
726 	struct inode *i = file->f_mapping->host;
727 
728 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
729 }
730 
731 /* loop sysfs attributes */
732 
733 static ssize_t loop_attr_show(struct device *dev, char *page,
734 			      ssize_t (*callback)(struct loop_device *, char *))
735 {
736 	struct loop_device *l, *lo = NULL;
737 
738 	mutex_lock(&loop_devices_mutex);
739 	list_for_each_entry(l, &loop_devices, lo_list)
740 		if (disk_to_dev(l->lo_disk) == dev) {
741 			lo = l;
742 			break;
743 		}
744 	mutex_unlock(&loop_devices_mutex);
745 
746 	return lo ? callback(lo, page) : -EIO;
747 }
748 
749 #define LOOP_ATTR_RO(_name)						\
750 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
751 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
752 				struct device_attribute *attr, char *b)	\
753 {									\
754 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
755 }									\
756 static struct device_attribute loop_attr_##_name =			\
757 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
758 
759 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
760 {
761 	ssize_t ret;
762 	char *p = NULL;
763 
764 	mutex_lock(&lo->lo_ctl_mutex);
765 	if (lo->lo_backing_file)
766 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
767 	mutex_unlock(&lo->lo_ctl_mutex);
768 
769 	if (IS_ERR_OR_NULL(p))
770 		ret = PTR_ERR(p);
771 	else {
772 		ret = strlen(p);
773 		memmove(buf, p, ret);
774 		buf[ret++] = '\n';
775 		buf[ret] = 0;
776 	}
777 
778 	return ret;
779 }
780 
781 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
782 {
783 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
784 }
785 
786 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
787 {
788 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
789 }
790 
791 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
792 {
793 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
794 
795 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
796 }
797 
798 LOOP_ATTR_RO(backing_file);
799 LOOP_ATTR_RO(offset);
800 LOOP_ATTR_RO(sizelimit);
801 LOOP_ATTR_RO(autoclear);
802 
803 static struct attribute *loop_attrs[] = {
804 	&loop_attr_backing_file.attr,
805 	&loop_attr_offset.attr,
806 	&loop_attr_sizelimit.attr,
807 	&loop_attr_autoclear.attr,
808 	NULL,
809 };
810 
811 static struct attribute_group loop_attribute_group = {
812 	.name = "loop",
813 	.attrs= loop_attrs,
814 };
815 
816 static int loop_sysfs_init(struct loop_device *lo)
817 {
818 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
819 				  &loop_attribute_group);
820 }
821 
822 static void loop_sysfs_exit(struct loop_device *lo)
823 {
824 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
825 			   &loop_attribute_group);
826 }
827 
828 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
829 		       struct block_device *bdev, unsigned int arg)
830 {
831 	struct file	*file, *f;
832 	struct inode	*inode;
833 	struct address_space *mapping;
834 	unsigned lo_blocksize;
835 	int		lo_flags = 0;
836 	int		error;
837 	loff_t		size;
838 
839 	/* This is safe, since we have a reference from open(). */
840 	__module_get(THIS_MODULE);
841 
842 	error = -EBADF;
843 	file = fget(arg);
844 	if (!file)
845 		goto out;
846 
847 	error = -EBUSY;
848 	if (lo->lo_state != Lo_unbound)
849 		goto out_putf;
850 
851 	/* Avoid recursion */
852 	f = file;
853 	while (is_loop_device(f)) {
854 		struct loop_device *l;
855 
856 		if (f->f_mapping->host->i_bdev == bdev)
857 			goto out_putf;
858 
859 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
860 		if (l->lo_state == Lo_unbound) {
861 			error = -EINVAL;
862 			goto out_putf;
863 		}
864 		f = l->lo_backing_file;
865 	}
866 
867 	mapping = file->f_mapping;
868 	inode = mapping->host;
869 
870 	if (!(file->f_mode & FMODE_WRITE))
871 		lo_flags |= LO_FLAGS_READ_ONLY;
872 
873 	error = -EINVAL;
874 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
875 		const struct address_space_operations *aops = mapping->a_ops;
876 
877 		if (aops->write_begin)
878 			lo_flags |= LO_FLAGS_USE_AOPS;
879 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
880 			lo_flags |= LO_FLAGS_READ_ONLY;
881 
882 		lo_blocksize = S_ISBLK(inode->i_mode) ?
