1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/loop.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 73 #include <linux/completion.h> 74 #include <linux/highmem.h> 75 #include <linux/kthread.h> 76 #include <linux/splice.h> 77 #include <linux/sysfs.h> 78 79 #include <asm/uaccess.h> 80 81 static LIST_HEAD(loop_devices); 82 static DEFINE_MUTEX(loop_devices_mutex); 83 84 static int max_part; 85 static int part_shift; 86 87 /* 88 * Transfer functions 89 */ 90 static int transfer_none(struct loop_device *lo, int cmd, 91 struct page *raw_page, unsigned raw_off, 92 struct page *loop_page, unsigned loop_off, 93 int size, sector_t real_block) 94 { 95 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 96 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 97 98 if (cmd == READ) 99 memcpy(loop_buf, raw_buf, size); 100 else 101 memcpy(raw_buf, loop_buf, size); 102 103 kunmap_atomic(loop_buf, KM_USER1); 104 kunmap_atomic(raw_buf, KM_USER0); 105 cond_resched(); 106 return 0; 107 } 108 109 static int transfer_xor(struct loop_device *lo, int cmd, 110 struct page *raw_page, unsigned raw_off, 111 struct page *loop_page, unsigned loop_off, 112 int size, sector_t real_block) 113 { 114 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 115 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 116 char *in, *out, *key; 117 int i, keysize; 118 119 if (cmd == READ) { 120 in = raw_buf; 121 out = loop_buf; 122 } else { 123 in = loop_buf; 124 out = raw_buf; 125 } 126 127 key = lo->lo_encrypt_key; 128 keysize = lo->lo_encrypt_key_size; 129 for (i = 0; i < size; i++) 130 *out++ = *in++ ^ key[(i & 511) % keysize]; 131 132 kunmap_atomic(loop_buf, KM_USER1); 133 kunmap_atomic(raw_buf, KM_USER0); 134 cond_resched(); 135 return 0; 136 } 137 138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 139 { 140 if (unlikely(info->lo_encrypt_key_size <= 0)) 141 return -EINVAL; 142 return 0; 143 } 144 145 static struct loop_func_table none_funcs = { 146 .number = LO_CRYPT_NONE, 147 .transfer = transfer_none, 148 }; 149 150 static struct loop_func_table xor_funcs = { 151 .number = LO_CRYPT_XOR, 152 .transfer = transfer_xor, 153 .init = xor_init 154 }; 155 156 /* xfer_funcs[0] is special - its release function is never called */ 157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 158 &none_funcs, 159 &xor_funcs 160 }; 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 loff_t size, offset, loopsize; 165 166 /* Compute loopsize in bytes */ 167 size = i_size_read(file->f_mapping->host); 168 offset = lo->lo_offset; 169 loopsize = size - offset; 170 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 171 loopsize = lo->lo_sizelimit; 172 173 /* 174 * Unfortunately, if we want to do I/O on the device, 175 * the number of 512-byte sectors has to fit into a sector_t. 176 */ 177 return loopsize >> 9; 178 } 179 180 static int 181 figure_loop_size(struct loop_device *lo) 182 { 183 loff_t size = get_loop_size(lo, lo->lo_backing_file); 184 sector_t x = (sector_t)size; 185 186 if (unlikely((loff_t)x != size)) 187 return -EFBIG; 188 189 set_capacity(lo->lo_disk, x); 190 return 0; 191 } 192 193 static inline int 194 lo_do_transfer(struct loop_device *lo, int cmd, 195 struct page *rpage, unsigned roffs, 196 struct page *lpage, unsigned loffs, 197 int size, sector_t rblock) 198 { 199 if (unlikely(!lo->transfer)) 200 return 0; 201 202 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 203 } 204 205 /** 206 * do_lo_send_aops - helper for writing data to a loop device 207 * 208 * This is the fast version for backing filesystems which implement the address 209 * space operations write_begin and write_end. 210 */ 211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 212 loff_t pos, struct page *unused) 213 { 214 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 215 struct address_space *mapping = file->f_mapping; 216 pgoff_t index; 217 unsigned offset, bv_offs; 218 int len, ret; 219 220 mutex_lock(&mapping->host->i_mutex); 221 index = pos >> PAGE_CACHE_SHIFT; 222 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 223 bv_offs = bvec->bv_offset; 224 len = bvec->bv_len; 225 while (len > 0) { 226 sector_t IV; 227 unsigned size, copied; 228 int transfer_result; 229 struct page *page; 230 void *fsdata; 231 232 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 233 size = PAGE_CACHE_SIZE - offset; 234 if (size > len) 235 size = len; 236 237 ret = pagecache_write_begin(file, mapping, pos, size, 0, 238 &page, &fsdata); 239 if (ret) 240 goto fail; 241 242 file_update_time(file); 243 244 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 245 bvec->bv_page, bv_offs, size, IV); 246 copied = size; 247 if (unlikely(transfer_result)) 248 copied = 0; 249 250 ret = pagecache_write_end(file, mapping, pos, size, copied, 251 page, fsdata); 252 if (ret < 0 || ret != copied) 253 goto fail; 254 255 if (unlikely(transfer_result)) 256 goto fail; 257 258 bv_offs += copied; 259 len -= copied; 260 offset = 0; 261 index++; 262 pos += copied; 263 } 264 ret = 0; 265 out: 266 mutex_unlock(&mapping->host->i_mutex); 267 return ret; 268 fail: 269 ret = -1; 270 goto out; 271 } 272 273 /** 274 * __do_lo_send_write - helper for writing data to a loop device 275 * 276 * This helper just factors out common code between do_lo_send_direct_write() 277 * and do_lo_send_write(). 278 */ 279 static int __do_lo_send_write(struct file *file, 280 u8 *buf, const int len, loff_t pos) 281 { 282 ssize_t bw; 283 mm_segment_t old_fs = get_fs(); 284 285 set_fs(get_ds()); 286 bw = file->f_op->write(file, buf, len, &pos); 287 set_fs(old_fs); 288 if (likely(bw == len)) 289 return 0; 290 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 291 (unsigned long long)pos, len); 292 if (bw >= 0) 293 bw = -EIO; 294 return bw; 295 } 296 297 /** 298 * do_lo_send_direct_write - helper for writing data to a loop device 299 * 300 * This is the fast, non-transforming version for backing filesystems which do 301 * not implement the address space operations write_begin and write_end. 302 * It uses the write file operation which should be present on all writeable 303 * filesystems. 