1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_func_table; 49 50 struct loop_device { 51 int lo_number; 52 loff_t lo_offset; 53 loff_t lo_sizelimit; 54 int lo_flags; 55 char lo_file_name[LO_NAME_SIZE]; 56 57 struct file * lo_backing_file; 58 struct block_device *lo_device; 59 60 gfp_t old_gfp_mask; 61 62 spinlock_t lo_lock; 63 int lo_state; 64 spinlock_t lo_work_lock; 65 struct workqueue_struct *workqueue; 66 struct work_struct rootcg_work; 67 struct list_head rootcg_cmd_list; 68 struct list_head idle_worker_list; 69 struct rb_root worker_tree; 70 struct timer_list timer; 71 bool use_dio; 72 bool sysfs_inited; 73 74 struct request_queue *lo_queue; 75 struct blk_mq_tag_set tag_set; 76 struct gendisk *lo_disk; 77 struct mutex lo_mutex; 78 bool idr_visible; 79 }; 80 81 struct loop_cmd { 82 struct list_head list_entry; 83 bool use_aio; /* use AIO interface to handle I/O */ 84 atomic_t ref; /* only for aio */ 85 long ret; 86 struct kiocb iocb; 87 struct bio_vec *bvec; 88 struct cgroup_subsys_state *blkcg_css; 89 struct cgroup_subsys_state *memcg_css; 90 }; 91 92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 93 #define LOOP_DEFAULT_HW_Q_DEPTH 128 94 95 static DEFINE_IDR(loop_index_idr); 96 static DEFINE_MUTEX(loop_ctl_mutex); 97 static DEFINE_MUTEX(loop_validate_mutex); 98 99 /** 100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 101 * 102 * @lo: struct loop_device 103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 104 * 105 * Returns 0 on success, -EINTR otherwise. 106 * 107 * Since loop_validate_file() traverses on other "struct loop_device" if 108 * is_loop_device() is true, we need a global lock for serializing concurrent 109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 110 */ 111 static int loop_global_lock_killable(struct loop_device *lo, bool global) 112 { 113 int err; 114 115 if (global) { 116 err = mutex_lock_killable(&loop_validate_mutex); 117 if (err) 118 return err; 119 } 120 err = mutex_lock_killable(&lo->lo_mutex); 121 if (err && global) 122 mutex_unlock(&loop_validate_mutex); 123 return err; 124 } 125 126 /** 127 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 128 * 129 * @lo: struct loop_device 130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 131 */ 132 static void loop_global_unlock(struct loop_device *lo, bool global) 133 { 134 mutex_unlock(&lo->lo_mutex); 135 if (global) 136 mutex_unlock(&loop_validate_mutex); 137 } 138 139 static int max_part; 140 static int part_shift; 141 142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 143 { 144 loff_t loopsize; 145 146 /* Compute loopsize in bytes */ 147 loopsize = i_size_read(file->f_mapping->host); 148 if (offset > 0) 149 loopsize -= offset; 150 /* offset is beyond i_size, weird but possible */ 151 if (loopsize < 0) 152 return 0; 153 154 if (sizelimit > 0 && sizelimit < loopsize) 155 loopsize = sizelimit; 156 /* 157 * Unfortunately, if we want to do I/O on the device, 158 * the number of 512-byte sectors has to fit into a sector_t. 159 */ 160 return loopsize >> 9; 161 } 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 166 } 167 168 /* 169 * We support direct I/O only if lo_offset is aligned with the logical I/O size 170 * of backing device, and the logical block size of loop is bigger than that of 171 * the backing device. 172 */ 173 static bool lo_bdev_can_use_dio(struct loop_device *lo, 174 struct block_device *backing_bdev) 175 { 176 unsigned int sb_bsize = bdev_logical_block_size(backing_bdev); 177 178 if (queue_logical_block_size(lo->lo_queue) < sb_bsize) 179 return false; 180 if (lo->lo_offset & (sb_bsize - 1)) 181 return false; 182 return true; 183 } 184 185 static void __loop_update_dio(struct loop_device *lo, bool dio) 186 { 187 struct file *file = lo->lo_backing_file; 188 struct inode *inode = file->f_mapping->host; 189 struct block_device *backing_bdev = NULL; 190 bool use_dio; 191 192 if (S_ISBLK(inode->i_mode)) 193 backing_bdev = I_BDEV(inode); 194 else if (inode->i_sb->s_bdev) 195 backing_bdev = inode->i_sb->s_bdev; 196 197 use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) && 198 (!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev)); 199 200 if (lo->use_dio == use_dio) 201 return; 202 203 /* flush dirty pages before changing direct IO */ 204 vfs_fsync(file, 0); 205 206 /* 207 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 208 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 209 * will get updated by ioctl(LOOP_GET_STATUS) 210 */ 211 if (lo->lo_state == Lo_bound) 212 blk_mq_freeze_queue(lo->lo_queue); 213 lo->use_dio = use_dio; 214 if (use_dio) 215 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 216 else 217 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 218 if (lo->lo_state == Lo_bound) 219 blk_mq_unfreeze_queue(lo->lo_queue); 220 } 221 222 /** 223 * loop_set_size() - sets device size and notifies userspace 224 * @lo: struct loop_device to set the size for 225 * @size: new size of the loop device 226 * 227 * Callers must validate that the size passed into this function fits into 228 * a sector_t, eg using loop_validate_size() 229 */ 230 static void loop_set_size(struct loop_device *lo, loff_t size) 231 { 232 if (!set_capacity_and_notify(lo->lo_disk, size)) 233 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 234 } 235 236 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 237 { 238 struct iov_iter i; 239 ssize_t bw; 240 241 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len); 242 243 bw = vfs_iter_write(file, &i, ppos, 0); 244 245 if (likely(bw == bvec->bv_len)) 246 return 0; 247 248 printk_ratelimited(KERN_ERR 249 "loop: Write error at byte offset %llu, length %i.\n", 250 (unsigned long long)*ppos, bvec->bv_len); 251 if (bw >= 0) 252 bw = -EIO; 253 return bw; 254 } 255 256 static int lo_write_simple(struct loop_device *lo, struct request *rq, 257 loff_t pos) 258 { 259 struct bio_vec bvec; 260 struct req_iterator iter; 261 int ret = 0; 262 263 rq_for_each_segment(bvec, rq, iter) { 264 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 265 if (ret < 0) 266 break; 267 cond_resched(); 268 } 269 270 return ret; 271 } 272 273 static int lo_read_simple(struct loop_device *lo, struct request *rq, 274 loff_t pos) 275 { 276 struct bio_vec bvec; 277 struct req_iterator iter; 278 struct iov_iter i; 279 ssize_t len; 280 281 rq_for_each_segment(bvec, rq, iter) { 282 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len); 283 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 284 if (len < 0) 285 return len; 286 287 flush_dcache_page(bvec.bv_page); 288 289 if (len != bvec.bv_len) { 290 struct bio *bio; 291 292 __rq_for_each_bio(bio, rq) 293 zero_fill_bio(bio); 294 break; 295 } 296 cond_resched(); 297 } 298 299 return 0; 300 } 301 302 static void loop_clear_limits(struct loop_device *lo, int mode) 303 { 304 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 305 306 if (mode & FALLOC_FL_ZERO_RANGE) 307 lim.max_write_zeroes_sectors = 0; 308 309 if (mode & FALLOC_FL_PUNCH_HOLE) { 310 lim.max_hw_discard_sectors = 0; 311 lim.discard_granularity = 0; 312 } 313 314 queue_limits_commit_update(lo->lo_queue, &lim); 315 } 316 317 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 318 int mode) 319 { 320 /* 321 * We use fallocate to manipulate the space mappings used by the image 322 * a.k.a. discard/zerorange. 