1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t lo_calculate_size(struct loop_device *lo, struct file *file) 141 { 142 loff_t loopsize; 143 int ret; 144 145 if (S_ISBLK(file_inode(file)->i_mode)) { 146 loopsize = i_size_read(file->f_mapping->host); 147 } else { 148 struct kstat stat; 149 150 /* 151 * Get the accurate file size. This provides better results than 152 * cached inode data, particularly for network filesystems where 153 * metadata may be stale. 154 */ 155 ret = vfs_getattr_nosec(&file->f_path, &stat, STATX_SIZE, 0); 156 if (ret) 157 return 0; 158 159 loopsize = stat.size; 160 } 161 162 if (lo->lo_offset > 0) 163 loopsize -= lo->lo_offset; 164 /* offset is beyond i_size, weird but possible */ 165 if (loopsize < 0) 166 return 0; 167 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 168 loopsize = lo->lo_sizelimit; 169 /* 170 * Unfortunately, if we want to do I/O on the device, 171 * the number of 512-byte sectors has to fit into a sector_t. 172 */ 173 return loopsize >> 9; 174 } 175 176 /* 177 * We support direct I/O only if lo_offset is aligned with the logical I/O size 178 * of backing device, and the logical block size of loop is bigger than that of 179 * the backing device. 180 */ 181 static bool lo_can_use_dio(struct loop_device *lo) 182 { 183 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 184 return false; 185 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 186 return false; 187 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 188 return false; 189 return true; 190 } 191 192 /* 193 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 194 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 195 * disabled when the device block size is too small or the offset is unaligned. 196 * 197 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 198 * not the originally passed in one. 199 */ 200 static inline void loop_update_dio(struct loop_device *lo) 201 { 202 lockdep_assert_held(&lo->lo_mutex); 203 WARN_ON_ONCE(lo->lo_state == Lo_bound && 204 lo->lo_queue->mq_freeze_depth == 0); 205 206 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 207 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 208 } 209 210 /** 211 * loop_set_size() - sets device size and notifies userspace 212 * @lo: struct loop_device to set the size for 213 * @size: new size of the loop device 214 * 215 * Callers must validate that the size passed into this function fits into 216 * a sector_t, eg using loop_validate_size() 217 */ 218 static void loop_set_size(struct loop_device *lo, loff_t size) 219 { 220 if (!set_capacity_and_notify(lo->lo_disk, size)) 221 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 222 } 223 224 static void loop_clear_limits(struct loop_device *lo, int mode) 225 { 226 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 227 228 if (mode & FALLOC_FL_ZERO_RANGE) 229 lim.max_write_zeroes_sectors = 0; 230 231 if (mode & FALLOC_FL_PUNCH_HOLE) { 232 lim.max_hw_discard_sectors = 0; 233 lim.discard_granularity = 0; 234 } 235 236 /* 237 * XXX: this updates the queue limits without freezing the queue, which 238 * is against the locking protocol and dangerous. But we can't just 239 * freeze the queue as we're inside the ->queue_rq method here. So this 240 * should move out into a workqueue unless we get the file operations to 241 * advertise if they support specific fallocate operations. 242 */ 243 queue_limits_commit_update(lo->lo_queue, &lim); 244 } 245 246 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 247 int mode) 248 { 249 /* 250 * We use fallocate to manipulate the space mappings used by the image 251 * a.k.a. discard/zerorange. 252 */ 253 struct file *file = lo->lo_backing_file; 254 int ret; 255 256 mode |= FALLOC_FL_KEEP_SIZE; 257 258 if (!bdev_max_discard_sectors(lo->lo_device)) 259 return -EOPNOTSUPP; 260 261 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 262 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 263 return -EIO; 264 265 /* 266 * We initially configure the limits in a hope that fallocate is 267 * supported and clear them here if that turns out not to be true. 268 */ 269 if (unlikely(ret == -EOPNOTSUPP)) 270 loop_clear_limits(lo, mode); 271 272 return ret; 273 } 274 275 static int lo_req_flush(struct loop_device *lo, struct request *rq) 276 { 277 int ret = vfs_fsync(lo->lo_backing_file, 0); 278 if (unlikely(ret && ret != -EINVAL)) 279 ret = -EIO; 280 281 return ret; 282 } 283 284 static void lo_complete_rq(struct request *rq) 285 { 286 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 287 blk_status_t ret = BLK_STS_OK; 288 289 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 290 req_op(rq) != REQ_OP_READ) { 291 if (cmd->ret < 0) 292 ret = errno_to_blk_status(cmd->ret); 293 goto end_io; 294 } 295 296 /* 297 * Short READ - if we got some data, advance our request and 298 * retry it. If we got no data, end the rest with EIO. 299 */ 300 if (cmd->ret) { 301 blk_update_request(rq, BLK_STS_OK, cmd->ret); 302 cmd->ret = 0; 303 blk_mq_requeue_request(rq, true); 304 } else { 305 struct bio *bio = rq->bio; 306 307 while (bio) { 308 zero_fill_bio(bio); 309 bio = bio->bi_next; 310 } 311 312 ret = BLK_STS_IOERR; 313 end_io: 314 blk_mq_end_request(rq, ret); 315 } 316 } 317 318 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 319 { 320 struct request *rq = blk_mq_rq_from_pdu(cmd); 321 322 if (!atomic_dec_and_test(&cmd->ref)) 323 return; 324 kfree(cmd->bvec); 325 cmd->bvec = NULL; 326 if (req_op(rq) == REQ_OP_WRITE) 327 kiocb_end_write(&cmd->iocb); 328 if (likely(!blk_should_fake_timeout(rq->q))) 329 blk_mq_complete_request(rq); 330 } 331 332 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 333 { 334 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 335 336 cmd->ret = ret; 337 lo_rw_aio_do_completion(cmd); 338 } 339 340 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 341 loff_t pos, int rw) 342 { 343 struct iov_iter iter; 344 struct req_iterator rq_iter; 345 struct bio_vec *bvec; 346 struct request *rq = blk_mq_rq_from_pdu(cmd); 347 struct bio *bio = rq->bio; 348 struct file *file = lo->lo_backing_file; 349 struct bio_vec tmp; 350 unsigned int offset; 351 int nr_bvec = 0; 352 int ret; 353 354 rq_for_each_bvec(tmp, rq, rq_iter) 355 nr_bvec++; 356 357 if (rq->bio != rq->biotail) { 358 359 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 360 GFP_NOIO); 361 if (!bvec) 362 return -EIO; 363 cmd->bvec = bvec; 364 365 /* 366 * The bios of the request may be started from the middle of 367 * the 'bvec' because of bio splitting, so we can't directly 368 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 369 * API will take care of all details for us. 370 */ 371 rq_for_each_bvec(tmp, rq, rq_iter) { 372 *bvec = tmp; 373 bvec++; 374 } 375 bvec = cmd->bvec; 376 offset = 0; 377 } else { 378 /* 379 * Same here, this bio may be started from the middle of the 380 * 'bvec' because of bio splitting, so offset from the bvec 381 * must be passed to iov iterator 382 */ 383 offset = bio->bi_iter.bi_bvec_done; 384 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 385 } 386 atomic_set(&cmd->ref, 2); 387 388 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 389 iter.iov_offset = offset; 390 391 cmd->iocb.ki_pos = pos; 392 cmd->iocb.ki_filp = file; 393 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 394 if (cmd->use_aio) { 395 cmd->iocb.ki_complete = lo_rw_aio_complete; 396 cmd->iocb.ki_flags = IOCB_DIRECT; 397 } else { 398 cmd->iocb.ki_complete = NULL; 399 cmd->iocb.ki_flags = 0; 400 } 401 402 if (rw == ITER_SOURCE) { 403 kiocb_start_write(&cmd->iocb); 404 ret = file->f_op->write_iter(&cmd->iocb, &iter); 405 } else 406 ret = file->f_op->read_iter(&cmd->iocb, &iter); 407 408 lo_rw_aio_do_completion(cmd); 409 410 if (ret != -EIOCBQUEUED) 411 lo_rw_aio_complete(&cmd->iocb, ret); 412 return -EIOCBQUEUED; 413 } 414 415 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 416 { 417 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 418 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 419 420 switch (req_op(rq)) { 421 case REQ_OP_FLUSH: 422 return lo_req_flush(lo, rq); 423 case REQ_OP_WRITE_ZEROES: 424 /* 425 * If the caller doesn't want deallocation, call zeroout to 426 * write zeroes the range. Otherwise, punch them out. 427 */ 428 return lo_fallocate(lo, rq, pos, 429 (rq->cmd_flags & REQ_NOUNMAP) ? 