304 */ 305 static int do_lo_send_direct_write(struct loop_device *lo, 306 struct bio_vec *bvec, loff_t pos, struct page *page) 307 { 308 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 309 kmap(bvec->bv_page) + bvec->bv_offset, 310 bvec->bv_len, pos); 311 kunmap(bvec->bv_page); 312 cond_resched(); 313 return bw; 314 } 315 316 /** 317 * do_lo_send_write - helper for writing data to a loop device 318 * 319 * This is the slow, transforming version for filesystems which do not 320 * implement the address space operations write_begin and write_end. It 321 * uses the write file operation which should be present on all writeable 322 * filesystems. 323 * 324 * Using fops->write is slower than using aops->{prepare,commit}_write in the 325 * transforming case because we need to double buffer the data as we cannot do 326 * the transformations in place as we do not have direct access to the 327 * destination pages of the backing file. 328 */ 329 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 330 loff_t pos, struct page *page) 331 { 332 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 333 bvec->bv_offset, bvec->bv_len, pos >> 9); 334 if (likely(!ret)) 335 return __do_lo_send_write(lo->lo_backing_file, 336 page_address(page), bvec->bv_len, 337 pos); 338 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 339 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 340 if (ret > 0) 341 ret = -EIO; 342 return ret; 343 } 344 345 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 346 { 347 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 348 struct page *page); 349 struct bio_vec *bvec; 350 struct page *page = NULL; 351 int i, ret = 0; 352 353 do_lo_send = do_lo_send_aops; 354 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 355 do_lo_send = do_lo_send_direct_write; 356 if (lo->transfer != transfer_none) { 357 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 358 if (unlikely(!page)) 359 goto fail; 360 kmap(page); 361 do_lo_send = do_lo_send_write; 362 } 363 } 364 bio_for_each_segment(bvec, bio, i) { 365 ret = do_lo_send(lo, bvec, pos, page); 366 if (ret < 0) 367 break; 368 pos += bvec->bv_len; 369 } 370 if (page) { 371 kunmap(page); 372 __free_page(page); 373 } 374 out: 375 return ret; 376 fail: 377 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 378 ret = -ENOMEM; 379 goto out; 380 } 381 382 struct lo_read_data { 383 struct loop_device *lo; 384 struct page *page; 385 unsigned offset; 386 int bsize; 387 }; 388 389 static int 390 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 391 struct splice_desc *sd) 392 { 393 struct lo_read_data *p = sd->u.data; 394 struct loop_device *lo = p->lo; 395 struct page *page = buf->page; 396 sector_t IV; 397 int size; 398 399 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 400 (buf->offset >> 9); 401 size = sd->len; 402 if (size > p->bsize) 403 size = p->bsize; 404 405 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 406 printk(KERN_ERR "loop: transfer error block %ld\n", 407 page->index); 408 size = -EINVAL; 409 } 410 411 flush_dcache_page(p->page); 412 413 if (size > 0) 414 p->offset += size; 415 416 return size; 417 } 418 419 static int 420 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 421 { 422 return __splice_from_pipe(pipe, sd, lo_splice_actor); 423 } 424 425 static int 426 do_lo_receive(struct loop_device *lo, 427 struct bio_vec *bvec, int bsize, loff_t pos) 428 { 429 struct lo_read_data cookie; 430 struct splice_desc sd; 431 struct file *file; 432 long retval; 433 434 cookie.lo = lo; 435 cookie.page = bvec->bv_page; 436 cookie.offset = bvec->bv_offset; 437 cookie.bsize = bsize; 438 439 sd.len = 0; 440 sd.total_len = bvec->bv_len; 441 sd.flags = 0; 442 sd.pos = pos; 443 sd.u.data = &cookie; 444 445 file = lo->lo_backing_file; 446 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 447 448 if (retval < 0) 449 return retval; 450 451 return 0; 452 } 453 454 static int 455 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 456 { 457 struct bio_vec *bvec; 458 int i, ret = 0; 459 460 bio_for_each_segment(bvec, bio, i) { 461 ret = do_lo_receive(lo, bvec, bsize, pos); 462 if (ret < 0) 463 break; 464 pos += bvec->bv_len; 465 } 466 return ret; 467 } 468 469 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 470 { 471 loff_t pos; 472 int ret; 473 474 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 475 476 if (bio_rw(bio) == WRITE) { 477 struct file *file = lo->lo_backing_file; 478 479 if (bio->bi_rw & REQ_FLUSH) { 480 ret = vfs_fsync(file, 0); 481 if (unlikely(ret && ret != -EINVAL)) { 482 ret = -EIO; 483 goto out; 484 } 485 } 486 487 ret = lo_send(lo, bio, pos); 488 489 if ((bio->bi_rw & REQ_FUA) && !ret) { 490 ret = vfs_fsync(file, 0); 491 if (unlikely(ret && ret != -EINVAL)) 492 ret = -EIO; 493 } 494 } else 495 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 496 497 out: 498 return ret; 499 } 500 501 /* 502 * Add bio to back of pending list 503 */ 504 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 505 { 506 bio_list_add(&lo->lo_bio_list, bio); 507 } 508 509 /* 510 * Grab first pending buffer 511 */ 512 static struct bio *loop_get_bio(struct loop_device *lo) 513 { 514 return bio_list_pop(&lo->lo_bio_list); 515 } 516 517 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 518 { 519 struct loop_device *lo = q->queuedata; 520 int rw = bio_rw(old_bio); 521 522 if (rw == READA) 523 