323 */ 324 struct file *file = lo->lo_backing_file; 325 int ret; 326 327 mode |= FALLOC_FL_KEEP_SIZE; 328 329 if (!bdev_max_discard_sectors(lo->lo_device)) 330 return -EOPNOTSUPP; 331 332 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 333 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 334 return -EIO; 335 336 /* 337 * We initially configure the limits in a hope that fallocate is 338 * supported and clear them here if that turns out not to be true. 339 */ 340 if (unlikely(ret == -EOPNOTSUPP)) 341 loop_clear_limits(lo, mode); 342 343 return ret; 344 } 345 346 static int lo_req_flush(struct loop_device *lo, struct request *rq) 347 { 348 int ret = vfs_fsync(lo->lo_backing_file, 0); 349 if (unlikely(ret && ret != -EINVAL)) 350 ret = -EIO; 351 352 return ret; 353 } 354 355 static void lo_complete_rq(struct request *rq) 356 { 357 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 358 blk_status_t ret = BLK_STS_OK; 359 360 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 361 req_op(rq) != REQ_OP_READ) { 362 if (cmd->ret < 0) 363 ret = errno_to_blk_status(cmd->ret); 364 goto end_io; 365 } 366 367 /* 368 * Short READ - if we got some data, advance our request and 369 * retry it. If we got no data, end the rest with EIO. 370 */ 371 if (cmd->ret) { 372 blk_update_request(rq, BLK_STS_OK, cmd->ret); 373 cmd->ret = 0; 374 blk_mq_requeue_request(rq, true); 375 } else { 376 if (cmd->use_aio) { 377 struct bio *bio = rq->bio; 378 379 while (bio) { 380 zero_fill_bio(bio); 381 bio = bio->bi_next; 382 } 383 } 384 ret = BLK_STS_IOERR; 385 end_io: 386 blk_mq_end_request(rq, ret); 387 } 388 } 389 390 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 391 { 392 struct request *rq = blk_mq_rq_from_pdu(cmd); 393 394 if (!atomic_dec_and_test(&cmd->ref)) 395 return; 396 kfree(cmd->bvec); 397 cmd->bvec = NULL; 398 if (likely(!blk_should_fake_timeout(rq->q))) 399 blk_mq_complete_request(rq); 400 } 401 402 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 403 { 404 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 405 406 cmd->ret = ret; 407 lo_rw_aio_do_completion(cmd); 408 } 409 410 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 411 loff_t pos, int rw) 412 { 413 struct iov_iter iter; 414 struct req_iterator rq_iter; 415 struct bio_vec *bvec; 416 struct request *rq = blk_mq_rq_from_pdu(cmd); 417 struct bio *bio = rq->bio; 418 struct file *file = lo->lo_backing_file; 419 struct bio_vec tmp; 420 unsigned int offset; 421 int nr_bvec = 0; 422 int ret; 423 424 rq_for_each_bvec(tmp, rq, rq_iter) 425 nr_bvec++; 426 427 if (rq->bio != rq->biotail) { 428 429 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 430 GFP_NOIO); 431 if (!bvec) 432 return -EIO; 433 cmd->bvec = bvec; 434 435 /* 436 * The bios of the request may be started from the middle of 437 * the 'bvec' because of bio splitting, so we can't directly 438 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 439 * API will take care of all details for us. 440 */ 441 rq_for_each_bvec(tmp, rq, rq_iter) { 442 *bvec = tmp; 443 bvec++; 444 } 445 bvec = cmd->bvec; 446 offset = 0; 447 } else { 448 /* 449 * Same here, this bio may be started from the middle of the 450 * 'bvec' because of bio splitting, so offset from the bvec 451 * must be passed to iov iterator 452 */ 453 offset = bio->bi_iter.bi_bvec_done; 454 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 455 } 456 atomic_set(&cmd->ref, 2); 457 458 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 459 iter.iov_offset = offset; 460 461 cmd->iocb.ki_pos = pos; 462 cmd->iocb.ki_filp = file; 463 cmd->iocb.ki_complete = lo_rw_aio_complete; 464 cmd->iocb.ki_flags = IOCB_DIRECT; 465 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 466 467 if (rw == ITER_SOURCE) 468 ret = file->f_op->write_iter(&cmd->iocb, &iter); 469 else 470 ret = file->f_op->read_iter(&cmd->iocb, &iter); 471 472 lo_rw_aio_do_completion(cmd); 473 474 if (ret != -EIOCBQUEUED) 475 lo_rw_aio_complete(&cmd->iocb, ret); 476 return 0; 477 } 478 479 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 480 { 481 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 482 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 483 484 /* 485 * lo_write_simple and lo_read_simple should have been covered 486 * by io submit style function like lo_rw_aio(), one blocker 487 * is that lo_read_simple() need to call flush_dcache_page after 488 * the page is written from kernel, and it isn't easy to handle 489 * this in io submit style function which submits all segments 490 * of the req at one time. And direct read IO doesn't need to 491 * run flush_dcache_page(). 492 */ 493 switch (req_op(rq)) { 494 case REQ_OP_FLUSH: 495 return lo_req_flush(lo, rq); 496 case REQ_OP_WRITE_ZEROES: 497 /* 498 * If the caller doesn't want deallocation, call zeroout to 499 * write zeroes the range. Otherwise, punch them out. 500 */ 501 return lo_fallocate(lo, rq, pos, 502 (rq->cmd_flags & REQ_NOUNMAP) ? 503 FALLOC_FL_ZERO_RANGE : 504 FALLOC_FL_PUNCH_HOLE); 505 case REQ_OP_DISCARD: 506 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 507 case REQ_OP_WRITE: 508 if (cmd->use_aio) 509 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 510 else 511 return lo_write_simple(lo, rq, pos); 512 case REQ_OP_READ: 513 if (cmd->use_aio) 514 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 515 else 516 return lo_read_simple(lo, rq, pos); 517 default: 518 WARN_ON_ONCE(1); 519 return -EIO; 520 } 521 } 522 523 static inline void loop_update_dio(struct loop_device *lo) 524 { 525 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 526 lo->use_dio); 527 } 528 529 static void loop_reread_partitions(struct loop_device *lo) 530 { 531 int rc; 532 533 mutex_lock(&lo->lo_disk->open_mutex); 534 rc = bdev_disk_changed(lo->lo_disk, false); 535 mutex_unlock(&lo->lo_disk->open_mutex); 536 if (rc) 537 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 538 __func__, lo->lo_number, lo->lo_file_name, rc); 539 } 540 541 static inline int is_loop_device(struct file *file) 542 { 543 struct inode *i = file->f_mapping->host; 544 545 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 546 } 547 548 static int loop_validate_file(struct file *file, struct block_device *bdev) 549 { 550 struct inode *inode = file->f_mapping->host; 551 struct file *f = file; 552 553 /* Avoid recursion */ 554 while (is_loop_device(f)) { 555 struct loop_device *l; 556 557 lockdep_assert_held(&loop_validate_mutex); 558 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 559 return -EBADF; 560 561 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 562 if (l->lo_state != Lo_bound) 563 return -EINVAL; 564 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 565 rmb(); 566 f = l->lo_backing_file; 567 } 568 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 569 return -EINVAL; 570 return 0; 571 } 572 573 /* 574 * loop_change_fd switched the backing store of a loopback device to 575 * a new file. This is useful for operating system installers to free up 576 * the original file and in High Availability environments to switch to 577 * an alternative location for the content in case of server meltdown. 578 * This can only work if the loop device is used read-only, and if the 579 * new backing store is the same size and type as the old backing store. 580 */ 581 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 582 unsigned int arg) 583 { 584 struct file *file = fget(arg); 585 struct file *old_file; 586 int error; 587 bool partscan; 588 bool is_loop; 589 590 if (!file) 591 return -EBADF; 592 593 /* suppress uevents while reconfiguring the device */ 594 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 595 596 is_loop = is_loop_device(file); 597 error = loop_global_lock_killable(lo, is_loop); 598 if (error) 599 goto out_putf; 600 error = -ENXIO; 601 if (lo->lo_state != Lo_bound) 602 goto out_err; 603 604 /* the loop device has to be read-only */ 605 error = -EINVAL; 606 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 607 goto out_err; 608 609 error = loop_validate_file(file, bdev); 610 if (error) 611 goto out_err; 612 613 old_file = lo->lo_backing_file; 614 615 error = -EINVAL; 616 617 /* size of the new backing store needs to be the same */ 618 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 619 goto out_err; 620 621 /* and ... switch */ 622 disk_force_media_change(lo->lo_disk); 623 blk_mq_freeze_queue(lo->lo_queue); 624 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 625 lo->lo_backing_file = file; 626 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 627 mapping_set_gfp_mask(file->f_mapping, 628 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 629 loop_update_dio(lo); 630 blk_mq_unfreeze_queue(lo->lo_queue); 631 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 632 loop_global_unlock(lo, is_loop); 633 634 /* 635 * Flush loop_validate_file() before fput(), for l->lo_backing_file 636 * might be pointing at old_file which might be the last reference. 637 */ 638 if (!is_loop) { 639 mutex_lock(&loop_validate_mutex); 640 mutex_unlock(&loop_validate_mutex); 641 } 642 /* 643 * We must drop file reference outside of lo_mutex as dropping 644 * the file ref can take open_mutex which creates circular locking 645 * dependency. 646 */ 647 fput(old_file); 648 if (partscan) 649 loop_reread_partitions(lo); 650 651 error = 0; 652 done: 653 /* enable and uncork uevent now that we are done */ 654 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 655 return error; 656 657 out_err: 658 loop_global_unlock(lo, is_loop); 659 out_putf: 660 fput(file); 661 goto done; 662 } 663 664 /* loop sysfs attributes */ 665 666 static ssize_t loop_attr_show(struct device *dev, char *page, 667 ssize_t (*callback)(struct loop_device *, char *)) 668 { 669 struct gendisk *disk = dev_to_disk(dev); 670 struct loop_device *lo = disk->private_data; 671 672 return callback(lo, page); 673 } 674 675 #define LOOP_ATTR_RO(_name) \ 676 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 677 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 678 struct device_attribute *attr, char *b) \ 679 { \ 680 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 681 } \ 682 static struct device_attribute loop_attr_##_name = \ 683 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 684 685 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 686 { 687 ssize_t ret; 688 char *p = NULL; 689 690 spin_lock_irq(&lo->lo_lock); 691 if (lo->lo_backing_file) 692 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 693 spin_unlock_irq(&lo->lo_lock); 694 695 if (IS_ERR_OR_NULL(p)) 696 ret = PTR_ERR(p); 697 else { 698 ret = strlen(p); 699 memmove(buf, p, ret); 700 buf[ret++] = '\n'; 701 buf[ret] = 0; 702 } 703 704 return ret; 705 } 706 707 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 708 { 709 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 710 } 711 712 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 713 { 714 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 715 } 716 717 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 718 { 719 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 720 721 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 722 } 723 724 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 725 { 726 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 727 728 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 729 } 730 731 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 732 { 733 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 734 735 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 736 } 737 738 LOOP_ATTR_RO(backing_file); 739 LOOP_ATTR_RO(offset); 740 LOOP_ATTR_RO(sizelimit); 741 LOOP_ATTR_RO(autoclear); 742 LOOP_ATTR_RO(partscan); 743 LOOP_ATTR_RO(dio); 744 745 static struct attribute *loop_attrs[] = { 746 &loop_attr_backing_file.attr, 747 &loop_attr_offset.attr, 748 &loop_attr_sizelimit.attr, 749 &loop_attr_autoclear.attr, 750 &loop_attr_partscan.attr, 751 &loop_attr_dio.attr, 752 NULL, 753 }; 754 755 static struct attribute_group loop_attribute_group = { 756 .name = "loop", 757 .attrs= loop_attrs, 758 }; 759 760 static void loop_sysfs_init(struct loop_device *lo) 761 { 762 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 763 &loop_attribute_group); 764 } 765 766 static void loop_sysfs_exit(struct loop_device *lo) 767 { 768 if (lo->sysfs_inited) 769 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 770 &loop_attribute_group); 771 } 772 773 static void loop_get_discard_config(struct loop_device *lo, 774 u32 *granularity, u32 *max_discard_sectors) 775 { 776 struct file *file = lo->lo_backing_file; 777 struct inode *inode = file->f_mapping->host; 778 struct kstatfs sbuf; 779 780 /* 781 * If the backing device is a block device, mirror its zeroing 782 * capability. Set the discard sectors to the block device's zeroing 783 * capabilities because loop discards result in blkdev_issue_zeroout(), 784 * not blkdev_issue_discard(). This maintains consistent behavior with 785 * file-backed loop devices: discarded regions read back as zero. 786 */ 787 if (S_ISBLK(inode->i_mode)) { 788 struct block_device *bdev = I_BDEV(inode); 789 790 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 791 *granularity = bdev_discard_granularity(bdev); 792 793 /* 794 * We use punch hole to reclaim the free space used by the 795 * image a.k.a. discard. 