1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t lo_calculate_size(struct loop_device *lo, struct file *file) 141 { 142 loff_t loopsize; 143 int ret; 144 145 if (S_ISBLK(file_inode(file)->i_mode)) { 146 loopsize = i_size_read(file->f_mapping->host); 147 } else { 148 struct kstat stat; 149 150 /* 151 * Get the accurate file size. This provides better results than 152 * cached inode data, particularly for network filesystems where 153 * metadata may be stale. 154 */ 155 ret = vfs_getattr_nosec(&file->f_path, &stat, STATX_SIZE, 0); 156 if (ret) 157 return 0; 158 159 loopsize = stat.size; 160 } 161 162 if (lo->lo_offset > 0) 163 loopsize -= lo->lo_offset; 164 /* offset is beyond i_size, weird but possible */ 165 if (loopsize < 0) 166 return 0; 167 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 168 loopsize = lo->lo_sizelimit; 169 /* 170 * Unfortunately, if we want to do I/O on the device, 171 * the number of 512-byte sectors has to fit into a sector_t. 172 */ 173 return loopsize >> 9; 174 } 175 176 /* 177 * We support direct I/O only if lo_offset is aligned with the logical I/O size 178 * of backing device, and the logical block size of loop is bigger than that of 179 * the backing device. 180 */ 181 static bool lo_can_use_dio(struct loop_device *lo) 182 { 183 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 184 return false; 185 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 186 return false; 187 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 188 return false; 189 return true; 190 } 191 192 /* 193 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 194 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 195 * disabled when the device block size is too small or the offset is unaligned. 196 * 197 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 198 * not the originally passed in one. 199 */ 200 static inline void loop_update_dio(struct loop_device *lo) 201 { 202 lockdep_assert_held(&lo->lo_mutex); 203 WARN_ON_ONCE(lo->lo_state == Lo_bound && 204 lo->lo_queue->mq_freeze_depth == 0); 205 206 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 207 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 208 } 209 210 /** 211 * loop_set_size() - sets device size and notifies userspace 212 * @lo: struct loop_device to set the size for 213 * @size: new size of the loop device 214 * 215 * Callers must validate that the size passed into this function fits into 216 * a sector_t, eg using loop_validate_size() 217 */ 218 static void loop_set_size(struct loop_device *lo, loff_t size) 219 { 220 if (!set_capacity_and_notify(lo->lo_disk, size)) 221 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 222 } 223 224 static void loop_clear_limits(struct loop_device *lo, int mode) 225 { 226 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 227 228 if (mode & FALLOC_FL_ZERO_RANGE) 229 lim.max_write_zeroes_sectors = 0; 230 231 if (mode & FALLOC_FL_PUNCH_HOLE) { 232 lim.max_hw_discard_sectors = 0; 233 lim.discard_granularity = 0; 234 } 235 236 /* 237 * XXX: this updates the queue limits without freezing the queue, which 238 * is against the locking protocol and dangerous. But we can't just 239 * freeze the queue as we're inside the ->queue_rq method here. So this 240 * should move out into a workqueue unless we get the file operations to 241 * advertise if they support specific fallocate operations. 242 */ 243 queue_limits_commit_update(lo->lo_queue, &lim); 244 } 245 246 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 247 int mode) 248 { 249 /* 250 * We use fallocate to manipulate the space mappings used by the image 251 * a.k.a. discard/zerorange. 252 */ 253 struct file *file = lo->lo_backing_file; 254 int ret; 255 256 mode |= FALLOC_FL_KEEP_SIZE; 257 258 if (!bdev_max_discard_sectors(lo->lo_device)) 259 return -EOPNOTSUPP; 260 261 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 262 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 263 return -EIO; 264 265 /* 266 * We initially configure the limits in a hope that fallocate is 267 * supported and clear them here if that turns out not to be true. 268 */ 269 if (unlikely(ret == -EOPNOTSUPP)) 270 loop_clear_limits(lo, mode); 271 272 return ret; 273 } 274 275 static int lo_req_flush(struct loop_device *lo, struct request *rq) 276 { 277 int ret = vfs_fsync(lo->lo_backing_file, 0); 278 if (unlikely(ret && ret != -EINVAL)) 279 ret = -EIO; 280 281 return ret; 282 } 283 284 static void lo_complete_rq(struct request *rq) 285 { 286 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 287 blk_status_t ret = BLK_STS_OK; 288 289 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 290 req_op(rq) != REQ_OP_READ) { 291 if (cmd->ret < 0) 292 ret = errno_to_blk_status(cmd->ret); 293 goto end_io; 294 } 295 296 /* 297 * Short READ - if we got some data, advance our request and 298 * retry it. If we got no data, end the rest with EIO. 299 */ 300 if (cmd->ret) { 301 blk_update_request(rq, BLK_STS_OK, cmd->ret); 302 cmd->ret = 0; 303 blk_mq_requeue_request(rq, true); 304 } else { 305 struct bio *bio = rq->bio; 306 307 while (bio) { 308 zero_fill_bio(bio); 309 bio = bio->bi_next; 310 } 311 312 ret = BLK_STS_IOERR; 313 end_io: 314 blk_mq_end_request(rq, ret); 315 } 316 } 317 318 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 319 { 320 struct request *rq = blk_mq_rq_from_pdu(cmd); 321 322 if (!atomic_dec_and_test(&cmd->ref)) 323 return; 324 kfree(cmd->bvec); 325 cmd->bvec = NULL; 326 if (req_op(rq) == REQ_OP_WRITE) 327 kiocb_end_write(&cmd->iocb); 328 if (likely(!blk_should_fake_timeout(rq->q))) 329 blk_mq_complete_request(rq); 330 } 331 332 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 333 { 334 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 335 336 cmd->ret = ret; 337 lo_rw_aio_do_completion(cmd); 338 } 339 340 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 341 loff_t pos, int rw) 342 { 343 struct iov_iter iter; 344 struct req_iterator rq_iter; 345 struct bio_vec *bvec; 346 struct request *rq = blk_mq_rq_from_pdu(cmd); 347 struct bio *bio = rq->bio; 348 struct file *file = lo->lo_backing_file; 349 struct bio_vec tmp; 350 unsigned int offset; 351 int nr_bvec = 0; 352 int ret; 353 354 rq_for_each_bvec(tmp, rq, rq_iter) 355 nr_bvec++; 356 357 if (rq->bio != rq->biotail) { 358 359 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 360 GFP_NOIO); 361 if (!bvec) 362 return -EIO; 363 cmd->bvec = bvec; 364 365 /* 366 * The bios of the request may be started from the middle of 367 * the 'bvec' because of bio splitting, so we can't directly 368 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 369 * API will take care of all details for us. 370 */ 371 rq_for_each_bvec(tmp, rq, rq_iter) { 372 *bvec = tmp; 373 bvec++; 374 } 375 bvec = cmd->bvec; 376 offset = 0; 377 } else { 378 /* 379 * Same here, this bio may be started from the middle of the 380 * 'bvec' because of bio splitting, so offset from the bvec 381 * must be passed to iov iterator 382 */ 383 offset = bio->bi_iter.bi_bvec_done; 384 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 385 } 386 atomic_set(&cmd->ref, 2); 387 388 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 389 iter.iov_offset = offset; 390 391 cmd->iocb.ki_pos = pos; 392 cmd->iocb.ki_filp = file; 393 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 394 if (cmd->use_aio) { 395 cmd->iocb.ki_complete = lo_rw_aio_complete; 396 cmd->iocb.ki_flags = IOCB_DIRECT; 397 } else { 398 cmd->iocb.ki_complete = NULL; 399 cmd->iocb.ki_flags = 0; 400 } 401 402 if (rw == ITER_SOURCE) { 403 kiocb_start_write(&cmd->iocb); 404 ret = file->f_op->write_iter(&cmd->iocb, &iter); 405 } else 406 ret = file->f_op->read_iter(&cmd->iocb, &iter); 407 408 lo_rw_aio_do_completion(cmd); 409 410 if (ret != -EIOCBQUEUED) 411 lo_rw_aio_complete(&cmd->iocb, ret); 412 return -EIOCBQUEUED; 413 } 414 415 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 416 { 417 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 418 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 419 420 switch (req_op(rq)) { 421 case REQ_OP_FLUSH: 422 return lo_req_flush(lo, rq); 423 case REQ_OP_WRITE_ZEROES: 424 /* 425 * If the caller doesn't want deallocation, call zeroout to 426 * write zeroes the range. Otherwise, punch them out. 427 */ 428 return lo_fallocate(lo, rq, pos, 429 (rq->cmd_flags & REQ_NOUNMAP) ? 