rw = READ; 524 525 BUG_ON(!lo || (rw != READ && rw != WRITE)); 526 527 spin_lock_irq(&lo->lo_lock); 528 if (lo->lo_state != Lo_bound) 529 goto out; 530 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 531 goto out; 532 loop_add_bio(lo, old_bio); 533 wake_up(&lo->lo_event); 534 spin_unlock_irq(&lo->lo_lock); 535 return 0; 536 537 out: 538 spin_unlock_irq(&lo->lo_lock); 539 bio_io_error(old_bio); 540 return 0; 541 } 542 543 /* 544 * kick off io on the underlying address space 545 */ 546 static void loop_unplug(struct request_queue *q) 547 { 548 struct loop_device *lo = q->queuedata; 549 550 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 551 blk_run_address_space(lo->lo_backing_file->f_mapping); 552 } 553 554 struct switch_request { 555 struct file *file; 556 struct completion wait; 557 }; 558 559 static void do_loop_switch(struct loop_device *, struct switch_request *); 560 561 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 562 { 563 if (unlikely(!bio->bi_bdev)) { 564 do_loop_switch(lo, bio->bi_private); 565 bio_put(bio); 566 } else { 567 int ret = do_bio_filebacked(lo, bio); 568 bio_endio(bio, ret); 569 } 570 } 571 572 /* 573 * worker thread that handles reads/writes to file backed loop devices, 574 * to avoid blocking in our make_request_fn. it also does loop decrypting 575 * on reads for block backed loop, as that is too heavy to do from 576 * b_end_io context where irqs may be disabled. 577 * 578 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 579 * calling kthread_stop(). Therefore once kthread_should_stop() is 580 * true, make_request will not place any more requests. Therefore 581 * once kthread_should_stop() is true and lo_bio is NULL, we are 582 * done with the loop. 583 */ 584 static int loop_thread(void *data) 585 { 586 struct loop_device *lo = data; 587 struct bio *bio; 588 589 set_user_nice(current, -20); 590 591 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 592 593 wait_event_interruptible(lo->lo_event, 594 !bio_list_empty(&lo->lo_bio_list) || 595 kthread_should_stop()); 596 597 if (bio_list_empty(&lo->lo_bio_list)) 598 continue; 599 spin_lock_irq(&lo->lo_lock); 600 bio = loop_get_bio(lo); 601 spin_unlock_irq(&lo->lo_lock); 602 603 BUG_ON(!bio); 604 loop_handle_bio(lo, bio); 605 } 606 607 return 0; 608 } 609 610 /* 611 * loop_switch performs the hard work of switching a backing store. 612 * First it needs to flush existing IO, it does this by sending a magic 613 * BIO down the pipe. The completion of this BIO does the actual switch. 614 */ 615 static int loop_switch(struct loop_device *lo, struct file *file) 616 { 617 struct switch_request w; 618 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 619 if (!bio) 620 return -ENOMEM; 621 init_completion(&w.wait); 622 w.file = file; 623 bio->bi_private = &w; 624 bio->bi_bdev = NULL; 625 loop_make_request(lo->lo_queue, bio); 626 wait_for_completion(&w.wait); 627 return 0; 628 } 629 630 /* 631 * Helper to flush the IOs in loop, but keeping loop thread running 632 */ 633 static int loop_flush(struct loop_device *lo) 634 { 635 /* loop not yet configured, no running thread, nothing to flush */ 636 if (!lo->lo_thread) 637 return 0; 638 639 return loop_switch(lo, NULL); 640 } 641 642 /* 643 * Do the actual switch; called from the BIO completion routine 644 */ 645 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 646 { 647 struct file *file = p->file; 648 struct file *old_file = lo->lo_backing_file; 649 struct address_space *mapping; 650 651 /* if no new file, only flush of queued bios requested */ 652 if (!file) 653 goto out; 654 655 mapping = file->f_mapping; 656 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 657 lo->lo_backing_file = file; 658 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 659 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 660 lo->old_gfp_mask = mapping_gfp_mask(mapping); 661 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 662 out: 663 complete(&p->wait); 664 } 665 666 667 /* 668 * loop_change_fd switched the backing store of a loopback device to 669 * a new file. This is useful for operating system installers to free up 670 * the original file and in High Availability environments to switch to 671 * an alternative location for the content in case of server meltdown. 672 * This can only work if the loop device is used read-only, and if the 673 * new backing store is the same size and type as the old backing store. 674 */ 675 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 676 unsigned int arg) 677 { 678 struct file *file, *old_file; 679 struct inode *inode; 680 int error; 681 682 error = -ENXIO; 683 if (lo->lo_state != Lo_bound) 684 goto out; 685 686 /* the loop device has to be read-only */ 687 error = -EINVAL; 688 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 689 goto out; 690 691 error = -EBADF; 692 file = fget(arg); 693 if (!file) 694 goto out; 695 696 inode = file->f_mapping->host; 697 old_file = lo->lo_backing_file; 698 699 error = -EINVAL; 700 701 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 702 goto out_putf; 703 704 /* size of the new backing store needs to be the same */ 705 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 706 goto out_putf; 707 708 /* and ... switch */ 709 error = loop_switch(lo, file); 710 if (error) 711 goto out_putf; 712 713 fput(old_file); 714 if (max_part > 0) 715 ioctl_by_bdev(bdev, BLKRRPART, 0); 716 return 0; 717 718 out_putf: 719 fput(file); 720 out: 721 return error; 722 } 723 724 static inline int is_loop_device(struct file *file) 725 { 726 struct inode *i = file->f_mapping->host; 727 728 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 729 } 730 731 /* loop sysfs attributes */ 732 733 static ssize_t loop_attr_show(struct device *dev, char *page, 734 ssize_t (*callback)(struct loop_device *, char *)) 735 { 736 struct loop_device *l, *lo = NULL; 737 738 mutex_lock(&loop_devices_mutex); 739 list_for_each_entry(l, &loop_devices, lo_list) 740 if (disk_to_dev(l->lo_disk) == dev) { 741 lo = l; 742 break; 743 } 744 mutex_unlock(&loop_devices_mutex); 745 746 return lo ? callback(lo, page) : -EIO; 747 } 748 749 #define LOOP_ATTR_RO(_name) \ 750 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 751 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 752 struct device_attribute *attr, char *b) \ 753 { \ 754 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 755 } \ 756 static struct device_attribute loop_attr_##_name = \ 757 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 758 759 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 760 { 761 ssize_t ret; 762 char *p = NULL; 763 764 mutex_lock(&lo->lo_ctl_mutex); 765 if (lo->lo_backing_file) 766 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 767 mutex_unlock(&lo->lo_ctl_mutex); 768 769 if (IS_ERR_OR_NULL(p)) 770 ret = PTR_ERR(p); 771 else { 772 ret = strlen(p); 773 memmove(buf, p, ret); 774 buf[ret++] = '\n'; 775 buf[ret] = 0; 776 } 777 778 return ret; 779 } 780 781 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 782 { 783 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 784 } 785 786 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 787 { 788 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 789 } 790 791 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 792 { 793 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 794 795 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 796 } 797 798 LOOP_ATTR_RO(backing_file); 799 LOOP_ATTR_RO(offset); 800 LOOP_ATTR_RO(sizelimit); 801 LOOP_ATTR_RO(autoclear); 802 803 static struct attribute *loop_attrs[] = { 804 &loop_attr_backing_file.attr, 805 &loop_attr_offset.attr, 806 &loop_attr_sizelimit.attr, 807 &loop_attr_autoclear.attr, 808 NULL, 809 }; 810 811 static struct attribute_group loop_attribute_group = { 812 .name = "loop", 813 .attrs= loop_attrs, 814 }; 815 816 static int loop_sysfs_init(struct loop_device *lo) 817 { 818 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 819 &loop_attribute_group); 820 } 821 822 static void loop_sysfs_exit(struct loop_device *lo) 823 { 824 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 825 &loop_attribute_group); 826 } 827 828 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 829 struct block_device *bdev, unsigned int arg) 830 { 831 struct file *file, *f; 832 struct inode *inode; 833 struct address_space *mapping; 834 unsigned lo_blocksize; 835 int lo_flags = 0; 836 int error; 837 loff_t size; 838 839 /* This is safe, since we have a reference from open(). */ 840 __module_get(THIS_MODULE); 841 842 error = -EBADF; 843 file = fget(arg); 844 if (!file) 845 goto out; 846 847 error = -EBUSY; 848 if (lo->lo_state != Lo_unbound) 849 goto out_putf; 850 851 /* Avoid recursion */ 852 f = file; 853 while (is_loop_device(f)) { 854 struct loop_device *l; 855 856 if (f->f_mapping->host->i_bdev == bdev) 857 goto out_putf; 858 859 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 860 if (l->lo_state == Lo_unbound) { 861 error = -EINVAL; 862 goto out_putf; 863 } 864 f = l->lo_backing_file; 865 } 866 867 mapping = file->f_mapping; 868 inode = mapping->host; 869 870 if (!(file->f_mode & FMODE_WRITE)) 871 lo_flags |= LO_FLAGS_READ_ONLY; 872 873 error = -EINVAL; 874 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 875 const struct address_space_operations *aops = mapping->a_ops; 876 877 if (aops->write_begin) 878 lo_flags |= LO_FLAGS_USE_AOPS; 879 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 880 lo_flags |= LO_FLAGS_READ_ONLY; 881 882 lo_blocksize = S_ISBLK(inode->i_mode) ? 883 inode->i_bdev->bd_block_size : PAGE_SIZE; 884 885 error = 0; 886 } else { 887 goto out_putf; 888 } 889 890 size = get_loop_size(lo, file); 891 892 if ((loff_t)(sector_t)size != size) { 893 error = -EFBIG; 894 goto out_putf; 895 } 896 897 if (!(mode & FMODE_WRITE)) 898 lo_flags |= LO_FLAGS_READ_ONLY; 899 900 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 901 902 lo->lo_blocksize = lo_blocksize; 903 lo->lo_device = bdev; 904 lo->lo_flags = lo_flags; 905 lo->lo_backing_file = file; 906 lo->transfer = transfer_none; 907 lo->ioctl = NULL; 908 lo->lo_sizelimit = 0; 909 lo->old_gfp_mask = mapping_gfp_mask(mapping); 910 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 911 912 bio_list_init(&lo->lo_bio_list); 913 914 /* 915 * set queue make_request_fn, and add limits based on lower level 916 * device 917 */ 918 blk_queue_make_request(lo->lo_queue, loop_make_request); 919 lo->lo_queue->queuedata = lo; 920 lo->lo_queue->unplug_fn = loop_unplug; 921 922 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 923 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 924 925 set_capacity(lo->lo_disk, size); 926 bd_set_size(bdev, size << 9); 927 loop_sysfs_init(lo); 928 /* let user-space know about the new size */ 929 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 930 931 set_blocksize(bdev, lo_blocksize); 932 933 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 934 lo->lo_number); 935 if (IS_ERR(lo->lo_thread)) { 936 error = PTR_ERR(lo->lo_thread); 937 goto out_clr; 938 } 939 lo->lo_state = Lo_bound; 940 wake_up_process(lo->lo_thread); 941 if (max_part > 0) 942 ioctl_by_bdev(bdev, BLKRRPART, 0); 943 return 0; 944 945 out_clr: 946 loop_sysfs_exit(lo); 947 lo->lo_thread = NULL; 948 lo->lo_device = NULL; 949 lo->lo_backing_file = NULL; 950 lo->lo_flags = 0; 951 set_capacity(lo->lo_disk, 0); 952 invalidate_bdev(bdev); 953 bd_set_size(bdev, 0); 954 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 955 