1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 81 #include "loop.h" 82 83 #include <linux/uaccess.h> 84 85 static DEFINE_IDR(loop_index_idr); 86 static DEFINE_MUTEX(loop_index_mutex); 87 88 static int max_part; 89 static int part_shift; 90 91 static int transfer_xor(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page) + loop_off; 98 char *in, *out, *key; 99 int i, keysize; 100 101 if (cmd == READ) { 102 in = raw_buf; 103 out = loop_buf; 104 } else { 105 in = loop_buf; 106 out = raw_buf; 107 } 108 109 key = lo->lo_encrypt_key; 110 keysize = lo->lo_encrypt_key_size; 111 for (i = 0; i < size; i++) 112 *out++ = *in++ ^ key[(i & 511) % keysize]; 113 114 kunmap_atomic(loop_buf); 115 kunmap_atomic(raw_buf); 116 cond_resched(); 117 return 0; 118 } 119 120 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 121 { 122 if (unlikely(info->lo_encrypt_key_size <= 0)) 123 return -EINVAL; 124 return 0; 125 } 126 127 static struct loop_func_table none_funcs = { 128 .number = LO_CRYPT_NONE, 129 }; 130 131 static struct loop_func_table xor_funcs = { 132 .number = LO_CRYPT_XOR, 133 .transfer = transfer_xor, 134 .init = xor_init 135 }; 136 137 /* xfer_funcs[0] is special - its release function is never called */ 138 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 139 &none_funcs, 140 &xor_funcs 141 }; 142 143 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 144 { 145 loff_t loopsize; 146 147 /* Compute loopsize in bytes */ 148 loopsize = i_size_read(file->f_mapping->host); 149 if (offset > 0) 150 loopsize -= offset; 151 /* offset is beyond i_size, weird but possible */ 152 if (loopsize < 0) 153 return 0; 154 155 if (sizelimit > 0 && sizelimit < loopsize) 156 loopsize = sizelimit; 157 /* 158 * Unfortunately, if we want to do I/O on the device, 159 * the number of 512-byte sectors has to fit into a sector_t. 160 */ 161 return loopsize >> 9; 162 } 163 164 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 165 { 166 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 167 } 168 169 static void __loop_update_dio(struct loop_device *lo, bool dio) 170 { 171 struct file *file = lo->lo_backing_file; 172 struct address_space *mapping = file->f_mapping; 173 struct inode *inode = mapping->host; 174 unsigned short sb_bsize = 0; 175 unsigned dio_align = 0; 176 bool use_dio; 177 178 if (inode->i_sb->s_bdev) { 179 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 180 dio_align = sb_bsize - 1; 181 } 182 183 /* 184 * We support direct I/O only if lo_offset is aligned with the 185 * logical I/O size of backing device, and the logical block 186 * size of loop is bigger than the backing device's and the loop 187 * needn't transform transfer. 188 * 189 * TODO: the above condition may be loosed in the future, and 190 * direct I/O may be switched runtime at that time because most 191 * of requests in sane applications should be PAGE_SIZE aligned 192 */ 193 if (dio) { 194 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 195 !(lo->lo_offset & dio_align) && 196 mapping->a_ops->direct_IO && 197 !lo->transfer) 198 use_dio = true; 199 else 200 use_dio = false; 201 } else { 202 use_dio = false; 203 } 204 205 if (lo->use_dio == use_dio) 206 return; 207 208 /* flush dirty pages before changing direct IO */ 209 vfs_fsync(file, 0); 210 211 /* 212 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 213 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 214 * will get updated by ioctl(LOOP_GET_STATUS) 215 */ 216 blk_mq_freeze_queue(lo->lo_queue); 217 lo->use_dio = use_dio; 218 if (use_dio) { 219 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 220 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 221 } else { 222 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 223 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 224 } 225 blk_mq_unfreeze_queue(lo->lo_queue); 226 } 227 228 static int 229 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 230 { 231 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 232 sector_t x = (sector_t)size; 233 struct block_device *bdev = lo->lo_device; 234 235 if (unlikely((loff_t)x != size)) 236 return -EFBIG; 237 if (lo->lo_offset != offset) 238 lo->lo_offset = offset; 239 if (lo->lo_sizelimit != sizelimit) 240 lo->lo_sizelimit = sizelimit; 241 set_capacity(lo->lo_disk, x); 242 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 243 /* let user-space know about the new size */ 244 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 245 return 0; 246 } 247 248 static inline int 249 lo_do_transfer(struct loop_device *lo, int cmd, 250 struct page *rpage, unsigned roffs, 251 struct page *lpage, unsigned loffs, 252 int size, sector_t rblock) 253 { 254 int ret; 255 256 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 257 if (likely(!ret)) 258 return 0; 259 260 printk_ratelimited(KERN_ERR 261 "loop: Transfer error at byte offset %llu, length %i.\n", 262 (unsigned long long)rblock << 9, size); 263 return ret; 264 } 265 266 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 267 { 268 struct iov_iter i; 269 ssize_t bw; 270 271 iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len); 272 273 file_start_write(file); 274 bw = vfs_iter_write(file, &i, ppos, 0); 275 file_end_write(file); 276 277 if (likely(bw == bvec->bv_len)) 278 return 0; 279 280 printk_ratelimited(KERN_ERR 281 "loop: Write error at byte offset %llu, length %i.\n", 282 (unsigned long long)*ppos, bvec->bv_len); 283 if (bw >= 0) 284 bw = -EIO; 285 return bw; 286 } 287 288 static int lo_write_simple(struct loop_device *lo, struct request *rq, 289 loff_t pos) 290 { 291 struct bio_vec bvec; 292 struct req_iterator iter; 293 int ret = 0; 294 295 rq_for_each_segment(bvec, rq, iter) { 296 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 297 if (ret < 0) 298 break; 299 cond_resched(); 300 } 301 302 return ret; 303 } 304 305 /* 306 * This is the slow, transforming version that needs to double buffer the 307 * data as it cannot do the transformations in place without having direct 308 * access to the destination pages of the backing file. 309 */ 310 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 311 loff_t pos) 312 { 313 struct bio_vec bvec, b; 314 struct req_iterator iter; 315 struct page *page; 316 int ret = 0; 317 318 page = alloc_page(GFP_NOIO); 319 if (unlikely(!page)) 320 return -ENOMEM; 321 322 rq_for_each_segment(bvec, rq, iter) { 323 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 324 bvec.bv_offset, bvec.bv_len, pos >> 9); 325 if (unlikely(ret)) 326 break; 327 328 b.bv_page = page; 329 b.bv_offset = 0; 330 b.bv_len = bvec.bv_len; 331 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 332 if (ret < 0) 333 break; 334 } 335 336 __free_page(page); 337 return ret; 338 } 339 340 static int lo_read_simple(struct loop_device *lo, struct request *rq, 341 loff_t pos) 342 { 343 struct bio_vec bvec; 344 struct req_iterator iter; 345 struct iov_iter i; 346 ssize_t len; 347 348 rq_for_each_segment(bvec, rq, iter) { 349 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); 350 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 351 if (len < 0) 352 return len; 353 354 flush_dcache_page(bvec.bv_page); 355 356 if (len != bvec.bv_len) { 357 struct bio *bio; 358 359 __rq_for_each_bio(bio, rq) 360 zero_fill_bio(bio); 361 break; 362 } 363 cond_resched(); 364 } 365 366 return 0; 367 } 368 369 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 370 loff_t pos) 371 { 372 struct bio_vec bvec, b; 373 struct req_iterator iter; 374 struct iov_iter i; 375 struct page *page; 376 ssize_t len; 377 int ret = 0; 378 379 page = alloc_page(GFP_NOIO); 380 if (unlikely(!page)) 381 return -ENOMEM; 382 383 rq_for_each_segment(bvec, rq, iter) { 384 loff_t offset = pos; 385 386 b.bv_page = page; 387 b.bv_offset = 0; 388 b.bv_len = bvec.bv_len; 389 390 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); 391 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 392 if (len < 0) { 393 ret = len; 394 goto out_free_page; 395 } 396 397 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 398 bvec.bv_offset, len, offset >> 9); 399 if (ret) 400 goto out_free_page; 401 402 flush_dcache_page(bvec.bv_page); 403 404 if (len != bvec.bv_len) { 405 struct bio *bio; 406 407 __rq_for_each_bio(bio, rq) 408 zero_fill_bio(bio); 409 break; 410 } 411 } 412 413 ret = 0; 414 out_free_page: 415 __free_page(page); 416 return ret; 417 } 418 419 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 420 { 421 /* 422 * We use punch hole to reclaim the free space used by the 423 * image a.k.a. discard. However we do not support discard if 424 * encryption is enabled, because it may give an attacker 425 * useful information. 426 */ 427 struct file *file = lo->lo_backing_file; 428 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 429 int ret; 430 431 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 432 ret = -EOPNOTSUPP; 433 goto out; 434 } 435 436 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 437 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 438 ret = -EIO; 439 out: 440 return ret; 441 } 442 443 static int lo_req_flush(struct loop_device *lo, struct request *rq) 444 { 445 struct file *file = lo->lo_backing_file; 446 int ret = vfs_fsync(file, 0); 447 if (unlikely(ret && ret != -EINVAL)) 448 ret = -EIO; 449 450 return ret; 451 } 452 453 static void lo_complete_rq(struct request *rq) 454 { 455 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 456 blk_status_t ret = BLK_STS_OK; 457 458 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 459 req_op(rq) != REQ_OP_READ) { 460 if (cmd->ret < 0) 461 ret = BLK_STS_IOERR; 462 goto end_io; 463 } 464 465 /* 466 * Short READ - if we got some data, advance our request and 467 * retry it. If we got no data, end the rest with EIO. 468 */ 469 if (cmd->ret) { 470 blk_update_request(rq, BLK_STS_OK, cmd->ret); 471 cmd->ret = 0; 472 blk_mq_requeue_request(rq, true); 473 } else { 474 if (cmd->use_aio) { 475 struct bio *bio = rq->bio; 476 477 while (bio) { 478 zero_fill_bio(bio); 479 bio = bio->bi_next; 480 } 481 } 482 ret = BLK_STS_IOERR; 483 end_io: 484 blk_mq_end_request(rq, ret); 485 } 486 } 487 488 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 489 { 490 struct request *rq = blk_mq_rq_from_pdu(cmd); 491 492 if (!atomic_dec_and_test(&cmd->ref)) 493 return; 494 kfree(cmd->bvec); 495 cmd->bvec = NULL; 496 blk_mq_complete_request(rq); 497 } 498 499 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 500 { 501 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 502 503 if (cmd->css) 504 css_put(cmd->css); 505 cmd->ret = ret; 506 lo_rw_aio_do_completion(cmd); 507 } 508 509 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 510 loff_t pos, bool rw) 511 { 512 struct iov_iter iter; 513 struct bio_vec *bvec; 514 struct request *rq = blk_mq_rq_from_pdu(cmd); 515 struct bio *bio = rq->bio; 516 struct file *file = lo->lo_backing_file; 517 unsigned int offset; 518 int segments = 0; 519 int ret; 520 521 if (rq->bio != rq->biotail) { 522 struct req_iterator iter; 523 struct bio_vec tmp; 524 525 __rq_for_each_bio(bio, rq) 526 segments += bio_segments(bio); 527 bvec = kmalloc_array(segments, sizeof(struct bio_vec), 528 GFP_NOIO); 529 if (!bvec) 530 return -EIO; 531 cmd->bvec = bvec; 532 533 /* 534 * The bios of the request may be started from the middle of 535 * the 'bvec' because of bio splitting, so we can't directly 536 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment 537 * API will take care of all details for us. 538 */ 539 rq_for_each_segment(tmp, rq, iter) { 540 *bvec = tmp; 541 bvec++; 542 } 543 bvec = cmd->bvec; 544 offset = 0; 545 } else { 546 /* 547 * Same here, this bio may be started from the middle of the 548 * 'bvec' because of bio splitting, so offset from the bvec 549 * must be passed to iov iterator 550 */ 551 offset = bio->bi_iter.bi_bvec_done; 552 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 553 segments = bio_segments(bio); 554 } 555 atomic_set(&cmd->ref, 2); 556 557 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec, 558 segments, blk_rq_bytes(rq)); 559 iter.iov_offset = offset; 560 561 cmd->iocb.ki_pos = pos; 562 cmd->iocb.ki_filp = file; 563 cmd->iocb.ki_complete = lo_rw_aio_complete; 564 cmd->iocb.ki_flags = IOCB_DIRECT; 565 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 566 if (cmd->css) 567 kthread_associate_blkcg(cmd->css); 568 569 if (rw == WRITE) 570 ret = call_write_iter(file, &cmd->iocb, &iter); 571 else 572 ret = call_read_iter(file, &cmd->iocb, &iter); 573 574 lo_rw_aio_do_completion(cmd); 575 kthread_associate_blkcg(NULL); 576 577 if (ret != -EIOCBQUEUED) 578 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 579 return 0; 580 } 581 582 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 583 { 584 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 585 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 586 587 /* 588 * lo_write_simple and lo_read_simple should have been covered 589 * by io submit style function like lo_rw_aio(), one blocker 590 * is that lo_read_simple() need to call flush_dcache_page after 591 * the page is written from kernel, and it isn't easy to handle 592 * this in io submit style function which submits all segments 593 * of the req at one time. And direct read IO doesn't need to 594 * run flush_dcache_page(). 595 */ 596 switch (req_op(rq)) { 597 case REQ_OP_FLUSH: 598 return lo_req_flush(lo, rq); 599 case REQ_OP_DISCARD: 600 case REQ_OP_WRITE_ZEROES: 601 return lo_discard(lo, rq, pos); 602 case REQ_OP_WRITE: 603 if (lo->transfer) 604 return lo_write_transfer(lo, rq, pos); 605 else if (cmd->use_aio) 606 return lo_rw_aio(lo, cmd, pos, WRITE); 607 else 608 return lo_write_simple(lo, rq, pos); 609 case REQ_OP_READ: 610 if (lo->transfer) 611 return lo_read_transfer(lo, rq, pos); 612 else if (cmd->use_aio) 613 return lo_rw_aio(lo, cmd, pos, READ); 614 else 615 return lo_read_simple(lo, rq, pos); 616 default: 617 WARN_ON_ONCE(1); 618 return -EIO; 619 break; 620 } 621 } 622 623 static inline void loop_update_dio(struct loop_device *lo) 624 { 625 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 626 lo->use_dio); 627 } 628 629 static void loop_reread_partitions(struct loop_device *lo, 630 struct block_device *bdev) 631 { 632 int rc; 633 634 /* 635 * bd_mutex has been held already in release path, so don't 636 * acquire it if this function is called in such case. 637 * 638 * If the reread partition isn't from release path, lo_refcnt 639 * must be at least one and it can only become zero when the 640 * current holder is released. 