1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 141 { 142 loff_t loopsize; 143 144 /* Compute loopsize in bytes */ 145 loopsize = i_size_read(file->f_mapping->host); 146 if (offset > 0) 147 loopsize -= offset; 148 /* offset is beyond i_size, weird but possible */ 149 if (loopsize < 0) 150 return 0; 151 152 if (sizelimit > 0 && sizelimit < loopsize) 153 loopsize = sizelimit; 154 /* 155 * Unfortunately, if we want to do I/O on the device, 156 * the number of 512-byte sectors has to fit into a sector_t. 157 */ 158 return loopsize >> 9; 159 } 160 161 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 162 { 163 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 164 } 165 166 /* 167 * We support direct I/O only if lo_offset is aligned with the logical I/O size 168 * of backing device, and the logical block size of loop is bigger than that of 169 * the backing device. 170 */ 171 static bool lo_can_use_dio(struct loop_device *lo) 172 { 173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 174 return false; 175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 176 return false; 177 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 178 return false; 179 return true; 180 } 181 182 /* 183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 185 * disabled when the device block size is too small or the offset is unaligned. 186 * 187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 188 * not the originally passed in one. 189 */ 190 static inline void loop_update_dio(struct loop_device *lo) 191 { 192 lockdep_assert_held(&lo->lo_mutex); 193 WARN_ON_ONCE(lo->lo_state == Lo_bound && 194 lo->lo_queue->mq_freeze_depth == 0); 195 196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 198 } 199 200 /** 201 * loop_set_size() - sets device size and notifies userspace 202 * @lo: struct loop_device to set the size for 203 * @size: new size of the loop device 204 * 205 * Callers must validate that the size passed into this function fits into 206 * a sector_t, eg using loop_validate_size() 207 */ 208 static void loop_set_size(struct loop_device *lo, loff_t size) 209 { 210 if (!set_capacity_and_notify(lo->lo_disk, size)) 211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 212 } 213 214 static void loop_clear_limits(struct loop_device *lo, int mode) 215 { 216 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 217 218 if (mode & FALLOC_FL_ZERO_RANGE) 219 lim.max_write_zeroes_sectors = 0; 220 221 if (mode & FALLOC_FL_PUNCH_HOLE) { 222 lim.max_hw_discard_sectors = 0; 223 lim.discard_granularity = 0; 224 } 225 226 /* 227 * XXX: this updates the queue limits without freezing the queue, which 228 * is against the locking protocol and dangerous. But we can't just 229 * freeze the queue as we're inside the ->queue_rq method here. So this 230 * should move out into a workqueue unless we get the file operations to 231 * advertise if they support specific fallocate operations. 232 */ 233 queue_limits_commit_update(lo->lo_queue, &lim); 234 } 235 236 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 237 int mode) 238 { 239 /* 240 * We use fallocate to manipulate the space mappings used by the image 241 * a.k.a. discard/zerorange. 242 */ 243 struct file *file = lo->lo_backing_file; 244 int ret; 245 246 mode |= FALLOC_FL_KEEP_SIZE; 247 248 if (!bdev_max_discard_sectors(lo->lo_device)) 249 return -EOPNOTSUPP; 250 251 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 252 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 253 return -EIO; 254 255 /* 256 * We initially configure the limits in a hope that fallocate is 257 * supported and clear them here if that turns out not to be true. 258 */ 259 if (unlikely(ret == -EOPNOTSUPP)) 260 loop_clear_limits(lo, mode); 261 262 return ret; 263 } 264 265 static int lo_req_flush(struct loop_device *lo, struct request *rq) 266 { 267 int ret = vfs_fsync(lo->lo_backing_file, 0); 268 if (unlikely(ret && ret != -EINVAL)) 269 ret = -EIO; 270 271 return ret; 272 } 273 274 static void lo_complete_rq(struct request *rq) 275 { 276 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 277 blk_status_t ret = BLK_STS_OK; 278 279 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 280 req_op(rq) != REQ_OP_READ) { 281 if (cmd->ret < 0) 282 ret = errno_to_blk_status(cmd->ret); 283 goto end_io; 284 } 285 286 /* 287 * Short READ - if we got some data, advance our request and 288 * retry it. If we got no data, end the rest with EIO. 289 */ 290 if (cmd->ret) { 291 blk_update_request(rq, BLK_STS_OK, cmd->ret); 292 cmd->ret = 0; 293 blk_mq_requeue_request(rq, true); 294 } else { 295 struct bio *bio = rq->bio; 296 297 while (bio) { 298 zero_fill_bio(bio); 299 bio = bio->bi_next; 300 } 301 302 ret = BLK_STS_IOERR; 303 end_io: 304 blk_mq_end_request(rq, ret); 305 } 306 } 307 308 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 309 { 310 struct request *rq = blk_mq_rq_from_pdu(cmd); 311 312 if (!atomic_dec_and_test(&cmd->ref)) 313 return; 314 kfree(cmd->bvec); 315 cmd->bvec = NULL; 316 if (req_op(rq) == REQ_OP_WRITE) 317 kiocb_end_write(&cmd->iocb); 318 if (likely(!blk_should_fake_timeout(rq->q))) 319 blk_mq_complete_request(rq); 320 } 321 322 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 323 { 324 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 325 326 cmd->ret = ret; 327 lo_rw_aio_do_completion(cmd); 328 } 329 330 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 331 loff_t pos, int rw) 332 { 333 struct iov_iter iter; 334 struct req_iterator rq_iter; 335 struct bio_vec *bvec; 336 struct request *rq = blk_mq_rq_from_pdu(cmd); 337 struct bio *bio = rq->bio; 338 struct file *file = lo->lo_backing_file; 339 struct bio_vec tmp; 340 unsigned int offset; 341 int nr_bvec = 0; 342 int ret; 343 344 rq_for_each_bvec(tmp, rq, rq_iter) 345 nr_bvec++; 346 347 if (rq->bio != rq->biotail) { 348 349 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 350 GFP_NOIO); 351 if (!bvec) 352 return -EIO; 353 cmd->bvec = bvec; 354 355 /* 356 * The bios of the request may be started from the middle of 357 * the 'bvec' because of bio splitting, so we can't directly 358 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 359 * API will take care of all details for us. 360 */ 361 rq_for_each_bvec(tmp, rq, rq_iter) { 362 *bvec = tmp; 363 bvec++; 364 } 365 bvec = cmd->bvec; 366 offset = 0; 367 } else { 368 /* 369 * Same here, this bio may be started from the middle of the 370 * 'bvec' because of bio splitting, so offset from the bvec 371 * must be passed to iov iterator 372 */ 373 offset = bio->bi_iter.bi_bvec_done; 374 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 375 } 376 atomic_set(&cmd->ref, 2); 377 378 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 379 iter.iov_offset = offset; 380 381 cmd->iocb.ki_pos = pos; 382 cmd->iocb.ki_filp = file; 383 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 384 if (cmd->use_aio) { 385 cmd->iocb.ki_complete = lo_rw_aio_complete; 386 cmd->iocb.ki_flags = IOCB_DIRECT; 387 } else { 388 cmd->iocb.ki_complete = NULL; 389 cmd->iocb.ki_flags = 0; 390 } 391 392 if (rw == ITER_SOURCE) { 393 kiocb_start_write(&cmd->iocb); 394 ret = file->f_op->write_iter(&cmd->iocb, &iter); 395 } else 396 ret = file->f_op->read_iter(&cmd->iocb, &iter); 397 398 lo_rw_aio_do_completion(cmd); 399 400 if (ret != -EIOCBQUEUED) 401 lo_rw_aio_complete(&cmd->iocb, ret); 402 return -EIOCBQUEUED; 403 } 404 405 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 406 { 407 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 408 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 409 410 switch (req_op(rq)) { 411 case REQ_OP_FLUSH: 412 return lo_req_flush(lo, rq); 413 case REQ_OP_WRITE_ZEROES: 414 /* 415 * If the caller doesn't want deallocation, call zeroout to 416 * write zeroes the range. Otherwise, punch them out. 417 */ 418 return lo_fallocate(lo, rq, pos, 419 (rq->cmd_flags & REQ_NOUNMAP) ? 