430 FALLOC_FL_ZERO_RANGE : 431 FALLOC_FL_PUNCH_HOLE); 432 case REQ_OP_DISCARD: 433 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 434 case REQ_OP_WRITE: 435 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 436 case REQ_OP_READ: 437 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 438 default: 439 WARN_ON_ONCE(1); 440 return -EIO; 441 } 442 } 443 444 static void loop_reread_partitions(struct loop_device *lo) 445 { 446 int rc; 447 448 mutex_lock(&lo->lo_disk->open_mutex); 449 rc = bdev_disk_changed(lo->lo_disk, false); 450 mutex_unlock(&lo->lo_disk->open_mutex); 451 if (rc) 452 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 453 __func__, lo->lo_number, lo->lo_file_name, rc); 454 } 455 456 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 457 { 458 struct file *file = lo->lo_backing_file; 459 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 460 struct kstat st; 461 462 /* 463 * Use the minimal dio alignment of the file system if provided. 464 */ 465 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 466 (st.result_mask & STATX_DIOALIGN)) 467 return st.dio_offset_align; 468 469 /* 470 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 471 * a handful of file systems support the STATX_DIOALIGN flag. 472 */ 473 if (sb_bdev) 474 return bdev_logical_block_size(sb_bdev); 475 return SECTOR_SIZE; 476 } 477 478 static inline int is_loop_device(struct file *file) 479 { 480 struct inode *i = file->f_mapping->host; 481 482 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 483 } 484 485 static int loop_validate_file(struct file *file, struct block_device *bdev) 486 { 487 struct inode *inode = file->f_mapping->host; 488 struct file *f = file; 489 490 /* Avoid recursion */ 491 while (is_loop_device(f)) { 492 struct loop_device *l; 493 494 lockdep_assert_held(&loop_validate_mutex); 495 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 496 return -EBADF; 497 498 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 499 if (l->lo_state != Lo_bound) 500 return -EINVAL; 501 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 502 rmb(); 503 f = l->lo_backing_file; 504 } 505 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 506 return -EINVAL; 507 return 0; 508 } 509 510 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 511 { 512 lo->lo_backing_file = file; 513 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 514 mapping_set_gfp_mask(file->f_mapping, 515 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 516 if (lo->lo_backing_file->f_flags & O_DIRECT) 517 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 518 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 519 } 520 521 static int loop_check_backing_file(struct file *file) 522 { 523 if (!file->f_op->read_iter) 524 return -EINVAL; 525 526 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter) 527 return -EINVAL; 528 529 return 0; 530 } 531 532 /* 533 * loop_change_fd switched the backing store of a loopback device to 534 * a new file. This is useful for operating system installers to free up 535 * the original file and in High Availability environments to switch to 536 * an alternative location for the content in case of server meltdown. 537 * This can only work if the loop device is used read-only, and if the 538 * new backing store is the same size and type as the old backing store. 539 */ 540 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 541 unsigned int arg) 542 { 543 struct file *file = fget(arg); 544 struct file *old_file; 545 unsigned int memflags; 546 int error; 547 bool partscan; 548 bool is_loop; 549 550 if (!file) 551 return -EBADF; 552 553 error = loop_check_backing_file(file); 554 if (error) { 555 fput(file); 556 return error; 557 } 558 559 /* suppress uevents while reconfiguring the device */ 560 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 561 562 is_loop = is_loop_device(file); 563 error = loop_global_lock_killable(lo, is_loop); 564 if (error) 565 goto out_putf; 566 error = -ENXIO; 567 if (lo->lo_state != Lo_bound) 568 goto out_err; 569 570 /* the loop device has to be read-only */ 571 error = -EINVAL; 572 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 573 goto out_err; 574 575 error = loop_validate_file(file, bdev); 576 if (error) 577 goto out_err; 578 579 old_file = lo->lo_backing_file; 580 581 error = -EINVAL; 582 583 /* size of the new backing store needs to be the same */ 584 if (lo_calculate_size(lo, file) != lo_calculate_size(lo, old_file)) 585 goto out_err; 586 587 /* 588 * We might switch to direct I/O mode for the loop device, write back 589 * all dirty data the page cache now that so that the individual I/O 590 * operations don't have to do that. 591 */ 592 vfs_fsync(file, 0); 593 594 /* and ... switch */ 595 disk_force_media_change(lo->lo_disk); 596 memflags = blk_mq_freeze_queue(lo->lo_queue); 597 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 598 loop_assign_backing_file(lo, file); 599 loop_update_dio(lo); 600 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 601 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 602 loop_global_unlock(lo, is_loop); 603 604 /* 605 * Flush loop_validate_file() before fput(), for l->lo_backing_file 606 * might be pointing at old_file which might be the last reference. 607 */ 608 if (!is_loop) { 609 mutex_lock(&loop_validate_mutex); 610 mutex_unlock(&loop_validate_mutex); 611 } 612 /* 613 * We must drop file reference outside of lo_mutex as dropping 614 * the file ref can take open_mutex which creates circular locking 615 * dependency. 616 */ 617 fput(old_file); 618 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 619 if (partscan) 620 loop_reread_partitions(lo); 621 622 error = 0; 623 done: 624 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 625 return error; 626 627 out_err: 628 loop_global_unlock(lo, is_loop); 629 out_putf: 630 fput(file); 631 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 632 goto done; 633 } 634 635 /* loop sysfs attributes */ 636 637 static ssize_t loop_attr_show(struct device *dev, char *page, 638 ssize_t (*callback)(struct loop_device *, char *)) 639 { 640 struct gendisk *disk = dev_to_disk(dev); 641 struct loop_device *lo = disk->private_data; 642 643 return callback(lo, page); 644 } 645 646 #define LOOP_ATTR_RO(_name) \ 647 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 648 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 649 struct device_attribute *attr, char *b) \ 650 { \ 651 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 652 } \ 653 static struct device_attribute loop_attr_##_name = \ 654 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 655 656 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 657 { 658 ssize_t ret; 659 char *p = NULL; 660 661 spin_lock_irq(&lo->lo_lock); 662 if (lo->lo_backing_file) 663 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 664 spin_unlock_irq(&lo->lo_lock); 665 666 if (IS_ERR_OR_NULL(p)) 667 ret = PTR_ERR(p); 668 else { 669 ret = strlen(p); 670 memmove(buf, p, ret); 671 buf[ret++] = '\n'; 672 buf[ret] = 0; 673 } 674 675 return ret; 676 } 677 678 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 679 { 680 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 681 } 682 683 