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 956 lo->lo_state = Lo_unbound; 957 out_putf: 958 fput(file); 959 out: 960 /* This is safe: open() is still holding a reference. */ 961 module_put(THIS_MODULE); 962 return error; 963 } 964 965 static int 966 loop_release_xfer(struct loop_device *lo) 967 { 968 int err = 0; 969 struct loop_func_table *xfer = lo->lo_encryption; 970 971 if (xfer) { 972 if (xfer->release) 973 err = xfer->release(lo); 974 lo->transfer = NULL; 975 lo->lo_encryption = NULL; 976 module_put(xfer->owner); 977 } 978 return err; 979 } 980 981 static int 982 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 983 const struct loop_info64 *i) 984 { 985 int err = 0; 986 987 if (xfer) { 988 struct module *owner = xfer->owner; 989 990 if (!try_module_get(owner)) 991 return -EINVAL; 992 if (xfer->init) 993 err = xfer->init(lo, i); 994 if (err) 995 module_put(owner); 996 else 997 lo->lo_encryption = xfer; 998 } 999 return err; 1000 } 1001 1002 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 1003 { 1004 struct file *filp = lo->lo_backing_file; 1005 gfp_t gfp = lo->old_gfp_mask; 1006 1007 if (lo->lo_state != Lo_bound) 1008 return -ENXIO; 1009 1010 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 1011 return -EBUSY; 1012 1013 if (filp == NULL) 1014 return -EINVAL; 1015 1016 spin_lock_irq(&lo->lo_lock); 1017 lo->lo_state = Lo_rundown; 1018 spin_unlock_irq(&lo->lo_lock); 1019 1020 kthread_stop(lo->lo_thread); 1021 1022 lo->lo_queue->unplug_fn = NULL; 1023 lo->lo_backing_file = NULL; 1024 1025 loop_release_xfer(lo); 1026 lo->transfer = NULL; 1027 lo->ioctl = NULL; 1028 lo->lo_device = NULL; 1029 lo->lo_encryption = NULL; 1030 lo->lo_offset = 0; 1031 lo->lo_sizelimit = 0; 1032 lo->lo_encrypt_key_size = 0; 1033 lo->lo_flags = 0; 1034 lo->lo_thread = NULL; 1035 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1036 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1037 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1038 if (bdev) 1039 invalidate_bdev(bdev); 1040 set_capacity(lo->lo_disk, 0); 1041 loop_sysfs_exit(lo); 1042 if (bdev) { 1043 bd_set_size(bdev, 0); 1044 /* let user-space know about this change */ 1045 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1046 } 1047 mapping_set_gfp_mask(filp->f_mapping, gfp); 1048 lo->lo_state = Lo_unbound; 1049 /* This is safe: open() is still holding a reference. */ 1050 module_put(THIS_MODULE); 1051 if (max_part > 0 && bdev) 1052 ioctl_by_bdev(bdev, BLKRRPART, 0); 1053 mutex_unlock(&lo->lo_ctl_mutex); 1054 /* 1055 * Need not hold lo_ctl_mutex to fput backing file. 1056 * Calling fput holding lo_ctl_mutex triggers a circular 1057 * lock dependency possibility warning as fput can take 1058 * bd_mutex which is usually taken before lo_ctl_mutex. 1059 */ 1060 fput(filp); 1061 return 0; 1062 } 1063 1064 static int 1065 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1066 { 1067 int err; 1068 struct loop_func_table *xfer; 1069 uid_t uid = current_uid(); 1070 1071 if (lo->lo_encrypt_key_size && 1072 lo->lo_key_owner != uid && 1073 !capable(CAP_SYS_ADMIN)) 1074 return -EPERM; 1075 if (lo->lo_state != Lo_bound) 1076 return -ENXIO; 1077 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1078 return -EINVAL; 1079 1080 err = loop_release_xfer(lo); 1081 if (err) 1082 return err; 1083 1084 if (info->lo_encrypt_type) { 1085 unsigned int type = info->lo_encrypt_type; 1086 1087 if (type >= MAX_LO_CRYPT) 1088 return -EINVAL; 1089 xfer = xfer_funcs[type]; 1090 if (xfer == NULL) 1091 return -EINVAL; 1092 } else 1093 xfer = NULL; 1094 1095 err = loop_init_xfer(lo, xfer, info); 1096 if (err) 1097 return err; 1098 1099 if (lo->lo_offset != info->lo_offset || 1100 lo->lo_sizelimit != info->lo_sizelimit) { 1101 lo->lo_offset = info->lo_offset; 1102 lo->lo_sizelimit = info->lo_sizelimit; 1103 if (figure_loop_size(lo)) 1104 return -EFBIG; 1105 } 1106 1107 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1108 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1109 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1110 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1111 1112 if (!xfer) 1113 xfer = &none_funcs; 1114 lo->transfer = xfer->transfer; 1115 lo->ioctl = xfer->ioctl; 1116 1117 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1118 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1119 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1120 1121 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1122 lo->lo_init[0] = info->lo_init[0]; 1123 lo->lo_init[1] = info->lo_init[1]; 1124 if (info->lo_encrypt_key_size) { 1125 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1126 info->lo_encrypt_key_size); 1127 lo->lo_key_owner = uid; 1128 } 1129 1130 return 0; 1131 } 1132 1133 static int 1134 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1135 { 1136 struct file *file = lo->lo_backing_file; 1137 struct kstat stat; 1138 int error; 1139 1140 if (lo->lo_state != Lo_bound) 1141 return -ENXIO; 1142 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1143 if (error) 1144 return error; 1145 memset(info, 0, sizeof(*info)); 1146 info->lo_number = lo->lo_number; 1147 info->lo_device = huge_encode_dev(stat.dev); 1148 info->lo_inode = stat.ino; 1149 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1150 info->lo_offset = lo->lo_offset; 1151 info->lo_sizelimit = lo->lo_sizelimit; 1152 info->lo_flags = lo->lo_flags; 1153 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1154 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1155 info->lo_encrypt_type = 1156 lo->lo_encryption ? lo->lo_encryption->number : 0; 1157 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1158 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1159 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1160 