420 FALLOC_FL_ZERO_RANGE : 421 FALLOC_FL_PUNCH_HOLE); 422 case REQ_OP_DISCARD: 423 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 424 case REQ_OP_WRITE: 425 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 426 case REQ_OP_READ: 427 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 428 default: 429 WARN_ON_ONCE(1); 430 return -EIO; 431 } 432 } 433 434 static void loop_reread_partitions(struct loop_device *lo) 435 { 436 int rc; 437 438 mutex_lock(&lo->lo_disk->open_mutex); 439 rc = bdev_disk_changed(lo->lo_disk, false); 440 mutex_unlock(&lo->lo_disk->open_mutex); 441 if (rc) 442 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 443 __func__, lo->lo_number, lo->lo_file_name, rc); 444 } 445 446 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 447 { 448 struct file *file = lo->lo_backing_file; 449 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 450 struct kstat st; 451 452 /* 453 * Use the minimal dio alignment of the file system if provided. 454 */ 455 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 456 (st.result_mask & STATX_DIOALIGN)) 457 return st.dio_offset_align; 458 459 /* 460 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 461 * a handful of file systems support the STATX_DIOALIGN flag. 462 */ 463 if (sb_bdev) 464 return bdev_logical_block_size(sb_bdev); 465 return SECTOR_SIZE; 466 } 467 468 static inline int is_loop_device(struct file *file) 469 { 470 struct inode *i = file->f_mapping->host; 471 472 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 473 } 474 475 static int loop_validate_file(struct file *file, struct block_device *bdev) 476 { 477 struct inode *inode = file->f_mapping->host; 478 struct file *f = file; 479 480 /* Avoid recursion */ 481 while (is_loop_device(f)) { 482 struct loop_device *l; 483 484 lockdep_assert_held(&loop_validate_mutex); 485 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 486 return -EBADF; 487 488 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 489 if (l->lo_state != Lo_bound) 490 return -EINVAL; 491 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 492 rmb(); 493 f = l->lo_backing_file; 494 } 495 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 496 return -EINVAL; 497 return 0; 498 } 499 500 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 501 { 502 lo->lo_backing_file = file; 503 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 504 mapping_set_gfp_mask(file->f_mapping, 505 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 506 if (lo->lo_backing_file->f_flags & O_DIRECT) 507 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 508 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 509 } 510 511 static int loop_check_backing_file(struct file *file) 512 { 513 if (!file->f_op->read_iter) 514 return -EINVAL; 515 516 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter) 517 return -EINVAL; 518 519 return 0; 520 } 521 522 /* 523 * loop_change_fd switched the backing store of a loopback device to 524 * a new file. This is useful for operating system installers to free up 525 * the original file and in High Availability environments to switch to 526 * an alternative location for the content in case of server meltdown. 527 * This can only work if the loop device is used read-only, and if the 528 * new backing store is the same size and type as the old backing store. 529 */ 530 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 531 unsigned int arg) 532 { 533 struct file *file = fget(arg); 534 struct file *old_file; 535 unsigned int memflags; 536 int error; 537 bool partscan; 538 bool is_loop; 539 540 if (!file) 541 return -EBADF; 542 543 error = loop_check_backing_file(file); 544 if (error) 545 return error; 546 547 /* suppress uevents while reconfiguring the device */ 548 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 549 550 is_loop = is_loop_device(file); 551 error = loop_global_lock_killable(lo, is_loop); 552 if (error) 553 goto out_putf; 554 error = -ENXIO; 555 if (lo->lo_state != Lo_bound) 556 goto out_err; 557 558 /* the loop device has to be read-only */ 559 error = -EINVAL; 560 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 561 goto out_err; 562 563 error = loop_validate_file(file, bdev); 564 if (error) 565 goto out_err; 566 567 old_file = lo->lo_backing_file; 568 569 error = -EINVAL; 570 571 /* size of the new backing store needs to be the same */ 572 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 573 goto out_err; 574 575 /* 576 * We might switch to direct I/O mode for the loop device, write back 577 * all dirty data the page cache now that so that the individual I/O 578 * operations don't have to do that. 579 */ 580 vfs_fsync(file, 0); 581 582 /* and ... switch */ 583 disk_force_media_change(lo->lo_disk); 584 memflags = blk_mq_freeze_queue(lo->lo_queue); 585 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 586 loop_assign_backing_file(lo, file); 587 loop_update_dio(lo); 588 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 589 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 590 loop_global_unlock(lo, is_loop); 591 592 /* 593 * Flush loop_validate_file() before fput(), for l->lo_backing_file 594 * might be pointing at old_file which might be the last reference. 595 */ 596 if (!is_loop) { 597 mutex_lock(&loop_validate_mutex); 598 mutex_unlock(&loop_validate_mutex); 599 } 600 /* 601 * We must drop file reference outside of lo_mutex as dropping 602 * the file ref can take open_mutex which creates circular locking 603 * dependency. 604 */ 605 fput(old_file); 606 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 607 if (partscan) 608 loop_reread_partitions(lo); 609 610 error = 0; 611 done: 612 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 613 return error; 614 615 out_err: 616 loop_global_unlock(lo, is_loop); 617 out_putf: 618 fput(file); 619 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 620 goto done; 621 } 622 623 /* loop sysfs attributes */ 624 625 static ssize_t loop_attr_show(struct device *dev, char *page, 626 ssize_t (*callback)(struct loop_device *, char *)) 627 { 628 struct gendisk *disk = dev_to_disk(dev); 629 struct loop_device *lo = disk->private_data; 630 631 return callback(lo, page); 632 } 633 634 #define LOOP_ATTR_RO(_name) \ 635 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 636 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 637 struct device_attribute *attr, char *b) \ 638 { \ 639 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 640 } \ 641 static struct device_attribute loop_attr_##_name = \ 642 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 643 644 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 645 { 646 ssize_t ret; 647 char *p = NULL; 648 649 spin_lock_irq(&lo->lo_lock); 650 if (lo->lo_backing_file) 651 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 652 spin_unlock_irq(&lo->lo_lock); 653 654 if (IS_ERR_OR_NULL(p)) 655 ret = PTR_ERR(p); 656 else { 657 ret = strlen(p); 658 memmove(buf, p, ret); 659 buf[ret++] = '\n'; 660 buf[ret] = 0; 661 } 662 663 return ret; 664 } 665 666 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 667 { 668 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 669 } 670 671 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 672 { 673 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 674 } 675 676 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 677 { 678 