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 684 { 685 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 686 } 687 688 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 689 { 690 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 691 692 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 693 } 694 695 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 696 { 697 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 698 699 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 700 } 701 702 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 703 { 704 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 705 706 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 707 } 708 709 LOOP_ATTR_RO(backing_file); 710 LOOP_ATTR_RO(offset); 711 LOOP_ATTR_RO(sizelimit); 712 LOOP_ATTR_RO(autoclear); 713 LOOP_ATTR_RO(partscan); 714 LOOP_ATTR_RO(dio); 715 716 static struct attribute *loop_attrs[] = { 717 &loop_attr_backing_file.attr, 718 &loop_attr_offset.attr, 719 &loop_attr_sizelimit.attr, 720 &loop_attr_autoclear.attr, 721 &loop_attr_partscan.attr, 722 &loop_attr_dio.attr, 723 NULL, 724 }; 725 726 static struct attribute_group loop_attribute_group = { 727 .name = "loop", 728 .attrs= loop_attrs, 729 }; 730 731 static void loop_sysfs_init(struct loop_device *lo) 732 { 733 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 734 &loop_attribute_group); 735 } 736 737 static void loop_sysfs_exit(struct loop_device *lo) 738 { 739 if (lo->sysfs_inited) 740 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 741 &loop_attribute_group); 742 } 743 744 static void loop_get_discard_config(struct loop_device *lo, 745 u32 *granularity, u32 *max_discard_sectors) 746 { 747 struct file *file = lo->lo_backing_file; 748 struct inode *inode = file->f_mapping->host; 749 struct kstatfs sbuf; 750 751 /* 752 * If the backing device is a block device, mirror its zeroing 753 * capability. Set the discard sectors to the block device's zeroing 754 * capabilities because loop discards result in blkdev_issue_zeroout(), 755 * not blkdev_issue_discard(). This maintains consistent behavior with 756 * file-backed loop devices: discarded regions read back as zero. 757 */ 758 if (S_ISBLK(inode->i_mode)) { 759 struct block_device *bdev = I_BDEV(inode); 760 761 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 762 *granularity = bdev_discard_granularity(bdev); 763 764 /* 765 * We use punch hole to reclaim the free space used by the 766 * image a.k.a. discard. 767 */ 768 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 769 *max_discard_sectors = UINT_MAX >> 9; 770 *granularity = sbuf.f_bsize; 771 } 772 } 773 774 struct loop_worker { 775 struct rb_node rb_node; 776 struct work_struct work; 777 struct list_head cmd_list; 778 struct list_head idle_list; 779 struct loop_device *lo; 780 struct cgroup_subsys_state *blkcg_css; 781 unsigned long last_ran_at; 782 }; 783 784 static void loop_workfn(struct work_struct *work); 785 786 #ifdef CONFIG_BLK_CGROUP 787 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 788 { 789 return !css || css == blkcg_root_css; 790 } 791 #else 792 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 793 { 794 return !css; 795 } 796 #endif 797 798 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 799 { 800 struct rb_node **node, *parent = NULL; 801 struct loop_worker *cur_worker, *worker = NULL; 802 struct work_struct *work; 803 struct list_head *cmd_list; 804 805 spin_lock_irq(&lo->lo_work_lock); 806 807 if (queue_on_root_worker(cmd->blkcg_css)) 808 goto queue_work; 809 810 node = &lo->worker_tree.rb_node; 811 812 while (*node) { 813 parent = *node; 814 cur_worker = container_of(*node, struct loop_worker, rb_node); 815 if (cur_worker->blkcg_css == cmd->blkcg_css) { 816 worker = cur_worker; 817 break; 818 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 819 node = &(*node)->rb_left; 820 } else { 821 node = &(*node)->rb_right; 822 } 823 } 824 if (worker) 825 goto queue_work; 826 827 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT); 828 /* 829 * In the event we cannot allocate a worker, just queue on the 830 * rootcg worker and issue the I/O as the rootcg 831 */ 832 if (!worker) { 833 cmd->blkcg_css = NULL; 834 if (cmd->memcg_css) 835 css_put(cmd->memcg_css); 836 cmd->memcg_css = NULL; 837 goto queue_work; 838 } 839 840 worker->blkcg_css = cmd->blkcg_css; 841 css_get(worker->blkcg_css); 842 INIT_WORK(&worker->work, loop_workfn); 843 INIT_LIST_HEAD(&worker->cmd_list); 844 INIT_LIST_HEAD(&worker->idle_list); 845 worker->lo = lo; 846 rb_link_node(&worker->rb_node, parent, node); 847 rb_insert_color(&worker->rb_node, &lo->worker_tree); 848 queue_work: 849 if (worker) { 850 /* 851 * We need to remove from the idle list here while 852 * holding the lock so that the idle timer doesn't 853 * free the worker 854 */ 855 if (!list_empty(&worker->idle_list)) 856 list_del_init(&worker->idle_list); 857 work = &worker->work; 858 cmd_list = &worker->cmd_list; 859 } else { 860 work = &lo->rootcg_work; 861 cmd_list = &lo->rootcg_cmd_list; 862 } 863 list_add_tail(&cmd->list_entry, cmd_list); 864 queue_work(lo->workqueue, work); 865 spin_unlock_irq(&lo->lo_work_lock); 866 } 867 868 static void loop_set_timer(struct loop_device *lo) 869 { 870 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 871 } 872 873 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 874 { 875 struct loop_worker *pos, *worker; 876 877 spin_lock_irq(&lo->lo_work_lock); 878 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 879 idle_list) { 880 if (!delete_all && 881 time_is_after_jiffies(worker->last_ran_at + 882 LOOP_IDLE_WORKER_TIMEOUT)) 883 break; 884 list_del(&worker->idle_list); 885 rb_erase(&worker->rb_node, &lo->worker_tree); 886 css_put(worker->blkcg_css); 887 kfree(worker); 888 } 889 if (!list_empty(&lo->idle_worker_list)) 890 loop_set_timer(lo); 891 spin_unlock_irq(&lo->lo_work_lock); 892 } 893 894 static void loop_free_idle_workers_timer(struct timer_list *timer) 895 { 896 struct loop_device *lo = container_of(timer, struct loop_device, timer); 897 898 return loop_free_idle_workers(lo, false); 899 } 900 901 /** 902 * loop_set_status_from_info - configure device from loop_info 903 * @lo: struct loop_device to configure 904 * @info: struct loop_info64 to configure the device with 905 * 906 * Configures the loop device parameters according to the passed 907 * in loop_info64 configuration. 908 */ 909 static int 910 loop_set_status_from_info(struct loop_device *lo, 911 const struct loop_info64 *info) 912 { 913 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 914 return -EINVAL; 915 916 switch (info->lo_encrypt_type) { 917 case LO_CRYPT_NONE: 918 break; 919 case LO_CRYPT_XOR: 920 pr_warn("support for the xor transformation has been removed.