lo->lo_encrypt_key_size); 1161 } 1162 return 0; 1163 } 1164 1165 static void 1166 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1167 { 1168 memset(info64, 0, sizeof(*info64)); 1169 info64->lo_number = info->lo_number; 1170 info64->lo_device = info->lo_device; 1171 info64->lo_inode = info->lo_inode; 1172 info64->lo_rdevice = info->lo_rdevice; 1173 info64->lo_offset = info->lo_offset; 1174 info64->lo_sizelimit = 0; 1175 info64->lo_encrypt_type = info->lo_encrypt_type; 1176 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1177 info64->lo_flags = info->lo_flags; 1178 info64->lo_init[0] = info->lo_init[0]; 1179 info64->lo_init[1] = info->lo_init[1]; 1180 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1181 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1182 else 1183 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1184 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1185 } 1186 1187 static int 1188 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1189 { 1190 memset(info, 0, sizeof(*info)); 1191 info->lo_number = info64->lo_number; 1192 info->lo_device = info64->lo_device; 1193 info->lo_inode = info64->lo_inode; 1194 info->lo_rdevice = info64->lo_rdevice; 1195 info->lo_offset = info64->lo_offset; 1196 info->lo_encrypt_type = info64->lo_encrypt_type; 1197 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1198 info->lo_flags = info64->lo_flags; 1199 info->lo_init[0] = info64->lo_init[0]; 1200 info->lo_init[1] = info64->lo_init[1]; 1201 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1202 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1203 else 1204 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1205 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1206 1207 /* error in case values were truncated */ 1208 if (info->lo_device != info64->lo_device || 1209 info->lo_rdevice != info64->lo_rdevice || 1210 info->lo_inode != info64->lo_inode || 1211 info->lo_offset != info64->lo_offset) 1212 return -EOVERFLOW; 1213 1214 return 0; 1215 } 1216 1217 static int 1218 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1219 { 1220 struct loop_info info; 1221 struct loop_info64 info64; 1222 1223 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1224 return -EFAULT; 1225 loop_info64_from_old(&info, &info64); 1226 return loop_set_status(lo, &info64); 1227 } 1228 1229 static int 1230 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1231 { 1232 struct loop_info64 info64; 1233 1234 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1235 return -EFAULT; 1236 return loop_set_status(lo, &info64); 1237 } 1238 1239 static int 1240 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1241 struct loop_info info; 1242 struct loop_info64 info64; 1243 int err = 0; 1244 1245 if (!arg) 1246 err = -EINVAL; 1247 if (!err) 1248 err = loop_get_status(lo, &info64); 1249 if (!err) 1250 err = loop_info64_to_old(&info64, &info); 1251 if (!err && copy_to_user(arg, &info, sizeof(info))) 1252 err = -EFAULT; 1253 1254 return err; 1255 } 1256 1257 static int 1258 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1259 struct loop_info64 info64; 1260 int err = 0; 1261 1262 if (!arg) 1263 err = -EINVAL; 1264 if (!err) 1265 err = loop_get_status(lo, &info64); 1266 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1267 err = -EFAULT; 1268 1269 return err; 1270 } 1271 1272 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1273 { 1274 int err; 1275 sector_t sec; 1276 loff_t sz; 1277 1278 err = -ENXIO; 1279 if (unlikely(lo->lo_state != Lo_bound)) 1280 goto out; 1281 err = figure_loop_size(lo); 1282 if (unlikely(err)) 1283 goto out; 1284 sec = get_capacity(lo->lo_disk); 1285 /* the width of sector_t may be narrow for bit-shift */ 1286 sz = sec; 1287 sz <<= 9; 1288 mutex_lock(&bdev->bd_mutex); 1289 bd_set_size(bdev, sz); 1290 /* let user-space know about the new size */ 1291 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1292 mutex_unlock(&bdev->bd_mutex); 1293 1294 out: 1295 return err; 1296 } 1297 1298 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1299 unsigned int cmd, unsigned long arg) 1300 { 1301 struct loop_device *lo = bdev->bd_disk->private_data; 1302 int err; 1303 1304 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1305 switch (cmd) { 1306 case LOOP_SET_FD: 1307 err = loop_set_fd(lo, mode, bdev, arg); 1308 break; 1309 case LOOP_CHANGE_FD: 1310 err = loop_change_fd(lo, bdev, arg); 1311 break; 1312 case LOOP_CLR_FD: 1313 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1314 err = loop_clr_fd(lo, bdev); 1315 if (!err) 1316 goto out_unlocked; 1317 break; 1318 case LOOP_SET_STATUS: 1319 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1320 break; 1321 case LOOP_GET_STATUS: 1322 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1323 break; 1324 case LOOP_SET_STATUS64: 1325 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1326 break; 1327 case LOOP_GET_STATUS64: 1328 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1329 break; 1330 case LOOP_SET_CAPACITY: 1331 err = -EPERM; 1332 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1333 err = loop_set_capacity(lo, bdev); 1334 break; 1335 default: 1336 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1337 } 1338 mutex_unlock(&lo->lo_ctl_mutex); 1339 1340 out_unlocked: 1341 return err; 1342 } 1343 1344 #ifdef CONFIG_COMPAT 1345 struct compat_loop_info { 1346 compat_int_t lo_number; /* ioctl r/o */ 1347 compat_dev_t lo_device; /* ioctl r/o */ 1348 compat_ulong_t lo_inode; /* ioctl r/o */ 1349 compat_dev_t lo_rdevice; /* ioctl r/o */ 1350 compat_int_t lo_offset; 1351 compat_int_t lo_encrypt_type; 1352 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1353 compat_int_t lo_flags; /* ioctl r/o */ 1354 char