883 			inode->i_bdev->bd_block_size : PAGE_SIZE;
884 
885 		error = 0;
886 	} else {
887 		goto out_putf;
888 	}
889 
890 	size = get_loop_size(lo, file);
891 
892 	if ((loff_t)(sector_t)size != size) {
893 		error = -EFBIG;
894 		goto out_putf;
895 	}
896 
897 	if (!(mode & FMODE_WRITE))
898 		lo_flags |= LO_FLAGS_READ_ONLY;
899 
900 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
901 
902 	lo->lo_blocksize = lo_blocksize;
903 	lo->lo_device = bdev;
904 	lo->lo_flags = lo_flags;
905 	lo->lo_backing_file = file;
906 	lo->transfer = transfer_none;
907 	lo->ioctl = NULL;
908 	lo->lo_sizelimit = 0;
909 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
910 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
911 
912 	bio_list_init(&lo->lo_bio_list);
913 
914 	/*
915 	 * set queue make_request_fn, and add limits based on lower level
916 	 * device
917 	 */
918 	blk_queue_make_request(lo->lo_queue, loop_make_request);
919 	lo->lo_queue->queuedata = lo;
920 	lo->lo_queue->unplug_fn = loop_unplug;
921 
922 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
923 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
924 
925 	set_capacity(lo->lo_disk, size);
926 	bd_set_size(bdev, size << 9);
927 	loop_sysfs_init(lo);
928 	/* let user-space know about the new size */
929 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
930 
931 	set_blocksize(bdev, lo_blocksize);
932 
933 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
934 						lo->lo_number);
935 	if (IS_ERR(lo->lo_thread)) {
936 		error = PTR_ERR(lo->lo_thread);
937 		goto out_clr;
938 	}
939 	lo->lo_state = Lo_bound;
940 	wake_up_process(lo->lo_thread);
941 	if (max_part > 0)
942 		ioctl_by_bdev(bdev, BLKRRPART, 0);
943 	return 0;
944 
945 out_clr:
946 	loop_sysfs_exit(lo);
947 	lo->lo_thread = NULL;
948 	lo->lo_device = NULL;
949 	lo->lo_backing_file = NULL;
950 	lo->lo_flags = 0;
951 	set_capacity(lo->lo_disk, 0);
952 	invalidate_bdev(bdev);
953 	bd_set_size(bdev, 0);
954 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
955 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
956 	lo->lo_state = Lo_unbound;
957  out_putf:
958 	fput(file);
959  out:
960 	/* This is safe: open() is still holding a reference. */
961 	module_put(THIS_MODULE);
962 	return error;
963 }
964 
965 static int
966 loop_release_xfer(struct loop_device *lo)
967 {
968 	int err = 0;
969 	struct loop_func_table *xfer = lo->lo_encryption;
970 
971 	if (xfer) {
972 		if (xfer->release)
973 			err = xfer->release(lo);
974 		lo->transfer = NULL;
975 		lo->lo_encryption = NULL;
976 		module_put(xfer->owner);
977 	}
978 	return err;
979 }
980 
981 static int
982 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
983 	       const struct loop_info64 *i)
984 {
985 	int err = 0;
986 
987 	if (xfer) {
988 		struct module *owner = xfer->owner;
989 
990 		if (!try_module_get(owner))
991 			return -EINVAL;
992 		if (xfer->init)
993 			err = xfer->init(lo, i);
994 		if (err)
995 			module_put(owner);
996 		else
997 			lo->lo_encryption = xfer;
998 	}
999 	return err;
1000 }
1001 
1002 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
1003 {
1004 	struct file *filp = lo->lo_backing_file;
1005 	gfp_t gfp = lo->old_gfp_mask;
1006 
1007 	if (lo->lo_state != Lo_bound)
1008 		return -ENXIO;
1009 
1010 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
1011 		return -EBUSY;
1012 
1013 	if (filp == NULL)
1014 		return -EINVAL;
1015 
1016 	spin_lock_irq(&lo->lo_lock);
1017 	lo->lo_state = Lo_rundown;
1018 	spin_unlock_irq(&lo->lo_lock);
1019 
1020 	kthread_stop(lo->lo_thread);
1021 
1022 	lo->lo_queue->unplug_fn = NULL;
1023 	lo->lo_backing_file = NULL;
1024 
1025 	loop_release_xfer(lo);
1026 	lo->transfer = NULL;
1027 	lo->ioctl = NULL;
1028 	lo->lo_device = NULL;
1029 	lo->lo_encryption = NULL;
1030 	lo->lo_offset = 0;
1031 	lo->lo_sizelimit = 0;