430 FALLOC_FL_ZERO_RANGE : 431 FALLOC_FL_PUNCH_HOLE); 432 case REQ_OP_DISCARD: 433 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 434 case REQ_OP_WRITE: 435 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 436 case REQ_OP_READ: 437 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 438 default: 439 WARN_ON_ONCE(1); 440 return -EIO; 441 } 442 } 443 444 static void loop_reread_partitions(struct loop_device *lo) 445 { 446 int rc; 447 448 mutex_lock(&lo->lo_disk->open_mutex); 449 rc = bdev_disk_changed(lo->lo_disk, false); 450 mutex_unlock(&lo->lo_disk->open_mutex); 451 if (rc) 452 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 453 __func__, lo->lo_number, lo->lo_file_name, rc); 454 } 455 456 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 457 { 458 struct file *file = lo->lo_backing_file; 459 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 460 struct kstat st; 461 462 /* 463 * Use the minimal dio alignment of the file system if provided. 464 */ 465 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 466 (st.result_mask & STATX_DIOALIGN)) 467 return st.dio_offset_align; 468 469 /* 470 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 471 * a handful of file systems support the STATX_DIOALIGN flag. 472 */ 473 if (sb_bdev) 474 return bdev_logical_block_size(sb_bdev); 475 return SECTOR_SIZE; 476 } 477 478 static inline int is_loop_device(struct file *file) 479 { 480 struct inode *i = file->f_mapping->host; 481 482 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 483 } 484 485 static int loop_validate_file(struct file *file, struct block_device *bdev) 486 { 487 struct inode *inode = file->f_mapping->host; 488 struct file *f = file; 489 490 /* Avoid recursion */ 491 while (is_loop_device(f)) { 492 struct loop_device *l; 493 494 lockdep_assert_held(&loop_validate_mutex); 495 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 496 return -EBADF; 497 498 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 499 if (l->lo_state != Lo_bound) 500 return -EINVAL; 501 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 502 rmb(); 503 f = l->lo_backing_file; 504 } 505 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 506 return -EINVAL; 507 return 0; 508 } 509 510 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 511 { 512 lo->lo_backing_file = file; 513 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 514 mapping_set_gfp_mask(file->f_mapping, 515 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 516 if (lo->lo_backing_file->f_flags & O_DIRECT) 517 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 518 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 519 } 520 521 static int loop_check_backing_file(struct file *file) 522 { 523 if (!file->f_op->read_iter) 524 return -EINVAL; 525 526 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter) 527 return -EINVAL; 528 529 return 0; 530 } 531 532 /* 533 * loop_change_fd switched the backing store of a loopback device to 534 * a new file. This is useful for operating system installers to free up 535 * the original file and in High Availability environments to switch to 536 * an alternative location for the content in case of server meltdown. 537 * This can only work if the loop device is used read-only, and if the 538 * new backing store is the same size and type as the old backing store. 539 */ 540 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 541 unsigned int arg) 542 { 543 struct file *file = fget(arg); 544 struct file *old_file; 545 unsigned int memflags; 546 int error; 547 bool partscan; 548 bool is_loop; 549 550 if (!file) 551 return -EBADF; 552 553 error = loop_check_backing_file(file); 554 if (error) 555 return error; 556 557 /* suppress uevents while reconfiguring the device */ 558 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 559 560 is_loop = is_loop_device(file); 561 error = loop_global_lock_killable(lo, is_loop); 562 if (error) 563 goto out_putf; 564 error = -ENXIO; 565 if (lo->lo_state != Lo_bound) 566 goto out_err; 567 568 /* the loop device has to be read-only */ 569 error = -EINVAL; 570 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 571 goto out_err; 572 573 error = loop_validate_file(file, bdev); 574 if (error) 575 goto out_err; 576 577 old_file = lo->lo_backing_file; 578 579 error = -EINVAL; 580 581 /* size of the new backing store needs to be the same */ 582 if (lo_calculate_size(lo, file) != lo_calculate_size(lo, old_file)) 583 goto out_err; 584 585 /* 586 * We might switch to direct I/O mode for the loop device, write back 587 * all dirty data the page cache now that so that the individual I/O 588 * operations don't have to do that. 589 */ 590 vfs_fsync(file, 0); 591 592 /* and ... switch */ 593 disk_force_media_change(lo->lo_disk); 594 memflags = blk_mq_freeze_queue(lo->lo_queue); 595 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 596 loop_assign_backing_file(lo, file); 597 loop_update_dio(lo); 598 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 599 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 600 loop_global_unlock(lo, is_loop); 601 602 /* 603 * Flush loop_validate_file() before fput(), for l->lo_backing_file 604 * might be pointing at old_file which might be the last reference. 605 */ 606 if (!is_loop) { 607 mutex_lock(&loop_validate_mutex); 608 mutex_unlock(&loop_validate_mutex); 609 } 610 /* 611 * We must drop file reference outside of lo_mutex as dropping 612 * the file ref can take open_mutex which creates circular locking 613 * dependency. 614 */ 615 fput(old_file); 616 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 617 if (partscan) 618 loop_reread_partitions(lo); 619 620 error = 0; 621 done: 622 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 623 return error; 624 625 out_err: 626 loop_global_unlock(lo, is_loop); 627 out_putf: 628 fput(file); 629 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 630 goto done; 631 } 632 633 /* loop sysfs attributes */ 634 635 static ssize_t loop_attr_show(struct device *dev, char *page, 636 ssize_t (*callback)(struct loop_device *, char *)) 637 { 638 struct gendisk *disk = dev_to_disk(dev); 639 struct loop_device *lo = disk->private_data; 640 641 return callback(lo, page); 642 } 643 644 #define LOOP_ATTR_RO(_name) \ 645 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 646 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 647 struct device_attribute *attr, char *b) \ 648 { \ 649 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 650 } \ 651 static struct device_attribute loop_attr_##_name = \ 652 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 653 654 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 655 { 656 ssize_t ret; 657 char *p = NULL; 658 659 spin_lock_irq(&lo->lo_lock); 660 if (lo->lo_backing_file) 661 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 662 spin_unlock_irq(&lo->lo_lock); 663 664 if (IS_ERR_OR_NULL(p)) 665 ret = PTR_ERR(p); 666 else { 667 ret = strlen(p); 668 memmove(buf, p, ret); 669 buf[ret++] = '\n'; 670 buf[ret] = 0; 671 } 672 673 return ret; 674 } 675 676 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 677 { 678 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 679 } 680 681 