641 */ 642 if (!atomic_read(&lo->lo_refcnt)) 643 rc = __blkdev_reread_part(bdev); 644 else 645 rc = blkdev_reread_part(bdev); 646 if (rc) 647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 648 __func__, lo->lo_number, lo->lo_file_name, rc); 649 } 650 651 static inline int is_loop_device(struct file *file) 652 { 653 struct inode *i = file->f_mapping->host; 654 655 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 656 } 657 658 static int loop_validate_file(struct file *file, struct block_device *bdev) 659 { 660 struct inode *inode = file->f_mapping->host; 661 struct file *f = file; 662 663 /* Avoid recursion */ 664 while (is_loop_device(f)) { 665 struct loop_device *l; 666 667 if (f->f_mapping->host->i_bdev == bdev) 668 return -EBADF; 669 670 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 671 if (l->lo_state == Lo_unbound) { 672 return -EINVAL; 673 } 674 f = l->lo_backing_file; 675 } 676 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 677 return -EINVAL; 678 return 0; 679 } 680 681 /* 682 * loop_change_fd switched the backing store of a loopback device to 683 * a new file. This is useful for operating system installers to free up 684 * the original file and in High Availability environments to switch to 685 * an alternative location for the content in case of server meltdown. 686 * This can only work if the loop device is used read-only, and if the 687 * new backing store is the same size and type as the old backing store. 688 */ 689 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 690 unsigned int arg) 691 { 692 struct file *file, *old_file; 693 struct inode *inode; 694 int error; 695 696 error = -ENXIO; 697 if (lo->lo_state != Lo_bound) 698 goto out; 699 700 /* the loop device has to be read-only */ 701 error = -EINVAL; 702 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 703 goto out; 704 705 error = -EBADF; 706 file = fget(arg); 707 if (!file) 708 goto out; 709 710 error = loop_validate_file(file, bdev); 711 if (error) 712 goto out_putf; 713 714 inode = file->f_mapping->host; 715 old_file = lo->lo_backing_file; 716 717 error = -EINVAL; 718 719 /* size of the new backing store needs to be the same */ 720 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 721 goto out_putf; 722 723 /* and ... switch */ 724 blk_mq_freeze_queue(lo->lo_queue); 725 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 726 lo->lo_backing_file = file; 727 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 728 mapping_set_gfp_mask(file->f_mapping, 729 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 730 loop_update_dio(lo); 731 blk_mq_unfreeze_queue(lo->lo_queue); 732 733 fput(old_file); 734 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 735 loop_reread_partitions(lo, bdev); 736 return 0; 737 738 out_putf: 739 fput(file); 740 out: 741 return error; 742 } 743 744 /* loop sysfs attributes */ 745 746 static ssize_t loop_attr_show(struct device *dev, char *page, 747 ssize_t (*callback)(struct loop_device *, char *)) 748 { 749 struct gendisk *disk = dev_to_disk(dev); 750 struct loop_device *lo = disk->private_data; 751 752 return callback(lo, page); 753 } 754 755 #define LOOP_ATTR_RO(_name) \ 756 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 757 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 758 struct device_attribute *attr, char *b) \ 759 { \ 760 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 761 } \ 762 static struct device_attribute loop_attr_##_name = \ 763 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 764 765 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 766 { 767 ssize_t ret; 768 char *p = NULL; 769 770 spin_lock_irq(&lo->lo_lock); 771 if (lo->lo_backing_file) 772 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 773 spin_unlock_irq(&lo->lo_lock); 774 775 if (IS_ERR_OR_NULL(p)) 776 ret = PTR_ERR(p); 777 else { 778 ret = strlen(p); 779 memmove(buf, p, ret); 780 buf[ret++] = '\n'; 781 buf[ret] = 0; 782 } 783 784 return ret; 785 } 786 787 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 788 { 789 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 790 } 791 792 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 793 { 794 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 795 } 796 797 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 798 { 799 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 800 801 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 802 } 803 804 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 805 { 806 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 807 808 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 809 } 810 811 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 812 { 813 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 814 815 return sprintf(buf, "%s\n", dio ? "1" : "0"); 816 } 817 818 LOOP_ATTR_RO(backing_file); 819 LOOP_ATTR_RO(offset); 820 LOOP_ATTR_RO(sizelimit); 821 LOOP_ATTR_RO(autoclear); 822 LOOP_ATTR_RO(partscan); 823 LOOP_ATTR_RO(dio); 824 825 static struct attribute *loop_attrs[] = { 826 &loop_attr_backing_file.attr, 827 &loop_attr_offset.attr, 828 &loop_attr_sizelimit.attr, 829 &loop_attr_autoclear.attr, 830 &loop_attr_partscan.attr, 831 &loop_attr_dio.attr, 832 NULL, 833 }; 834 835 static struct attribute_group loop_attribute_group = { 836 .name = "loop", 837 .attrs= loop_attrs, 838 }; 839 840 static void loop_sysfs_init(struct loop_device *lo) 841 { 842 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 843 &loop_attribute_group); 844 } 845 846 static void loop_sysfs_exit(struct loop_device *lo) 847 { 848 if (lo->sysfs_inited) 849 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 850 &loop_attribute_group); 851 } 852 853 static void loop_config_discard(struct loop_device *lo) 854 { 855 struct file *file = lo->lo_backing_file; 856 struct inode *inode = file->f_mapping->host; 857 struct request_queue *q = lo->lo_queue; 858 859 /* 860 * We use punch hole to reclaim the free space used by the 861 * image a.k.a. discard. However we do not support discard if 862 * encryption is enabled, because it may give an attacker 863 * useful information. 