1032 	lo->lo_encrypt_key_size = 0;
1033 	lo->lo_flags = 0;
1034 	lo->lo_thread = NULL;
1035 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1036 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1037 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1038 	if (bdev)
1039 		invalidate_bdev(bdev);
1040 	set_capacity(lo->lo_disk, 0);
1041 	loop_sysfs_exit(lo);
1042 	if (bdev) {
1043 		bd_set_size(bdev, 0);
1044 		/* let user-space know about this change */
1045 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1046 	}
1047 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1048 	lo->lo_state = Lo_unbound;
1049 	/* This is safe: open() is still holding a reference. */
1050 	module_put(THIS_MODULE);
1051 	if (max_part > 0 && bdev)
1052 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1053 	mutex_unlock(&lo->lo_ctl_mutex);
1054 	/*
1055 	 * Need not hold lo_ctl_mutex to fput backing file.
1056 	 * Calling fput holding lo_ctl_mutex triggers a circular
1057 	 * lock dependency possibility warning as fput can take
1058 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1059 	 */
1060 	fput(filp);
1061 	return 0;
1062 }
1063 
1064 static int
1065 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1066 {
1067 	int err;
1068 	struct loop_func_table *xfer;
1069 	uid_t uid = current_uid();
1070 
1071 	if (lo->lo_encrypt_key_size &&
1072 	    lo->lo_key_owner != uid &&
1073 	    !capable(CAP_SYS_ADMIN))
1074 		return -EPERM;
1075 	if (lo->lo_state != Lo_bound)
1076 		return -ENXIO;
1077 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1078 		return -EINVAL;
1079 
1080 	err = loop_release_xfer(lo);
1081 	if (err)
1082 		return err;
1083 
1084 	if (info->lo_encrypt_type) {
1085 		unsigned int type = info->lo_encrypt_type;
1086 
1087 		if (type >= MAX_LO_CRYPT)
1088 			return -EINVAL;
1089 		xfer = xfer_funcs[type];
1090 		if (xfer == NULL)
1091 			return -EINVAL;
1092 	} else
1093 		xfer = NULL;
1094 
1095 	err = loop_init_xfer(lo, xfer, info);
1096 	if (err)
1097 		return err;
1098 
1099 	if (lo->lo_offset != info->lo_offset ||
1100 	    lo->lo_sizelimit != info->lo_sizelimit) {
1101 		lo->lo_offset = info->lo_offset;
1102 		lo->lo_sizelimit = info->lo_sizelimit;
1103 		if (figure_loop_size(lo))
1104 			return -EFBIG;
1105 	}
1106 
1107 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1108 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1109 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1110 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1111 
1112 	if (!xfer)
1113 		xfer = &none_funcs;
1114 	lo->transfer = xfer->transfer;
1115 	lo->ioctl = xfer->ioctl;
1116 
1117 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1118 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1119 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1120 
1121 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1122 	lo->lo_init[0] = info->lo_init[0];
1123 	lo->lo_init[1] = info->lo_init[1];
1124 	if (info->lo_encrypt_key_size) {
1125 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1126 		       info->lo_encrypt_key_size);
1127 		lo->lo_key_owner = uid;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static int
1134 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1135 {
1136 	struct file *file = lo->lo_backing_file;
1137 	struct kstat stat;
1138 	int error;
1139 
1140 	if (lo->lo_state != Lo_bound)
1141 		return -ENXIO;
1142 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1143 	if (error)
1144 		return error;
1145 	memset(info, 0, sizeof(*info));
1146 	info->lo_number = lo->lo_number;
1147 	info->lo_device = huge_encode_dev(stat.dev);
1148 	info->lo_inode = stat.ino;
1149 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1150 	info->lo_offset = lo->lo_offset;
1151 	info->lo_sizelimit = lo->lo_sizelimit;
1152 	info->lo_flags = lo->lo_flags;