\n"); 921 return -EINVAL; 922 case LO_CRYPT_CRYPTOAPI: 923 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 924 return -EINVAL; 925 default: 926 return -EINVAL; 927 } 928 929 /* Avoid assigning overflow values */ 930 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 931 return -EOVERFLOW; 932 933 lo->lo_offset = info->lo_offset; 934 lo->lo_sizelimit = info->lo_sizelimit; 935 936 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 937 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 938 return 0; 939 } 940 941 static unsigned int loop_default_blocksize(struct loop_device *lo) 942 { 943 /* In case of direct I/O, match underlying minimum I/O size */ 944 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 945 return lo->lo_min_dio_size; 946 return SECTOR_SIZE; 947 } 948 949 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 950 unsigned int bsize) 951 { 952 struct file *file = lo->lo_backing_file; 953 struct inode *inode = file->f_mapping->host; 954 struct block_device *backing_bdev = NULL; 955 u32 granularity = 0, max_discard_sectors = 0; 956 957 if (S_ISBLK(inode->i_mode)) 958 backing_bdev = I_BDEV(inode); 959 else if (inode->i_sb->s_bdev) 960 backing_bdev = inode->i_sb->s_bdev; 961 962 if (!bsize) 963 bsize = loop_default_blocksize(lo); 964 965 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 966 967 lim->logical_block_size = bsize; 968 lim->physical_block_size = bsize; 969 lim->io_min = bsize; 970 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 971 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 972 lim->features |= BLK_FEAT_WRITE_CACHE; 973 if (backing_bdev && !bdev_nonrot(backing_bdev)) 974 lim->features |= BLK_FEAT_ROTATIONAL; 975 lim->max_hw_discard_sectors = max_discard_sectors; 976 lim->max_write_zeroes_sectors = max_discard_sectors; 977 if (max_discard_sectors) 978 lim->discard_granularity = granularity; 979 else 980 lim->discard_granularity = 0; 981 } 982 983 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 984 struct block_device *bdev, 985 const struct loop_config *config) 986 { 987 struct file *file = fget(config->fd); 988 struct queue_limits lim; 989 int error; 990 loff_t size; 991 bool partscan; 992 bool is_loop; 993 994 if (!file) 995 return -EBADF; 996 997 error = loop_check_backing_file(file); 998 if (error) { 999 fput(file); 1000 return error; 1001 } 1002 1003 is_loop = is_loop_device(file); 1004 1005 /* This is safe, since we have a reference from open(). */ 1006 __module_get(THIS_MODULE); 1007 1008 /* 1009 * If we don't hold exclusive handle for the device, upgrade to it 1010 * here to avoid changing device under exclusive owner. 1011 */ 1012 if (!(mode & BLK_OPEN_EXCL)) { 1013 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1014 if (error) 1015 goto out_putf; 1016 } 1017 1018 error = loop_global_lock_killable(lo, is_loop); 1019 if (error) 1020 goto out_bdev; 1021 1022 error = -EBUSY; 1023 if (lo->lo_state != Lo_unbound) 1024 goto out_unlock; 1025 1026 error = loop_validate_file(file, bdev); 1027 if (error) 1028 goto out_unlock; 1029 1030 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1031 error = -EINVAL; 1032 goto out_unlock; 1033 } 1034 1035 error = loop_set_status_from_info(lo, &config->info); 1036 if (error) 1037 goto out_unlock; 1038 lo->lo_flags = config->info.lo_flags; 1039 1040 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1041 !file->f_op->write_iter) 1042 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1043 1044 if (!lo->workqueue) { 1045 lo->workqueue = alloc_workqueue("loop%d", 1046 WQ_UNBOUND | WQ_FREEZABLE, 1047 0, lo->lo_number); 1048 if (!lo->workqueue) { 1049 error = -ENOMEM; 1050 goto out_unlock; 1051 } 1052 } 1053 1054 /* suppress uevents while reconfiguring the device */ 1055 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1056 1057 disk_force_media_change(lo->lo_disk); 1058 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1059 1060 lo->lo_device = bdev; 1061 loop_assign_backing_file(lo, file); 1062 1063 lim = queue_limits_start_update(lo->lo_queue); 1064 loop_update_limits(lo, &lim, config->block_size); 1065 /* No need to freeze the queue as the device isn't bound yet. */ 1066 error = queue_limits_commit_update(lo->lo_queue, &lim); 1067 if (error) 1068 goto out_unlock; 1069 1070 /* 1071 * We might switch to direct I/O mode for the loop device, write back 1072 * all dirty data the page cache now that so that the individual I/O 1073 * operations don't have to do that. 1074 */ 1075 vfs_fsync(file, 0); 1076 1077 loop_update_dio(lo); 1078 loop_sysfs_init(lo); 1079 1080 size = lo_calculate_size(lo, file); 1081 loop_set_size(lo, size); 1082 1083 /* Order wrt reading lo_state in loop_validate_file(). */ 1084 wmb(); 1085 1086 lo->lo_state = Lo_bound; 1087 if (part_shift) 1088 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1089 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1090 if (partscan) 1091 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1092 1093 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1094 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1095 1096 loop_global_unlock(lo, is_loop); 1097 if (partscan) 1098 loop_reread_partitions(lo); 1099 1100 if (!(mode & BLK_OPEN_EXCL)) 1101 bd_abort_claiming(bdev, loop_configure); 1102 1103 return 0; 1104 1105 out_unlock: 1106 loop_global_unlock(lo, is_loop); 1107 out_bdev: 1108 if (!(mode & BLK_OPEN_EXCL)) 1109 bd_abort_claiming(bdev, loop_configure); 1110 out_putf: 1111 fput(file); 1112 /* This is safe: open() is still holding a reference. */ 1113 module_put(THIS_MODULE); 1114 return error; 1115 } 1116 1117 static void __loop_clr_fd(struct loop_device *lo) 1118 { 1119 struct queue_limits lim; 1120 struct file *filp; 1121 gfp_t gfp = lo->old_gfp_mask; 1122 1123 spin_lock_irq(&lo->lo_lock); 1124 filp = lo->lo_backing_file; 1125 lo->lo_backing_file = NULL; 1126 spin_unlock_irq(&lo->lo_lock); 1127 1128 lo->lo_device = NULL; 1129 lo->lo_offset = 0; 1130 lo->lo_sizelimit = 0; 1131 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1132 1133 /* 1134 * Reset the block size to the default. 1135 * 1136 * No queue freezing needed because this is called from the final 1137 * ->release call only, so there can't be any outstanding I/O. 1138 */ 1139 lim = queue_limits_start_update(lo->lo_queue); 1140 lim.logical_block_size = SECTOR_SIZE; 1141 lim.physical_block_size = SECTOR_SIZE; 1142 lim.io_min = SECTOR_SIZE; 1143 queue_limits_commit_update(lo->lo_queue, &lim); 1144 1145 invalidate_disk(lo->lo_disk); 1146 loop_sysfs_exit(lo); 1147 /* let user-space know about this change */ 1148 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1149 mapping_set_gfp_mask(filp->f_mapping, gfp); 1150 /* This is safe: open() is still holding a reference. */ 1151 module_put(THIS_MODULE); 1152 1153 disk_force_media_change(lo->lo_disk); 1154 1155 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1156 int err; 1157 1158 /* 1159 * open_mutex has been held already in release path, so don't 1160 * acquire it if this function is called in such case. 1161 * 1162 * If the reread partition isn't from release path, lo_refcnt 1163 * must be at least one and it can only become zero when the 1164 * current holder is released. 1165 */ 1166 err = bdev_disk_changed(lo->lo_disk, false); 1167 if (err) 1168 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1169 __func__, lo->lo_number, err); 1170 /* Device is gone, no point in returning error */ 1171 } 1172 1173 /* 1174 * lo->lo_state is set to Lo_unbound here after above partscan has 1175 * finished. There cannot be anybody else entering __loop_clr_fd() as 1176 * Lo_rundown state protects us from all the other places trying to 1177 * change the 'lo' device. 1178 */ 1179 lo->lo_flags = 0; 1180 if (!part_shift) 1181 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1182 mutex_lock(&lo->lo_mutex); 1183 lo->lo_state = Lo_unbound; 1184 mutex_unlock(&lo->lo_mutex); 1185 1186 /* 1187 * Need not hold lo_mutex to fput backing file. Calling fput holding 1188 * lo_mutex triggers a circular lock dependency possibility warning as 1189 * fput can take open_mutex which is usually taken before lo_mutex. 1190 */ 1191 fput(filp); 1192 } 1193 1194 static int loop_clr_fd(struct loop_device *lo) 1195 { 1196 int err; 1197 1198 /* 1199 * Since lo_ioctl() is called without locks held, it is possible that 1200 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1201 * 1202 * Therefore, use global lock when setting Lo_rundown state in order to 1203 * make sure that loop_validate_file() will fail if the "struct file" 1204 * which loop_configure()/loop_change_fd() found via fget() was this 1205 * loop device. 1206 */ 1207 err = loop_global_lock_killable(lo, true); 1208 if (err) 1209 return err; 1210 if (lo->lo_state != Lo_bound) { 1211 loop_global_unlock(lo, true); 1212 return -ENXIO; 1213 } 1214 /* 1215 * Mark the device for removing the backing device on last close. 