796 */ 797 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 798 *max_discard_sectors = UINT_MAX >> 9; 799 *granularity = sbuf.f_bsize; 800 } 801 } 802 803 struct loop_worker { 804 struct rb_node rb_node; 805 struct work_struct work; 806 struct list_head cmd_list; 807 struct list_head idle_list; 808 struct loop_device *lo; 809 struct cgroup_subsys_state *blkcg_css; 810 unsigned long last_ran_at; 811 }; 812 813 static void loop_workfn(struct work_struct *work); 814 815 #ifdef CONFIG_BLK_CGROUP 816 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 817 { 818 return !css || css == blkcg_root_css; 819 } 820 #else 821 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 822 { 823 return !css; 824 } 825 #endif 826 827 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 828 { 829 struct rb_node **node, *parent = NULL; 830 struct loop_worker *cur_worker, *worker = NULL; 831 struct work_struct *work; 832 struct list_head *cmd_list; 833 834 spin_lock_irq(&lo->lo_work_lock); 835 836 if (queue_on_root_worker(cmd->blkcg_css)) 837 goto queue_work; 838 839 node = &lo->worker_tree.rb_node; 840 841 while (*node) { 842 parent = *node; 843 cur_worker = container_of(*node, struct loop_worker, rb_node); 844 if (cur_worker->blkcg_css == cmd->blkcg_css) { 845 worker = cur_worker; 846 break; 847 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 848 node = &(*node)->rb_left; 849 } else { 850 node = &(*node)->rb_right; 851 } 852 } 853 if (worker) 854 goto queue_work; 855 856 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 857 /* 858 * In the event we cannot allocate a worker, just queue on the 859 * rootcg worker and issue the I/O as the rootcg 860 */ 861 if (!worker) { 862 cmd->blkcg_css = NULL; 863 if (cmd->memcg_css) 864 css_put(cmd->memcg_css); 865 cmd->memcg_css = NULL; 866 goto queue_work; 867 } 868 869 worker->blkcg_css = cmd->blkcg_css; 870 css_get(worker->blkcg_css); 871 INIT_WORK(&worker->work, loop_workfn); 872 INIT_LIST_HEAD(&worker->cmd_list); 873 INIT_LIST_HEAD(&worker->idle_list); 874 worker->lo = lo; 875 rb_link_node(&worker->rb_node, parent, node); 876 rb_insert_color(&worker->rb_node, &lo->worker_tree); 877 queue_work: 878 if (worker) { 879 /* 880 * We need to remove from the idle list here while 881 * holding the lock so that the idle timer doesn't 882 * free the worker 883 */ 884 if (!list_empty(&worker->idle_list)) 885 list_del_init(&worker->idle_list); 886 work = &worker->work; 887 cmd_list = &worker->cmd_list; 888 } else { 889 work = &lo->rootcg_work; 890 cmd_list = &lo->rootcg_cmd_list; 891 } 892 list_add_tail(&cmd->list_entry, cmd_list); 893 queue_work(lo->workqueue, work); 894 spin_unlock_irq(&lo->lo_work_lock); 895 } 896 897 static void loop_set_timer(struct loop_device *lo) 898 { 899 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 900 } 901 902 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 903 { 904 struct loop_worker *pos, *worker; 905 906 spin_lock_irq(&lo->lo_work_lock); 907 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 908 idle_list) { 909 if (!delete_all && 910 time_is_after_jiffies(worker->last_ran_at + 911 LOOP_IDLE_WORKER_TIMEOUT)) 912 break; 913 list_del(&worker->idle_list); 914 rb_erase(&worker->rb_node, &lo->worker_tree); 915 css_put(worker->blkcg_css); 916 kfree(worker); 917 } 918 if (!list_empty(&lo->idle_worker_list)) 919 loop_set_timer(lo); 920 spin_unlock_irq(&lo->lo_work_lock); 921 } 922 923 static void loop_free_idle_workers_timer(struct timer_list *timer) 924 { 925 struct loop_device *lo = container_of(timer, struct loop_device, timer); 926 927 return loop_free_idle_workers(lo, false); 928 } 929 930 /** 931 * loop_set_status_from_info - configure device from loop_info 932 * @lo: struct loop_device to configure 933 * @info: struct loop_info64 to configure the device with 934 * 935 * Configures the loop device parameters according to the passed 936 * in loop_info64 configuration. 937 */ 938 static int 939 loop_set_status_from_info(struct loop_device *lo, 940 const struct loop_info64 *info) 941 { 942 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 943 return -EINVAL; 944 945 switch (info->lo_encrypt_type) { 946 case LO_CRYPT_NONE: 947 break; 948 case LO_CRYPT_XOR: 949 pr_warn("support for the xor transformation has been removed.\n"); 950 return -EINVAL; 951 case LO_CRYPT_CRYPTOAPI: 952 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 953 return -EINVAL; 954 default: 955 return -EINVAL; 956 } 957 958 /* Avoid assigning overflow values */ 959 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 960 return -EOVERFLOW; 961 962 lo->lo_offset = info->lo_offset; 963 lo->lo_sizelimit = info->lo_sizelimit; 964 965 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 966 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 967 lo->lo_flags = info->lo_flags; 968 return 0; 969 } 970 971 static unsigned int loop_default_blocksize(struct loop_device *lo, 972 struct block_device *backing_bdev) 973 { 974 /* In case of direct I/O, match underlying block size */ 975 if ((lo->lo_backing_file->f_flags & O_DIRECT) && backing_bdev) 976 return bdev_logical_block_size(backing_bdev); 977 return SECTOR_SIZE; 978 } 979 980 static int loop_reconfigure_limits(struct loop_device *lo, unsigned int bsize) 981 { 982 struct file *file = lo->lo_backing_file; 983 struct inode *inode = file->f_mapping->host; 984 struct block_device *backing_bdev = NULL; 985 struct queue_limits lim; 986 u32 granularity = 0, max_discard_sectors = 0; 987 988 if (S_ISBLK(inode->i_mode)) 989 backing_bdev = I_BDEV(inode); 990 else if (inode->i_sb->s_bdev) 991 backing_bdev = inode->i_sb->s_bdev; 992 993 if (!bsize) 994 bsize = loop_default_blocksize(lo, backing_bdev); 995 996 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 997 998 lim = queue_limits_start_update(lo->lo_queue); 999 lim.logical_block_size = bsize; 1000 lim.physical_block_size = bsize; 1001 lim.io_min = bsize; 1002 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 1003 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 1004 lim.features |= BLK_FEAT_WRITE_CACHE; 