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 679 680 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 681 } 682 683 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 684 { 685 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 686 687 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 688 } 689 690 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 691 { 692 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 693 694 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 695 } 696 697 LOOP_ATTR_RO(backing_file); 698 LOOP_ATTR_RO(offset); 699 LOOP_ATTR_RO(sizelimit); 700 LOOP_ATTR_RO(autoclear); 701 LOOP_ATTR_RO(partscan); 702 LOOP_ATTR_RO(dio); 703 704 static struct attribute *loop_attrs[] = { 705 &loop_attr_backing_file.attr, 706 &loop_attr_offset.attr, 707 &loop_attr_sizelimit.attr, 708 &loop_attr_autoclear.attr, 709 &loop_attr_partscan.attr, 710 &loop_attr_dio.attr, 711 NULL, 712 }; 713 714 static struct attribute_group loop_attribute_group = { 715 .name = "loop", 716 .attrs= loop_attrs, 717 }; 718 719 static void loop_sysfs_init(struct loop_device *lo) 720 { 721 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 722 &loop_attribute_group); 723 } 724 725 static void loop_sysfs_exit(struct loop_device *lo) 726 { 727 if (lo->sysfs_inited) 728 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 729 &loop_attribute_group); 730 } 731 732 static void loop_get_discard_config(struct loop_device *lo, 733 u32 *granularity, u32 *max_discard_sectors) 734 { 735 struct file *file = lo->lo_backing_file; 736 struct inode *inode = file->f_mapping->host; 737 struct kstatfs sbuf; 738 739 /* 740 * If the backing device is a block device, mirror its zeroing 741 * capability. Set the discard sectors to the block device's zeroing 742 * capabilities because loop discards result in blkdev_issue_zeroout(), 743 * not blkdev_issue_discard(). This maintains consistent behavior with 744 * file-backed loop devices: discarded regions read back as zero. 745 */ 746 if (S_ISBLK(inode->i_mode)) { 747 struct block_device *bdev = I_BDEV(inode); 748 749 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 750 *granularity = bdev_discard_granularity(bdev); 751 752 /* 753 * We use punch hole to reclaim the free space used by the 754 * image a.k.a. discard. 755 */ 756 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 757 *max_discard_sectors = UINT_MAX >> 9; 758 *granularity = sbuf.f_bsize; 759 } 760 } 761 762 struct loop_worker { 763 struct rb_node rb_node; 764 struct work_struct work; 765 struct list_head cmd_list; 766 struct list_head idle_list; 767 struct loop_device *lo; 768 struct cgroup_subsys_state *blkcg_css; 769 unsigned long last_ran_at; 770 }; 771 772 static void loop_workfn(struct work_struct *work); 773 774 #ifdef CONFIG_BLK_CGROUP 775 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 776 { 777 return !css || css == blkcg_root_css; 778 } 779 #else 780 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 781 { 782 return !css; 783 } 784 #endif 785 786 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 787 { 788 struct rb_node **node, *parent = NULL; 789 struct loop_worker *cur_worker, *worker = NULL; 790 struct work_struct *work; 791 struct list_head *cmd_list; 792 793 spin_lock_irq(&lo->lo_work_lock); 794 795 if (queue_on_root_worker(cmd->blkcg_css)) 796 goto queue_work; 797 798 node = &lo->worker_tree.rb_node; 799 800 while (*node) { 801 parent = *node; 802 cur_worker = container_of(*node, struct loop_worker, rb_node); 803 if (cur_worker->blkcg_css == cmd->blkcg_css) { 804 worker = cur_worker; 805 break; 806 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 807 node = &(*node)->rb_left; 808 } else { 809 node = &(*node)->rb_right; 810 } 811 } 812 if (worker) 813 goto queue_work; 814 815 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 816 /* 817 * In the event we cannot allocate a worker, just queue on the 818 * rootcg worker and issue the I/O as the rootcg 819 */ 820 if (!worker) { 821 cmd->blkcg_css = NULL; 822 if (cmd->memcg_css) 823 css_put(cmd->memcg_css); 824 cmd->memcg_css = NULL; 825 goto queue_work; 826 } 827 828 worker->blkcg_css = cmd->blkcg_css; 829 css_get(worker->blkcg_css); 830 INIT_WORK(&worker->work, loop_workfn); 831 INIT_LIST_HEAD(&worker->cmd_list); 832 INIT_LIST_HEAD(&worker->idle_list); 833 worker->lo = lo; 834 rb_link_node(&worker->rb_node, parent, node); 835 rb_insert_color(&worker->rb_node, &lo->worker_tree); 836 queue_work: 837 if (worker) { 838 /* 839 * We need to remove from the idle list here while 840 * holding the lock so that the idle timer doesn't 841 * free the worker 842 */ 843 if (!list_empty(&worker->idle_list)) 844 list_del_init(&worker->idle_list); 845 work = &worker->work; 846 cmd_list = &worker->cmd_list; 847 } else { 848 work = &lo->rootcg_work; 849 cmd_list = &lo->rootcg_cmd_list; 850 } 851 list_add_tail(&cmd->list_entry, cmd_list); 852 queue_work(lo->workqueue, work); 853 spin_unlock_irq(&lo->lo_work_lock); 854 } 855 856 static void loop_set_timer(struct loop_device *lo) 857 { 858 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 859 } 860 861 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 862 { 863 struct loop_worker *pos, *worker; 864 865 spin_lock_irq(&lo->lo_work_lock); 866 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 867 idle_list) { 868 if (!delete_all && 869 time_is_after_jiffies(worker->last_ran_at + 870 LOOP_IDLE_WORKER_TIMEOUT)) 871 break; 872 list_del(&worker->idle_list); 873 rb_erase(&worker->rb_node, &lo->worker_tree); 874 css_put(worker->blkcg_css); 875 kfree(worker); 876 } 877 if (!list_empty(&lo->idle_worker_list)) 878 loop_set_timer(lo); 879 spin_unlock_irq(&lo->lo_work_lock); 880 } 881 882 static void loop_free_idle_workers_timer(struct timer_list *timer) 883 { 884 struct loop_device *lo = container_of(timer, struct loop_device, timer); 885 886 return loop_free_idle_workers(lo, false); 887 } 888 889 /** 890 * loop_set_status_from_info - configure device from loop_info 891 * @lo: struct loop_device to configure 892 * @info: struct loop_info64 to configure the device with 893 * 894 * Configures the loop device parameters according to the passed 895 * in loop_info64 configuration. 896 */ 897 static int 898 loop_set_status_from_info(struct loop_device *lo, 899 const struct loop_info64 *info) 900 { 901 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 902 return -EINVAL; 903 904 switch (info->lo_encrypt_type) { 905 case LO_CRYPT_NONE: 906 break; 907 case LO_CRYPT_XOR: 908 pr_warn("support for the xor transformation has been removed.