1216 * If we are the only opener, also switch the state to roundown here to 1217 * prevent new openers from coming in. 1218 */ 1219 1220 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1221 if (disk_openers(lo->lo_disk) == 1) 1222 lo->lo_state = Lo_rundown; 1223 loop_global_unlock(lo, true); 1224 1225 return 0; 1226 } 1227 1228 static int 1229 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1230 { 1231 int err; 1232 bool partscan = false; 1233 bool size_changed = false; 1234 unsigned int memflags; 1235 1236 err = mutex_lock_killable(&lo->lo_mutex); 1237 if (err) 1238 return err; 1239 if (lo->lo_state != Lo_bound) { 1240 err = -ENXIO; 1241 goto out_unlock; 1242 } 1243 1244 if (lo->lo_offset != info->lo_offset || 1245 lo->lo_sizelimit != info->lo_sizelimit) { 1246 size_changed = true; 1247 sync_blockdev(lo->lo_device); 1248 invalidate_bdev(lo->lo_device); 1249 } 1250 1251 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1252 memflags = blk_mq_freeze_queue(lo->lo_queue); 1253 1254 err = loop_set_status_from_info(lo, info); 1255 if (err) 1256 goto out_unfreeze; 1257 1258 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1259 (info->lo_flags & LO_FLAGS_PARTSCAN); 1260 1261 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1262 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1263 1264 /* update the direct I/O flag if lo_offset changed */ 1265 loop_update_dio(lo); 1266 1267 out_unfreeze: 1268 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1269 if (partscan) 1270 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1271 if (!err && size_changed) { 1272 loff_t new_size = lo_calculate_size(lo, lo->lo_backing_file); 1273 loop_set_size(lo, new_size); 1274 } 1275 out_unlock: 1276 mutex_unlock(&lo->lo_mutex); 1277 if (partscan) 1278 loop_reread_partitions(lo); 1279 1280 return err; 1281 } 1282 1283 static int 1284 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1285 { 1286 struct path path; 1287 struct kstat stat; 1288 int ret; 1289 1290 ret = mutex_lock_killable(&lo->lo_mutex); 1291 if (ret) 1292 return ret; 1293 if (lo->lo_state != Lo_bound) { 1294 mutex_unlock(&lo->lo_mutex); 1295 return -ENXIO; 1296 } 1297 1298 memset(info, 0, sizeof(*info)); 1299 info->lo_number = lo->lo_number; 1300 info->lo_offset = lo->lo_offset; 1301 info->lo_sizelimit = lo->lo_sizelimit; 1302 info->lo_flags = lo->lo_flags; 1303 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1304 1305 /* Drop lo_mutex while we call into the filesystem. */ 1306 path = lo->lo_backing_file->f_path; 1307 path_get(&path); 1308 mutex_unlock(&lo->lo_mutex); 1309 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1310 if (!ret) { 1311 info->lo_device = huge_encode_dev(stat.dev); 1312 info->lo_inode = stat.ino; 1313 info->lo_rdevice = huge_encode_dev(stat.rdev); 1314 } 1315 path_put(&path); 1316 return ret; 1317 } 1318 1319 static void 1320 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1321 { 1322 memset(info64, 0, sizeof(*info64)); 1323 info64->lo_number = info->lo_number; 1324 info64->lo_device = info->lo_device; 1325 info64->lo_inode = info->lo_inode; 1326 info64->lo_rdevice = info->lo_rdevice; 1327 info64->lo_offset = info->lo_offset; 1328 info64->lo_sizelimit = 0; 1329 info64->lo_flags = info->lo_flags; 1330 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1331 } 1332 1333 static int 1334 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1335 { 1336 memset(info, 0, sizeof(*info)); 1337 info->lo_number = info64->lo_number; 1338 info->lo_device = info64->lo_device; 1339 info->lo_inode = info64->lo_inode; 1340 info->lo_rdevice = info64->lo_rdevice; 1341 info->lo_offset = info64->lo_offset; 1342 info->lo_flags = info64->lo_flags; 1343 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1344 1345 /* error in case values were truncated */ 1346 if (info->lo_device != info64->lo_device || 1347 info->lo_rdevice != info64->lo_rdevice || 1348 info->lo_inode != info64->lo_inode || 1349 info->lo_offset != info64->lo_offset) 1350 return -EOVERFLOW; 1351 1352 return 0; 1353 } 1354 1355 static int 1356 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1357 { 1358 struct loop_info info; 1359 struct loop_info64 info64; 1360 1361 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1362 return -EFAULT; 1363 loop_info64_from_old(&info, &info64); 1364 return loop_set_status(lo, &info64); 1365 } 1366 1367 static int 1368 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1369 { 1370 struct loop_info64 info64; 1371 1372 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1373 return -EFAULT; 1374 return loop_set_status(lo, &info64); 1375 } 1376 1377 static int 1378 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1379 struct loop_info info; 1380 struct loop_info64 info64; 1381 int err; 1382 1383 if (!arg) 1384 return -EINVAL; 1385 err = loop_get_status(lo, &info64); 1386 if (!err) 1387 err = loop_info64_to_old(&info64, &info); 1388 if (!err && copy_to_user(arg, &info, sizeof(info))) 1389 err = -EFAULT; 1390 1391 return err; 1392 } 1393 1394 static int 1395 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1396 struct loop_info64 info64; 1397 int err; 1398 1399 if (!arg) 1400 return -EINVAL; 1401 err = loop_get_status(lo, &info64); 1402 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1403 err = -EFAULT; 1404 1405 return err; 1406 } 1407 1408 static int loop_set_capacity(struct loop_device *lo) 1409 { 1410 loff_t size; 1411 1412 if (unlikely(lo->lo_state != Lo_bound)) 1413 return -ENXIO; 1414 1415 size = lo_calculate_size(lo, lo->lo_backing_file); 1416 loop_set_size(lo, size); 1417 1418 return 0; 1419 } 1420 1421 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1422 { 1423 bool use_dio = !!arg; 1424 unsigned int memflags; 1425 1426 if (lo->lo_state != Lo_bound) 1427 return -ENXIO; 1428 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1429 return 0; 1430 1431 if (use_dio) { 1432 if (!lo_can_use_dio(lo)) 1433 return -EINVAL; 1434 /* flush dirty pages before starting to use direct I/O */ 1435 vfs_fsync(lo->lo_backing_file, 0); 1436 } 1437 1438 memflags = blk_mq_freeze_queue(lo->lo_queue); 1439 if (use_dio) 1440 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1441 else 1442 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1443 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1444 return 0; 1445 } 1446 1447 static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode, 1448 struct block_device *bdev, unsigned long arg) 1449 { 1450 struct queue_limits lim; 1451 unsigned int memflags; 1452 int err = 0; 1453 1454 /* 1455 * If we don't hold exclusive handle for the device, upgrade to it 1456 * here to avoid changing device under exclusive owner. 1457 */ 1458 if (!(mode & BLK_OPEN_EXCL)) { 1459 err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL); 1460 if (err) 1461 return err; 1462 } 1463 1464 err = mutex_lock_killable(&lo->lo_mutex); 1465 if (err) 1466 goto abort_claim; 1467 1468 if (lo->lo_state != Lo_bound) { 1469 err = -ENXIO; 1470 goto unlock; 1471 } 1472 1473 if (lo->lo_queue->limits.logical_block_size == arg) 1474 goto unlock; 1475 1476 sync_blockdev(lo->lo_device); 1477 invalidate_bdev(lo->lo_device); 1478 1479 lim = queue_limits_start_update(lo->lo_queue); 1480 loop_update_limits(lo, &lim, arg); 1481 1482 memflags = blk_mq_freeze_queue(lo->lo_queue); 1483 err = queue_limits_commit_update(lo->lo_queue, &lim); 1484 loop_update_dio(lo); 1485 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1486 1487 unlock: 1488 mutex_unlock(&lo->lo_mutex); 1489 abort_claim: 1490 if (!