864 */ 865 if ((!file->f_op->fallocate) || 866 lo->lo_encrypt_key_size) { 867 q->limits.discard_granularity = 0; 868 q->limits.discard_alignment = 0; 869 blk_queue_max_discard_sectors(q, 0); 870 blk_queue_max_write_zeroes_sectors(q, 0); 871 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 872 return; 873 } 874 875 q->limits.discard_granularity = inode->i_sb->s_blocksize; 876 q->limits.discard_alignment = 0; 877 878 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 879 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 880 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 881 } 882 883 static void loop_unprepare_queue(struct loop_device *lo) 884 { 885 kthread_flush_worker(&lo->worker); 886 kthread_stop(lo->worker_task); 887 } 888 889 static int loop_kthread_worker_fn(void *worker_ptr) 890 { 891 current->flags |= PF_LESS_THROTTLE; 892 return kthread_worker_fn(worker_ptr); 893 } 894 895 static int loop_prepare_queue(struct loop_device *lo) 896 { 897 kthread_init_worker(&lo->worker); 898 lo->worker_task = kthread_run(loop_kthread_worker_fn, 899 &lo->worker, "loop%d", lo->lo_number); 900 if (IS_ERR(lo->worker_task)) 901 return -ENOMEM; 902 set_user_nice(lo->worker_task, MIN_NICE); 903 return 0; 904 } 905 906 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 907 struct block_device *bdev, unsigned int arg) 908 { 909 struct file *file; 910 struct inode *inode; 911 struct address_space *mapping; 912 int lo_flags = 0; 913 int error; 914 loff_t size; 915 916 /* This is safe, since we have a reference from open(). */ 917 __module_get(THIS_MODULE); 918 919 error = -EBADF; 920 file = fget(arg); 921 if (!file) 922 goto out; 923 924 error = -EBUSY; 925 if (lo->lo_state != Lo_unbound) 926 goto out_putf; 927 928 error = loop_validate_file(file, bdev); 929 if (error) 930 goto out_putf; 931 932 mapping = file->f_mapping; 933 inode = mapping->host; 934 935 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 936 !file->f_op->write_iter) 937 lo_flags |= LO_FLAGS_READ_ONLY; 938 939 error = -EFBIG; 940 size = get_loop_size(lo, file); 941 if ((loff_t)(sector_t)size != size) 942 goto out_putf; 943 error = loop_prepare_queue(lo); 944 if (error) 945 goto out_putf; 946 947 error = 0; 948 949 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 950 951 lo->use_dio = false; 952 lo->lo_device = bdev; 953 lo->lo_flags = lo_flags; 954 lo->lo_backing_file = file; 955 lo->transfer = NULL; 956 lo->ioctl = NULL; 957 lo->lo_sizelimit = 0; 958 lo->old_gfp_mask = mapping_gfp_mask(mapping); 959 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 960 961 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 962 blk_queue_write_cache(lo->lo_queue, true, false); 963 964 loop_update_dio(lo); 965 set_capacity(lo->lo_disk, size); 966 bd_set_size(bdev, size << 9); 967 loop_sysfs_init(lo); 968 /* let user-space know about the new size */ 969 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 970 971 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 972 block_size(inode->i_bdev) : PAGE_SIZE); 973 974 lo->lo_state = Lo_bound; 975 if (part_shift) 976 lo->lo_flags |= LO_FLAGS_PARTSCAN; 977 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 978 loop_reread_partitions(lo, bdev); 979 980 /* Grab the block_device to prevent its destruction after we 981 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 982 */ 983 bdgrab(bdev); 984 return 0; 985 986 out_putf: 987 fput(file); 988 out: 989 /* This is safe: open() is still holding a reference. */ 990 module_put(THIS_MODULE); 991 return error; 992 } 993 994 static int 995 loop_release_xfer(struct loop_device *lo) 996 { 997 int err = 0; 998 struct loop_func_table *xfer = lo->lo_encryption; 999 1000 if (xfer) { 1001 if (xfer->release) 1002 err = xfer->release(lo); 1003 lo->transfer = NULL; 1004 lo->lo_encryption = NULL; 1005 module_put(xfer->owner); 1006 } 1007 return err; 1008 } 1009 1010 static int 1011 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 1012 const struct loop_info64 *i) 1013 { 1014 int err = 0; 1015 1016 if (xfer) { 1017 struct module *owner = xfer->owner; 1018 1019 if (!try_module_get(owner)) 1020 return -EINVAL; 1021 if (xfer->init) 1022 err = xfer->init(lo, i); 1023 if (err) 1024 module_put(owner); 1025 else 1026 lo->lo_encryption = xfer; 1027 } 1028 return err; 1029 } 1030 1031 static int loop_clr_fd(struct loop_device *lo) 1032 { 1033 struct file *filp = lo->lo_backing_file; 1034 gfp_t gfp = lo->old_gfp_mask; 1035 struct block_device *bdev = lo->lo_device; 1036 1037 if (lo->lo_state != Lo_bound) 1038 return -ENXIO; 1039 1040 /* 1041 * If we've explicitly asked to tear down the loop device, 1042 * and it has an elevated reference count, set it for auto-teardown when 1043 * the last reference goes away. This stops $!~#$@ udev from 1044 * preventing teardown because it decided that it needs to run blkid on 1045 * the loopback device whenever they appear. xfstests is notorious for 1046 * failing tests because blkid via udev races with a losetup 1047 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1048 * command to fail with EBUSY. 1049 */ 1050 if (atomic_read(&lo->lo_refcnt) > 1) { 1051 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1052 mutex_unlock(&lo->lo_ctl_mutex); 1053 return 0; 1054 } 1055 1056 if (filp == NULL) 1057 return -EINVAL; 1058 1059 /* freeze request queue during the transition */ 1060 blk_mq_freeze_queue(lo->lo_queue); 1061 1062 spin_lock_irq(&lo->lo_lock); 1063 lo->lo_state = Lo_rundown; 1064 lo->lo_backing_file = NULL; 1065 spin_unlock_irq(&lo->lo_lock); 1066 1067 loop_release_xfer(lo); 1068 lo->transfer = NULL; 1069 lo->ioctl = NULL; 1070 lo->lo_device = NULL; 1071 lo->lo_encryption = NULL; 1072 lo->lo_offset = 0; 1073 lo->lo_sizelimit = 0; 1074 lo->lo_encrypt_key_size = 0; 1075 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1076 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1077 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1078 blk_queue_logical_block_size(lo->lo_queue, 512); 1079 blk_queue_physical_block_size(lo->lo_queue, 512); 1080 blk_queue_io_min(lo->lo_queue, 512); 1081 if (bdev) { 1082 bdput(bdev); 1083 invalidate_bdev(bdev); 1084 bdev->bd_inode->i_mapping->wb_err = 0; 1085 } 1086 set_capacity(lo->lo_disk, 0); 1087 loop_sysfs_exit(lo); 1088 if (bdev) { 1089 bd_set_size(bdev, 0); 1090 /* let user-space know about this change */ 1091 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1092 } 1093 mapping_set_gfp_mask(filp->f_mapping, gfp); 1094 lo->lo_state = Lo_unbound; 1095 /* This is safe: open() is still holding a reference. */ 1096 module_put(THIS_MODULE); 1097 blk_mq_unfreeze_queue(lo->lo_queue); 1098 1099 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1100 loop_reread_partitions(lo, bdev); 1101 lo->lo_flags = 0; 1102 if (!part_shift) 1103 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1104 loop_unprepare_queue(lo); 1105 mutex_unlock(&lo->lo_ctl_mutex); 1106 /* 1107 * Need not hold lo_ctl_mutex to fput backing file. 1108 * Calling fput holding lo_ctl_mutex triggers a circular 1109 * lock dependency possibility warning as fput can take 1110 * bd_mutex which is usually taken before lo_ctl_mutex. 