1153 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1154 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1155 	info->lo_encrypt_type =
1156 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1157 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1158 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1159 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1160 		       lo->lo_encrypt_key_size);
1161 	}
1162 	return 0;
1163 }
1164 
1165 static void
1166 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1167 {
1168 	memset(info64, 0, sizeof(*info64));
1169 	info64->lo_number = info->lo_number;
1170 	info64->lo_device = info->lo_device;
1171 	info64->lo_inode = info->lo_inode;
1172 	info64->lo_rdevice = info->lo_rdevice;
1173 	info64->lo_offset = info->lo_offset;
1174 	info64->lo_sizelimit = 0;
1175 	info64->lo_encrypt_type = info->lo_encrypt_type;
1176 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1177 	info64->lo_flags = info->lo_flags;
1178 	info64->lo_init[0] = info->lo_init[0];
1179 	info64->lo_init[1] = info->lo_init[1];
1180 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1181 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1182 	else
1183 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1184 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1185 }
1186 
1187 static int
1188 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1189 {
1190 	memset(info, 0, sizeof(*info));
1191 	info->lo_number = info64->lo_number;
1192 	info->lo_device = info64->lo_device;
1193 	info->lo_inode = info64->lo_inode;
1194 	info->lo_rdevice = info64->lo_rdevice;
1195 	info->lo_offset = info64->lo_offset;
1196 	info->lo_encrypt_type = info64->lo_encrypt_type;
1197 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1198 	info->lo_flags = info64->lo_flags;
1199 	info->lo_init[0] = info64->lo_init[0];
1200 	info->lo_init[1] = info64->lo_init[1];
1201 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1202 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1203 	else
1204 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1205 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1206 
1207 	/* error in case values were truncated */
1208 	if (info->lo_device != info64->lo_device ||
1209 	    info->lo_rdevice != info64->lo_rdevice ||
1210 	    info->lo_inode != info64->lo_inode ||
1211 	    info->lo_offset != info64->lo_offset)
1212 		return -EOVERFLOW;
1213 
1214 	return 0;
1215 }
1216 
1217 static int
1218 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1219 {
1220 	struct loop_info info;
1221 	struct loop_info64 info64;
1222 
1223 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1224 		return -EFAULT;
1225 	loop_info64_from_old(&info, &info64);
1226 	return loop_set_status(lo, &info64);
1227 }
1228 
1229 static int
1230 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1231 {
1232 	struct loop_info64 info64;
1233 
1234 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1235 		return -EFAULT;
1236 	return loop_set_status(lo, &info64);
1237 }
1238 
1239 static int
1240 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1241 	struct loop_info info;
1242 	struct loop_info64 info64;
1243 	int err = 0;
1244 
1245 	if (!arg)
1246 		err = -EINVAL;
1247 	if (!err)
1248 		err = loop_get_status(lo, &info64);
1249 	if (!err)
1250 		err = loop_info64_to_old(&info64, &info);
1251 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1252 		err = -EFAULT;
1253 
1254 	return err;
1255 }
1256 
1257 static int
1258 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1259 	struct loop_info64 info64;
1260 	int err = 0;
1261 
1262 	if (!arg)
1263 		err = -EINVAL;
1264 	if (!err)
1265 		err = loop_get_status(lo, &info64);
1266 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1267 		err = -EFAULT;
1268 
1269 	return err;
1270 }
1271 
1272 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1273 {