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 682 { 683 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 684 } 685 686 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 687 { 688 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 689 690 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 691 } 692 693 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 694 { 695 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 696 697 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 698 } 699 700 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 701 { 702 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 703 704 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 705 } 706 707 LOOP_ATTR_RO(backing_file); 708 LOOP_ATTR_RO(offset); 709 LOOP_ATTR_RO(sizelimit); 710 LOOP_ATTR_RO(autoclear); 711 LOOP_ATTR_RO(partscan); 712 LOOP_ATTR_RO(dio); 713 714 static struct attribute *loop_attrs[] = { 715 &loop_attr_backing_file.attr, 716 &loop_attr_offset.attr, 717 &loop_attr_sizelimit.attr, 718 &loop_attr_autoclear.attr, 719 &loop_attr_partscan.attr, 720 &loop_attr_dio.attr, 721 NULL, 722 }; 723 724 static struct attribute_group loop_attribute_group = { 725 .name = "loop", 726 .attrs= loop_attrs, 727 }; 728 729 static void loop_sysfs_init(struct loop_device *lo) 730 { 731 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 732 &loop_attribute_group); 733 } 734 735 static void loop_sysfs_exit(struct loop_device *lo) 736 { 737 if (lo->sysfs_inited) 738 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 739 &loop_attribute_group); 740 } 741 742 static void loop_get_discard_config(struct loop_device *lo, 743 u32 *granularity, u32 *max_discard_sectors) 744 { 745 struct file *file = lo->lo_backing_file; 746 struct inode *inode = file->f_mapping->host; 747 struct kstatfs sbuf; 748 749 /* 750 * If the backing device is a block device, mirror its zeroing 751 * capability. Set the discard sectors to the block device's zeroing 752 * capabilities because loop discards result in blkdev_issue_zeroout(), 753 * not blkdev_issue_discard(). This maintains consistent behavior with 754 * file-backed loop devices: discarded regions read back as zero. 755 */ 756 if (S_ISBLK(inode->i_mode)) { 757 struct block_device *bdev = I_BDEV(inode); 758 759 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 760 *granularity = bdev_discard_granularity(bdev); 761 762 /* 763 * We use punch hole to reclaim the free space used by the 764 * image a.k.a. discard. 765 */ 766 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 767 *max_discard_sectors = UINT_MAX >> 9; 768 *granularity = sbuf.f_bsize; 769 } 770 } 771 772 struct loop_worker { 773 struct rb_node rb_node; 774 struct work_struct work; 775 struct list_head cmd_list; 776 struct list_head idle_list; 777 struct loop_device *lo; 778 struct cgroup_subsys_state *blkcg_css; 779 unsigned long last_ran_at; 780 }; 781 782 static void loop_workfn(struct work_struct *work); 783 784 #ifdef CONFIG_BLK_CGROUP 785 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 786 { 787 return !css || css == blkcg_root_css; 788 } 789 #else 790 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 791 { 792 return !css; 793 } 794 #endif 795 796 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 797 { 798 struct rb_node **node, *parent = NULL; 799 struct loop_worker *cur_worker, *worker = NULL; 800 struct work_struct *work; 801 struct list_head *cmd_list; 802 803 spin_lock_irq(&lo->lo_work_lock); 804 805 if (queue_on_root_worker(cmd->blkcg_css)) 806 goto queue_work; 807 808 node = &lo->worker_tree.rb_node; 809 810 while (*node) { 811 parent = *node; 812 cur_worker = container_of(*node, struct loop_worker, rb_node); 813 if (cur_worker->blkcg_css == cmd->blkcg_css) { 814 worker = cur_worker; 815 break; 816 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 817 node = &(*node)->rb_left; 818 } else { 819 node = &(*node)->rb_right; 820 } 821 } 822 if (worker) 823 goto queue_work; 824 825 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 826 /* 827 * In the event we cannot allocate a worker, just queue on the 828 * rootcg worker and issue the I/O as the rootcg 829 */ 830 if (!worker) { 831 cmd->blkcg_css = NULL; 832 if (cmd->memcg_css) 833 css_put(cmd->memcg_css); 834 cmd->memcg_css = NULL; 835 goto queue_work; 836 } 837 838 worker->blkcg_css = cmd->blkcg_css; 839 css_get(worker->blkcg_css); 840 INIT_WORK(&worker->work, loop_workfn); 841 INIT_LIST_HEAD(&worker->cmd_list); 842 INIT_LIST_HEAD(&worker->idle_list); 843 worker->lo = lo; 844 rb_link_node(&worker->rb_node, parent, node); 845 rb_insert_color(&worker->rb_node, &lo->worker_tree); 846 queue_work: 847 if (worker) { 848 /* 849 * We need to remove from the idle list here while 850 * holding the lock so that the idle timer doesn't 851 * free the worker 852 */ 853 if (!list_empty(&worker->idle_list)) 854 list_del_init(&worker->idle_list); 855 work = &worker->work; 856 cmd_list = &worker->cmd_list; 857 } else { 858 work = &lo->rootcg_work; 859 cmd_list = &lo->rootcg_cmd_list; 860 } 861 list_add_tail(&cmd->list_entry, cmd_list); 862 queue_work(lo->workqueue, work); 863 spin_unlock_irq(&lo->lo_work_lock); 864 } 865 866 static void loop_set_timer(struct loop_device *lo) 867 { 868 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 869 } 870 871 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 872 { 873 struct loop_worker *pos, *worker; 874 875 spin_lock_irq(&lo->lo_work_lock); 876 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 877 idle_list) { 878 if (!delete_all && 879 time_is_after_jiffies(worker->last_ran_at + 880 LOOP_IDLE_WORKER_TIMEOUT)) 881 break; 882 list_del(&worker->idle_list); 883 rb_erase(&worker->rb_node, &lo->worker_tree); 884 css_put(worker->blkcg_css); 885 kfree(worker); 886 } 887 if (!list_empty(&lo->idle_worker_list)) 888 loop_set_timer(lo); 889 spin_unlock_irq(&lo->lo_work_lock); 890 } 891 892 static void loop_free_idle_workers_timer(struct timer_list *timer) 893 { 894 struct loop_device *lo = container_of(timer, struct loop_device, timer); 895 896 return loop_free_idle_workers(lo, false); 897 } 898 899 /** 900 * loop_set_status_from_info - configure device from loop_info 901 * @lo: struct loop_device to configure 902 * @info: struct loop_info64 to configure the device with 903 * 904 * Configures the loop device parameters according to the passed 905 * in loop_info64 configuration. 906 */ 907 static int 908 loop_set_status_from_info(struct loop_device *lo, 909 const struct loop_info64 *info) 910 { 911 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 912 return -EINVAL; 913 914 switch (info->lo_encrypt_type) { 915 case LO_CRYPT_NONE: 916 break; 917 case LO_CRYPT_XOR: 918 pr_warn("support for the xor transformation has been removed.