1005 if (backing_bdev && !bdev_nonrot(backing_bdev)) 1006 lim.features |= BLK_FEAT_ROTATIONAL; 1007 lim.max_hw_discard_sectors = max_discard_sectors; 1008 lim.max_write_zeroes_sectors = max_discard_sectors; 1009 if (max_discard_sectors) 1010 lim.discard_granularity = granularity; 1011 else 1012 lim.discard_granularity = 0; 1013 return queue_limits_commit_update(lo->lo_queue, &lim); 1014 } 1015 1016 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 1017 struct block_device *bdev, 1018 const struct loop_config *config) 1019 { 1020 struct file *file = fget(config->fd); 1021 struct address_space *mapping; 1022 int error; 1023 loff_t size; 1024 bool partscan; 1025 bool is_loop; 1026 1027 if (!file) 1028 return -EBADF; 1029 is_loop = is_loop_device(file); 1030 1031 /* This is safe, since we have a reference from open(). */ 1032 __module_get(THIS_MODULE); 1033 1034 /* 1035 * If we don't hold exclusive handle for the device, upgrade to it 1036 * here to avoid changing device under exclusive owner. 1037 */ 1038 if (!(mode & BLK_OPEN_EXCL)) { 1039 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1040 if (error) 1041 goto out_putf; 1042 } 1043 1044 error = loop_global_lock_killable(lo, is_loop); 1045 if (error) 1046 goto out_bdev; 1047 1048 error = -EBUSY; 1049 if (lo->lo_state != Lo_unbound) 1050 goto out_unlock; 1051 1052 error = loop_validate_file(file, bdev); 1053 if (error) 1054 goto out_unlock; 1055 1056 mapping = file->f_mapping; 1057 1058 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1059 error = -EINVAL; 1060 goto out_unlock; 1061 } 1062 1063 error = loop_set_status_from_info(lo, &config->info); 1064 if (error) 1065 goto out_unlock; 1066 1067 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1068 !file->f_op->write_iter) 1069 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1070 1071 if (!lo->workqueue) { 1072 lo->workqueue = alloc_workqueue("loop%d", 1073 WQ_UNBOUND | WQ_FREEZABLE, 1074 0, lo->lo_number); 1075 if (!lo->workqueue) { 1076 error = -ENOMEM; 1077 goto out_unlock; 1078 } 1079 } 1080 1081 /* suppress uevents while reconfiguring the device */ 1082 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1083 1084 disk_force_media_change(lo->lo_disk); 1085 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1086 1087 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1088 lo->lo_device = bdev; 1089 lo->lo_backing_file = file; 1090 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1091 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1092 1093 error = loop_reconfigure_limits(lo, config->block_size); 1094 if (error) 1095 goto out_unlock; 1096 1097 loop_update_dio(lo); 1098 loop_sysfs_init(lo); 1099 1100 size = get_loop_size(lo, file); 1101 loop_set_size(lo, size); 1102 1103 /* Order wrt reading lo_state in loop_validate_file(). */ 1104 wmb(); 1105 1106 lo->lo_state = Lo_bound; 1107 if (part_shift) 1108 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1109 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1110 if (partscan) 1111 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1112 1113 /* enable and uncork uevent now that we are done */ 1114 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1115 1116 loop_global_unlock(lo, is_loop); 1117 if (partscan) 1118 loop_reread_partitions(lo); 1119 1120 if (!(mode & BLK_OPEN_EXCL)) 1121 bd_abort_claiming(bdev, loop_configure); 1122 1123 return 0; 1124 1125 out_unlock: 1126 loop_global_unlock(lo, is_loop); 1127 out_bdev: 1128 if (!(mode & BLK_OPEN_EXCL)) 1129 bd_abort_claiming(bdev, loop_configure); 1130 out_putf: 1131 fput(file); 1132 /* This is safe: open() is still holding a reference. */ 1133 module_put(THIS_MODULE); 1134 return error; 1135 } 1136 1137 static void __loop_clr_fd(struct loop_device *lo) 1138 { 1139 struct queue_limits lim; 1140 struct file *filp; 1141 gfp_t gfp = lo->old_gfp_mask; 1142 1143 spin_lock_irq(&lo->lo_lock); 1144 filp = lo->lo_backing_file; 1145 lo->lo_backing_file = NULL; 1146 spin_unlock_irq(&lo->lo_lock); 1147 1148 lo->lo_device = NULL; 1149 lo->lo_offset = 0; 1150 lo->lo_sizelimit = 0; 1151 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1152 1153 /* reset the block size to the default */ 1154 lim = queue_limits_start_update(lo->lo_queue); 1155 lim.logical_block_size = SECTOR_SIZE; 1156 lim.physical_block_size = SECTOR_SIZE; 1157 lim.io_min = SECTOR_SIZE; 1158 queue_limits_commit_update(lo->lo_queue, &lim); 1159 1160 invalidate_disk(lo->lo_disk); 1161 loop_sysfs_exit(lo); 1162 /* let user-space know about this change */ 1163 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1164 mapping_set_gfp_mask(filp->f_mapping, gfp); 1165 /* This is safe: open() is still holding a reference. */ 1166 module_put(THIS_MODULE); 1167 1168 disk_force_media_change(lo->lo_disk); 1169 1170 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1171 int err; 1172 1173 /* 1174 * open_mutex has been held already in release path, so don't 1175 * acquire it if this function is called in such case. 1176 * 1177 * If the reread partition isn't from release path, lo_refcnt 1178 * must be at least one and it can only become zero when the 1179 * current holder is released. 1180 */ 1181 err = bdev_disk_changed(lo->lo_disk, false); 1182 if (err) 1183 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1184 __func__, lo->lo_number, err); 1185 /* Device is gone, no point in returning error */ 1186 } 1187 1188 /* 1189 * lo->lo_state is set to Lo_unbound here after above partscan has 1190 * finished. There cannot be anybody else entering __loop_clr_fd() as 1191 * Lo_rundown state protects us from all the other places trying to 1192 * change the 'lo' device. 1193 */ 1194 lo->lo_flags = 0; 1195 if (!part_shift) 1196 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1197 mutex_lock(&lo->lo_mutex); 1198 lo->lo_state = Lo_unbound; 1199 mutex_unlock(&lo->lo_mutex); 1200 1201 /* 1202 * Need not hold lo_mutex to fput backing file. Calling fput holding 1203 * lo_mutex triggers a circular lock dependency possibility warning as 1204 * fput can take open_mutex which is usually taken before lo_mutex. 1205 */ 1206 fput(filp); 1207 } 1208 1209 static int loop_clr_fd(struct loop_device *lo) 1210 { 1211 int err; 1212 1213 /* 1214 * Since lo_ioctl() is called without locks held, it is possible that 1215 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1216 * 1217 * Therefore, use global lock when setting Lo_rundown state in order to 1218 * make sure that loop_validate_file() will fail if the "struct file" 1219 * which loop_configure()/loop_change_fd() found via fget() was this 1220 * loop device. 