1274 	int err;
1275 	sector_t sec;
1276 	loff_t sz;
1277 
1278 	err = -ENXIO;
1279 	if (unlikely(lo->lo_state != Lo_bound))
1280 		goto out;
1281 	err = figure_loop_size(lo);
1282 	if (unlikely(err))
1283 		goto out;
1284 	sec = get_capacity(lo->lo_disk);
1285 	/* the width of sector_t may be narrow for bit-shift */
1286 	sz = sec;
1287 	sz <<= 9;
1288 	mutex_lock(&bdev->bd_mutex);
1289 	bd_set_size(bdev, sz);
1290 	/* let user-space know about the new size */
1291 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1292 	mutex_unlock(&bdev->bd_mutex);
1293 
1294  out:
1295 	return err;
1296 }
1297 
1298 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1299 	unsigned int cmd, unsigned long arg)
1300 {
1301 	struct loop_device *lo = bdev->bd_disk->private_data;
1302 	int err;
1303 
1304 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1305 	switch (cmd) {
1306 	case LOOP_SET_FD:
1307 		err = loop_set_fd(lo, mode, bdev, arg);
1308 		break;
1309 	case LOOP_CHANGE_FD:
1310 		err = loop_change_fd(lo, bdev, arg);
1311 		break;
1312 	case LOOP_CLR_FD:
1313 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1314 		err = loop_clr_fd(lo, bdev);
1315 		if (!err)
1316 			goto out_unlocked;
1317 		break;
1318 	case LOOP_SET_STATUS:
1319 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1320 		break;
1321 	case LOOP_GET_STATUS:
1322 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1323 		break;
1324 	case LOOP_SET_STATUS64:
1325 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1326 		break;
1327 	case LOOP_GET_STATUS64:
1328 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1329 		break;
1330 	case LOOP_SET_CAPACITY:
1331 		err = -EPERM;
1332 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1333 			err = loop_set_capacity(lo, bdev);
1334 		break;
1335 	default:
1336 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1337 	}
1338 	mutex_unlock(&lo->lo_ctl_mutex);
1339 
1340 out_unlocked:
1341 	return err;
1342 }
1343 
1344 #ifdef CONFIG_COMPAT
1345 struct compat_loop_info {
1346 	compat_int_t	lo_number;      /* ioctl r/o */
1347 	compat_dev_t	lo_device;      /* ioctl r/o */
1348 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1349 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1350 	compat_int_t	lo_offset;
1351 	compat_int_t	lo_encrypt_type;
1352 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1353 	compat_int_t	lo_flags;       /* ioctl r/o */
1354 	char		lo_name[LO_NAME_SIZE];
1355 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1356 	compat_ulong_t	lo_init[2];
1357 	char		reserved[4];
1358 };
1359 
1360 /*
1361  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1362  * - noinlined to reduce stack space usage in main part of driver
1363  */
1364 static noinline int
1365 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1366 			struct loop_info64 *info64)
1367 {
1368 	struct compat_loop_info info;
1369 
1370 	if (copy_from_user(&info, arg, sizeof(info)))
1371 		return -EFAULT;
1372 
1373 	memset(info64, 0, sizeof(*info64));
1374 	info64->lo_number = info.lo_number;
1375 	info64->lo_device = info.lo_device;
1376 	info64->lo_inode = info.lo_inode;
1377 	info64->lo_rdevice = info.lo_rdevice;
1378 	info64->lo_offset = info.lo_offset;
1379 	info64->lo_sizelimit = 0;
1380 	info64->lo_encrypt_type = info.lo_encrypt_type;
1381 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1382 	info64->lo_flags = info.lo_flags;
1383 	info64->lo_init[0] = info.lo_init[0];
1384 	info64->lo_init[1] = info.lo_init[1];
1385 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1386 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1387 	else
1388 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1389 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1390 	return 0;
1391 }
1392 
1393 /*
1394  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1395  * - noinlined to reduce stack space usage in main part of driver