\n"); 909 return -EINVAL; 910 case LO_CRYPT_CRYPTOAPI: 911 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 912 return -EINVAL; 913 default: 914 return -EINVAL; 915 } 916 917 /* Avoid assigning overflow values */ 918 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 919 return -EOVERFLOW; 920 921 lo->lo_offset = info->lo_offset; 922 lo->lo_sizelimit = info->lo_sizelimit; 923 924 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 925 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 926 return 0; 927 } 928 929 static unsigned int loop_default_blocksize(struct loop_device *lo) 930 { 931 /* In case of direct I/O, match underlying minimum I/O size */ 932 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 933 return lo->lo_min_dio_size; 934 return SECTOR_SIZE; 935 } 936 937 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 938 unsigned int bsize) 939 { 940 struct file *file = lo->lo_backing_file; 941 struct inode *inode = file->f_mapping->host; 942 struct block_device *backing_bdev = NULL; 943 u32 granularity = 0, max_discard_sectors = 0; 944 945 if (S_ISBLK(inode->i_mode)) 946 backing_bdev = I_BDEV(inode); 947 else if (inode->i_sb->s_bdev) 948 backing_bdev = inode->i_sb->s_bdev; 949 950 if (!bsize) 951 bsize = loop_default_blocksize(lo); 952 953 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 954 955 lim->logical_block_size = bsize; 956 lim->physical_block_size = bsize; 957 lim->io_min = bsize; 958 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 959 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 960 lim->features |= BLK_FEAT_WRITE_CACHE; 961 if (backing_bdev && !bdev_nonrot(backing_bdev)) 962 lim->features |= BLK_FEAT_ROTATIONAL; 963 lim->max_hw_discard_sectors = max_discard_sectors; 964 lim->max_write_zeroes_sectors = max_discard_sectors; 965 if (max_discard_sectors) 966 lim->discard_granularity = granularity; 967 else 968 lim->discard_granularity = 0; 969 } 970 971 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 972 struct block_device *bdev, 973 const struct loop_config *config) 974 { 975 struct file *file = fget(config->fd); 976 struct queue_limits lim; 977 int error; 978 loff_t size; 979 bool partscan; 980 bool is_loop; 981 982 if (!file) 983 return -EBADF; 984 985 error = loop_check_backing_file(file); 986 if (error) 987 return error; 988 989 is_loop = is_loop_device(file); 990 991 /* This is safe, since we have a reference from open(). */ 992 __module_get(THIS_MODULE); 993 994 /* 995 * If we don't hold exclusive handle for the device, upgrade to it 996 * here to avoid changing device under exclusive owner. 997 */ 998 if (!(mode & BLK_OPEN_EXCL)) { 999 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1000 if (error) 1001 goto out_putf; 1002 } 1003 1004 error = loop_global_lock_killable(lo, is_loop); 1005 if (error) 1006 goto out_bdev; 1007 1008 error = -EBUSY; 1009 if (lo->lo_state != Lo_unbound) 1010 goto out_unlock; 1011 1012 error = loop_validate_file(file, bdev); 1013 if (error) 1014 goto out_unlock; 1015 1016 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1017 error = -EINVAL; 1018 goto out_unlock; 1019 } 1020 1021 error = loop_set_status_from_info(lo, &config->info); 1022 if (error) 1023 goto out_unlock; 1024 lo->lo_flags = config->info.lo_flags; 1025 1026 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1027 !file->f_op->write_iter) 1028 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1029 1030 if (!lo->workqueue) { 1031 lo->workqueue = alloc_workqueue("loop%d", 1032 WQ_UNBOUND | WQ_FREEZABLE, 1033 0, lo->lo_number); 1034 if (!lo->workqueue) { 1035 error = -ENOMEM; 1036 goto out_unlock; 1037 } 1038 } 1039 1040 /* suppress uevents while reconfiguring the device */ 1041 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1042 1043 disk_force_media_change(lo->lo_disk); 1044 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1045 1046 lo->lo_device = bdev; 1047 loop_assign_backing_file(lo, file); 1048 1049 lim = queue_limits_start_update(lo->lo_queue); 1050 loop_update_limits(lo, &lim, config->block_size); 1051 /* No need to freeze the queue as the device isn't bound yet. */ 1052 error = queue_limits_commit_update(lo->lo_queue, &lim); 1053 if (error) 1054 goto out_unlock; 1055 1056 /* 1057 * We might switch to direct I/O mode for the loop device, write back 1058 * all dirty data the page cache now that so that the individual I/O 1059 * operations don't have to do that. 1060 */ 1061 vfs_fsync(file, 0); 1062 1063 loop_update_dio(lo); 1064 loop_sysfs_init(lo); 1065 1066 size = get_loop_size(lo, file); 1067 loop_set_size(lo, size); 1068 1069 /* Order wrt reading lo_state in loop_validate_file(). */ 1070 wmb(); 1071 1072 lo->lo_state = Lo_bound; 1073 if (part_shift) 1074 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1075 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1076 if (partscan) 1077 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1078 1079 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1080 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1081 1082 loop_global_unlock(lo, is_loop); 1083 if (partscan) 1084 loop_reread_partitions(lo); 1085 1086 if (!(mode & BLK_OPEN_EXCL)) 1087 bd_abort_claiming(bdev, loop_configure); 1088 1089 return 0; 1090 1091 out_unlock: 1092 loop_global_unlock(lo, is_loop); 1093 out_bdev: 1094 if (!(mode & BLK_OPEN_EXCL)) 1095 bd_abort_claiming(bdev, loop_configure); 1096 out_putf: 1097 fput(file); 1098 /* This is safe: open() is still holding a reference. */ 1099 module_put(THIS_MODULE); 1100 return error; 1101 } 1102 1103 static void __loop_clr_fd(struct loop_device *lo) 1104 { 1105 struct queue_limits lim; 1106 struct file *filp; 1107 gfp_t gfp = lo->old_gfp_mask; 1108 1109 spin_lock_irq(&lo->lo_lock); 1110 filp = lo->lo_backing_file; 1111 lo->lo_backing_file = NULL; 1112 spin_unlock_irq(&lo->lo_lock); 1113 1114 lo->lo_device = NULL; 1115 lo->lo_offset = 0; 1116 lo->lo_sizelimit = 0; 1117 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1118 1119 /* 1120 * Reset the block size to the default. 1121 * 1122 * No queue freezing needed because this is called from the final 1123 * ->release call only, so there can't be any outstanding I/O. 1124 */ 1125 lim = queue_limits_start_update(lo->lo_queue); 1126 lim.logical_block_size = SECTOR_SIZE; 1127 lim.physical_block_size = SECTOR_SIZE; 1128 lim.io_min = SECTOR_SIZE; 1129 queue_limits_commit_update(lo->lo_queue, &lim); 1130 1131 invalidate_disk(lo->lo_disk); 1132 loop_sysfs_exit(lo); 1133 /* let user-space know about this change */ 1134 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1135 mapping_set_gfp_mask(filp->f_mapping, gfp); 1136 /* This is safe: open() is still holding a reference. */ 1137 module_put(THIS_MODULE); 1138 1139 disk_force_media_change(lo->lo_disk); 1140 1141 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1142 int err; 1143 1144 /* 1145 * open_mutex has been held already in release path, so don't 1146 * acquire it if this function is called in such case. 1147 * 1148 * If the reread partition isn't from release path, lo_refcnt 1149 * must be at least one and it can only become zero when the 1150 * current holder is released. 1151 */ 1152 err = bdev_disk_changed(lo->lo_disk, false); 1153 if (err) 1154 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1155 __func__, lo->lo_number, err); 1156 /* Device is gone, no point in returning error */ 1157 } 1158 1159 /* 1160 * lo->lo_state is set to Lo_unbound here after above partscan has 1161 * finished. There cannot be anybody else entering __loop_clr_fd() as 1162 * Lo_rundown state protects us from all the other places trying to 1163 * change the 'lo' device. 1164 */ 1165 lo->lo_flags = 0; 1166 if (!part_shift) 1167 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1168 mutex_lock(&lo->lo_mutex); 1169 lo->lo_state = Lo_unbound; 1170 mutex_unlock(&lo->lo_mutex); 1171 1172 /* 1173 * Need not hold lo_mutex to fput backing file. Calling fput holding 1174 * lo_mutex triggers a circular lock dependency possibility warning as 1175 * fput can take open_mutex which is usually taken before lo_mutex. 1176 */ 1177 fput(filp); 1178 } 1179 1180 static int loop_clr_fd(struct loop_device *lo) 1181 { 1182 int err; 1183 1184 /* 1185 * Since lo_ioctl() is called without locks held, it is possible that 1186 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1187 * 1188 * Therefore, use global lock when setting Lo_rundown state in order to 1189 * make sure that loop_validate_file() will fail if the "struct file" 1190 * which loop_configure()/loop_change_fd() found via fget() was this 1191 * loop device. 