1221 */ 1222 err = loop_global_lock_killable(lo, true); 1223 if (err) 1224 return err; 1225 if (lo->lo_state != Lo_bound) { 1226 loop_global_unlock(lo, true); 1227 return -ENXIO; 1228 } 1229 /* 1230 * Mark the device for removing the backing device on last close. 1231 * If we are the only opener, also switch the state to roundown here to 1232 * prevent new openers from coming in. 1233 */ 1234 1235 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1236 if (disk_openers(lo->lo_disk) == 1) 1237 lo->lo_state = Lo_rundown; 1238 loop_global_unlock(lo, true); 1239 1240 return 0; 1241 } 1242 1243 static int 1244 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1245 { 1246 int err; 1247 int prev_lo_flags; 1248 bool partscan = false; 1249 bool size_changed = false; 1250 1251 err = mutex_lock_killable(&lo->lo_mutex); 1252 if (err) 1253 return err; 1254 if (lo->lo_state != Lo_bound) { 1255 err = -ENXIO; 1256 goto out_unlock; 1257 } 1258 1259 if (lo->lo_offset != info->lo_offset || 1260 lo->lo_sizelimit != info->lo_sizelimit) { 1261 size_changed = true; 1262 sync_blockdev(lo->lo_device); 1263 invalidate_bdev(lo->lo_device); 1264 } 1265 1266 /* I/O need to be drained during transfer transition */ 1267 blk_mq_freeze_queue(lo->lo_queue); 1268 1269 prev_lo_flags = lo->lo_flags; 1270 1271 err = loop_set_status_from_info(lo, info); 1272 if (err) 1273 goto out_unfreeze; 1274 1275 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1276 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1277 /* For those flags, use the previous values instead */ 1278 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1279 /* For flags that can't be cleared, use previous values too */ 1280 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1281 1282 if (size_changed) { 1283 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1284 lo->lo_backing_file); 1285 loop_set_size(lo, new_size); 1286 } 1287 1288 /* update dio if lo_offset or transfer is changed */ 1289 __loop_update_dio(lo, lo->use_dio); 1290 1291 out_unfreeze: 1292 blk_mq_unfreeze_queue(lo->lo_queue); 1293 1294 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1295 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1296 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1297 partscan = true; 1298 } 1299 out_unlock: 1300 mutex_unlock(&lo->lo_mutex); 1301 if (partscan) 1302 loop_reread_partitions(lo); 1303 1304 return err; 1305 } 1306 1307 static int 1308 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1309 { 1310 struct path path; 1311 struct kstat stat; 1312 int ret; 1313 1314 ret = mutex_lock_killable(&lo->lo_mutex); 1315 if (ret) 1316 return ret; 1317 if (lo->lo_state != Lo_bound) { 1318 mutex_unlock(&lo->lo_mutex); 1319 return -ENXIO; 1320 } 1321 1322 memset(info, 0, sizeof(*info)); 1323 info->lo_number = lo->lo_number; 1324 info->lo_offset = lo->lo_offset; 1325 info->lo_sizelimit = lo->lo_sizelimit; 1326 info->lo_flags = lo->lo_flags; 1327 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1328 1329 /* Drop lo_mutex while we call into the filesystem. */ 1330 path = lo->lo_backing_file->f_path; 1331 path_get(&path); 1332 mutex_unlock(&lo->lo_mutex); 1333 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1334 if (!ret) { 1335 info->lo_device = huge_encode_dev(stat.dev); 1336 info->lo_inode = stat.ino; 1337 info->lo_rdevice = huge_encode_dev(stat.rdev); 1338 } 1339 path_put(&path); 1340 return ret; 1341 } 1342 1343 static void 1344 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1345 { 1346 memset(info64, 0, sizeof(*info64)); 1347 info64->lo_number = info->lo_number; 1348 info64->lo_device = info->lo_device; 1349 info64->lo_inode = info->lo_inode; 1350 info64->lo_rdevice = info->lo_rdevice; 1351 info64->lo_offset = info->lo_offset; 1352 info64->lo_sizelimit = 0; 1353 info64->lo_flags = info->lo_flags; 1354 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1355 } 1356 1357 static int 1358 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1359 { 1360 memset(info, 0, sizeof(*info)); 1361 info->lo_number = info64->lo_number; 1362 info->lo_device = info64->lo_device; 1363 info->lo_inode = info64->lo_inode; 1364 info->lo_rdevice = info64->lo_rdevice; 1365 info->lo_offset = info64->lo_offset; 1366 info->lo_flags = info64->lo_flags; 1367 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1368 1369 /* error in case values were truncated */ 1370 if (info->lo_device != info64->lo_device || 1371 info->lo_rdevice != info64->lo_rdevice || 1372 info->lo_inode != info64->lo_inode || 1373 info->lo_offset != info64->lo_offset) 1374 return -EOVERFLOW; 1375 1376 return 0; 1377 } 1378 1379 static int 1380 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1381 { 1382 struct loop_info info; 1383 struct loop_info64 info64; 1384 1385 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1386 return -EFAULT; 1387 loop_info64_from_old(&info, &info64); 1388 return loop_set_status(lo, &info64); 1389 } 1390 1391 static int 1392 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1393 { 1394 struct loop_info64 info64; 1395 1396 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1397 return -EFAULT; 1398 return loop_set_status(lo, &info64); 1399 } 1400 1401 static int 1402 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1403 struct loop_info info; 1404 struct loop_info64 info64; 1405 int err; 1406 1407 if (!arg) 1408 return -EINVAL; 1409 err = loop_get_status(lo, &info64); 1410 if (!err) 1411 err = loop_info64_to_old(&info64, &info); 1412 if (!err && copy_to_user(arg, &info, sizeof(info))) 1413 err = -EFAULT; 1414 1415 return err; 1416 } 1417 1418 static int 1419 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1420 struct loop_info64 info64; 1421 int err; 1422 1423 if (!arg) 1424 return -EINVAL; 1425 err = loop_get_status(lo, &info64); 1426 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1427 err = -EFAULT; 1428 1429 return err; 1430 } 1431 1432 static int loop_set_capacity(struct loop_device *lo) 1433 { 1434 loff_t size; 1435 1436 if (unlikely(lo->lo_state != Lo_bound)) 1437 return -ENXIO; 1438 1439 size = get_loop_size(lo, lo->lo_backing_file); 1440 loop_set_size(lo, size); 1441 1442 return 0; 1443 } 1444 1445 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1446 { 1447 int error = -ENXIO; 1448 if (lo->lo_state != Lo_bound) 1449 goto out; 1450 1451 __loop_update_dio(lo, !!arg); 1452 if (lo->use_dio == !!arg) 1453 return 0; 1454 error = -EINVAL; 1455 out: 1456 return error; 1457 } 1458 1459 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1460 { 1461 int err = 0; 1462 1463 if (lo->lo_state != Lo_bound) 1464 return -ENXIO; 1465 1466 if (lo->lo_queue->limits.logical_block_size == arg) 1467 return 0; 1468 1469 sync_blockdev(lo->lo_device); 1470 invalidate_bdev(lo->lo_device); 