(mode & BLK_OPEN_EXCL)) 1491 bd_abort_claiming(bdev, loop_set_block_size); 1492 return err; 1493 } 1494 1495 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1496 unsigned long arg) 1497 { 1498 int err; 1499 1500 err = mutex_lock_killable(&lo->lo_mutex); 1501 if (err) 1502 return err; 1503 switch (cmd) { 1504 case LOOP_SET_CAPACITY: 1505 err = loop_set_capacity(lo); 1506 break; 1507 case LOOP_SET_DIRECT_IO: 1508 err = loop_set_dio(lo, arg); 1509 break; 1510 default: 1511 err = -EINVAL; 1512 } 1513 mutex_unlock(&lo->lo_mutex); 1514 return err; 1515 } 1516 1517 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1518 unsigned int cmd, unsigned long arg) 1519 { 1520 struct loop_device *lo = bdev->bd_disk->private_data; 1521 void __user *argp = (void __user *) arg; 1522 int err; 1523 1524 switch (cmd) { 1525 case LOOP_SET_FD: { 1526 /* 1527 * Legacy case - pass in a zeroed out struct loop_config with 1528 * only the file descriptor set , which corresponds with the 1529 * default parameters we'd have used otherwise. 1530 */ 1531 struct loop_config config; 1532 1533 memset(&config, 0, sizeof(config)); 1534 config.fd = arg; 1535 1536 return loop_configure(lo, mode, bdev, &config); 1537 } 1538 case LOOP_CONFIGURE: { 1539 struct loop_config config; 1540 1541 if (copy_from_user(&config, argp, sizeof(config))) 1542 return -EFAULT; 1543 1544 return loop_configure(lo, mode, bdev, &config); 1545 } 1546 case LOOP_CHANGE_FD: 1547 return loop_change_fd(lo, bdev, arg); 1548 case LOOP_CLR_FD: 1549 return loop_clr_fd(lo); 1550 case LOOP_SET_STATUS: 1551 err = -EPERM; 1552 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1553 err = loop_set_status_old(lo, argp); 1554 break; 1555 case LOOP_GET_STATUS: 1556 return loop_get_status_old(lo, argp); 1557 case LOOP_SET_STATUS64: 1558 err = -EPERM; 1559 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1560 err = loop_set_status64(lo, argp); 1561 break; 1562 case LOOP_GET_STATUS64: 1563 return loop_get_status64(lo, argp); 1564 case LOOP_SET_BLOCK_SIZE: 1565 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1566 return -EPERM; 1567 return loop_set_block_size(lo, mode, bdev, arg); 1568 case LOOP_SET_CAPACITY: 1569 case LOOP_SET_DIRECT_IO: 1570 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1571 return -EPERM; 1572 fallthrough; 1573 default: 1574 err = lo_simple_ioctl(lo, cmd, arg); 1575 break; 1576 } 1577 1578 return err; 1579 } 1580 1581 #ifdef CONFIG_COMPAT 1582 struct compat_loop_info { 1583 compat_int_t lo_number; /* ioctl r/o */ 1584 compat_dev_t lo_device; /* ioctl r/o */ 1585 compat_ulong_t lo_inode; /* ioctl r/o */ 1586 compat_dev_t lo_rdevice; /* ioctl r/o */ 1587 compat_int_t lo_offset; 1588 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1589 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1590 compat_int_t lo_flags; /* ioctl r/o */ 1591 char lo_name[LO_NAME_SIZE]; 1592 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1593 compat_ulong_t lo_init[2]; 1594 char reserved[4]; 1595 }; 1596 1597 /* 1598 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1599 * - noinlined to reduce stack space usage in main part of driver 1600 */ 1601 static noinline int 1602 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1603 struct loop_info64 *info64) 1604 { 1605 struct compat_loop_info info; 1606 1607 if (copy_from_user(&info, arg, sizeof(info))) 1608 return -EFAULT; 1609 1610 memset(info64, 0, sizeof(*info64)); 1611 info64->lo_number = info.lo_number; 1612 info64->lo_device = info.lo_device; 1613 info64->lo_inode = info.lo_inode; 1614 info64->lo_rdevice = info.lo_rdevice; 1615 info64->lo_offset = info.lo_offset; 1616 info64->lo_sizelimit = 0; 1617 info64->lo_flags = info.lo_flags; 1618 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1619 return 0; 1620 } 1621 1622 /* 1623 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1624 * - noinlined to reduce stack space usage in main part of driver 1625 */ 1626 static noinline int 1627 loop_info64_to_compat(const struct loop_info64 *info64, 1628 struct compat_loop_info __user *arg) 1629 { 1630 struct compat_loop_info info; 1631 1632 memset(&info, 0, sizeof(info)); 1633 info.lo_number = info64->lo_number; 1634 info.lo_device = info64->lo_device; 1635 info.lo_inode = info64->lo_inode; 1636 info.lo_rdevice = info64->lo_rdevice; 1637 info.lo_offset = info64->lo_offset; 1638 info.lo_flags = info64->lo_flags; 1639 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1640 1641 /* error in case values were truncated */ 1642 if (info.lo_device != info64->lo_device || 1643 info.lo_rdevice != info64->lo_rdevice || 1644 info.lo_inode != info64->lo_inode || 1645 info.lo_offset != info64->lo_offset) 1646 return -EOVERFLOW; 1647 1648 if (copy_to_user(arg, &info, sizeof(info))) 1649 return -EFAULT; 1650 return 0; 1651 } 1652 1653 static int 1654 loop_set_status_compat(struct loop_device *lo, 1655 const struct compat_loop_info __user *arg) 1656 { 1657 struct loop_info64 info64; 1658 int ret; 1659 1660 ret = loop_info64_from_compat(arg, &info64); 1661 if (ret < 0) 1662 return ret; 1663 return loop_set_status(lo, &info64); 1664 } 1665 1666 static int 1667 loop_get_status_compat(struct loop_device *lo, 1668 struct compat_loop_info __user *arg) 1669 { 1670 struct loop_info64 info64; 1671 int err; 1672 1673 if (!arg) 1674 return -EINVAL; 1675 err = loop_get_status(lo, &info64); 1676 if (!err) 1677 err = loop_info64_to_compat(&info64, arg); 1678 return err; 1679 } 1680 1681 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1682 unsigned int cmd, unsigned long arg) 1683 { 1684 struct loop_device *lo = bdev->bd_disk->private_data; 1685 int err; 1686 1687 switch(cmd) { 1688 case LOOP_SET_STATUS: 1689 err = loop_set_status_compat(lo, 1690 (const struct compat_loop_info __user *)arg); 1691 break; 1692 case LOOP_GET_STATUS: 1693 err = loop_get_status_compat(lo, 1694 (struct compat_loop_info __user *)arg); 1695 break; 1696 case LOOP_SET_CAPACITY: 1697 case LOOP_CLR_FD: 1698 case LOOP_GET_STATUS64: 1699 case LOOP_SET_STATUS64: 1700 case LOOP_CONFIGURE: 1701 arg = (unsigned long) compat_ptr(arg); 1702 fallthrough; 1703 case LOOP_SET_FD: 1704 case LOOP_CHANGE_FD: 1705 case LOOP_SET_BLOCK_SIZE: 1706 case LOOP_SET_DIRECT_IO: 1707 err = lo_ioctl(bdev, mode, cmd, arg); 1708 break; 1709 default: 1710 err = -ENOIOCTLCMD; 1711 break; 1712 } 1713 return err; 1714 } 1715 #endif 1716 1717 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1718 { 1719 struct loop_device *lo = disk->private_data; 1720 int err; 1721 1722 err = mutex_lock_killable(&lo->lo_mutex); 1723 if (err) 1724 return err; 1725 1726 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1727 err = -ENXIO; 1728 mutex_unlock(&lo->lo_mutex); 1729 return err; 1730 } 1731 1732 static void lo_release(struct gendisk *disk) 1733 { 1734 struct loop_device *lo = disk->private_data; 1735 bool need_clear = false; 1736 1737 if (disk_openers(disk) > 0) 1738 return; 1739 /* 1740 * Clear the backing device information if this is the last close of 1741 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1742 * has been called. 1743 */ 1744 1745 mutex_lock(&lo->lo_mutex); 1746 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1747 lo->lo_state = Lo_rundown; 1748 1749 need_clear = (lo->lo_state == Lo_rundown); 1750 mutex_unlock(&lo->lo_mutex); 1751 1752 if (need_clear) 1753 __loop_clr_fd(lo); 1754 } 1755 1756 static void lo_free_disk(struct gendisk *disk) 1757 { 1758 struct loop_device *lo = disk->private_data; 1759 1760 if (lo->workqueue) 1761 destroy_workqueue(lo->workqueue); 1762 loop_free_idle_workers(lo, true); 1763 timer_shutdown_sync(&lo->timer); 1764 mutex_destroy(&lo->lo_mutex); 1765 kfree(lo); 1766 } 1767 1768 static const struct block_device_operations lo_fops = { 1769 .owner = THIS_MODULE, 1770 .open = lo_open, 1771 .release = lo_release, 1772 .ioctl = lo_ioctl, 1773 #ifdef CONFIG_COMPAT 1774 .compat_ioctl = lo_compat_ioctl, 1775 #endif 1776 .free_disk = lo_free_disk, 1777 }; 1778 1779 /* 1780 * And now the modules code and kernel interface. 