1192 */ 1193 err = loop_global_lock_killable(lo, true); 1194 if (err) 1195 return err; 1196 if (lo->lo_state != Lo_bound) { 1197 loop_global_unlock(lo, true); 1198 return -ENXIO; 1199 } 1200 /* 1201 * Mark the device for removing the backing device on last close. 1202 * If we are the only opener, also switch the state to roundown here to 1203 * prevent new openers from coming in. 1204 */ 1205 1206 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1207 if (disk_openers(lo->lo_disk) == 1) 1208 lo->lo_state = Lo_rundown; 1209 loop_global_unlock(lo, true); 1210 1211 return 0; 1212 } 1213 1214 static int 1215 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1216 { 1217 int err; 1218 bool partscan = false; 1219 bool size_changed = false; 1220 unsigned int memflags; 1221 1222 err = mutex_lock_killable(&lo->lo_mutex); 1223 if (err) 1224 return err; 1225 if (lo->lo_state != Lo_bound) { 1226 err = -ENXIO; 1227 goto out_unlock; 1228 } 1229 1230 if (lo->lo_offset != info->lo_offset || 1231 lo->lo_sizelimit != info->lo_sizelimit) { 1232 size_changed = true; 1233 sync_blockdev(lo->lo_device); 1234 invalidate_bdev(lo->lo_device); 1235 } 1236 1237 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1238 memflags = blk_mq_freeze_queue(lo->lo_queue); 1239 1240 err = loop_set_status_from_info(lo, info); 1241 if (err) 1242 goto out_unfreeze; 1243 1244 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1245 (info->lo_flags & LO_FLAGS_PARTSCAN); 1246 1247 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1248 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1249 1250 /* update the direct I/O flag if lo_offset changed */ 1251 loop_update_dio(lo); 1252 1253 out_unfreeze: 1254 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1255 if (partscan) 1256 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1257 if (!err && size_changed) { 1258 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1259 lo->lo_backing_file); 1260 loop_set_size(lo, new_size); 1261 } 1262 out_unlock: 1263 mutex_unlock(&lo->lo_mutex); 1264 if (partscan) 1265 loop_reread_partitions(lo); 1266 1267 return err; 1268 } 1269 1270 static int 1271 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1272 { 1273 struct path path; 1274 struct kstat stat; 1275 int ret; 1276 1277 ret = mutex_lock_killable(&lo->lo_mutex); 1278 if (ret) 1279 return ret; 1280 if (lo->lo_state != Lo_bound) { 1281 mutex_unlock(&lo->lo_mutex); 1282 return -ENXIO; 1283 } 1284 1285 memset(info, 0, sizeof(*info)); 1286 info->lo_number = lo->lo_number; 1287 info->lo_offset = lo->lo_offset; 1288 info->lo_sizelimit = lo->lo_sizelimit; 1289 info->lo_flags = lo->lo_flags; 1290 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1291 1292 /* Drop lo_mutex while we call into the filesystem. */ 1293 path = lo->lo_backing_file->f_path; 1294 path_get(&path); 1295 mutex_unlock(&lo->lo_mutex); 1296 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1297 if (!ret) { 1298 info->lo_device = huge_encode_dev(stat.dev); 1299 info->lo_inode = stat.ino; 1300 info->lo_rdevice = huge_encode_dev(stat.rdev); 1301 } 1302 path_put(&path); 1303 return ret; 1304 } 1305 1306 static void 1307 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1308 { 1309 memset(info64, 0, sizeof(*info64)); 1310 info64->lo_number = info->lo_number; 1311 info64->lo_device = info->lo_device; 1312 info64->lo_inode = info->lo_inode; 1313 info64->lo_rdevice = info->lo_rdevice; 1314 info64->lo_offset = info->lo_offset; 1315 info64->lo_sizelimit = 0; 1316 info64->lo_flags = info->lo_flags; 1317 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1318 } 1319 1320 static int 1321 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1322 { 1323 memset(info, 0, sizeof(*info)); 1324 info->lo_number = info64->lo_number; 1325 info->lo_device = info64->lo_device; 1326 info->lo_inode = info64->lo_inode; 1327 info->lo_rdevice = info64->lo_rdevice; 1328 info->lo_offset = info64->lo_offset; 1329 info->lo_flags = info64->lo_flags; 1330 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1331 1332 /* error in case values were truncated */ 1333 if (info->lo_device != info64->lo_device || 1334 info->lo_rdevice != info64->lo_rdevice || 1335 info->lo_inode != info64->lo_inode || 1336 info->lo_offset != info64->lo_offset) 1337 return -EOVERFLOW; 1338 1339 return 0; 1340 } 1341 1342 static int 1343 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1344 { 1345 struct loop_info info; 1346 struct loop_info64 info64; 1347 1348 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1349 return -EFAULT; 1350 loop_info64_from_old(&info, &info64); 1351 return loop_set_status(lo, &info64); 1352 } 1353 1354 static int 1355 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1356 { 1357 struct loop_info64 info64; 1358 1359 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1360 return -EFAULT; 1361 return loop_set_status(lo, &info64); 1362 } 1363 1364 static int 1365 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1366 struct loop_info info; 1367 struct loop_info64 info64; 1368 int err; 1369 1370 if (!arg) 1371 return -EINVAL; 1372 err = loop_get_status(lo, &info64); 1373 if (!err) 1374 err = loop_info64_to_old(&info64, &info); 1375 if (!err && copy_to_user(arg, &info, sizeof(info))) 1376 err = -EFAULT; 1377 1378 return err; 1379 } 1380 1381 static int 1382 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1383 struct loop_info64 info64; 1384 int err; 1385 1386 if (!arg) 1387 return -EINVAL; 1388 err = loop_get_status(lo, &info64); 1389 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1390 err = -EFAULT; 1391 1392 return err; 1393 } 1394 1395 static int loop_set_capacity(struct loop_device *lo) 1396 { 1397 loff_t size; 1398 1399 if (unlikely(lo->lo_state != Lo_bound)) 1400 return -ENXIO; 1401 1402 size = get_loop_size(lo, lo->lo_backing_file); 1403 loop_set_size(lo, size); 1404 1405 return 0; 1406 } 1407 1408 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1409 { 1410 bool use_dio = !!arg; 1411 unsigned int memflags; 1412 1413 if (lo->lo_state != Lo_bound) 1414 return -ENXIO; 1415 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1416 return 0; 1417 1418 if (use_dio) { 1419 if (!lo_can_use_dio(lo)) 1420 return -EINVAL; 1421 /* flush dirty pages before starting to use direct I/O */ 1422 vfs_fsync(lo->lo_backing_file, 0); 1423 } 1424 1425 memflags = blk_mq_freeze_queue(lo->lo_queue); 1426 if (use_dio) 1427 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1428 else 1429 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1430 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1431 return 0; 1432 } 1433 1434 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1435 { 1436 struct queue_limits lim; 1437 unsigned int memflags; 1438 int err = 0; 1439 1440 if (lo->lo_state != Lo_bound) 1441 return -ENXIO; 1442 1443 if (lo->lo_queue->limits.logical_block_size == arg) 1444 return 0; 1445 1446 sync_blockdev(lo->lo_device); 1447 invalidate_bdev(lo->lo_device); 1448 1449 lim = queue_limits_start_update(lo->lo_queue); 1450 loop_update_limits(lo, &lim, arg); 1451 1452 memflags = blk_mq_freeze_queue(lo->lo_queue); 1453 err = queue_limits_commit_update(lo->lo_queue, &lim); 1454 loop_update_dio(lo); 1455 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1456 1457 return err; 1458 } 1459 1460 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1461 unsigned long arg) 1462 { 1463 int err; 1464 1465 err = mutex_lock_killable(&lo->lo_mutex); 1466 if (err) 1467 return err; 1468 switch (cmd) { 1469 case LOOP_SET_CAPACITY: 1470 err = loop_set_capacity(lo); 1471 break; 1472 case LOOP_SET_DIRECT_IO: 1473 err = loop_set_dio(lo, arg); 1474 break; 1475 case LOOP_SET_BLOCK_SIZE: 1476 err = loop_set_block_size(lo, arg); 1477 break; 1478 default: 1479 err = -EINVAL; 1480 } 1481 mutex_unlock(&lo->lo_mutex); 1482 return err; 1483 } 1484 1485 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1486 unsigned int cmd, unsigned long arg) 1487 { 1488 struct loop_device *lo = bdev->bd_disk->private_data; 1489 void __user *argp = (void __user *) arg; 1490 int err; 1491 1492 switch (cmd) { 1493 case LOOP_SET_FD: { 1494 /* 1495 * Legacy case - pass in a zeroed out struct loop_config with 1496 * only the file descriptor set , which corresponds with the 1497 * default parameters we'd have used otherwise. 