1396  */
1397 static noinline int
1398 loop_info64_to_compat(const struct loop_info64 *info64,
1399 		      struct compat_loop_info __user *arg)
1400 {
1401 	struct compat_loop_info info;
1402 
1403 	memset(&info, 0, sizeof(info));
1404 	info.lo_number = info64->lo_number;
1405 	info.lo_device = info64->lo_device;
1406 	info.lo_inode = info64->lo_inode;
1407 	info.lo_rdevice = info64->lo_rdevice;
1408 	info.lo_offset = info64->lo_offset;
1409 	info.lo_encrypt_type = info64->lo_encrypt_type;
1410 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1411 	info.lo_flags = info64->lo_flags;
1412 	info.lo_init[0] = info64->lo_init[0];
1413 	info.lo_init[1] = info64->lo_init[1];
1414 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1415 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1416 	else
1417 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1418 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1419 
1420 	/* error in case values were truncated */
1421 	if (info.lo_device != info64->lo_device ||
1422 	    info.lo_rdevice != info64->lo_rdevice ||
1423 	    info.lo_inode != info64->lo_inode ||
1424 	    info.lo_offset != info64->lo_offset ||
1425 	    info.lo_init[0] != info64->lo_init[0] ||
1426 	    info.lo_init[1] != info64->lo_init[1])
1427 		return -EOVERFLOW;
1428 
1429 	if (copy_to_user(arg, &info, sizeof(info)))
1430 		return -EFAULT;
1431 	return 0;
1432 }
1433 
1434 static int
1435 loop_set_status_compat(struct loop_device *lo,
1436 		       const struct compat_loop_info __user *arg)
1437 {
1438 	struct loop_info64 info64;
1439 	int ret;
1440 
1441 	ret = loop_info64_from_compat(arg, &info64);
1442 	if (ret < 0)
1443 		return ret;
1444 	return loop_set_status(lo, &info64);
1445 }
1446 
1447 static int
1448 loop_get_status_compat(struct loop_device *lo,
1449 		       struct compat_loop_info __user *arg)
1450 {
1451 	struct loop_info64 info64;
1452 	int err = 0;
1453 
1454 	if (!arg)
1455 		err = -EINVAL;
1456 	if (!err)
1457 		err = loop_get_status(lo, &info64);
1458 	if (!err)
1459 		err = loop_info64_to_compat(&info64, arg);
1460 	return err;
1461 }
1462 
1463 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1464 			   unsigned int cmd, unsigned long arg)
1465 {
1466 	struct loop_device *lo = bdev->bd_disk->private_data;
1467 	int err;
1468 
1469 	switch(cmd) {
1470 	case LOOP_SET_STATUS:
1471 		mutex_lock(&lo->lo_ctl_mutex);
1472 		err = loop_set_status_compat(
1473 			lo, (const struct compat_loop_info __user *) arg);
1474 		mutex_unlock(&lo->lo_ctl_mutex);
1475 		break;
1476 	case LOOP_GET_STATUS:
1477 		mutex_lock(&lo->lo_ctl_mutex);
1478 		err = loop_get_status_compat(
1479 			lo, (struct compat_loop_info __user *) arg);
1480 		mutex_unlock(&lo->lo_ctl_mutex);
1481 		break;
1482 	case LOOP_SET_CAPACITY:
1483 	case LOOP_CLR_FD:
1484 	case LOOP_GET_STATUS64:
1485 	case LOOP_SET_STATUS64:
1486 		arg = (unsigned long) compat_ptr(arg);
1487 	case LOOP_SET_FD:
1488 	case LOOP_CHANGE_FD:
1489 		err = lo_ioctl(bdev, mode, cmd, arg);
1490 		break;
1491 	default:
1492 		err = -ENOIOCTLCMD;
1493 		break;
1494 	}
1495 	return err;
1496 }
1497 #endif
1498 
1499 static int lo_open(struct block_device *bdev, fmode_t mode)
1500 {
1501 	struct loop_device *lo = bdev->bd_disk->private_data;
1502 
1503 	mutex_lock(&lo->lo_ctl_mutex);
1504 	lo->lo_refcnt++;
1505 	mutex_unlock(&lo->lo_ctl_mutex);
1506 
1507 	return 0;
1508 }
1509 
1510 static int lo_release(struct gendisk *disk, fmode_t mode)
1511 {
1512 	struct loop_device *lo = disk->private_data;
1513 	int err;
1514 
1515 	mutex_lock(&lo->lo_ctl_mutex);
1516 
1517 	if (--lo->lo_refcnt)
1518 		goto out;
1519 
1520 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1521 		/*
1522 		 * In autoclear mode, stop the loop thread
1523 		 * and remove configuration after last close.