1781 */ 1782 1783 /* 1784 * If max_loop is specified, create that many devices upfront. 1785 * This also becomes a hard limit. If max_loop is not specified, 1786 * the default isn't a hard limit (as before commit 85c50197716c 1787 * changed the default value from 0 for max_loop=0 reasons), just 1788 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1789 * init time. Loop devices can be requested on-demand with the 1790 * /dev/loop-control interface, or be instantiated by accessing 1791 * a 'dead' device node. 1792 */ 1793 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1794 1795 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1796 static bool max_loop_specified; 1797 1798 static int max_loop_param_set_int(const char *val, 1799 const struct kernel_param *kp) 1800 { 1801 int ret; 1802 1803 ret = param_set_int(val, kp); 1804 if (ret < 0) 1805 return ret; 1806 1807 max_loop_specified = true; 1808 return 0; 1809 } 1810 1811 static const struct kernel_param_ops max_loop_param_ops = { 1812 .set = max_loop_param_set_int, 1813 .get = param_get_int, 1814 }; 1815 1816 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1817 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1818 #else 1819 module_param(max_loop, int, 0444); 1820 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1821 #endif 1822 1823 module_param(max_part, int, 0444); 1824 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1825 1826 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1827 1828 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1829 { 1830 int qd, ret; 1831 1832 ret = kstrtoint(s, 0, &qd); 1833 if (ret < 0) 1834 return ret; 1835 if (qd < 1) 1836 return -EINVAL; 1837 hw_queue_depth = qd; 1838 return 0; 1839 } 1840 1841 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1842 .set = loop_set_hw_queue_depth, 1843 .get = param_get_int, 1844 }; 1845 1846 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1847 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1848 1849 MODULE_DESCRIPTION("Loopback device support"); 1850 MODULE_LICENSE("GPL"); 1851 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1852 1853 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1854 const struct blk_mq_queue_data *bd) 1855 { 1856 struct request *rq = bd->rq; 1857 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1858 struct loop_device *lo = rq->q->queuedata; 1859 1860 blk_mq_start_request(rq); 1861 1862 if (lo->lo_state != Lo_bound) 1863 return BLK_STS_IOERR; 1864 1865 switch (req_op(rq)) { 1866 case REQ_OP_FLUSH: 1867 case REQ_OP_DISCARD: 1868 case REQ_OP_WRITE_ZEROES: 1869 cmd->use_aio = false; 1870 break; 1871 default: 1872 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1873 break; 1874 } 1875 1876 /* always use the first bio's css */ 1877 cmd->blkcg_css = NULL; 1878 cmd->memcg_css = NULL; 1879 #ifdef CONFIG_BLK_CGROUP 1880 if (rq->bio) { 1881 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1882 #ifdef CONFIG_MEMCG 1883 if (cmd->blkcg_css) { 1884 cmd->memcg_css = 1885 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1886 &memory_cgrp_subsys); 1887 } 1888 #endif 1889 } 1890 #endif 1891 loop_queue_work(lo, cmd); 1892 1893 return BLK_STS_OK; 1894 } 1895 1896 static void loop_handle_cmd(struct loop_cmd *cmd) 1897 { 1898 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1899 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1900 struct request *rq = blk_mq_rq_from_pdu(cmd); 1901 const bool write = op_is_write(req_op(rq)); 1902 struct loop_device *lo = rq->q->queuedata; 1903 int ret = 0; 1904 struct mem_cgroup *old_memcg = NULL; 1905 1906 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1907 ret = -EIO; 1908 goto failed; 1909 } 1910 1911 if (cmd_blkcg_css) 1912 kthread_associate_blkcg(cmd_blkcg_css); 1913 if (cmd_memcg_css) 1914 old_memcg = set_active_memcg( 1915 mem_cgroup_from_css(cmd_memcg_css)); 1916 1917 /* 1918 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1919 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1920 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1921 * not yet been completed. 1922 */ 1923 ret = do_req_filebacked(lo, rq); 1924 1925 if (cmd_blkcg_css) 1926 kthread_associate_blkcg(NULL); 1927 1928 if (cmd_memcg_css) { 1929 set_active_memcg(old_memcg); 1930 css_put(cmd_memcg_css); 1931 } 1932 failed: 1933 /* complete non-aio request */ 1934 if (ret != -EIOCBQUEUED) { 1935 if (ret == -EOPNOTSUPP) 1936 cmd->ret = ret; 1937 else 1938 cmd->ret = ret ? -EIO : 0; 1939 if (likely(!blk_should_fake_timeout(rq->q))) 1940 blk_mq_complete_request(rq); 1941 } 1942 } 1943 1944 static void loop_process_work(struct loop_worker *worker, 1945 struct list_head *cmd_list, struct loop_device *lo) 1946 { 1947 int orig_flags = current->flags; 1948 struct loop_cmd *cmd; 1949 1950 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1951 spin_lock_irq(&lo->lo_work_lock); 1952 while (!list_empty(cmd_list)) { 1953 cmd = container_of( 1954 cmd_list->next, struct loop_cmd, list_entry); 1955 list_del(cmd_list->next); 1956 spin_unlock_irq(&lo->lo_work_lock); 1957 1958 loop_handle_cmd(cmd); 1959 cond_resched(); 1960 1961 spin_lock_irq(&lo->lo_work_lock); 1962 } 1963 1964 /* 1965 * We only add to the idle list if there are no pending cmds 1966 * *and* the worker will not run again which ensures that it 1967 * is safe to free any worker on the idle list 1968 */ 1969 if (worker && !work_pending(&worker->work)) { 1970 worker->last_ran_at = jiffies; 1971 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1972 loop_set_timer(lo); 1973 } 1974 spin_unlock_irq(&lo->lo_work_lock); 1975 current->flags = orig_flags; 1976 } 1977 1978 static void loop_workfn(struct work_struct *work) 1979 { 1980 struct loop_worker *worker = 1981 container_of(work, struct loop_worker, work); 1982 loop_process_work(worker, &worker->cmd_list, worker->lo); 1983 } 1984 1985 static void loop_rootcg_workfn(struct work_struct *work) 1986 { 1987 struct loop_device *lo = 1988 container_of(work, struct loop_device, rootcg_work); 1989 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1990 } 1991 1992 static const struct blk_mq_ops loop_mq_ops = { 1993 .queue_rq = loop_queue_rq, 1994 .complete = lo_complete_rq, 1995 }; 1996 1997 static int loop_add(int i) 1998 { 1999 struct queue_limits lim = { 2000 /* 2001 * Random number picked from the historic block max_sectors cap. 2002 */ 2003 .max_hw_sectors = 2560u, 2004 }; 2005 struct loop_device *lo; 2006 struct gendisk *disk; 2007 int err; 2008 2009 err = -ENOMEM; 2010 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2011 if (!lo) 2012 goto out; 2013 lo->worker_tree = RB_ROOT; 2014 INIT_LIST_HEAD(&lo->idle_worker_list); 2015 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2016 lo->lo_state = Lo_unbound; 2017 2018 err = mutex_lock_killable(&loop_ctl_mutex); 2019 if (err) 2020 goto out_free_dev; 2021 2022 /* allocate id, if @id >= 0, we're requesting that specific id */ 2023 if (i >= 0) { 2024 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2025 if (err == -ENOSPC) 2026 err = -EEXIST; 2027 } else { 2028 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2029 } 2030 mutex_unlock(&loop_ctl_mutex); 2031 if (err < 0) 2032 goto out_free_dev; 2033 i = err; 2034 2035 lo->tag_set.ops = &loop_mq_ops; 2036 lo->tag_set.nr_hw_queues = 1; 2037 lo->tag_set.queue_depth = hw_queue_depth; 2038 lo->tag_set.numa_node = NUMA_NO_NODE; 2039 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2040 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2041 lo->tag_set.driver_data = lo; 2042 2043 err = blk_mq_alloc_tag_set(&lo->tag_set); 2044 if (err) 2045 goto out_free_idr; 2046 2047 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2048 if (IS_ERR(disk)) { 2049 err = PTR_ERR(disk); 2050 goto out_cleanup_tags; 2051 } 2052 lo->lo_queue = lo->lo_disk->queue; 2053 2054 /* 2055 * Disable partition scanning by default. The in-kernel partition 2056 * scanning can be requested individually per-device during its 2057 * setup. Userspace can always add and remove partitions from all 2058 * devices. The needed partition minors are allocated from the 2059 * extended minor space, the main loop device numbers will continue 2060 * to match the loop minors, regardless of the number of partitions 2061 * used. 2062 * 2063 * If max_part is given, partition scanning is globally enabled for 2064 * all loop devices. The minors for the main loop devices will be 2065 * multiples of max_part. 2066 * 2067 * Note: Global-for-all-devices, set-only-at-init, read-only module 2068 * parameteters like 'max_loop' and 'max_part' make things needlessly 2069 * complicated, are too static, inflexible and may surprise 2070 * userspace tools. Parameters like this in general should be avoided. 