1471 1472 blk_mq_freeze_queue(lo->lo_queue); 1473 err = loop_reconfigure_limits(lo, arg); 1474 loop_update_dio(lo); 1475 blk_mq_unfreeze_queue(lo->lo_queue); 1476 1477 return err; 1478 } 1479 1480 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1481 unsigned long arg) 1482 { 1483 int err; 1484 1485 err = mutex_lock_killable(&lo->lo_mutex); 1486 if (err) 1487 return err; 1488 switch (cmd) { 1489 case LOOP_SET_CAPACITY: 1490 err = loop_set_capacity(lo); 1491 break; 1492 case LOOP_SET_DIRECT_IO: 1493 err = loop_set_dio(lo, arg); 1494 break; 1495 case LOOP_SET_BLOCK_SIZE: 1496 err = loop_set_block_size(lo, arg); 1497 break; 1498 default: 1499 err = -EINVAL; 1500 } 1501 mutex_unlock(&lo->lo_mutex); 1502 return err; 1503 } 1504 1505 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1506 unsigned int cmd, unsigned long arg) 1507 { 1508 struct loop_device *lo = bdev->bd_disk->private_data; 1509 void __user *argp = (void __user *) arg; 1510 int err; 1511 1512 switch (cmd) { 1513 case LOOP_SET_FD: { 1514 /* 1515 * Legacy case - pass in a zeroed out struct loop_config with 1516 * only the file descriptor set , which corresponds with the 1517 * default parameters we'd have used otherwise. 1518 */ 1519 struct loop_config config; 1520 1521 memset(&config, 0, sizeof(config)); 1522 config.fd = arg; 1523 1524 return loop_configure(lo, mode, bdev, &config); 1525 } 1526 case LOOP_CONFIGURE: { 1527 struct loop_config config; 1528 1529 if (copy_from_user(&config, argp, sizeof(config))) 1530 return -EFAULT; 1531 1532 return loop_configure(lo, mode, bdev, &config); 1533 } 1534 case LOOP_CHANGE_FD: 1535 return loop_change_fd(lo, bdev, arg); 1536 case LOOP_CLR_FD: 1537 return loop_clr_fd(lo); 1538 case LOOP_SET_STATUS: 1539 err = -EPERM; 1540 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1541 err = loop_set_status_old(lo, argp); 1542 break; 1543 case LOOP_GET_STATUS: 1544 return loop_get_status_old(lo, argp); 1545 case LOOP_SET_STATUS64: 1546 err = -EPERM; 1547 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1548 err = loop_set_status64(lo, argp); 1549 break; 1550 case LOOP_GET_STATUS64: 1551 return loop_get_status64(lo, argp); 1552 case LOOP_SET_CAPACITY: 1553 case LOOP_SET_DIRECT_IO: 1554 case LOOP_SET_BLOCK_SIZE: 1555 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1556 return -EPERM; 1557 fallthrough; 1558 default: 1559 err = lo_simple_ioctl(lo, cmd, arg); 1560 break; 1561 } 1562 1563 return err; 1564 } 1565 1566 #ifdef CONFIG_COMPAT 1567 struct compat_loop_info { 1568 compat_int_t lo_number; /* ioctl r/o */ 1569 compat_dev_t lo_device; /* ioctl r/o */ 1570 compat_ulong_t lo_inode; /* ioctl r/o */ 1571 compat_dev_t lo_rdevice; /* ioctl r/o */ 1572 compat_int_t lo_offset; 1573 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1574 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1575 compat_int_t lo_flags; /* ioctl r/o */ 1576 char lo_name[LO_NAME_SIZE]; 1577 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1578 compat_ulong_t lo_init[2]; 1579 char reserved[4]; 1580 }; 1581 1582 /* 1583 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1584 * - noinlined to reduce stack space usage in main part of driver 1585 */ 1586 static noinline int 1587 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1588 struct loop_info64 *info64) 1589 { 1590 struct compat_loop_info info; 1591 1592 if (copy_from_user(&info, arg, sizeof(info))) 1593 return -EFAULT; 1594 1595 memset(info64, 0, sizeof(*info64)); 1596 info64->lo_number = info.lo_number; 1597 info64->lo_device = info.lo_device; 1598 info64->lo_inode = info.lo_inode; 1599 info64->lo_rdevice = info.lo_rdevice; 1600 info64->lo_offset = info.lo_offset; 1601 info64->lo_sizelimit = 0; 1602 info64->lo_flags = info.lo_flags; 1603 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1604 return 0; 1605 } 1606 1607 /* 1608 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1609 * - noinlined to reduce stack space usage in main part of driver 1610 */ 1611 static noinline int 1612 loop_info64_to_compat(const struct loop_info64 *info64, 1613 struct compat_loop_info __user *arg) 1614 { 1615 struct compat_loop_info info; 1616 1617 memset(&info, 0, sizeof(info)); 1618 info.lo_number = info64->lo_number; 1619 info.lo_device = info64->lo_device; 1620 info.lo_inode = info64->lo_inode; 1621 info.lo_rdevice = info64->lo_rdevice; 1622 info.lo_offset = info64->lo_offset; 1623 info.lo_flags = info64->lo_flags; 1624 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1625 1626 /* error in case values were truncated */ 1627 if (info.lo_device != info64->lo_device || 1628 info.lo_rdevice != info64->lo_rdevice || 1629 info.lo_inode != info64->lo_inode || 1630 info.lo_offset != info64->lo_offset) 1631 return -EOVERFLOW; 1632 1633 if (copy_to_user(arg, &info, sizeof(info))) 1634 return -EFAULT; 1635 return 0; 1636 } 1637 1638 static int 1639 loop_set_status_compat(struct loop_device *lo, 1640 const struct compat_loop_info __user *arg) 1641 { 1642 struct loop_info64 info64; 1643 int ret; 1644 1645 ret = loop_info64_from_compat(arg, &info64); 1646 if (ret < 0) 1647 return ret; 1648 return loop_set_status(lo, &info64); 1649 } 1650 1651 static int 1652 loop_get_status_compat(struct loop_device *lo, 1653 struct compat_loop_info __user *arg) 1654 { 1655 struct loop_info64 info64; 1656 int err; 1657 1658 if (!arg) 1659 return -EINVAL; 1660 err = loop_get_status(lo, &info64); 1661 if (!err) 1662 err = loop_info64_to_compat(&info64, arg); 1663 return err; 1664 } 1665 1666 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1667 unsigned int cmd, unsigned long arg) 1668 { 1669 struct loop_device *lo = bdev->bd_disk->private_data; 1670 int err; 1671 1672 switch(cmd) { 1673 case LOOP_SET_STATUS: 1674 err = loop_set_status_compat(lo, 1675 (const struct compat_loop_info __user *)arg); 1676 break; 1677 case LOOP_GET_STATUS: 1678 err = loop_get_status_compat(lo, 1679 (struct compat_loop_info __user *)arg); 1680 break; 1681 case LOOP_SET_CAPACITY: 1682 case LOOP_CLR_FD: 1683 case LOOP_GET_STATUS64: 1684 case LOOP_SET_STATUS64: 1685 case LOOP_CONFIGURE: 1686 arg = (unsigned long) compat_ptr(arg); 1687 fallthrough; 1688 case LOOP_SET_FD: 1689 case LOOP_CHANGE_FD: 1690 case LOOP_SET_BLOCK_SIZE: 1691 case LOOP_SET_DIRECT_IO: 1692 err = lo_ioctl(bdev, mode, cmd, arg); 1693 break; 1694 default: 1695 err = -ENOIOCTLCMD; 1696 break; 1697 } 1698 return err; 1699 } 1700 #endif 1701 1702 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1703 { 1704 struct loop_device *lo = disk->private_data; 1705 int err; 1706 1707 err = mutex_lock_killable(&lo->lo_mutex); 1708 if (err) 1709 return err; 1710 1711 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1712 err = -ENXIO; 1713 mutex_unlock(&lo->lo_mutex); 1714 return err; 1715 } 1716 1717 static void lo_release(struct gendisk *disk) 1718 { 1719 struct loop_device *lo = disk->private_data; 1720 bool need_clear = false; 1721 1722 if (disk_openers(disk) > 0) 1723 return; 1724 /* 1725 * Clear the backing device information if this is the last close of 1726 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1727 * has been called. 