\n"); 919 return -EINVAL; 920 case LO_CRYPT_CRYPTOAPI: 921 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 922 return -EINVAL; 923 default: 924 return -EINVAL; 925 } 926 927 /* Avoid assigning overflow values */ 928 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 929 return -EOVERFLOW; 930 931 lo->lo_offset = info->lo_offset; 932 lo->lo_sizelimit = info->lo_sizelimit; 933 934 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 935 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 936 return 0; 937 } 938 939 static unsigned int loop_default_blocksize(struct loop_device *lo) 940 { 941 /* In case of direct I/O, match underlying minimum I/O size */ 942 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 943 return lo->lo_min_dio_size; 944 return SECTOR_SIZE; 945 } 946 947 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 948 unsigned int bsize) 949 { 950 struct file *file = lo->lo_backing_file; 951 struct inode *inode = file->f_mapping->host; 952 struct block_device *backing_bdev = NULL; 953 u32 granularity = 0, max_discard_sectors = 0; 954 955 if (S_ISBLK(inode->i_mode)) 956 backing_bdev = I_BDEV(inode); 957 else if (inode->i_sb->s_bdev) 958 backing_bdev = inode->i_sb->s_bdev; 959 960 if (!bsize) 961 bsize = loop_default_blocksize(lo); 962 963 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 964 965 lim->logical_block_size = bsize; 966 lim->physical_block_size = bsize; 967 lim->io_min = bsize; 968 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 969 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 970 lim->features |= BLK_FEAT_WRITE_CACHE; 971 if (backing_bdev && !bdev_nonrot(backing_bdev)) 972 lim->features |= BLK_FEAT_ROTATIONAL; 973 lim->max_hw_discard_sectors = max_discard_sectors; 974 lim->max_write_zeroes_sectors = max_discard_sectors; 975 if (max_discard_sectors) 976 lim->discard_granularity = granularity; 977 else 978 lim->discard_granularity = 0; 979 } 980 981 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 982 struct block_device *bdev, 983 const struct loop_config *config) 984 { 985 struct file *file = fget(config->fd); 986 struct queue_limits lim; 987 int error; 988 loff_t size; 989 bool partscan; 990 bool is_loop; 991 992 if (!file) 993 return -EBADF; 994 995 error = loop_check_backing_file(file); 996 if (error) 997 return error; 998 999 is_loop = is_loop_device(file); 1000 1001 /* This is safe, since we have a reference from open(). */ 1002 __module_get(THIS_MODULE); 1003 1004 /* 1005 * If we don't hold exclusive handle for the device, upgrade to it 1006 * here to avoid changing device under exclusive owner. 1007 */ 1008 if (!(mode & BLK_OPEN_EXCL)) { 1009 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1010 if (error) 1011 goto out_putf; 1012 } 1013 1014 error = loop_global_lock_killable(lo, is_loop); 1015 if (error) 1016 goto out_bdev; 1017 1018 error = -EBUSY; 1019 if (lo->lo_state != Lo_unbound) 1020 goto out_unlock; 1021 1022 error = loop_validate_file(file, bdev); 1023 if (error) 1024 goto out_unlock; 1025 1026 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1027 error = -EINVAL; 1028 goto out_unlock; 1029 } 1030 1031 error = loop_set_status_from_info(lo, &config->info); 1032 if (error) 1033 goto out_unlock; 1034 lo->lo_flags = config->info.lo_flags; 1035 1036 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1037 !file->f_op->write_iter) 1038 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1039 1040 if (!lo->workqueue) { 1041 lo->workqueue = alloc_workqueue("loop%d", 1042 WQ_UNBOUND | WQ_FREEZABLE, 1043 0, lo->lo_number); 1044 if (!lo->workqueue) { 1045 error = -ENOMEM; 1046 goto out_unlock; 1047 } 1048 } 1049 1050 /* suppress uevents while reconfiguring the device */ 1051 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1052 1053 disk_force_media_change(lo->lo_disk); 1054 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1055 1056 lo->lo_device = bdev; 1057 loop_assign_backing_file(lo, file); 1058 1059 lim = queue_limits_start_update(lo->lo_queue); 1060 loop_update_limits(lo, &lim, config->block_size); 1061 /* No need to freeze the queue as the device isn't bound yet. */ 1062 error = queue_limits_commit_update(lo->lo_queue, &lim); 1063 if (error) 1064 goto out_unlock; 1065 1066 /* 1067 * We might switch to direct I/O mode for the loop device, write back 1068 * all dirty data the page cache now that so that the individual I/O 1069 * operations don't have to do that. 1070 */ 1071 vfs_fsync(file, 0); 1072 1073 loop_update_dio(lo); 1074 loop_sysfs_init(lo); 1075 1076 size = lo_calculate_size(lo, file); 1077 loop_set_size(lo, size); 1078 1079 /* Order wrt reading lo_state in loop_validate_file(). */ 1080 wmb(); 1081 1082 lo->lo_state = Lo_bound; 1083 if (part_shift) 1084 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1085 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1086 if (partscan) 1087 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1088 1089 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1090 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1091 1092 loop_global_unlock(lo, is_loop); 1093 if (partscan) 1094 loop_reread_partitions(lo); 1095 1096 if (!(mode & BLK_OPEN_EXCL)) 1097 bd_abort_claiming(bdev, loop_configure); 1098 1099 return 0; 1100 1101 out_unlock: 1102 loop_global_unlock(lo, is_loop); 1103 out_bdev: 1104 if (!(mode & BLK_OPEN_EXCL)) 1105 bd_abort_claiming(bdev, loop_configure); 1106 out_putf: 1107 fput(file); 1108 /* This is safe: open() is still holding a reference. */ 1109 module_put(THIS_MODULE); 1110 return error; 1111 } 1112 1113 static void __loop_clr_fd(struct loop_device *lo) 1114 { 1115 struct queue_limits lim; 1116 struct file *filp; 1117 gfp_t gfp = lo->old_gfp_mask; 1118 1119 spin_lock_irq(&lo->lo_lock); 1120 filp = lo->lo_backing_file; 1121 lo->lo_backing_file = NULL; 1122 spin_unlock_irq(&lo->lo_lock); 1123 1124 lo->lo_device = NULL; 1125 lo->lo_offset = 0; 1126 lo->lo_sizelimit = 0; 1127 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1128 1129 /* 1130 * Reset the block size to the default. 1131 * 1132 * No queue freezing needed because this is called from the final 1133 * ->release call only, so there can't be any outstanding I/O. 1134 */ 1135 lim = queue_limits_start_update(lo->lo_queue); 1136 lim.logical_block_size = SECTOR_SIZE; 1137 lim.physical_block_size = SECTOR_SIZE; 1138 lim.io_min = SECTOR_SIZE; 1139 queue_limits_commit_update(lo->lo_queue, &lim); 1140 1141 invalidate_disk(lo->lo_disk); 1142 loop_sysfs_exit(lo); 1143 /* let user-space know about this change */ 1144 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1145 mapping_set_gfp_mask(filp->f_mapping, gfp); 1146 /* This is safe: open() is still holding a reference. */ 1147 module_put(THIS_MODULE); 1148 1149 disk_force_media_change(lo->lo_disk); 1150 1151 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1152 int err; 1153 1154 /* 1155 * open_mutex has been held already in release path, so don't 1156 * acquire it if this function is called in such case. 1157 * 1158 * If the reread partition isn't from release path, lo_refcnt 1159 * must be at least one and it can only become zero when the 1160 * current holder is released. 1161 */ 1162 err = bdev_disk_changed(lo->lo_disk, false); 1163 if (err) 1164 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1165 __func__, lo->lo_number, err); 1166 /* Device is gone, no point in returning error */ 1167 } 1168 1169 /* 1170 * lo->lo_state is set to Lo_unbound here after above partscan has 1171 * finished. There cannot be anybody else entering __loop_clr_fd() as 1172 * Lo_rundown state protects us from all the other places trying to 1173 * change the 'lo' device. 1174 */ 1175 lo->lo_flags = 0; 1176 if (!part_shift) 1177 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1178 mutex_lock(&lo->lo_mutex); 1179 lo->lo_state = Lo_unbound; 1180 mutex_unlock(&lo->lo_mutex); 1181 1182 /* 1183 * Need not hold lo_mutex to fput backing file. Calling fput holding 1184 * lo_mutex triggers a circular lock dependency possibility warning as 1185 * fput can take open_mutex which is usually taken before lo_mutex. 1186 */ 1187 fput(filp); 1188 } 1189 1190 static int loop_clr_fd(struct loop_device *lo) 1191 { 1192 int err; 1193 1194 /* 1195 * Since lo_ioctl() is called without locks held, it is possible that 1196 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1197 * 1198 * Therefore, use global lock when setting Lo_rundown state in order to 1199 * make sure that loop_validate_file() will fail if the "struct file" 1200 * which loop_configure()/loop_change_fd() found via fget() was this 1201 * loop device. 1202 */ 1203 err = loop_global_lock_killable(lo, true); 1204 if (err) 1205 return err; 1206 if (lo->lo_state != Lo_bound) { 1207 loop_global_unlock(lo, true); 1208 return -ENXIO; 1209 } 1210 /* 1211 * Mark the device for removing the backing device on last close. 