lo_name[LO_NAME_SIZE]; 1355 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1356 compat_ulong_t lo_init[2]; 1357 char reserved[4]; 1358 }; 1359 1360 /* 1361 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1362 * - noinlined to reduce stack space usage in main part of driver 1363 */ 1364 static noinline int 1365 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1366 struct loop_info64 *info64) 1367 { 1368 struct compat_loop_info info; 1369 1370 if (copy_from_user(&info, arg, sizeof(info))) 1371 return -EFAULT; 1372 1373 memset(info64, 0, sizeof(*info64)); 1374 info64->lo_number = info.lo_number; 1375 info64->lo_device = info.lo_device; 1376 info64->lo_inode = info.lo_inode; 1377 info64->lo_rdevice = info.lo_rdevice; 1378 info64->lo_offset = info.lo_offset; 1379 info64->lo_sizelimit = 0; 1380 info64->lo_encrypt_type = info.lo_encrypt_type; 1381 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1382 info64->lo_flags = info.lo_flags; 1383 info64->lo_init[0] = info.lo_init[0]; 1384 info64->lo_init[1] = info.lo_init[1]; 1385 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1386 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1387 else 1388 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1389 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1390 return 0; 1391 } 1392 1393 /* 1394 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1395 * - noinlined to reduce stack space usage in main part of driver 1396 */ 1397 static noinline int 1398 loop_info64_to_compat(const struct loop_info64 *info64, 1399 struct compat_loop_info __user *arg) 1400 { 1401 struct compat_loop_info info; 1402 1403 memset(&info, 0, sizeof(info)); 1404 info.lo_number = info64->lo_number; 1405 info.lo_device = info64->lo_device; 1406 info.lo_inode = info64->lo_inode; 1407 info.lo_rdevice = info64->lo_rdevice; 1408 info.lo_offset = info64->lo_offset; 1409 info.lo_encrypt_type = info64->lo_encrypt_type; 1410 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1411 info.lo_flags = info64->lo_flags; 1412 info.lo_init[0] = info64->lo_init[0]; 1413 info.lo_init[1] = info64->lo_init[1]; 1414 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1415 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1416 else 1417 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1418 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1419 1420 /* error in case values were truncated */ 1421 if (info.lo_device != info64->lo_device || 1422 info.lo_rdevice != info64->lo_rdevice || 1423 info.lo_inode != info64->lo_inode || 1424 info.lo_offset != info64->lo_offset || 1425 info.lo_init[0] != info64->lo_init[0] || 1426 info.lo_init[1] != info64->lo_init[1]) 1427 return -EOVERFLOW; 1428 1429 if (copy_to_user(arg, &info, sizeof(info))) 1430 return -EFAULT; 1431 return 0; 1432 } 1433 1434 static int 1435 loop_set_status_compat(struct loop_device *lo, 1436 const struct compat_loop_info __user *arg) 1437 { 1438 struct loop_info64 info64; 1439 int ret; 1440 1441 ret = loop_info64_from_compat(arg, &info64); 1442 if (ret < 0) 1443 return ret; 1444 return loop_set_status(lo, &info64); 1445 } 1446 1447 static int 1448 loop_get_status_compat(struct loop_device *lo, 1449 struct compat_loop_info __user *arg) 1450 { 1451 struct loop_info64 info64; 1452 int err = 0; 1453 1454 if (!arg) 1455 err = -EINVAL; 1456 if (!err) 1457 err = loop_get_status(lo, &info64); 1458 if (!err) 1459 err = loop_info64_to_compat(&info64, arg); 1460 return err; 1461 } 1462 1463 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1464 unsigned int cmd, unsigned long arg) 1465 { 1466 struct loop_device *lo = bdev->bd_disk->private_data; 1467 int err; 1468 1469 switch(cmd) { 1470 case LOOP_SET_STATUS: 1471 mutex_lock(&lo->lo_ctl_mutex); 1472 err = loop_set_status_compat( 1473 lo, (const struct compat_loop_info __user *) arg); 1474 mutex_unlock(&lo->lo_ctl_mutex); 1475 break; 1476 case LOOP_GET_STATUS: 1477 mutex_lock(&lo->lo_ctl_mutex); 1478 err = loop_get_status_compat( 1479 lo, (struct compat_loop_info __user *) arg); 1480 mutex_unlock(&lo->lo_ctl_mutex); 1481 break; 1482 case LOOP_SET_CAPACITY: 1483 case LOOP_CLR_FD: 1484 case LOOP_GET_STATUS64: 1485 case LOOP_SET_STATUS64: 1486 arg = (unsigned long) compat_ptr(arg); 1487 case LOOP_SET_FD: 1488 case LOOP_CHANGE_FD: 1489 err = lo_ioctl(bdev, mode, cmd, arg); 1490 break; 1491 default: 1492 err = -ENOIOCTLCMD; 1493 break; 1494 } 1495 return err; 1496 } 1497 #endif 1498 1499 static int lo_open(struct block_device *bdev, fmode_t mode) 1500 { 1501 struct loop_device *lo = bdev->bd_disk->private_data; 1502 1503 mutex_lock(&lo->lo_ctl_mutex); 1504 lo->lo_refcnt++; 1505 mutex_unlock(&lo->lo_ctl_mutex); 1506 1507 return 0; 1508 } 1509 1510 static int lo_release(struct gendisk *disk, fmode_t mode) 1511 { 1512 struct loop_device *lo = disk->private_data; 1513 int err; 1514 1515 mutex_lock(&lo->lo_ctl_mutex); 1516 1517 if (--lo->lo_refcnt) 1518 goto out; 1519 1520 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1521 /* 1522 * In autoclear mode, stop the loop thread 1523 * and remove configuration after last close. 1524 */ 1525 err = loop_clr_fd(lo, NULL); 1526 if (!err) 1527 goto out_unlocked; 1528 } else { 1529 /* 1530 * Otherwise keep thread (if running) and config, 1531 * but flush possible ongoing bios in thread. 1532 */ 1533 loop_flush(lo); 1534 } 1535 1536 out: 1537 mutex_unlock(&lo->lo_ctl_mutex); 1538 out_unlocked: 1539 return 0; 1540 } 1541 1542 static const struct block_device_operations lo_fops = { 1543 .owner = THIS_MODULE, 1544 .open = lo_open, 1545 .release = lo_release, 1546 .ioctl = lo_ioctl, 1547 #ifdef CONFIG_COMPAT 1548 .compat_ioctl = lo_compat_ioctl, 1549 #endif 1550 }; 1551 1552 /* 1553 * And now the modules code and kernel interface. 