1498 */ 1499 struct loop_config config; 1500 1501 memset(&config, 0, sizeof(config)); 1502 config.fd = arg; 1503 1504 return loop_configure(lo, mode, bdev, &config); 1505 } 1506 case LOOP_CONFIGURE: { 1507 struct loop_config config; 1508 1509 if (copy_from_user(&config, argp, sizeof(config))) 1510 return -EFAULT; 1511 1512 return loop_configure(lo, mode, bdev, &config); 1513 } 1514 case LOOP_CHANGE_FD: 1515 return loop_change_fd(lo, bdev, arg); 1516 case LOOP_CLR_FD: 1517 return loop_clr_fd(lo); 1518 case LOOP_SET_STATUS: 1519 err = -EPERM; 1520 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1521 err = loop_set_status_old(lo, argp); 1522 break; 1523 case LOOP_GET_STATUS: 1524 return loop_get_status_old(lo, argp); 1525 case LOOP_SET_STATUS64: 1526 err = -EPERM; 1527 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1528 err = loop_set_status64(lo, argp); 1529 break; 1530 case LOOP_GET_STATUS64: 1531 return loop_get_status64(lo, argp); 1532 case LOOP_SET_CAPACITY: 1533 case LOOP_SET_DIRECT_IO: 1534 case LOOP_SET_BLOCK_SIZE: 1535 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1536 return -EPERM; 1537 fallthrough; 1538 default: 1539 err = lo_simple_ioctl(lo, cmd, arg); 1540 break; 1541 } 1542 1543 return err; 1544 } 1545 1546 #ifdef CONFIG_COMPAT 1547 struct compat_loop_info { 1548 compat_int_t lo_number; /* ioctl r/o */ 1549 compat_dev_t lo_device; /* ioctl r/o */ 1550 compat_ulong_t lo_inode; /* ioctl r/o */ 1551 compat_dev_t lo_rdevice; /* ioctl r/o */ 1552 compat_int_t lo_offset; 1553 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1554 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1555 compat_int_t lo_flags; /* ioctl r/o */ 1556 char lo_name[LO_NAME_SIZE]; 1557 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1558 compat_ulong_t lo_init[2]; 1559 char reserved[4]; 1560 }; 1561 1562 /* 1563 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1564 * - noinlined to reduce stack space usage in main part of driver 1565 */ 1566 static noinline int 1567 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1568 struct loop_info64 *info64) 1569 { 1570 struct compat_loop_info info; 1571 1572 if (copy_from_user(&info, arg, sizeof(info))) 1573 return -EFAULT; 1574 1575 memset(info64, 0, sizeof(*info64)); 1576 info64->lo_number = info.lo_number; 1577 info64->lo_device = info.lo_device; 1578 info64->lo_inode = info.lo_inode; 1579 info64->lo_rdevice = info.lo_rdevice; 1580 info64->lo_offset = info.lo_offset; 1581 info64->lo_sizelimit = 0; 1582 info64->lo_flags = info.lo_flags; 1583 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1584 return 0; 1585 } 1586 1587 /* 1588 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1589 * - noinlined to reduce stack space usage in main part of driver 1590 */ 1591 static noinline int 1592 loop_info64_to_compat(const struct loop_info64 *info64, 1593 struct compat_loop_info __user *arg) 1594 { 1595 struct compat_loop_info info; 1596 1597 memset(&info, 0, sizeof(info)); 1598 info.lo_number = info64->lo_number; 1599 info.lo_device = info64->lo_device; 1600 info.lo_inode = info64->lo_inode; 1601 info.lo_rdevice = info64->lo_rdevice; 1602 info.lo_offset = info64->lo_offset; 1603 info.lo_flags = info64->lo_flags; 1604 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1605 1606 /* error in case values were truncated */ 1607 if (info.lo_device != info64->lo_device || 1608 info.lo_rdevice != info64->lo_rdevice || 1609 info.lo_inode != info64->lo_inode || 1610 info.lo_offset != info64->lo_offset) 1611 return -EOVERFLOW; 1612 1613 if (copy_to_user(arg, &info, sizeof(info))) 1614 return -EFAULT; 1615 return 0; 1616 } 1617 1618 static int 1619 loop_set_status_compat(struct loop_device *lo, 1620 const struct compat_loop_info __user *arg) 1621 { 1622 struct loop_info64 info64; 1623 int ret; 1624 1625 ret = loop_info64_from_compat(arg, &info64); 1626 if (ret < 0) 1627 return ret; 1628 return loop_set_status(lo, &info64); 1629 } 1630 1631 static int 1632 loop_get_status_compat(struct loop_device *lo, 1633 struct compat_loop_info __user *arg) 1634 { 1635 struct loop_info64 info64; 1636 int err; 1637 1638 if (!arg) 1639 return -EINVAL; 1640 err = loop_get_status(lo, &info64); 1641 if (!err) 1642 err = loop_info64_to_compat(&info64, arg); 1643 return err; 1644 } 1645 1646 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1647 unsigned int cmd, unsigned long arg) 1648 { 1649 struct loop_device *lo = bdev->bd_disk->private_data; 1650 int err; 1651 1652 switch(cmd) { 1653 case LOOP_SET_STATUS: 1654 err = loop_set_status_compat(lo, 1655 (const struct compat_loop_info __user *)arg); 1656 break; 1657 case LOOP_GET_STATUS: 1658 err = loop_get_status_compat(lo, 1659 (struct compat_loop_info __user *)arg); 1660 break; 1661 case LOOP_SET_CAPACITY: 1662 case LOOP_CLR_FD: 1663 case LOOP_GET_STATUS64: 1664 case LOOP_SET_STATUS64: 1665 case LOOP_CONFIGURE: 1666 arg = (unsigned long) compat_ptr(arg); 1667 fallthrough; 1668 case LOOP_SET_FD: 1669 case LOOP_CHANGE_FD: 1670 case LOOP_SET_BLOCK_SIZE: 1671 case LOOP_SET_DIRECT_IO: 1672 err = lo_ioctl(bdev, mode, cmd, arg); 1673 break; 1674 default: 1675 err = -ENOIOCTLCMD; 1676 break; 1677 } 1678 return err; 1679 } 1680 #endif 1681 1682 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1683 { 1684 struct loop_device *lo = disk->private_data; 1685 int err; 1686 1687 err = mutex_lock_killable(&lo->lo_mutex); 1688 if (err) 1689 return err; 1690 1691 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1692 err = -ENXIO; 1693 mutex_unlock(&lo->lo_mutex); 1694 return err; 1695 } 1696 1697 static void lo_release(struct gendisk *disk) 1698 { 1699 struct loop_device *lo = disk->private_data; 1700 bool need_clear = false; 1701 1702 if (disk_openers(disk) > 0) 1703 return; 1704 /* 1705 * Clear the backing device information if this is the last close of 1706 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1707 * has been called. 1708 */ 1709 1710 mutex_lock(&lo->lo_mutex); 1711 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1712 lo->lo_state = Lo_rundown; 1713 1714 need_clear = (lo->lo_state == Lo_rundown); 1715 mutex_unlock(&lo->lo_mutex); 1716 1717 if (need_clear) 1718 __loop_clr_fd(lo); 1719 } 1720 1721 static void lo_free_disk(struct gendisk *disk) 1722 { 1723 struct loop_device *lo = disk->private_data; 1724 1725 if (lo->workqueue) 1726 destroy_workqueue(lo->workqueue); 1727 loop_free_idle_workers(lo, true); 1728 timer_shutdown_sync(&lo->timer); 1729 mutex_destroy(&lo->lo_mutex); 1730 kfree(lo); 1731 } 1732 1733 static const struct block_device_operations lo_fops = { 1734 .owner = THIS_MODULE, 1735 .open = lo_open, 1736 .release = lo_release, 1737 .ioctl = lo_ioctl, 1738 #ifdef CONFIG_COMPAT 1739 .compat_ioctl = lo_compat_ioctl, 1740 #endif 1741 .free_disk = lo_free_disk, 1742 }; 1743 1744 /* 1745 * And now the modules code and kernel interface. 1746 */ 1747 1748 /* 1749 * If max_loop is specified, create that many devices upfront. 