2071 */ 2072 if (!part_shift) 2073 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2074 mutex_init(&lo->lo_mutex); 2075 lo->lo_number = i; 2076 spin_lock_init(&lo->lo_lock); 2077 spin_lock_init(&lo->lo_work_lock); 2078 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2079 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2080 disk->major = LOOP_MAJOR; 2081 disk->first_minor = i << part_shift; 2082 disk->minors = 1 << part_shift; 2083 disk->fops = &lo_fops; 2084 disk->private_data = lo; 2085 disk->queue = lo->lo_queue; 2086 disk->events = DISK_EVENT_MEDIA_CHANGE; 2087 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2088 sprintf(disk->disk_name, "loop%d", i); 2089 /* Make this loop device reachable from pathname. */ 2090 err = add_disk(disk); 2091 if (err) 2092 goto out_cleanup_disk; 2093 2094 /* Show this loop device. */ 2095 mutex_lock(&loop_ctl_mutex); 2096 lo->idr_visible = true; 2097 mutex_unlock(&loop_ctl_mutex); 2098 2099 return i; 2100 2101 out_cleanup_disk: 2102 put_disk(disk); 2103 out_cleanup_tags: 2104 blk_mq_free_tag_set(&lo->tag_set); 2105 out_free_idr: 2106 mutex_lock(&loop_ctl_mutex); 2107 idr_remove(&loop_index_idr, i); 2108 mutex_unlock(&loop_ctl_mutex); 2109 out_free_dev: 2110 kfree(lo); 2111 out: 2112 return err; 2113 } 2114 2115 static void loop_remove(struct loop_device *lo) 2116 { 2117 /* Make this loop device unreachable from pathname. */ 2118 del_gendisk(lo->lo_disk); 2119 blk_mq_free_tag_set(&lo->tag_set); 2120 2121 mutex_lock(&loop_ctl_mutex); 2122 idr_remove(&loop_index_idr, lo->lo_number); 2123 mutex_unlock(&loop_ctl_mutex); 2124 2125 put_disk(lo->lo_disk); 2126 } 2127 2128 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2129 static void loop_probe(dev_t dev) 2130 { 2131 int idx = MINOR(dev) >> part_shift; 2132 2133 if (max_loop_specified && max_loop && idx >= max_loop) 2134 return; 2135 loop_add(idx); 2136 } 2137 #else 2138 #define loop_probe NULL 2139 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2140 2141 static int loop_control_remove(int idx) 2142 { 2143 struct loop_device *lo; 2144 int ret; 2145 2146 if (idx < 0) { 2147 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2148 return -EINVAL; 2149 } 2150 2151 /* Hide this loop device for serialization. */ 2152 ret = mutex_lock_killable(&loop_ctl_mutex); 2153 if (ret) 2154 return ret; 2155 lo = idr_find(&loop_index_idr, idx); 2156 if (!lo || !lo->idr_visible) 2157 ret = -ENODEV; 2158 else 2159 lo->idr_visible = false; 2160 mutex_unlock(&loop_ctl_mutex); 2161 if (ret) 2162 return ret; 2163 2164 /* Check whether this loop device can be removed. */ 2165 ret = mutex_lock_killable(&lo->lo_mutex); 2166 if (ret) 2167 goto mark_visible; 2168 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2169 mutex_unlock(&lo->lo_mutex); 2170 ret = -EBUSY; 2171 goto mark_visible; 2172 } 2173 /* Mark this loop device as no more bound, but not quite unbound yet */ 2174 lo->lo_state = Lo_deleting; 2175 mutex_unlock(&lo->lo_mutex); 2176 2177 loop_remove(lo); 2178 return 0; 2179 2180 mark_visible: 2181 /* Show this loop device again. */ 2182 mutex_lock(&loop_ctl_mutex); 2183 lo->idr_visible = true; 2184 mutex_unlock(&loop_ctl_mutex); 2185 return ret; 2186 } 2187 2188 static int loop_control_get_free(int idx) 2189 { 2190 struct loop_device *lo; 2191 int id, ret; 2192 2193 ret = mutex_lock_killable(&loop_ctl_mutex); 2194 if (ret) 2195 return ret; 2196 idr_for_each_entry(&loop_index_idr, lo, id) { 2197 /* Hitting a race results in creating a new loop device which is harmless. */ 2198 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2199 goto found; 2200 } 2201 mutex_unlock(&loop_ctl_mutex); 2202 return loop_add(-1); 2203 found: 2204 mutex_unlock(&loop_ctl_mutex); 2205 return id; 2206 } 2207 2208 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2209 unsigned long parm) 2210 { 2211 switch (cmd) { 2212 case LOOP_CTL_ADD: 2213 return loop_add(parm); 2214 case LOOP_CTL_REMOVE: 2215 return loop_control_remove(parm); 2216 case LOOP_CTL_GET_FREE: 2217 return loop_control_get_free(parm); 2218 default: 2219 return -ENOSYS; 2220 } 2221 } 2222 2223 static const struct file_operations loop_ctl_fops = { 2224 .open = nonseekable_open, 2225 .unlocked_ioctl = loop_control_ioctl, 2226 .compat_ioctl = loop_control_ioctl, 2227 .owner = THIS_MODULE, 2228 .llseek = noop_llseek, 2229 }; 2230 2231 static struct miscdevice loop_misc = { 2232 .minor = LOOP_CTRL_MINOR, 2233 .name = "loop-control", 2234 .fops = &loop_ctl_fops, 2235 }; 2236 2237 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2238 MODULE_ALIAS("devname:loop-control"); 2239 2240 static int __init loop_init(void) 2241 { 2242 int i; 2243 int err; 2244 2245 part_shift = 0; 2246 if (max_part > 0) { 2247 part_shift = fls(max_part); 2248 2249 /* 2250 * Adjust max_part according to part_shift as it is exported 2251 * to user space so that user can decide correct minor number 2252 * if [s]he want to create more devices. 2253 * 2254 * Note that -1 is required because partition 0 is reserved 2255 * for the whole disk. 2256 */ 2257 max_part = (1UL << part_shift) - 1; 2258 } 2259 2260 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2261 err = -EINVAL; 2262 goto err_out; 2263 } 2264 2265 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2266 err = -EINVAL; 2267 goto err_out; 2268 } 2269 2270 err = misc_register(&loop_misc); 2271 if (err < 0) 2272 goto err_out; 2273 2274 2275 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2276 err = -EIO; 2277 goto misc_out; 2278 } 2279 2280 /* pre-create number of devices given by config or max_loop */ 2281 for (i = 0; i < max_loop; i++) 2282 loop_add(i); 2283 2284 printk(KERN_INFO "loop: module loaded\n"); 2285 return 0; 2286 2287 misc_out: 2288 misc_deregister(&loop_misc); 2289 err_out: 2290 return err; 2291 } 2292 2293 static void __exit loop_exit(void) 2294 { 2295 struct loop_device *lo; 2296 int id; 2297 2298 unregister_blkdev(LOOP_MAJOR, "loop"); 2299 misc_deregister(&loop_misc); 2300 2301 /* 2302 * There is no need to use loop_ctl_mutex here, for nobody else can 2303 * access loop_index_idr when this module is unloading (unless forced 2304 * module unloading is requested). If this is not a clean unloading, 2305 * we have no means to avoid kernel crash. 2306 */ 2307 idr_for_each_entry(&loop_index_idr, lo, id) 2308 loop_remove(lo); 2309 2310 idr_destroy(&loop_index_idr); 2311 } 2312 2313 module_init(loop_init); 2314 module_exit(loop_exit); 2315 2316 #ifndef MODULE 2317 static int __init max_loop_setup(char *str) 2318 { 2319 max_loop = simple_strtol(str, NULL, 0); 2320 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2321 max_loop_specified = true; 2322 #endif 2323 return 1; 2324 } 2325 2326 __setup("max_loop=", max_loop_setup); 2327 #endif 2328