1212 * If we are the only opener, also switch the state to roundown here to 1213 * prevent new openers from coming in. 1214 */ 1215 1216 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1217 if (disk_openers(lo->lo_disk) == 1) 1218 lo->lo_state = Lo_rundown; 1219 loop_global_unlock(lo, true); 1220 1221 return 0; 1222 } 1223 1224 static int 1225 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1226 { 1227 int err; 1228 bool partscan = false; 1229 bool size_changed = false; 1230 unsigned int memflags; 1231 1232 err = mutex_lock_killable(&lo->lo_mutex); 1233 if (err) 1234 return err; 1235 if (lo->lo_state != Lo_bound) { 1236 err = -ENXIO; 1237 goto out_unlock; 1238 } 1239 1240 if (lo->lo_offset != info->lo_offset || 1241 lo->lo_sizelimit != info->lo_sizelimit) { 1242 size_changed = true; 1243 sync_blockdev(lo->lo_device); 1244 invalidate_bdev(lo->lo_device); 1245 } 1246 1247 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1248 memflags = blk_mq_freeze_queue(lo->lo_queue); 1249 1250 err = loop_set_status_from_info(lo, info); 1251 if (err) 1252 goto out_unfreeze; 1253 1254 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1255 (info->lo_flags & LO_FLAGS_PARTSCAN); 1256 1257 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1258 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1259 1260 /* update the direct I/O flag if lo_offset changed */ 1261 loop_update_dio(lo); 1262 1263 out_unfreeze: 1264 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1265 if (partscan) 1266 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1267 if (!err && size_changed) { 1268 loff_t new_size = lo_calculate_size(lo, lo->lo_backing_file); 1269 loop_set_size(lo, new_size); 1270 } 1271 out_unlock: 1272 mutex_unlock(&lo->lo_mutex); 1273 if (partscan) 1274 loop_reread_partitions(lo); 1275 1276 return err; 1277 } 1278 1279 static int 1280 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1281 { 1282 struct path path; 1283 struct kstat stat; 1284 int ret; 1285 1286 ret = mutex_lock_killable(&lo->lo_mutex); 1287 if (ret) 1288 return ret; 1289 if (lo->lo_state != Lo_bound) { 1290 mutex_unlock(&lo->lo_mutex); 1291 return -ENXIO; 1292 } 1293 1294 memset(info, 0, sizeof(*info)); 1295 info->lo_number = lo->lo_number; 1296 info->lo_offset = lo->lo_offset; 1297 info->lo_sizelimit = lo->lo_sizelimit; 1298 info->lo_flags = lo->lo_flags; 1299 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1300 1301 /* Drop lo_mutex while we call into the filesystem. */ 1302 path = lo->lo_backing_file->f_path; 1303 path_get(&path); 1304 mutex_unlock(&lo->lo_mutex); 1305 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1306 if (!ret) { 1307 info->lo_device = huge_encode_dev(stat.dev); 1308 info->lo_inode = stat.ino; 1309 info->lo_rdevice = huge_encode_dev(stat.rdev); 1310 } 1311 path_put(&path); 1312 return ret; 1313 } 1314 1315 static void 1316 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1317 { 1318 memset(info64, 0, sizeof(*info64)); 1319 info64->lo_number = info->lo_number; 1320 info64->lo_device = info->lo_device; 1321 info64->lo_inode = info->lo_inode; 1322 info64->lo_rdevice = info->lo_rdevice; 1323 info64->lo_offset = info->lo_offset; 1324 info64->lo_sizelimit = 0; 1325 info64->lo_flags = info->lo_flags; 1326 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1327 } 1328 1329 static int 1330 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1331 { 1332 memset(info, 0, sizeof(*info)); 1333 info->lo_number = info64->lo_number; 1334 info->lo_device = info64->lo_device; 1335 info->lo_inode = info64->lo_inode; 1336 info->lo_rdevice = info64->lo_rdevice; 1337 info->lo_offset = info64->lo_offset; 1338 info->lo_flags = info64->lo_flags; 1339 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1340 1341 /* error in case values were truncated */ 1342 if (info->lo_device != info64->lo_device || 1343 info->lo_rdevice != info64->lo_rdevice || 1344 info->lo_inode != info64->lo_inode || 1345 info->lo_offset != info64->lo_offset) 1346 return -EOVERFLOW; 1347 1348 return 0; 1349 } 1350 1351 static int 1352 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1353 { 1354 struct loop_info info; 1355 struct loop_info64 info64; 1356 1357 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1358 return -EFAULT; 1359 loop_info64_from_old(&info, &info64); 1360 return loop_set_status(lo, &info64); 1361 } 1362 1363 static int 1364 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1365 { 1366 struct loop_info64 info64; 1367 1368 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1369 return -EFAULT; 1370 return loop_set_status(lo, &info64); 1371 } 1372 1373 static int 1374 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1375 struct loop_info info; 1376 struct loop_info64 info64; 1377 int err; 1378 1379 if (!arg) 1380 return -EINVAL; 1381 err = loop_get_status(lo, &info64); 1382 if (!err) 1383 err = loop_info64_to_old(&info64, &info); 1384 if (!err && copy_to_user(arg, &info, sizeof(info))) 1385 err = -EFAULT; 1386 1387 return err; 1388 } 1389 1390 static int 1391 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1392 struct loop_info64 info64; 1393 int err; 1394 1395 if (!arg) 1396 return -EINVAL; 1397 err = loop_get_status(lo, &info64); 1398 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1399 err = -EFAULT; 1400 1401 return err; 1402 } 1403 1404 static int loop_set_capacity(struct loop_device *lo) 1405 { 1406 loff_t size; 1407 1408 if (unlikely(lo->lo_state != Lo_bound)) 1409 return -ENXIO; 1410 1411 size = lo_calculate_size(lo, lo->lo_backing_file); 1412 loop_set_size(lo, size); 1413 1414 return 0; 1415 } 1416 1417 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1418 { 1419 bool use_dio = !!arg; 1420 unsigned int memflags; 1421 1422 if (lo->lo_state != Lo_bound) 1423 return -ENXIO; 1424 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1425 return 0; 1426 1427 if (use_dio) { 1428 if (!lo_can_use_dio(lo)) 1429 return -EINVAL; 1430 /* flush dirty pages before starting to use direct I/O */ 1431 vfs_fsync(lo->lo_backing_file, 0); 1432 } 1433 1434 memflags = blk_mq_freeze_queue(lo->lo_queue); 1435 if (use_dio) 1436 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1437 else 1438 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1439 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1440 return 0; 1441 } 1442 1443 static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode, 1444 struct block_device *bdev, unsigned long arg) 1445 { 1446 struct queue_limits lim; 1447 unsigned int memflags; 1448 int err = 0; 1449 1450 /* 1451 * If we don't hold exclusive handle for the device, upgrade to it 1452 * here to avoid changing device under exclusive owner. 1453 */ 1454 if (!(mode & BLK_OPEN_EXCL)) { 1455 err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL); 1456 if (err) 1457 return err; 1458 } 1459 1460 err = mutex_lock_killable(&lo->lo_mutex); 1461 if (err) 1462 goto abort_claim; 1463 1464 if (lo->lo_state != Lo_bound) { 1465 err = -ENXIO; 1466 goto unlock; 1467 } 1468 1469 if (lo->lo_queue->limits.logical_block_size == arg) 1470 goto unlock; 1471 1472 sync_blockdev(lo->lo_device); 1473 invalidate_bdev(lo->lo_device); 1474 1475 lim = queue_limits_start_update(lo->lo_queue); 1476 loop_update_limits(lo, &lim, arg); 1477 1478 memflags = blk_mq_freeze_queue(lo->lo_queue); 1479 err = queue_limits_commit_update(lo->lo_queue, &lim); 1480 loop_update_dio(lo); 1481 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1482 1483 unlock: 1484 mutex_unlock(&lo->lo_mutex); 1485 abort_claim: 1486 if (!