1111 */ 1112 fput(filp); 1113 return 0; 1114 } 1115 1116 static int 1117 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1118 { 1119 int err; 1120 struct loop_func_table *xfer; 1121 kuid_t uid = current_uid(); 1122 1123 if (lo->lo_encrypt_key_size && 1124 !uid_eq(lo->lo_key_owner, uid) && 1125 !capable(CAP_SYS_ADMIN)) 1126 return -EPERM; 1127 if (lo->lo_state != Lo_bound) 1128 return -ENXIO; 1129 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1130 return -EINVAL; 1131 1132 /* I/O need to be drained during transfer transition */ 1133 blk_mq_freeze_queue(lo->lo_queue); 1134 1135 err = loop_release_xfer(lo); 1136 if (err) 1137 goto exit; 1138 1139 if (info->lo_encrypt_type) { 1140 unsigned int type = info->lo_encrypt_type; 1141 1142 if (type >= MAX_LO_CRYPT) { 1143 err = -EINVAL; 1144 goto exit; 1145 } 1146 xfer = xfer_funcs[type]; 1147 if (xfer == NULL) { 1148 err = -EINVAL; 1149 goto exit; 1150 } 1151 } else 1152 xfer = NULL; 1153 1154 err = loop_init_xfer(lo, xfer, info); 1155 if (err) 1156 goto exit; 1157 1158 if (lo->lo_offset != info->lo_offset || 1159 lo->lo_sizelimit != info->lo_sizelimit) { 1160 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1161 err = -EFBIG; 1162 goto exit; 1163 } 1164 } 1165 1166 loop_config_discard(lo); 1167 1168 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1169 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1170 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1171 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1172 1173 if (!xfer) 1174 xfer = &none_funcs; 1175 lo->transfer = xfer->transfer; 1176 lo->ioctl = xfer->ioctl; 1177 1178 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1179 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1180 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1181 1182 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1183 lo->lo_init[0] = info->lo_init[0]; 1184 lo->lo_init[1] = info->lo_init[1]; 1185 if (info->lo_encrypt_key_size) { 1186 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1187 info->lo_encrypt_key_size); 1188 lo->lo_key_owner = uid; 1189 } 1190 1191 /* update dio if lo_offset or transfer is changed */ 1192 __loop_update_dio(lo, lo->use_dio); 1193 1194 exit: 1195 blk_mq_unfreeze_queue(lo->lo_queue); 1196 1197 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && 1198 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1199 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1200 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1201 loop_reread_partitions(lo, lo->lo_device); 1202 } 1203 1204 return err; 1205 } 1206 1207 static int 1208 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1209 { 1210 struct file *file; 1211 struct kstat stat; 1212 int ret; 1213 1214 if (lo->lo_state != Lo_bound) { 1215 mutex_unlock(&lo->lo_ctl_mutex); 1216 return -ENXIO; 1217 } 1218 1219 memset(info, 0, sizeof(*info)); 1220 info->lo_number = lo->lo_number; 1221 info->lo_offset = lo->lo_offset; 1222 info->lo_sizelimit = lo->lo_sizelimit; 1223 info->lo_flags = lo->lo_flags; 1224 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1225 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1226 info->lo_encrypt_type = 1227 lo->lo_encryption ? lo->lo_encryption->number : 0; 1228 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1229 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1230 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1231 lo->lo_encrypt_key_size); 1232 } 1233 1234 /* Drop lo_ctl_mutex while we call into the filesystem. */ 1235 file = get_file(lo->lo_backing_file); 1236 mutex_unlock(&lo->lo_ctl_mutex); 1237 ret = vfs_getattr(&file->f_path, &stat, STATX_INO, 1238 AT_STATX_SYNC_AS_STAT); 1239 if (!ret) { 1240 info->lo_device = huge_encode_dev(stat.dev); 1241 info->lo_inode = stat.ino; 1242 info->lo_rdevice = huge_encode_dev(stat.rdev); 1243 } 1244 fput(file); 1245 return ret; 1246 } 1247 1248 static void 1249 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1250 { 1251 memset(info64, 0, sizeof(*info64)); 1252 info64->lo_number = info->lo_number; 1253 info64->lo_device = info->lo_device; 1254 info64->lo_inode = info->lo_inode; 1255 info64->lo_rdevice = info->lo_rdevice; 1256 info64->lo_offset = info->lo_offset; 1257 info64->lo_sizelimit = 0; 1258 info64->lo_encrypt_type = info->lo_encrypt_type; 1259 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1260 info64->lo_flags = info->lo_flags; 1261 info64->lo_init[0] = info->lo_init[0]; 1262 info64->lo_init[1] = info->lo_init[1]; 1263 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1264 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1265 else 1266 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1267 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1268 } 1269 1270 static int 1271 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1272 { 1273 memset(info, 0, sizeof(*info)); 1274 info->lo_number = info64->lo_number; 1275 info->lo_device = info64->lo_device; 1276 info->lo_inode = info64->lo_inode; 1277 info->lo_rdevice = info64->lo_rdevice; 1278 info->lo_offset = info64->lo_offset; 1279 info->lo_encrypt_type = info64->lo_encrypt_type; 1280 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1281 info->lo_flags = info64->lo_flags; 1282 info->lo_init[0] = info64->lo_init[0]; 1283 info->lo_init[1] = info64->lo_init[1]; 1284 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1285 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1286 else 1287 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1288 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1289 1290 /* error in case values were truncated */ 1291 if (info->lo_device != info64->lo_device || 1292 info->lo_rdevice != info64->lo_rdevice || 1293 info->lo_inode != info64->lo_inode || 1294 info->lo_offset != info64->lo_offset) 1295 return -EOVERFLOW; 1296 1297 return 0; 1298 } 1299 1300 static int 1301 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1302 { 1303 struct loop_info info; 1304 struct loop_info64 info64; 1305 1306 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1307 return -EFAULT; 1308 loop_info64_from_old(&info, &info64); 1309 return loop_set_status(lo, &info64); 1310 } 1311 1312 static int 1313 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1314 { 1315 struct loop_info64 info64; 1316 1317 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1318 return -EFAULT; 1319 return loop_set_status(lo, &info64); 1320 } 1321 1322 static int 1323 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1324 struct loop_info info; 1325 struct loop_info64 info64; 1326 int err; 1327 1328 if (!arg) { 1329 mutex_unlock(&lo->lo_ctl_mutex); 1330 return -EINVAL; 1331 } 1332 err = loop_get_status(lo, &info64); 1333 if (!err) 1334 err = loop_info64_to_old(&info64, &info); 1335 if (!err && copy_to_user(arg, &info, sizeof(info))) 1336 err = -EFAULT; 1337 1338 return err; 1339 } 1340 1341 static int 1342 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1343 struct loop_info64 info64; 1344 int err; 1345 1346 if (!arg) { 1347 mutex_unlock(&lo->lo_ctl_mutex); 1348 return -EINVAL; 1349 } 1350 err = loop_get_status(lo, &info64); 1351 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1352 err = -EFAULT; 1353 1354 return err; 1355 } 1356 1357 static int loop_set_capacity(struct loop_device *lo) 1358 { 1359 if (unlikely(lo->lo_state != Lo_bound)) 1360 return -ENXIO; 1361 1362 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1363 } 1364 1365 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1366 { 1367 int error = -ENXIO; 1368 if (lo->lo_state != Lo_bound) 1369 goto out; 1370 1371 __loop_update_dio(lo, !!arg); 1372 if (lo->use_dio == !!arg) 1373 return 0; 1374 error = -EINVAL; 1375 out: 1376 return error; 1377 } 1378 1379 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1380 { 1381 if (lo->lo_state != Lo_bound) 1382 return -ENXIO; 1383 1384 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg)) 1385 return -EINVAL; 1386 1387 blk_mq_freeze_queue(lo->lo_queue); 1388 1389 blk_queue_logical_block_size(lo->lo_queue, arg); 