1524 		 */
1525 		err = loop_clr_fd(lo, NULL);
1526 		if (!err)
1527 			goto out_unlocked;
1528 	} else {
1529 		/*
1530 		 * Otherwise keep thread (if running) and config,
1531 		 * but flush possible ongoing bios in thread.
1532 		 */
1533 		loop_flush(lo);
1534 	}
1535 
1536 out:
1537 	mutex_unlock(&lo->lo_ctl_mutex);
1538 out_unlocked:
1539 	return 0;
1540 }
1541 
1542 static const struct block_device_operations lo_fops = {
1543 	.owner =	THIS_MODULE,
1544 	.open =		lo_open,
1545 	.release =	lo_release,
1546 	.ioctl =	lo_ioctl,
1547 #ifdef CONFIG_COMPAT
1548 	.compat_ioctl =	lo_compat_ioctl,
1549 #endif
1550 };
1551 
1552 /*
1553  * And now the modules code and kernel interface.
1554  */
1555 static int max_loop;
1556 module_param(max_loop, int, 0);
1557 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1558 module_param(max_part, int, 0);
1559 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1560 MODULE_LICENSE("GPL");
1561 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1562 
1563 int loop_register_transfer(struct loop_func_table *funcs)
1564 {
1565 	unsigned int n = funcs->number;
1566 
1567 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1568 		return -EINVAL;
1569 	xfer_funcs[n] = funcs;
1570 	return 0;
1571 }
1572 
1573 int loop_unregister_transfer(int number)
1574 {
1575 	unsigned int n = number;
1576 	struct loop_device *lo;
1577 	struct loop_func_table *xfer;
1578 
1579 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1580 		return -EINVAL;
1581 
1582 	xfer_funcs[n] = NULL;
1583 
1584 	list_for_each_entry(lo, &loop_devices, lo_list) {
1585 		mutex_lock(&lo->lo_ctl_mutex);
1586 
1587 		if (lo->lo_encryption == xfer)
1588 			loop_release_xfer(lo);
1589 
1590 		mutex_unlock(&lo->lo_ctl_mutex);
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 EXPORT_SYMBOL(loop_register_transfer);
1597 EXPORT_SYMBOL(loop_unregister_transfer);
1598 
1599 static struct loop_device *loop_alloc(int i)
1600 {
1601 	struct loop_device *lo;
1602 	struct gendisk *disk;
1603 
1604 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1605 	if (!lo)
1606 		goto out;
1607 
1608 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1609 	if (!lo->lo_queue)
1610 		goto out_free_dev;
1611 
1612 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1613 	if (!disk)
1614 		goto out_free_queue;
1615 
1616 	mutex_init(&lo->lo_ctl_mutex);
1617 	lo->lo_number		= i;
1618 	lo->lo_thread		= NULL;
1619 	init_waitqueue_head(&lo->lo_event);
1620 	spin_lock_init(&lo->lo_lock);
1621 	disk->major		= LOOP_MAJOR;
1622 	disk->first_minor	= i << part_shift;
1623 	disk->fops		= &lo_fops;
1624 	disk->private_data	= lo;
1625 	disk->queue		= lo->lo_queue;
1626 	sprintf(disk->disk_name, "loop%d", i);
1627 	return lo;
1628 
1629 out_free_queue:
1630 	blk_cleanup_queue(lo->lo_queue);
1631 out_free_dev:
1632 	kfree(lo);
1633 out:
1634 	return NULL;
1635 }
1636 
1637 static void loop_free(struct loop_device *lo)
1638 {
1639 	if (!lo->lo_queue->queue_lock)
1640 		lo->lo_queue->queue_lock = &lo->lo_queue->__queue_lock;
1641 
1642 	blk_cleanup_queue(lo->lo_queue);
1643 	put_disk(lo->lo_disk);
1644 	list_del(&lo->lo_list);
1645 	kfree(lo);
1646 }
1647 
1648 static struct loop_device *loop_init_one(int i)
1649 {
1650 	struct loop_device *lo;
1651 
1652 	list_for_each_entry(lo, &loop_devices, lo_list) {