(mode & BLK_OPEN_EXCL)) 1487 bd_abort_claiming(bdev, loop_set_block_size); 1488 return err; 1489 } 1490 1491 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1492 unsigned long arg) 1493 { 1494 int err; 1495 1496 err = mutex_lock_killable(&lo->lo_mutex); 1497 if (err) 1498 return err; 1499 switch (cmd) { 1500 case LOOP_SET_CAPACITY: 1501 err = loop_set_capacity(lo); 1502 break; 1503 case LOOP_SET_DIRECT_IO: 1504 err = loop_set_dio(lo, arg); 1505 break; 1506 default: 1507 err = -EINVAL; 1508 } 1509 mutex_unlock(&lo->lo_mutex); 1510 return err; 1511 } 1512 1513 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1514 unsigned int cmd, unsigned long arg) 1515 { 1516 struct loop_device *lo = bdev->bd_disk->private_data; 1517 void __user *argp = (void __user *) arg; 1518 int err; 1519 1520 switch (cmd) { 1521 case LOOP_SET_FD: { 1522 /* 1523 * Legacy case - pass in a zeroed out struct loop_config with 1524 * only the file descriptor set , which corresponds with the 1525 * default parameters we'd have used otherwise. 1526 */ 1527 struct loop_config config; 1528 1529 memset(&config, 0, sizeof(config)); 1530 config.fd = arg; 1531 1532 return loop_configure(lo, mode, bdev, &config); 1533 } 1534 case LOOP_CONFIGURE: { 1535 struct loop_config config; 1536 1537 if (copy_from_user(&config, argp, sizeof(config))) 1538 return -EFAULT; 1539 1540 return loop_configure(lo, mode, bdev, &config); 1541 } 1542 case LOOP_CHANGE_FD: 1543 return loop_change_fd(lo, bdev, arg); 1544 case LOOP_CLR_FD: 1545 return loop_clr_fd(lo); 1546 case LOOP_SET_STATUS: 1547 err = -EPERM; 1548 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1549 err = loop_set_status_old(lo, argp); 1550 break; 1551 case LOOP_GET_STATUS: 1552 return loop_get_status_old(lo, argp); 1553 case LOOP_SET_STATUS64: 1554 err = -EPERM; 1555 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1556 err = loop_set_status64(lo, argp); 1557 break; 1558 case LOOP_GET_STATUS64: 1559 return loop_get_status64(lo, argp); 1560 case LOOP_SET_BLOCK_SIZE: 1561 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1562 return -EPERM; 1563 return loop_set_block_size(lo, mode, bdev, arg); 1564 case LOOP_SET_CAPACITY: 1565 case LOOP_SET_DIRECT_IO: 1566 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1567 return -EPERM; 1568 fallthrough; 1569 default: 1570 err = lo_simple_ioctl(lo, cmd, arg); 1571 break; 1572 } 1573 1574 return err; 1575 } 1576 1577 #ifdef CONFIG_COMPAT 1578 struct compat_loop_info { 1579 compat_int_t lo_number; /* ioctl r/o */ 1580 compat_dev_t lo_device; /* ioctl r/o */ 1581 compat_ulong_t lo_inode; /* ioctl r/o */ 1582 compat_dev_t lo_rdevice; /* ioctl r/o */ 1583 compat_int_t lo_offset; 1584 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1585 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1586 compat_int_t lo_flags; /* ioctl r/o */ 1587 char lo_name[LO_NAME_SIZE]; 1588 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1589 compat_ulong_t lo_init[2]; 1590 char reserved[4]; 1591 }; 1592 1593 /* 1594 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1595 * - noinlined to reduce stack space usage in main part of driver 1596 */ 1597 static noinline int 1598 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1599 struct loop_info64 *info64) 1600 { 1601 struct compat_loop_info info; 1602 1603 if (copy_from_user(&info, arg, sizeof(info))) 1604 return -EFAULT; 1605 1606 memset(info64, 0, sizeof(*info64)); 1607 info64->lo_number = info.lo_number; 1608 info64->lo_device = info.lo_device; 1609 info64->lo_inode = info.lo_inode; 1610 info64->lo_rdevice = info.lo_rdevice; 1611 info64->lo_offset = info.lo_offset; 1612 info64->lo_sizelimit = 0; 1613 info64->lo_flags = info.lo_flags; 1614 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1615 return 0; 1616 } 1617 1618 /* 1619 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1620 * - noinlined to reduce stack space usage in main part of driver 1621 */ 1622 static noinline int 1623 loop_info64_to_compat(const struct loop_info64 *info64, 1624 struct compat_loop_info __user *arg) 1625 { 1626 struct compat_loop_info info; 1627 1628 memset(&info, 0, sizeof(info)); 1629 info.lo_number = info64->lo_number; 1630 info.lo_device = info64->lo_device; 1631 info.lo_inode = info64->lo_inode; 1632 info.lo_rdevice = info64->lo_rdevice; 1633 info.lo_offset = info64->lo_offset; 1634 info.lo_flags = info64->lo_flags; 1635 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1636 1637 /* error in case values were truncated */ 1638 if (info.lo_device != info64->lo_device || 1639 info.lo_rdevice != info64->lo_rdevice || 1640 info.lo_inode != info64->lo_inode || 1641 info.lo_offset != info64->lo_offset) 1642 return -EOVERFLOW; 1643 1644 if (copy_to_user(arg, &info, sizeof(info))) 1645 return -EFAULT; 1646 return 0; 1647 } 1648 1649 static int 1650 loop_set_status_compat(struct loop_device *lo, 1651 const struct compat_loop_info __user *arg) 1652 { 1653 struct loop_info64 info64; 1654 int ret; 1655 1656 ret = loop_info64_from_compat(arg, &info64); 1657 if (ret < 0) 1658 return ret; 1659 return loop_set_status(lo, &info64); 1660 } 1661 1662 static int 1663 loop_get_status_compat(struct loop_device *lo, 1664 struct compat_loop_info __user *arg) 1665 { 1666 struct loop_info64 info64; 1667 int err; 1668 1669 if (!arg) 1670 return -EINVAL; 1671 err = loop_get_status(lo, &info64); 1672 if (!err) 1673 err = loop_info64_to_compat(&info64, arg); 1674 return err; 1675 } 1676 1677 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1678 unsigned int cmd, unsigned long arg) 1679 { 1680 struct loop_device *lo = bdev->bd_disk->private_data; 1681 int err; 1682 1683 switch(cmd) { 1684 case LOOP_SET_STATUS: 1685 err = loop_set_status_compat(lo, 1686 (const struct compat_loop_info __user *)arg); 1687 break; 1688 case LOOP_GET_STATUS: 1689 err = loop_get_status_compat(lo, 1690 (struct compat_loop_info __user *)arg); 1691 break; 1692 case LOOP_SET_CAPACITY: 1693 case LOOP_CLR_FD: 1694 case LOOP_GET_STATUS64: 1695 case LOOP_SET_STATUS64: 1696 case LOOP_CONFIGURE: 1697 arg = (unsigned long) compat_ptr(arg); 1698 fallthrough; 1699 case LOOP_SET_FD: 1700 case LOOP_CHANGE_FD: 1701 case LOOP_SET_BLOCK_SIZE: 1702 case LOOP_SET_DIRECT_IO: 1703 err = lo_ioctl(bdev, mode, cmd, arg); 1704 break; 1705 default: 1706 err = -ENOIOCTLCMD; 1707 break; 1708 } 1709 return err; 1710 } 1711 #endif 1712 1713 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1714 { 1715 struct loop_device *lo = disk->private_data; 1716 int err; 1717 1718 err = mutex_lock_killable(&lo->lo_mutex); 1719 if (err) 1720 return err; 1721 1722 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1723 err = -ENXIO; 1724 mutex_unlock(&lo->lo_mutex); 1725 return err; 1726 } 1727 1728 static void lo_release(struct gendisk *disk) 1729 { 1730 struct loop_device *lo = disk->private_data; 1731 bool need_clear = false; 1732 1733 if (disk_openers(disk) > 0) 1734 return; 1735 /* 1736 * Clear the backing device information if this is the last close of 1737 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1738 * has been called. 1739 */ 1740 1741 mutex_lock(&lo->lo_mutex); 1742 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1743 lo->lo_state = Lo_rundown; 1744 1745 need_clear = (lo->lo_state == Lo_rundown); 1746 mutex_unlock(&lo->lo_mutex); 1747 1748 if (need_clear) 1749 __loop_clr_fd(lo); 1750 } 1751 1752 static void lo_free_disk(struct gendisk *disk) 1753 { 1754 struct loop_device *lo = disk->private_data; 1755 1756 if (lo->workqueue) 1757 destroy_workqueue(lo->workqueue); 1758 loop_free_idle_workers(lo, true); 1759 timer_shutdown_sync(&lo->timer); 1760 mutex_destroy(&lo->lo_mutex); 1761 kfree(lo); 1762 } 1763 1764 static const struct block_device_operations lo_fops = { 1765 .owner = THIS_MODULE, 1766 .open = lo_open, 1767 .release = lo_release, 1768 .ioctl = lo_ioctl, 1769 #ifdef CONFIG_COMPAT 1770 .compat_ioctl = lo_compat_ioctl, 1771 #endif 1772 .free_disk = lo_free_disk, 1773 }; 1774 1775 /* 1776 * And now the modules code and kernel interface. 