1390 blk_queue_physical_block_size(lo->lo_queue, arg); 1391 blk_queue_io_min(lo->lo_queue, arg); 1392 loop_update_dio(lo); 1393 1394 blk_mq_unfreeze_queue(lo->lo_queue); 1395 1396 return 0; 1397 } 1398 1399 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1400 unsigned int cmd, unsigned long arg) 1401 { 1402 struct loop_device *lo = bdev->bd_disk->private_data; 1403 int err; 1404 1405 err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1); 1406 if (err) 1407 goto out_unlocked; 1408 1409 switch (cmd) { 1410 case LOOP_SET_FD: 1411 err = loop_set_fd(lo, mode, bdev, arg); 1412 break; 1413 case LOOP_CHANGE_FD: 1414 err = loop_change_fd(lo, bdev, arg); 1415 break; 1416 case LOOP_CLR_FD: 1417 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1418 err = loop_clr_fd(lo); 1419 if (!err) 1420 goto out_unlocked; 1421 break; 1422 case LOOP_SET_STATUS: 1423 err = -EPERM; 1424 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1425 err = loop_set_status_old(lo, 1426 (struct loop_info __user *)arg); 1427 break; 1428 case LOOP_GET_STATUS: 1429 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1430 /* loop_get_status() unlocks lo_ctl_mutex */ 1431 goto out_unlocked; 1432 case LOOP_SET_STATUS64: 1433 err = -EPERM; 1434 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1435 err = loop_set_status64(lo, 1436 (struct loop_info64 __user *) arg); 1437 break; 1438 case LOOP_GET_STATUS64: 1439 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1440 /* loop_get_status() unlocks lo_ctl_mutex */ 1441 goto out_unlocked; 1442 case LOOP_SET_CAPACITY: 1443 err = -EPERM; 1444 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1445 err = loop_set_capacity(lo); 1446 break; 1447 case LOOP_SET_DIRECT_IO: 1448 err = -EPERM; 1449 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1450 err = loop_set_dio(lo, arg); 1451 break; 1452 case LOOP_SET_BLOCK_SIZE: 1453 err = -EPERM; 1454 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1455 err = loop_set_block_size(lo, arg); 1456 break; 1457 default: 1458 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1459 } 1460 mutex_unlock(&lo->lo_ctl_mutex); 1461 1462 out_unlocked: 1463 return err; 1464 } 1465 1466 #ifdef CONFIG_COMPAT 1467 struct compat_loop_info { 1468 compat_int_t lo_number; /* ioctl r/o */ 1469 compat_dev_t lo_device; /* ioctl r/o */ 1470 compat_ulong_t lo_inode; /* ioctl r/o */ 1471 compat_dev_t lo_rdevice; /* ioctl r/o */ 1472 compat_int_t lo_offset; 1473 compat_int_t lo_encrypt_type; 1474 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1475 compat_int_t lo_flags; /* ioctl r/o */ 1476 char lo_name[LO_NAME_SIZE]; 1477 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1478 compat_ulong_t lo_init[2]; 1479 char reserved[4]; 1480 }; 1481 1482 /* 1483 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1484 * - noinlined to reduce stack space usage in main part of driver 1485 */ 1486 static noinline int 1487 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1488 struct loop_info64 *info64) 1489 { 1490 struct compat_loop_info info; 1491 1492 if (copy_from_user(&info, arg, sizeof(info))) 1493 return -EFAULT; 1494 1495 memset(info64, 0, sizeof(*info64)); 1496 info64->lo_number = info.lo_number; 1497 info64->lo_device = info.lo_device; 1498 info64->lo_inode = info.lo_inode; 1499 info64->lo_rdevice = info.lo_rdevice; 1500 info64->lo_offset = info.lo_offset; 1501 info64->lo_sizelimit = 0; 1502 info64->lo_encrypt_type = info.lo_encrypt_type; 1503 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1504 info64->lo_flags = info.lo_flags; 1505 info64->lo_init[0] = info.lo_init[0]; 1506 info64->lo_init[1] = info.lo_init[1]; 1507 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1508 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1509 else 1510 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1511 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1512 return 0; 1513 } 1514 1515 /* 1516 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1517 * - noinlined to reduce stack space usage in main part of driver 1518 */ 1519 static noinline int 1520 loop_info64_to_compat(const struct loop_info64 *info64, 1521 struct compat_loop_info __user *arg) 1522 { 1523 struct compat_loop_info info; 1524 1525 memset(&info, 0, sizeof(info)); 1526 info.lo_number = info64->lo_number; 1527 info.lo_device = info64->lo_device; 1528 info.lo_inode = info64->lo_inode; 1529 info.lo_rdevice = info64->lo_rdevice; 1530 info.lo_offset = info64->lo_offset; 1531 info.lo_encrypt_type = info64->lo_encrypt_type; 1532 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1533 info.lo_flags = info64->lo_flags; 1534 info.lo_init[0] = info64->lo_init[0]; 1535 info.lo_init[1] = info64->lo_init[1]; 1536 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1537 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1538 else 1539 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1540 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1541 1542 /* error in case values were truncated */ 1543 if (info.lo_device != info64->lo_device || 1544 info.lo_rdevice != info64->lo_rdevice || 1545 info.lo_inode != info64->lo_inode || 1546 info.lo_offset != info64->lo_offset || 1547 info.lo_init[0] != info64->lo_init[0] || 1548 info.lo_init[1] != info64->lo_init[1]) 1549 return -EOVERFLOW; 1550 1551 if (copy_to_user(arg, &info, sizeof(info))) 1552 return -EFAULT; 1553 return 0; 1554 } 1555 1556 static int 1557 loop_set_status_compat(struct loop_device *lo, 1558 const struct compat_loop_info __user *arg) 1559 { 1560 struct loop_info64 info64; 1561 int ret; 1562 1563 ret = loop_info64_from_compat(arg, &info64); 1564 if (ret < 0) 1565 return ret; 1566 return loop_set_status(lo, &info64); 1567 } 1568 1569 static int 1570 loop_get_status_compat(struct loop_device *lo, 1571 struct compat_loop_info __user *arg) 1572 { 1573 struct loop_info64 info64; 1574 int err; 1575 1576 if (!arg) { 1577 mutex_unlock(&lo->lo_ctl_mutex); 1578 return -EINVAL; 1579 } 1580 err = loop_get_status(lo, &info64); 1581 if (!err) 1582 err = loop_info64_to_compat(&info64, arg); 1583 return err; 1584 } 1585 1586 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1587 unsigned int cmd, unsigned long arg) 1588 { 1589 struct loop_device *lo = bdev->bd_disk->private_data; 1590 int err; 1591 1592 switch(cmd) { 1593 case LOOP_SET_STATUS: 1594 err = mutex_lock_killable(&lo->lo_ctl_mutex); 1595 if (!err) { 1596 err = loop_set_status_compat(lo, 1597 (const struct compat_loop_info __user *)arg); 1598 mutex_unlock(&lo->lo_ctl_mutex); 1599 } 1600 break; 1601 case LOOP_GET_STATUS: 1602 err = mutex_lock_killable(&lo->lo_ctl_mutex); 1603 if (!err) { 1604 err = loop_get_status_compat(lo, 1605 (struct compat_loop_info __user *)arg); 1606 /* loop_get_status() unlocks lo_ctl_mutex */ 1607 } 1608 break; 1609 case LOOP_SET_CAPACITY: 1610 case LOOP_CLR_FD: 1611 case LOOP_GET_STATUS64: 1612 case LOOP_SET_STATUS64: 1613 arg = (unsigned long) compat_ptr(arg); 1614 case LOOP_SET_FD: 1615 case LOOP_CHANGE_FD: 1616 err = lo_ioctl(bdev, mode, cmd, arg); 1617 break; 1618 default: 1619 err = -ENOIOCTLCMD; 1620 break; 1621 } 1622 return err; 1623 } 1624 #endif 1625 1626 static int lo_open(struct block_device *bdev, fmode_t mode) 1627 { 1628 struct loop_device *lo; 1629 int err = 0; 1630 1631 mutex_lock(&loop_index_mutex); 1632 lo = bdev->bd_disk->private_data; 1633 if (!lo) { 1634 err = -ENXIO; 1635 goto out; 1636 } 1637 1638 atomic_inc(&lo->lo_refcnt); 1639 out: 1640 mutex_unlock(&loop_index_mutex); 1641 return err; 1642 } 1643 1644 static void __lo_release(struct loop_device *lo) 1645 { 1646 int err; 1647 1648 if (atomic_dec_return(&lo->lo_refcnt)) 1649 return; 1650 1651 mutex_lock(&lo->lo_ctl_mutex); 1652 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1653 /* 1654 * In autoclear mode, stop the loop thread 1655 * and remove configuration after last close. 