1750 * This also becomes a hard limit. If max_loop is not specified, 1751 * the default isn't a hard limit (as before commit 85c50197716c 1752 * changed the default value from 0 for max_loop=0 reasons), just 1753 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1754 * init time. Loop devices can be requested on-demand with the 1755 * /dev/loop-control interface, or be instantiated by accessing 1756 * a 'dead' device node. 1757 */ 1758 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1759 1760 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1761 static bool max_loop_specified; 1762 1763 static int max_loop_param_set_int(const char *val, 1764 const struct kernel_param *kp) 1765 { 1766 int ret; 1767 1768 ret = param_set_int(val, kp); 1769 if (ret < 0) 1770 return ret; 1771 1772 max_loop_specified = true; 1773 return 0; 1774 } 1775 1776 static const struct kernel_param_ops max_loop_param_ops = { 1777 .set = max_loop_param_set_int, 1778 .get = param_get_int, 1779 }; 1780 1781 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1782 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1783 #else 1784 module_param(max_loop, int, 0444); 1785 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1786 #endif 1787 1788 module_param(max_part, int, 0444); 1789 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1790 1791 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1792 1793 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1794 { 1795 int qd, ret; 1796 1797 ret = kstrtoint(s, 0, &qd); 1798 if (ret < 0) 1799 return ret; 1800 if (qd < 1) 1801 return -EINVAL; 1802 hw_queue_depth = qd; 1803 return 0; 1804 } 1805 1806 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1807 .set = loop_set_hw_queue_depth, 1808 .get = param_get_int, 1809 }; 1810 1811 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1812 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1813 1814 MODULE_DESCRIPTION("Loopback device support"); 1815 MODULE_LICENSE("GPL"); 1816 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1817 1818 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1819 const struct blk_mq_queue_data *bd) 1820 { 1821 struct request *rq = bd->rq; 1822 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1823 struct loop_device *lo = rq->q->queuedata; 1824 1825 blk_mq_start_request(rq); 1826 1827 if (lo->lo_state != Lo_bound) 1828 return BLK_STS_IOERR; 1829 1830 switch (req_op(rq)) { 1831 case REQ_OP_FLUSH: 1832 case REQ_OP_DISCARD: 1833 case REQ_OP_WRITE_ZEROES: 1834 cmd->use_aio = false; 1835 break; 1836 default: 1837 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1838 break; 1839 } 1840 1841 /* always use the first bio's css */ 1842 cmd->blkcg_css = NULL; 1843 cmd->memcg_css = NULL; 1844 #ifdef CONFIG_BLK_CGROUP 1845 if (rq->bio) { 1846 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1847 #ifdef CONFIG_MEMCG 1848 if (cmd->blkcg_css) { 1849 cmd->memcg_css = 1850 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1851 &memory_cgrp_subsys); 1852 } 1853 #endif 1854 } 1855 #endif 1856 loop_queue_work(lo, cmd); 1857 1858 return BLK_STS_OK; 1859 } 1860 1861 static void loop_handle_cmd(struct loop_cmd *cmd) 1862 { 1863 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1864 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1865 struct request *rq = blk_mq_rq_from_pdu(cmd); 1866 const bool write = op_is_write(req_op(rq)); 1867 struct loop_device *lo = rq->q->queuedata; 1868 int ret = 0; 1869 struct mem_cgroup *old_memcg = NULL; 1870 1871 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1872 ret = -EIO; 1873 goto failed; 1874 } 1875 1876 if (cmd_blkcg_css) 1877 kthread_associate_blkcg(cmd_blkcg_css); 1878 if (cmd_memcg_css) 1879 old_memcg = set_active_memcg( 1880 mem_cgroup_from_css(cmd_memcg_css)); 1881 1882 /* 1883 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1884 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1885 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1886 * not yet been completed. 1887 */ 1888 ret = do_req_filebacked(lo, rq); 1889 1890 if (cmd_blkcg_css) 1891 kthread_associate_blkcg(NULL); 1892 1893 if (cmd_memcg_css) { 1894 set_active_memcg(old_memcg); 1895 css_put(cmd_memcg_css); 1896 } 1897 failed: 1898 /* complete non-aio request */ 1899 if (ret != -EIOCBQUEUED) { 1900 if (ret == -EOPNOTSUPP) 1901 cmd->ret = ret; 1902 else 1903 cmd->ret = ret ? -EIO : 0; 1904 if (likely(!blk_should_fake_timeout(rq->q))) 1905 blk_mq_complete_request(rq); 1906 } 1907 } 1908 1909 static void loop_process_work(struct loop_worker *worker, 1910 struct list_head *cmd_list, struct loop_device *lo) 1911 { 1912 int orig_flags = current->flags; 1913 struct loop_cmd *cmd; 1914 1915 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1916 spin_lock_irq(&lo->lo_work_lock); 1917 while (!list_empty(cmd_list)) { 1918 cmd = container_of( 1919 cmd_list->next, struct loop_cmd, list_entry); 1920 list_del(cmd_list->next); 1921 spin_unlock_irq(&lo->lo_work_lock); 1922 1923 loop_handle_cmd(cmd); 1924 cond_resched(); 1925 1926 spin_lock_irq(&lo->lo_work_lock); 1927 } 1928 1929 /* 1930 * We only add to the idle list if there are no pending cmds 1931 * *and* the worker will not run again which ensures that it 1932 * is safe to free any worker on the idle list 1933 */ 1934 if (worker && !work_pending(&worker->work)) { 1935 worker->last_ran_at = jiffies; 1936 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1937 loop_set_timer(lo); 1938 } 1939 spin_unlock_irq(&lo->lo_work_lock); 1940 current->flags = orig_flags; 1941 } 1942 1943 static void loop_workfn(struct work_struct *work) 1944 { 1945 struct loop_worker *worker = 1946 container_of(work, struct loop_worker, work); 1947 loop_process_work(worker, &worker->cmd_list, worker->lo); 1948 } 1949 1950 static void loop_rootcg_workfn(struct work_struct *work) 1951 { 1952 struct loop_device *lo = 1953 container_of(work, struct loop_device, rootcg_work); 1954 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1955 } 1956 1957 static const struct blk_mq_ops loop_mq_ops = { 1958 .queue_rq = loop_queue_rq, 1959 .complete = lo_complete_rq, 1960 }; 1961 1962 static int loop_add(int i) 1963 { 1964 struct queue_limits lim = { 1965 /* 1966 * Random number picked from the historic block max_sectors cap. 1967 */ 1968 .max_hw_sectors = 2560u, 1969 }; 1970 struct loop_device *lo; 1971 struct gendisk *disk; 1972 int err; 1973 1974 err = -ENOMEM; 1975 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1976 if (!lo) 1977 goto out; 1978 lo->worker_tree = RB_ROOT; 1979 INIT_LIST_HEAD(&lo->idle_worker_list); 1980 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 1981 lo->lo_state = Lo_unbound; 1982 1983 err = mutex_lock_killable(&loop_ctl_mutex); 1984 if (err) 1985 goto out_free_dev; 1986 1987 /* allocate id, if @id >= 0, we're requesting that specific id */ 1988 if (i >= 0) { 1989 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1990 if (err == -ENOSPC) 1991 err = -EEXIST; 1992 } else { 1993 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1994 } 1995 mutex_unlock(&loop_ctl_mutex); 1996 if (err < 0) 1997 goto out_free_dev; 1998 i = err; 1999 2000 lo->tag_set.ops = &loop_mq_ops; 2001 lo->tag_set.nr_hw_queues = 1; 2002 lo->tag_set.queue_depth = hw_queue_depth; 2003 lo->tag_set.numa_node = NUMA_NO_NODE; 2004 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2005 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2006 lo->tag_set.driver_data = lo; 2007 2008 err = blk_mq_alloc_tag_set(&lo->tag_set); 2009 if (err) 2010 goto out_free_idr; 2011 2012 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2013 if (IS_ERR(disk)) { 2014 err = PTR_ERR(disk); 2015 goto out_cleanup_tags; 2016 } 2017 lo->lo_queue = lo->lo_disk->queue; 2018 2019 /* 2020 * Disable partition scanning by default. The in-kernel partition 2021 * scanning can be requested individually per-device during its 2022 * setup. Userspace can always add and remove partitions from all 2023 * devices. The needed partition minors are allocated from the 2024 * extended minor space, the main loop device numbers will continue 2025 * to match the loop minors, regardless of the number of partitions 2026 * used. 2027 * 2028 * If max_part is given, partition scanning is globally enabled for 2029 * all loop devices. The minors for the main loop devices will be 2030 * multiples of max_part. 2031 * 2032 * Note: Global-for-all-devices, set-only-at-init, read-only module 2033 * parameteters like 'max_loop' and 'max_part' make things needlessly 2034 * complicated, are too static, inflexible and may surprise 2035 * userspace tools. Parameters like this in general should be avoided. 