1777 */ 1778 1779 /* 1780 * If max_loop is specified, create that many devices upfront. 1781 * This also becomes a hard limit. If max_loop is not specified, 1782 * the default isn't a hard limit (as before commit 85c50197716c 1783 * changed the default value from 0 for max_loop=0 reasons), just 1784 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1785 * init time. Loop devices can be requested on-demand with the 1786 * /dev/loop-control interface, or be instantiated by accessing 1787 * a 'dead' device node. 1788 */ 1789 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1790 1791 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1792 static bool max_loop_specified; 1793 1794 static int max_loop_param_set_int(const char *val, 1795 const struct kernel_param *kp) 1796 { 1797 int ret; 1798 1799 ret = param_set_int(val, kp); 1800 if (ret < 0) 1801 return ret; 1802 1803 max_loop_specified = true; 1804 return 0; 1805 } 1806 1807 static const struct kernel_param_ops max_loop_param_ops = { 1808 .set = max_loop_param_set_int, 1809 .get = param_get_int, 1810 }; 1811 1812 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1813 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1814 #else 1815 module_param(max_loop, int, 0444); 1816 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1817 #endif 1818 1819 module_param(max_part, int, 0444); 1820 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1821 1822 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1823 1824 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1825 { 1826 int qd, ret; 1827 1828 ret = kstrtoint(s, 0, &qd); 1829 if (ret < 0) 1830 return ret; 1831 if (qd < 1) 1832 return -EINVAL; 1833 hw_queue_depth = qd; 1834 return 0; 1835 } 1836 1837 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1838 .set = loop_set_hw_queue_depth, 1839 .get = param_get_int, 1840 }; 1841 1842 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1843 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1844 1845 MODULE_DESCRIPTION("Loopback device support"); 1846 MODULE_LICENSE("GPL"); 1847 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1848 1849 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1850 const struct blk_mq_queue_data *bd) 1851 { 1852 struct request *rq = bd->rq; 1853 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1854 struct loop_device *lo = rq->q->queuedata; 1855 1856 blk_mq_start_request(rq); 1857 1858 if (lo->lo_state != Lo_bound) 1859 return BLK_STS_IOERR; 1860 1861 switch (req_op(rq)) { 1862 case REQ_OP_FLUSH: 1863 case REQ_OP_DISCARD: 1864 case REQ_OP_WRITE_ZEROES: 1865 cmd->use_aio = false; 1866 break; 1867 default: 1868 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1869 break; 1870 } 1871 1872 /* always use the first bio's css */ 1873 cmd->blkcg_css = NULL; 1874 cmd->memcg_css = NULL; 1875 #ifdef CONFIG_BLK_CGROUP 1876 if (rq->bio) { 1877 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1878 #ifdef CONFIG_MEMCG 1879 if (cmd->blkcg_css) { 1880 cmd->memcg_css = 1881 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1882 &memory_cgrp_subsys); 1883 } 1884 #endif 1885 } 1886 #endif 1887 loop_queue_work(lo, cmd); 1888 1889 return BLK_STS_OK; 1890 } 1891 1892 static void loop_handle_cmd(struct loop_cmd *cmd) 1893 { 1894 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1895 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1896 struct request *rq = blk_mq_rq_from_pdu(cmd); 1897 const bool write = op_is_write(req_op(rq)); 1898 struct loop_device *lo = rq->q->queuedata; 1899 int ret = 0; 1900 struct mem_cgroup *old_memcg = NULL; 1901 1902 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1903 ret = -EIO; 1904 goto failed; 1905 } 1906 1907 if (cmd_blkcg_css) 1908 kthread_associate_blkcg(cmd_blkcg_css); 1909 if (cmd_memcg_css) 1910 old_memcg = set_active_memcg( 1911 mem_cgroup_from_css(cmd_memcg_css)); 1912 1913 /* 1914 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1915 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1916 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1917 * not yet been completed. 1918 */ 1919 ret = do_req_filebacked(lo, rq); 1920 1921 if (cmd_blkcg_css) 1922 kthread_associate_blkcg(NULL); 1923 1924 if (cmd_memcg_css) { 1925 set_active_memcg(old_memcg); 1926 css_put(cmd_memcg_css); 1927 } 1928 failed: 1929 /* complete non-aio request */ 1930 if (ret != -EIOCBQUEUED) { 1931 if (ret == -EOPNOTSUPP) 1932 cmd->ret = ret; 1933 else 1934 cmd->ret = ret ? -EIO : 0; 1935 if (likely(!blk_should_fake_timeout(rq->q))) 1936 blk_mq_complete_request(rq); 1937 } 1938 } 1939 1940 static void loop_process_work(struct loop_worker *worker, 1941 struct list_head *cmd_list, struct loop_device *lo) 1942 { 1943 int orig_flags = current->flags; 1944 struct loop_cmd *cmd; 1945 1946 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1947 spin_lock_irq(&lo->lo_work_lock); 1948 while (!list_empty(cmd_list)) { 1949 cmd = container_of( 1950 cmd_list->next, struct loop_cmd, list_entry); 1951 list_del(cmd_list->next); 1952 spin_unlock_irq(&lo->lo_work_lock); 1953 1954 loop_handle_cmd(cmd); 1955 cond_resched(); 1956 1957 spin_lock_irq(&lo->lo_work_lock); 1958 } 1959 1960 /* 1961 * We only add to the idle list if there are no pending cmds 1962 * *and* the worker will not run again which ensures that it 1963 * is safe to free any worker on the idle list 1964 */ 1965 if (worker && !work_pending(&worker->work)) { 1966 worker->last_ran_at = jiffies; 1967 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1968 loop_set_timer(lo); 1969 } 1970 spin_unlock_irq(&lo->lo_work_lock); 1971 current->flags = orig_flags; 1972 } 1973 1974 static void loop_workfn(struct work_struct *work) 1975 { 1976 struct loop_worker *worker = 1977 container_of(work, struct loop_worker, work); 1978 loop_process_work(worker, &worker->cmd_list, worker->lo); 1979 } 1980 1981 static void loop_rootcg_workfn(struct work_struct *work) 1982 { 1983 struct loop_device *lo = 1984 container_of(work, struct loop_device, rootcg_work); 1985 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1986 } 1987 1988 static const struct blk_mq_ops loop_mq_ops = { 1989 .queue_rq = loop_queue_rq, 1990 .complete = lo_complete_rq, 1991 }; 1992 1993 static int loop_add(int i) 1994 { 1995 struct queue_limits lim = { 1996 /* 1997 * Random number picked from the historic block max_sectors cap. 1998 */ 1999 .max_hw_sectors = 2560u, 2000 }; 2001 struct loop_device *lo; 2002 struct gendisk *disk; 2003 int err; 2004 2005 err = -ENOMEM; 2006 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2007 if (!lo) 2008 goto out; 2009 lo->worker_tree = RB_ROOT; 2010 INIT_LIST_HEAD(&lo->idle_worker_list); 2011 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2012 lo->lo_state = Lo_unbound; 2013 2014 err = mutex_lock_killable(&loop_ctl_mutex); 2015 if (err) 2016 goto out_free_dev; 2017 2018 /* allocate id, if @id >= 0, we're requesting that specific id */ 2019 if (i >= 0) { 2020 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2021 if (err == -ENOSPC) 2022 err = -EEXIST; 2023 } else { 2024 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2025 } 2026 mutex_unlock(&loop_ctl_mutex); 2027 if (err < 0) 2028 goto out_free_dev; 2029 i = err; 2030 2031 lo->tag_set.ops = &loop_mq_ops; 2032 lo->tag_set.nr_hw_queues = 1; 2033 lo->tag_set.queue_depth = hw_queue_depth; 2034 lo->tag_set.numa_node = NUMA_NO_NODE; 2035 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2036 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2037 lo->tag_set.driver_data = lo; 2038 2039 err = blk_mq_alloc_tag_set(&lo->tag_set); 2040 if (err) 2041 goto out_free_idr; 2042 2043 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2044 if (IS_ERR(disk)) { 2045 err = PTR_ERR(disk); 2046 goto out_cleanup_tags; 2047 } 2048 lo->lo_queue = lo->lo_disk->queue; 2049 2050 /* 2051 * Disable partition scanning by default. The in-kernel partition 2052 * scanning can be requested individually per-device during its 2053 * setup. Userspace can always add and remove partitions from all 2054 * devices. The needed partition minors are allocated from the 2055 * extended minor space, the main loop device numbers will continue 2056 * to match the loop minors, regardless of the number of partitions 2057 * used. 2058 * 2059 * If max_part is given, partition scanning is globally enabled for 2060 * all loop devices. The minors for the main loop devices will be 2061 * multiples of max_part. 2062 * 2063 * Note: Global-for-all-devices, set-only-at-init, read-only module 2064 * parameteters like 'max_loop' and 'max_part' make things needlessly 2065 * complicated, are too static, inflexible and may surprise 2066 * userspace tools. Parameters like this in general should be avoided. 