1653 		if (lo->lo_number == i)
1654 			return lo;
1655 	}
1656 
1657 	lo = loop_alloc(i);
1658 	if (lo) {
1659 		add_disk(lo->lo_disk);
1660 		list_add_tail(&lo->lo_list, &loop_devices);
1661 	}
1662 	return lo;
1663 }
1664 
1665 static void loop_del_one(struct loop_device *lo)
1666 {
1667 	del_gendisk(lo->lo_disk);
1668 	loop_free(lo);
1669 }
1670 
1671 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1672 {
1673 	struct loop_device *lo;
1674 	struct kobject *kobj;
1675 
1676 	mutex_lock(&loop_devices_mutex);
1677 	lo = loop_init_one(dev & MINORMASK);
1678 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1679 	mutex_unlock(&loop_devices_mutex);
1680 
1681 	*part = 0;
1682 	return kobj;
1683 }
1684 
1685 static int __init loop_init(void)
1686 {
1687 	int i, nr;
1688 	unsigned long range;
1689 	struct loop_device *lo, *next;
1690 
1691 	/*
1692 	 * loop module now has a feature to instantiate underlying device
1693 	 * structure on-demand, provided that there is an access dev node.
1694 	 * However, this will not work well with user space tool that doesn't
1695 	 * know about such "feature".  In order to not break any existing
1696 	 * tool, we do the following:
1697 	 *
1698 	 * (1) if max_loop is specified, create that many upfront, and this
1699 	 *     also becomes a hard limit.
1700 	 * (2) if max_loop is not specified, create 8 loop device on module
1701 	 *     load, user can further extend loop device by create dev node
1702 	 *     themselves and have kernel automatically instantiate actual
1703 	 *     device on-demand.
1704 	 */
1705 
1706 	part_shift = 0;
1707 	if (max_part > 0)
1708 		part_shift = fls(max_part);
1709 
1710 	if (max_loop > 1UL << (MINORBITS - part_shift))
1711 		return -EINVAL;
1712 
1713 	if (max_loop) {
1714 		nr = max_loop;
1715 		range = max_loop;
1716 	} else {
1717 		nr = 8;
1718 		range = 1UL << (MINORBITS - part_shift);
1719 	}
1720 
1721 	if (register_blkdev(LOOP_MAJOR, "loop"))
1722 		return -EIO;
1723 
1724 	for (i = 0; i < nr; i++) {
1725 		lo = loop_alloc(i);
1726 		if (!lo)
1727 			goto Enomem;
1728 		list_add_tail(&lo->lo_list, &loop_devices);
1729 	}
1730 
1731 	/* point of no return */
1732 
1733 	list_for_each_entry(lo, &loop_devices, lo_list)
1734 		add_disk(lo->lo_disk);
1735 
1736 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1737 				  THIS_MODULE, loop_probe, NULL, NULL);
1738 
1739 	printk(KERN_INFO "loop: module loaded\n");
1740 	return 0;
1741 
1742 Enomem:
1743 	printk(KERN_INFO "loop: out of memory\n");
1744 
1745 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1746 		loop_free(lo);
1747 
1748 	unregister_blkdev(LOOP_MAJOR, "loop");
1749 	return -ENOMEM;
1750 }
1751 
1752 static void __exit loop_exit(void)
1753 {
1754 	unsigned long range;
1755 	struct loop_device *lo, *next;
1756 
1757 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1758 
1759 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1760 		loop_del_one(lo);
1761 
1762 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1763 	unregister_blkdev(LOOP_MAJOR, "loop");
1764 }
1765 
1766 module_init(loop_init);
1767 module_exit(loop_exit);
1768 
1769 #ifndef MODULE
1770 static int __init max_loop_setup(char *str)
1771 {
1772 	max_loop = simple_strtol(str, NULL, 0);
1773 	return 1;
1774 }
1775 
1776 __setup("max_loop=", max_loop_setup);
1777 #endif
1778