1554 */ 1555 static int max_loop; 1556 module_param(max_loop, int, 0); 1557 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1558 module_param(max_part, int, 0); 1559 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1560 MODULE_LICENSE("GPL"); 1561 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1562 1563 int loop_register_transfer(struct loop_func_table *funcs) 1564 { 1565 unsigned int n = funcs->number; 1566 1567 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1568 return -EINVAL; 1569 xfer_funcs[n] = funcs; 1570 return 0; 1571 } 1572 1573 int loop_unregister_transfer(int number) 1574 { 1575 unsigned int n = number; 1576 struct loop_device *lo; 1577 struct loop_func_table *xfer; 1578 1579 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1580 return -EINVAL; 1581 1582 xfer_funcs[n] = NULL; 1583 1584 list_for_each_entry(lo, &loop_devices, lo_list) { 1585 mutex_lock(&lo->lo_ctl_mutex); 1586 1587 if (lo->lo_encryption == xfer) 1588 loop_release_xfer(lo); 1589 1590 mutex_unlock(&lo->lo_ctl_mutex); 1591 } 1592 1593 return 0; 1594 } 1595 1596 EXPORT_SYMBOL(loop_register_transfer); 1597 EXPORT_SYMBOL(loop_unregister_transfer); 1598 1599 static struct loop_device *loop_alloc(int i) 1600 { 1601 struct loop_device *lo; 1602 struct gendisk *disk; 1603 1604 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1605 if (!lo) 1606 goto out; 1607 1608 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1609 if (!lo->lo_queue) 1610 goto out_free_dev; 1611 1612 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1613 if (!disk) 1614 goto out_free_queue; 1615 1616 mutex_init(&lo->lo_ctl_mutex); 1617 lo->lo_number = i; 1618 lo->lo_thread = NULL; 1619 init_waitqueue_head(&lo->lo_event); 1620 spin_lock_init(&lo->lo_lock); 1621 disk->major = LOOP_MAJOR; 1622 disk->first_minor = i << part_shift; 1623 disk->fops = &lo_fops; 1624 disk->private_data = lo; 1625 disk->queue = lo->lo_queue; 1626 sprintf(disk->disk_name, "loop%d", i); 1627 return lo; 1628 1629 out_free_queue: 1630 blk_cleanup_queue(lo->lo_queue); 1631 out_free_dev: 1632 kfree(lo); 1633 out: 1634 return NULL; 1635 } 1636 1637 static void loop_free(struct loop_device *lo) 1638 { 1639 if (!lo->lo_queue->queue_lock) 1640 lo->lo_queue->queue_lock = &lo->lo_queue->__queue_lock; 1641 1642 blk_cleanup_queue(lo->lo_queue); 1643 put_disk(lo->lo_disk); 1644 list_del(&lo->lo_list); 1645 kfree(lo); 1646 } 1647 1648 static struct loop_device *loop_init_one(int i) 1649 { 1650 struct loop_device *lo; 1651 1652 list_for_each_entry(lo, &loop_devices, lo_list) { 1653 if (lo->lo_number == i) 1654 return lo; 1655 } 1656 1657 lo = loop_alloc(i); 1658 if (lo) { 1659 add_disk(lo->lo_disk); 1660 list_add_tail(&lo->lo_list, &loop_devices); 1661 } 1662 return lo; 1663 } 1664 1665 static void loop_del_one(struct loop_device *lo) 1666 { 1667 del_gendisk(lo->lo_disk); 1668 loop_free(lo); 1669 } 1670 1671 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1672 { 1673 struct loop_device *lo; 1674 struct kobject *kobj; 1675 1676 mutex_lock(&loop_devices_mutex); 1677 lo = loop_init_one(dev & MINORMASK); 1678 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1679 mutex_unlock(&loop_devices_mutex); 1680 1681 *part = 0; 1682 return kobj; 1683 } 1684 1685 static int __init loop_init(void) 1686 { 1687 int i, nr; 1688 unsigned long range; 1689 struct loop_device *lo, *next; 1690 1691 /* 1692 * loop module now has a feature to instantiate underlying device 1693 * structure on-demand, provided that there is an access dev node. 1694 * However, this will not work well with user space tool that doesn't 1695 * know about such "feature". In order to not break any existing 1696 * tool, we do the following: 1697 * 1698 * (1) if max_loop is specified, create that many upfront, and this 1699 * also becomes a hard limit. 1700 * (2) if max_loop is not specified, create 8 loop device on module 1701 * load, user can further extend loop device by create dev node 1702 * themselves and have kernel automatically instantiate actual 1703 * device on-demand. 1704 */ 1705 1706 part_shift = 0; 1707 if (max_part > 0) 1708 part_shift = fls(max_part); 1709 1710 if (max_loop > 1UL << (MINORBITS - part_shift)) 1711 return -EINVAL; 1712 1713 if (max_loop) { 1714 nr = max_loop; 1715 range = max_loop; 1716 } else { 1717 nr = 8; 1718 range = 1UL << (MINORBITS - part_shift); 1719 } 1720 1721 if (register_blkdev(LOOP_MAJOR, "loop")) 1722 return -EIO; 1723 1724 for (i = 0; i < nr; i++) { 1725 lo = loop_alloc(i); 1726 if (!lo) 1727 goto Enomem; 1728 list_add_tail(&lo->lo_list, &loop_devices); 1729 } 1730 1731 /* point of no return */ 1732 1733 list_for_each_entry(lo, &loop_devices, lo_list) 1734 add_disk(lo->lo_disk); 1735 1736 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1737 THIS_MODULE, loop_probe, NULL, NULL); 1738 1739 printk(KERN_INFO "loop: module loaded\n"); 1740 return 0; 1741 1742 Enomem: 1743 printk(KERN_INFO "loop: out of memory\n"); 1744 1745 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1746 loop_free(lo); 1747 1748 unregister_blkdev(LOOP_MAJOR, "loop"); 1749 return -ENOMEM; 1750 } 1751 1752 static void __exit loop_exit(void) 1753 { 1754 unsigned long range; 1755 struct loop_device *lo, *next; 1756 1757 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1758 1759 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1760 loop_del_one(lo); 1761 1762 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1763 unregister_blkdev(LOOP_MAJOR, "loop"); 1764 } 1765 1766 module_init(loop_init); 1767 module_exit(loop_exit); 1768 1769 #ifndef MODULE 1770 static int __init max_loop_setup(char *str) 1771 { 1772 max_loop = simple_strtol(str, NULL, 0); 1773 return 1; 1774 } 1775 1776 __setup("max_loop=", max_loop_setup); 1777 #endif 1778