2067 */ 2068 if (!part_shift) 2069 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2070 mutex_init(&lo->lo_mutex); 2071 lo->lo_number = i; 2072 spin_lock_init(&lo->lo_lock); 2073 spin_lock_init(&lo->lo_work_lock); 2074 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2075 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2076 disk->major = LOOP_MAJOR; 2077 disk->first_minor = i << part_shift; 2078 disk->minors = 1 << part_shift; 2079 disk->fops = &lo_fops; 2080 disk->private_data = lo; 2081 disk->queue = lo->lo_queue; 2082 disk->events = DISK_EVENT_MEDIA_CHANGE; 2083 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2084 sprintf(disk->disk_name, "loop%d", i); 2085 /* Make this loop device reachable from pathname. */ 2086 err = add_disk(disk); 2087 if (err) 2088 goto out_cleanup_disk; 2089 2090 /* Show this loop device. */ 2091 mutex_lock(&loop_ctl_mutex); 2092 lo->idr_visible = true; 2093 mutex_unlock(&loop_ctl_mutex); 2094 2095 return i; 2096 2097 out_cleanup_disk: 2098 put_disk(disk); 2099 out_cleanup_tags: 2100 blk_mq_free_tag_set(&lo->tag_set); 2101 out_free_idr: 2102 mutex_lock(&loop_ctl_mutex); 2103 idr_remove(&loop_index_idr, i); 2104 mutex_unlock(&loop_ctl_mutex); 2105 out_free_dev: 2106 kfree(lo); 2107 out: 2108 return err; 2109 } 2110 2111 static void loop_remove(struct loop_device *lo) 2112 { 2113 /* Make this loop device unreachable from pathname. */ 2114 del_gendisk(lo->lo_disk); 2115 blk_mq_free_tag_set(&lo->tag_set); 2116 2117 mutex_lock(&loop_ctl_mutex); 2118 idr_remove(&loop_index_idr, lo->lo_number); 2119 mutex_unlock(&loop_ctl_mutex); 2120 2121 put_disk(lo->lo_disk); 2122 } 2123 2124 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2125 static void loop_probe(dev_t dev) 2126 { 2127 int idx = MINOR(dev) >> part_shift; 2128 2129 if (max_loop_specified && max_loop && idx >= max_loop) 2130 return; 2131 loop_add(idx); 2132 } 2133 #else 2134 #define loop_probe NULL 2135 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2136 2137 static int loop_control_remove(int idx) 2138 { 2139 struct loop_device *lo; 2140 int ret; 2141 2142 if (idx < 0) { 2143 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2144 return -EINVAL; 2145 } 2146 2147 /* Hide this loop device for serialization. */ 2148 ret = mutex_lock_killable(&loop_ctl_mutex); 2149 if (ret) 2150 return ret; 2151 lo = idr_find(&loop_index_idr, idx); 2152 if (!lo || !lo->idr_visible) 2153 ret = -ENODEV; 2154 else 2155 lo->idr_visible = false; 2156 mutex_unlock(&loop_ctl_mutex); 2157 if (ret) 2158 return ret; 2159 2160 /* Check whether this loop device can be removed. */ 2161 ret = mutex_lock_killable(&lo->lo_mutex); 2162 if (ret) 2163 goto mark_visible; 2164 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2165 mutex_unlock(&lo->lo_mutex); 2166 ret = -EBUSY; 2167 goto mark_visible; 2168 } 2169 /* Mark this loop device as no more bound, but not quite unbound yet */ 2170 lo->lo_state = Lo_deleting; 2171 mutex_unlock(&lo->lo_mutex); 2172 2173 loop_remove(lo); 2174 return 0; 2175 2176 mark_visible: 2177 /* Show this loop device again. */ 2178 mutex_lock(&loop_ctl_mutex); 2179 lo->idr_visible = true; 2180 mutex_unlock(&loop_ctl_mutex); 2181 return ret; 2182 } 2183 2184 static int loop_control_get_free(int idx) 2185 { 2186 struct loop_device *lo; 2187 int id, ret; 2188 2189 ret = mutex_lock_killable(&loop_ctl_mutex); 2190 if (ret) 2191 return ret; 2192 idr_for_each_entry(&loop_index_idr, lo, id) { 2193 /* Hitting a race results in creating a new loop device which is harmless. */ 2194 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2195 goto found; 2196 } 2197 mutex_unlock(&loop_ctl_mutex); 2198 return loop_add(-1); 2199 found: 2200 mutex_unlock(&loop_ctl_mutex); 2201 return id; 2202 } 2203 2204 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2205 unsigned long parm) 2206 { 2207 switch (cmd) { 2208 case LOOP_CTL_ADD: 2209 return loop_add(parm); 2210 case LOOP_CTL_REMOVE: 2211 return loop_control_remove(parm); 2212 case LOOP_CTL_GET_FREE: 2213 return loop_control_get_free(parm); 2214 default: 2215 return -ENOSYS; 2216 } 2217 } 2218 2219 static const struct file_operations loop_ctl_fops = { 2220 .open = nonseekable_open, 2221 .unlocked_ioctl = loop_control_ioctl, 2222 .compat_ioctl = loop_control_ioctl, 2223 .owner = THIS_MODULE, 2224 .llseek = noop_llseek, 2225 }; 2226 2227 static struct miscdevice loop_misc = { 2228 .minor = LOOP_CTRL_MINOR, 2229 .name = "loop-control", 2230 .fops = &loop_ctl_fops, 2231 }; 2232 2233 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2234 MODULE_ALIAS("devname:loop-control"); 2235 2236 static int __init loop_init(void) 2237 { 2238 int i; 2239 int err; 2240 2241 part_shift = 0; 2242 if (max_part > 0) { 2243 part_shift = fls(max_part); 2244 2245 /* 2246 * Adjust max_part according to part_shift as it is exported 2247 * to user space so that user can decide correct minor number 2248 * if [s]he want to create more devices. 2249 * 2250 * Note that -1 is required because partition 0 is reserved 2251 * for the whole disk. 2252 */ 2253 max_part = (1UL << part_shift) - 1; 2254 } 2255 2256 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2257 err = -EINVAL; 2258 goto err_out; 2259 } 2260 2261 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2262 err = -EINVAL; 2263 goto err_out; 2264 } 2265 2266 err = misc_register(&loop_misc); 2267 if (err < 0) 2268 goto err_out; 2269 2270 2271 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2272 err = -EIO; 2273 goto misc_out; 2274 } 2275 2276 /* pre-create number of devices given by config or max_loop */ 2277 for (i = 0; i < max_loop; i++) 2278 loop_add(i); 2279 2280 printk(KERN_INFO "loop: module loaded\n"); 2281 return 0; 2282 2283 misc_out: 2284 misc_deregister(&loop_misc); 2285 err_out: 2286 return err; 2287 } 2288 2289 static void __exit loop_exit(void) 2290 { 2291 struct loop_device *lo; 2292 int id; 2293 2294 unregister_blkdev(LOOP_MAJOR, "loop"); 2295 misc_deregister(&loop_misc); 2296 2297 /* 2298 * There is no need to use loop_ctl_mutex here, for nobody else can 2299 * access loop_index_idr when this module is unloading (unless forced 2300 * module unloading is requested). If this is not a clean unloading, 2301 * we have no means to avoid kernel crash. 2302 */ 2303 idr_for_each_entry(&loop_index_idr, lo, id) 2304 loop_remove(lo); 2305 2306 idr_destroy(&loop_index_idr); 2307 } 2308 2309 module_init(loop_init); 2310 module_exit(loop_exit); 2311 2312 #ifndef MODULE 2313 static int __init max_loop_setup(char *str) 2314 { 2315 max_loop = simple_strtol(str, NULL, 0); 2316 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2317 max_loop_specified = true; 2318 #endif 2319 return 1; 2320 } 2321 2322 __setup("max_loop=", max_loop_setup); 2323 #endif 2324