1656 */ 1657 err = loop_clr_fd(lo); 1658 if (!err) 1659 return; 1660 } else if (lo->lo_state == Lo_bound) { 1661 /* 1662 * Otherwise keep thread (if running) and config, 1663 * but flush possible ongoing bios in thread. 1664 */ 1665 blk_mq_freeze_queue(lo->lo_queue); 1666 blk_mq_unfreeze_queue(lo->lo_queue); 1667 } 1668 1669 mutex_unlock(&lo->lo_ctl_mutex); 1670 } 1671 1672 static void lo_release(struct gendisk *disk, fmode_t mode) 1673 { 1674 mutex_lock(&loop_index_mutex); 1675 __lo_release(disk->private_data); 1676 mutex_unlock(&loop_index_mutex); 1677 } 1678 1679 static const struct block_device_operations lo_fops = { 1680 .owner = THIS_MODULE, 1681 .open = lo_open, 1682 .release = lo_release, 1683 .ioctl = lo_ioctl, 1684 #ifdef CONFIG_COMPAT 1685 .compat_ioctl = lo_compat_ioctl, 1686 #endif 1687 }; 1688 1689 /* 1690 * And now the modules code and kernel interface. 1691 */ 1692 static int max_loop; 1693 module_param(max_loop, int, 0444); 1694 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1695 module_param(max_part, int, 0444); 1696 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1697 MODULE_LICENSE("GPL"); 1698 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1699 1700 int loop_register_transfer(struct loop_func_table *funcs) 1701 { 1702 unsigned int n = funcs->number; 1703 1704 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1705 return -EINVAL; 1706 xfer_funcs[n] = funcs; 1707 return 0; 1708 } 1709 1710 static int unregister_transfer_cb(int id, void *ptr, void *data) 1711 { 1712 struct loop_device *lo = ptr; 1713 struct loop_func_table *xfer = data; 1714 1715 mutex_lock(&lo->lo_ctl_mutex); 1716 if (lo->lo_encryption == xfer) 1717 loop_release_xfer(lo); 1718 mutex_unlock(&lo->lo_ctl_mutex); 1719 return 0; 1720 } 1721 1722 int loop_unregister_transfer(int number) 1723 { 1724 unsigned int n = number; 1725 struct loop_func_table *xfer; 1726 1727 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1728 return -EINVAL; 1729 1730 xfer_funcs[n] = NULL; 1731 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1732 return 0; 1733 } 1734 1735 EXPORT_SYMBOL(loop_register_transfer); 1736 EXPORT_SYMBOL(loop_unregister_transfer); 1737 1738 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1739 const struct blk_mq_queue_data *bd) 1740 { 1741 struct request *rq = bd->rq; 1742 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1743 struct loop_device *lo = rq->q->queuedata; 1744 1745 blk_mq_start_request(rq); 1746 1747 if (lo->lo_state != Lo_bound) 1748 return BLK_STS_IOERR; 1749 1750 switch (req_op(rq)) { 1751 case REQ_OP_FLUSH: 1752 case REQ_OP_DISCARD: 1753 case REQ_OP_WRITE_ZEROES: 1754 cmd->use_aio = false; 1755 break; 1756 default: 1757 cmd->use_aio = lo->use_dio; 1758 break; 1759 } 1760 1761 /* always use the first bio's css */ 1762 #ifdef CONFIG_BLK_CGROUP 1763 if (cmd->use_aio && rq->bio && rq->bio->bi_css) { 1764 cmd->css = rq->bio->bi_css; 1765 css_get(cmd->css); 1766 } else 1767 #endif 1768 cmd->css = NULL; 1769 kthread_queue_work(&lo->worker, &cmd->work); 1770 1771 return BLK_STS_OK; 1772 } 1773 1774 static void loop_handle_cmd(struct loop_cmd *cmd) 1775 { 1776 struct request *rq = blk_mq_rq_from_pdu(cmd); 1777 const bool write = op_is_write(req_op(rq)); 1778 struct loop_device *lo = rq->q->queuedata; 1779 int ret = 0; 1780 1781 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1782 ret = -EIO; 1783 goto failed; 1784 } 1785 1786 ret = do_req_filebacked(lo, rq); 1787 failed: 1788 /* complete non-aio request */ 1789 if (!cmd->use_aio || ret) { 1790 cmd->ret = ret ? -EIO : 0; 1791 blk_mq_complete_request(rq); 1792 } 1793 } 1794 1795 static void loop_queue_work(struct kthread_work *work) 1796 { 1797 struct loop_cmd *cmd = 1798 container_of(work, struct loop_cmd, work); 1799 1800 loop_handle_cmd(cmd); 1801 } 1802 1803 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 1804 unsigned int hctx_idx, unsigned int numa_node) 1805 { 1806 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1807 1808 kthread_init_work(&cmd->work, loop_queue_work); 1809 return 0; 1810 } 1811 1812 static const struct blk_mq_ops loop_mq_ops = { 1813 .queue_rq = loop_queue_rq, 1814 .init_request = loop_init_request, 1815 .complete = lo_complete_rq, 1816 }; 1817 1818 static int loop_add(struct loop_device **l, int i) 1819 { 1820 struct loop_device *lo; 1821 struct gendisk *disk; 1822 int err; 1823 1824 err = -ENOMEM; 1825 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1826 if (!lo) 1827 goto out; 1828 1829 lo->lo_state = Lo_unbound; 1830 1831 /* allocate id, if @id >= 0, we're requesting that specific id */ 1832 if (i >= 0) { 1833 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1834 if (err == -ENOSPC) 1835 err = -EEXIST; 1836 } else { 1837 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1838 } 1839 if (err < 0) 1840 goto out_free_dev; 1841 i = err; 1842 1843 err = -ENOMEM; 1844 lo->tag_set.ops = &loop_mq_ops; 1845 lo->tag_set.nr_hw_queues = 1; 1846 lo->tag_set.queue_depth = 128; 1847 lo->tag_set.numa_node = NUMA_NO_NODE; 1848 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1849 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1850 lo->tag_set.driver_data = lo; 1851 1852 err = blk_mq_alloc_tag_set(&lo->tag_set); 1853 if (err) 1854 goto out_free_idr; 1855 1856 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1857 if (IS_ERR_OR_NULL(lo->lo_queue)) { 1858 err = PTR_ERR(lo->lo_queue); 1859 goto out_cleanup_tags; 1860 } 1861 lo->lo_queue->queuedata = lo; 1862 1863 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 1864 1865 /* 1866 * By default, we do buffer IO, so it doesn't make sense to enable 1867 * merge because the I/O submitted to backing file is handled page by 1868 * page. For directio mode, merge does help to dispatch bigger request 1869 * to underlayer disk. We will enable merge once directio is enabled. 1870 */ 1871 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 1872 1873 err = -ENOMEM; 1874 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1875 if (!disk) 1876 goto out_free_queue; 1877 1878 /* 1879 * Disable partition scanning by default. The in-kernel partition 1880 * scanning can be requested individually per-device during its 1881 * setup. Userspace can always add and remove partitions from all 1882 * devices. The needed partition minors are allocated from the 1883 * extended minor space, the main loop device numbers will continue 1884 * to match the loop minors, regardless of the number of partitions 1885 * used. 1886 * 1887 * If max_part is given, partition scanning is globally enabled for 1888 * all loop devices. The minors for the main loop devices will be 1889 * multiples of max_part. 1890 * 1891 * Note: Global-for-all-devices, set-only-at-init, read-only module 1892 * parameteters like 'max_loop' and 'max_part' make things needlessly 1893 * complicated, are too static, inflexible and may surprise 1894 * userspace tools. Parameters like this in general should be avoided. 