2036 */ 2037 if (!part_shift) 2038 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2039 mutex_init(&lo->lo_mutex); 2040 lo->lo_number = i; 2041 spin_lock_init(&lo->lo_lock); 2042 spin_lock_init(&lo->lo_work_lock); 2043 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2044 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2045 disk->major = LOOP_MAJOR; 2046 disk->first_minor = i << part_shift; 2047 disk->minors = 1 << part_shift; 2048 disk->fops = &lo_fops; 2049 disk->private_data = lo; 2050 disk->queue = lo->lo_queue; 2051 disk->events = DISK_EVENT_MEDIA_CHANGE; 2052 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2053 sprintf(disk->disk_name, "loop%d", i); 2054 /* Make this loop device reachable from pathname. */ 2055 err = add_disk(disk); 2056 if (err) 2057 goto out_cleanup_disk; 2058 2059 /* Show this loop device. */ 2060 mutex_lock(&loop_ctl_mutex); 2061 lo->idr_visible = true; 2062 mutex_unlock(&loop_ctl_mutex); 2063 2064 return i; 2065 2066 out_cleanup_disk: 2067 put_disk(disk); 2068 out_cleanup_tags: 2069 blk_mq_free_tag_set(&lo->tag_set); 2070 out_free_idr: 2071 mutex_lock(&loop_ctl_mutex); 2072 idr_remove(&loop_index_idr, i); 2073 mutex_unlock(&loop_ctl_mutex); 2074 out_free_dev: 2075 kfree(lo); 2076 out: 2077 return err; 2078 } 2079 2080 static void loop_remove(struct loop_device *lo) 2081 { 2082 /* Make this loop device unreachable from pathname. */ 2083 del_gendisk(lo->lo_disk); 2084 blk_mq_free_tag_set(&lo->tag_set); 2085 2086 mutex_lock(&loop_ctl_mutex); 2087 idr_remove(&loop_index_idr, lo->lo_number); 2088 mutex_unlock(&loop_ctl_mutex); 2089 2090 put_disk(lo->lo_disk); 2091 } 2092 2093 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2094 static void loop_probe(dev_t dev) 2095 { 2096 int idx = MINOR(dev) >> part_shift; 2097 2098 if (max_loop_specified && max_loop && idx >= max_loop) 2099 return; 2100 loop_add(idx); 2101 } 2102 #else 2103 #define loop_probe NULL 2104 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2105 2106 static int loop_control_remove(int idx) 2107 { 2108 struct loop_device *lo; 2109 int ret; 2110 2111 if (idx < 0) { 2112 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2113 return -EINVAL; 2114 } 2115 2116 /* Hide this loop device for serialization. */ 2117 ret = mutex_lock_killable(&loop_ctl_mutex); 2118 if (ret) 2119 return ret; 2120 lo = idr_find(&loop_index_idr, idx); 2121 if (!lo || !lo->idr_visible) 2122 ret = -ENODEV; 2123 else 2124 lo->idr_visible = false; 2125 mutex_unlock(&loop_ctl_mutex); 2126 if (ret) 2127 return ret; 2128 2129 /* Check whether this loop device can be removed. */ 2130 ret = mutex_lock_killable(&lo->lo_mutex); 2131 if (ret) 2132 goto mark_visible; 2133 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2134 mutex_unlock(&lo->lo_mutex); 2135 ret = -EBUSY; 2136 goto mark_visible; 2137 } 2138 /* Mark this loop device as no more bound, but not quite unbound yet */ 2139 lo->lo_state = Lo_deleting; 2140 mutex_unlock(&lo->lo_mutex); 2141 2142 loop_remove(lo); 2143 return 0; 2144 2145 mark_visible: 2146 /* Show this loop device again. */ 2147 mutex_lock(&loop_ctl_mutex); 2148 lo->idr_visible = true; 2149 mutex_unlock(&loop_ctl_mutex); 2150 return ret; 2151 } 2152 2153 static int loop_control_get_free(int idx) 2154 { 2155 struct loop_device *lo; 2156 int id, ret; 2157 2158 ret = mutex_lock_killable(&loop_ctl_mutex); 2159 if (ret) 2160 return ret; 2161 idr_for_each_entry(&loop_index_idr, lo, id) { 2162 /* Hitting a race results in creating a new loop device which is harmless. */ 2163 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2164 goto found; 2165 } 2166 mutex_unlock(&loop_ctl_mutex); 2167 return loop_add(-1); 2168 found: 2169 mutex_unlock(&loop_ctl_mutex); 2170 return id; 2171 } 2172 2173 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2174 unsigned long parm) 2175 { 2176 switch (cmd) { 2177 case LOOP_CTL_ADD: 2178 return loop_add(parm); 2179 case LOOP_CTL_REMOVE: 2180 return loop_control_remove(parm); 2181 case LOOP_CTL_GET_FREE: 2182 return loop_control_get_free(parm); 2183 default: 2184 return -ENOSYS; 2185 } 2186 } 2187 2188 static const struct file_operations loop_ctl_fops = { 2189 .open = nonseekable_open, 2190 .unlocked_ioctl = loop_control_ioctl, 2191 .compat_ioctl = loop_control_ioctl, 2192 .owner = THIS_MODULE, 2193 .llseek = noop_llseek, 2194 }; 2195 2196 static struct miscdevice loop_misc = { 2197 .minor = LOOP_CTRL_MINOR, 2198 .name = "loop-control", 2199 .fops = &loop_ctl_fops, 2200 }; 2201 2202 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2203 MODULE_ALIAS("devname:loop-control"); 2204 2205 static int __init loop_init(void) 2206 { 2207 int i; 2208 int err; 2209 2210 part_shift = 0; 2211 if (max_part > 0) { 2212 part_shift = fls(max_part); 2213 2214 /* 2215 * Adjust max_part according to part_shift as it is exported 2216 * to user space so that user can decide correct minor number 2217 * if [s]he want to create more devices. 2218 * 2219 * Note that -1 is required because partition 0 is reserved 2220 * for the whole disk. 2221 */ 2222 max_part = (1UL << part_shift) - 1; 2223 } 2224 2225 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2226 err = -EINVAL; 2227 goto err_out; 2228 } 2229 2230 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2231 err = -EINVAL; 2232 goto err_out; 2233 } 2234 2235 err = misc_register(&loop_misc); 2236 if (err < 0) 2237 goto err_out; 2238 2239 2240 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2241 err = -EIO; 2242 goto misc_out; 2243 } 2244 2245 /* pre-create number of devices given by config or max_loop */ 2246 for (i = 0; i < max_loop; i++) 2247 loop_add(i); 2248 2249 printk(KERN_INFO "loop: module loaded\n"); 2250 return 0; 2251 2252 misc_out: 2253 misc_deregister(&loop_misc); 2254 err_out: 2255 return err; 2256 } 2257 2258 static void __exit loop_exit(void) 2259 { 2260 struct loop_device *lo; 2261 int id; 2262 2263 unregister_blkdev(LOOP_MAJOR, "loop"); 2264 misc_deregister(&loop_misc); 2265 2266 /* 2267 * There is no need to use loop_ctl_mutex here, for nobody else can 2268 * access loop_index_idr when this module is unloading (unless forced 2269 * module unloading is requested). If this is not a clean unloading, 2270 * we have no means to avoid kernel crash. 2271 */ 2272 idr_for_each_entry(&loop_index_idr, lo, id) 2273 loop_remove(lo); 2274 2275 idr_destroy(&loop_index_idr); 2276 } 2277 2278 module_init(loop_init); 2279 module_exit(loop_exit); 2280 2281 #ifndef MODULE 2282 static int __init max_loop_setup(char *str) 2283 { 2284 max_loop = simple_strtol(str, NULL, 0); 2285 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2286 max_loop_specified = true; 2287 #endif 2288 return 1; 2289 } 2290 2291 __setup("max_loop=", max_loop_setup); 2292 #endif 2293