1895 */ 1896 if (!part_shift) 1897 disk->flags |= GENHD_FL_NO_PART_SCAN; 1898 disk->flags |= GENHD_FL_EXT_DEVT; 1899 mutex_init(&lo->lo_ctl_mutex); 1900 atomic_set(&lo->lo_refcnt, 0); 1901 lo->lo_number = i; 1902 spin_lock_init(&lo->lo_lock); 1903 disk->major = LOOP_MAJOR; 1904 disk->first_minor = i << part_shift; 1905 disk->fops = &lo_fops; 1906 disk->private_data = lo; 1907 disk->queue = lo->lo_queue; 1908 sprintf(disk->disk_name, "loop%d", i); 1909 add_disk(disk); 1910 *l = lo; 1911 return lo->lo_number; 1912 1913 out_free_queue: 1914 blk_cleanup_queue(lo->lo_queue); 1915 out_cleanup_tags: 1916 blk_mq_free_tag_set(&lo->tag_set); 1917 out_free_idr: 1918 idr_remove(&loop_index_idr, i); 1919 out_free_dev: 1920 kfree(lo); 1921 out: 1922 return err; 1923 } 1924 1925 static void loop_remove(struct loop_device *lo) 1926 { 1927 del_gendisk(lo->lo_disk); 1928 blk_cleanup_queue(lo->lo_queue); 1929 blk_mq_free_tag_set(&lo->tag_set); 1930 put_disk(lo->lo_disk); 1931 kfree(lo); 1932 } 1933 1934 static int find_free_cb(int id, void *ptr, void *data) 1935 { 1936 struct loop_device *lo = ptr; 1937 struct loop_device **l = data; 1938 1939 if (lo->lo_state == Lo_unbound) { 1940 *l = lo; 1941 return 1; 1942 } 1943 return 0; 1944 } 1945 1946 static int loop_lookup(struct loop_device **l, int i) 1947 { 1948 struct loop_device *lo; 1949 int ret = -ENODEV; 1950 1951 if (i < 0) { 1952 int err; 1953 1954 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1955 if (err == 1) { 1956 *l = lo; 1957 ret = lo->lo_number; 1958 } 1959 goto out; 1960 } 1961 1962 /* lookup and return a specific i */ 1963 lo = idr_find(&loop_index_idr, i); 1964 if (lo) { 1965 *l = lo; 1966 ret = lo->lo_number; 1967 } 1968 out: 1969 return ret; 1970 } 1971 1972 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1973 { 1974 struct loop_device *lo; 1975 struct kobject *kobj; 1976 int err; 1977 1978 mutex_lock(&loop_index_mutex); 1979 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1980 if (err < 0) 1981 err = loop_add(&lo, MINOR(dev) >> part_shift); 1982 if (err < 0) 1983 kobj = NULL; 1984 else 1985 kobj = get_disk_and_module(lo->lo_disk); 1986 mutex_unlock(&loop_index_mutex); 1987 1988 *part = 0; 1989 return kobj; 1990 } 1991 1992 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1993 unsigned long parm) 1994 { 1995 struct loop_device *lo; 1996 int ret = -ENOSYS; 1997 1998 mutex_lock(&loop_index_mutex); 1999 switch (cmd) { 2000 case LOOP_CTL_ADD: 2001 ret = loop_lookup(&lo, parm); 2002 if (ret >= 0) { 2003 ret = -EEXIST; 2004 break; 2005 } 2006 ret = loop_add(&lo, parm); 2007 break; 2008 case LOOP_CTL_REMOVE: 2009 ret = loop_lookup(&lo, parm); 2010 if (ret < 0) 2011 break; 2012 ret = mutex_lock_killable(&lo->lo_ctl_mutex); 2013 if (ret) 2014 break; 2015 if (lo->lo_state != Lo_unbound) { 2016 ret = -EBUSY; 2017 mutex_unlock(&lo->lo_ctl_mutex); 2018 break; 2019 } 2020 if (atomic_read(&lo->lo_refcnt) > 0) { 2021 ret = -EBUSY; 2022 mutex_unlock(&lo->lo_ctl_mutex); 2023 break; 2024 } 2025 lo->lo_disk->private_data = NULL; 2026 mutex_unlock(&lo->lo_ctl_mutex); 2027 idr_remove(&loop_index_idr, lo->lo_number); 2028 loop_remove(lo); 2029 break; 2030 case LOOP_CTL_GET_FREE: 2031 ret = loop_lookup(&lo, -1); 2032 if (ret >= 0) 2033 break; 2034 ret = loop_add(&lo, -1); 2035 } 2036 mutex_unlock(&loop_index_mutex); 2037 2038 return ret; 2039 } 2040 2041 static const struct file_operations loop_ctl_fops = { 2042 .open = nonseekable_open, 2043 .unlocked_ioctl = loop_control_ioctl, 2044 .compat_ioctl = loop_control_ioctl, 2045 .owner = THIS_MODULE, 2046 .llseek = noop_llseek, 2047 }; 2048 2049 static struct miscdevice loop_misc = { 2050 .minor = LOOP_CTRL_MINOR, 2051 .name = "loop-control", 2052 .fops = &loop_ctl_fops, 2053 }; 2054 2055 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2056 MODULE_ALIAS("devname:loop-control"); 2057 2058 static int __init loop_init(void) 2059 { 2060 int i, nr; 2061 unsigned long range; 2062 struct loop_device *lo; 2063 int err; 2064 2065 part_shift = 0; 2066 if (max_part > 0) { 2067 part_shift = fls(max_part); 2068 2069 /* 2070 * Adjust max_part according to part_shift as it is exported 2071 * to user space so that user can decide correct minor number 2072 * if [s]he want to create more devices. 2073 * 2074 * Note that -1 is required because partition 0 is reserved 2075 * for the whole disk. 2076 */ 2077 max_part = (1UL << part_shift) - 1; 2078 } 2079 2080 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2081 err = -EINVAL; 2082 goto err_out; 2083 } 2084 2085 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2086 err = -EINVAL; 2087 goto err_out; 2088 } 2089 2090 /* 2091 * If max_loop is specified, create that many devices upfront. 2092 * This also becomes a hard limit. If max_loop is not specified, 2093 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2094 * init time. Loop devices can be requested on-demand with the 2095 * /dev/loop-control interface, or be instantiated by accessing 2096 * a 'dead' device node. 2097 */ 2098 if (max_loop) { 2099 nr = max_loop; 2100 range = max_loop << part_shift; 2101 } else { 2102 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2103 range = 1UL << MINORBITS; 2104 } 2105 2106 err = misc_register(&loop_misc); 2107 if (err < 0) 2108 goto err_out; 2109 2110 2111 if (register_blkdev(LOOP_MAJOR, "loop")) { 2112 err = -EIO; 2113 goto misc_out; 2114 } 2115 2116 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2117 THIS_MODULE, loop_probe, NULL, NULL); 2118 2119 /* pre-create number of devices given by config or max_loop */ 2120 mutex_lock(&loop_index_mutex); 2121 for (i = 0; i < nr; i++) 2122 loop_add(&lo, i); 2123 mutex_unlock(&loop_index_mutex); 2124 2125 printk(KERN_INFO "loop: module loaded\n"); 2126 return 0; 2127 2128 misc_out: 2129 misc_deregister(&loop_misc); 2130 err_out: 2131 return err; 2132 } 2133 2134 static int loop_exit_cb(int id, void *ptr, void *data) 2135 { 2136 struct loop_device *lo = ptr; 2137 2138 loop_remove(lo); 2139 return 0; 2140 } 2141 2142 static void __exit loop_exit(void) 2143 { 2144 unsigned long range; 2145 2146 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2147 2148 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2149 idr_destroy(&loop_index_idr); 2150 2151 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2152 unregister_blkdev(LOOP_MAJOR, "loop"); 2153 2154 misc_deregister(&loop_misc); 2155 } 2156 2157 module_init(loop_init); 2158 module_exit(loop_exit); 2159 2160 #ifndef MODULE 2161 static int __init max_loop_setup(char *str) 2162 { 2163 max_loop = simple_strtol(str, NULL, 0); 2164 return 1; 2165 } 2166 2167 __setup("max_loop=", max_loop_setup); 2168 #endif 2169