1728 */ 1729 1730 mutex_lock(&lo->lo_mutex); 1731 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1732 lo->lo_state = Lo_rundown; 1733 1734 need_clear = (lo->lo_state == Lo_rundown); 1735 mutex_unlock(&lo->lo_mutex); 1736 1737 if (need_clear) 1738 __loop_clr_fd(lo); 1739 } 1740 1741 static void lo_free_disk(struct gendisk *disk) 1742 { 1743 struct loop_device *lo = disk->private_data; 1744 1745 if (lo->workqueue) 1746 destroy_workqueue(lo->workqueue); 1747 loop_free_idle_workers(lo, true); 1748 timer_shutdown_sync(&lo->timer); 1749 mutex_destroy(&lo->lo_mutex); 1750 kfree(lo); 1751 } 1752 1753 static const struct block_device_operations lo_fops = { 1754 .owner = THIS_MODULE, 1755 .open = lo_open, 1756 .release = lo_release, 1757 .ioctl = lo_ioctl, 1758 #ifdef CONFIG_COMPAT 1759 .compat_ioctl = lo_compat_ioctl, 1760 #endif 1761 .free_disk = lo_free_disk, 1762 }; 1763 1764 /* 1765 * And now the modules code and kernel interface. 1766 */ 1767 1768 /* 1769 * If max_loop is specified, create that many devices upfront. 1770 * This also becomes a hard limit. If max_loop is not specified, 1771 * the default isn't a hard limit (as before commit 85c50197716c 1772 * changed the default value from 0 for max_loop=0 reasons), just 1773 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1774 * init time. Loop devices can be requested on-demand with the 1775 * /dev/loop-control interface, or be instantiated by accessing 1776 * a 'dead' device node. 1777 */ 1778 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1779 1780 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1781 static bool max_loop_specified; 1782 1783 static int max_loop_param_set_int(const char *val, 1784 const struct kernel_param *kp) 1785 { 1786 int ret; 1787 1788 ret = param_set_int(val, kp); 1789 if (ret < 0) 1790 return ret; 1791 1792 max_loop_specified = true; 1793 return 0; 1794 } 1795 1796 static const struct kernel_param_ops max_loop_param_ops = { 1797 .set = max_loop_param_set_int, 1798 .get = param_get_int, 1799 }; 1800 1801 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1802 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1803 #else 1804 module_param(max_loop, int, 0444); 1805 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1806 #endif 1807 1808 module_param(max_part, int, 0444); 1809 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1810 1811 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1812 1813 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1814 { 1815 int qd, ret; 1816 1817 ret = kstrtoint(s, 0, &qd); 1818 if (ret < 0) 1819 return ret; 1820 if (qd < 1) 1821 return -EINVAL; 1822 hw_queue_depth = qd; 1823 return 0; 1824 } 1825 1826 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1827 .set = loop_set_hw_queue_depth, 1828 .get = param_get_int, 1829 }; 1830 1831 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1832 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1833 1834 MODULE_DESCRIPTION("Loopback device support"); 1835 MODULE_LICENSE("GPL"); 1836 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1837 1838 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1839 const struct blk_mq_queue_data *bd) 1840 { 1841 struct request *rq = bd->rq; 1842 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1843 struct loop_device *lo = rq->q->queuedata; 1844 1845 blk_mq_start_request(rq); 1846 1847 if (lo->lo_state != Lo_bound) 1848 return BLK_STS_IOERR; 1849 1850 switch (req_op(rq)) { 1851 case REQ_OP_FLUSH: 1852 case REQ_OP_DISCARD: 1853 case REQ_OP_WRITE_ZEROES: 1854 cmd->use_aio = false; 1855 break; 1856 default: 1857 cmd->use_aio = lo->use_dio; 1858 break; 1859 } 1860 1861 /* always use the first bio's css */ 1862 cmd->blkcg_css = NULL; 1863 cmd->memcg_css = NULL; 1864 #ifdef CONFIG_BLK_CGROUP 1865 if (rq->bio) { 1866 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1867 #ifdef CONFIG_MEMCG 1868 if (cmd->blkcg_css) { 1869 cmd->memcg_css = 1870 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1871 &memory_cgrp_subsys); 1872 } 1873 #endif 1874 } 1875 #endif 1876 loop_queue_work(lo, cmd); 1877 1878 return BLK_STS_OK; 1879 } 1880 1881 static void loop_handle_cmd(struct loop_cmd *cmd) 1882 { 1883 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1884 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1885 struct request *rq = blk_mq_rq_from_pdu(cmd); 1886 const bool write = op_is_write(req_op(rq)); 1887 struct loop_device *lo = rq->q->queuedata; 1888 int ret = 0; 1889 struct mem_cgroup *old_memcg = NULL; 1890 const bool use_aio = cmd->use_aio; 1891 1892 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1893 ret = -EIO; 1894 goto failed; 1895 } 1896 1897 if (cmd_blkcg_css) 1898 kthread_associate_blkcg(cmd_blkcg_css); 1899 if (cmd_memcg_css) 1900 old_memcg = set_active_memcg( 1901 mem_cgroup_from_css(cmd_memcg_css)); 1902 1903 /* 1904 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1905 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1906 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1907 * not yet been completed. 1908 */ 1909 ret = do_req_filebacked(lo, rq); 1910 1911 if (cmd_blkcg_css) 1912 kthread_associate_blkcg(NULL); 1913 1914 if (cmd_memcg_css) { 1915 set_active_memcg(old_memcg); 1916 css_put(cmd_memcg_css); 1917 } 1918 failed: 1919 /* complete non-aio request */ 1920 if (!use_aio || ret) { 1921 if (ret == -EOPNOTSUPP) 1922 cmd->ret = ret; 1923 else 1924 cmd->ret = ret ? -EIO : 0; 1925 if (likely(!blk_should_fake_timeout(rq->q))) 1926 blk_mq_complete_request(rq); 1927 } 1928 } 1929 1930 static void loop_process_work(struct loop_worker *worker, 1931 struct list_head *cmd_list, struct loop_device *lo) 1932 { 1933 int orig_flags = current->flags; 1934 struct loop_cmd *cmd; 1935 1936 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1937 spin_lock_irq(&lo->lo_work_lock); 1938 while (!list_empty(cmd_list)) { 1939 cmd = container_of( 1940 cmd_list->next, struct loop_cmd, list_entry); 1941 list_del(cmd_list->next); 1942 spin_unlock_irq(&lo->lo_work_lock); 1943 1944 loop_handle_cmd(cmd); 1945 cond_resched(); 1946 1947 spin_lock_irq(&lo->lo_work_lock); 1948 } 1949 1950 /* 1951 * We only add to the idle list if there are no pending cmds 1952 * *and* the worker will not run again which ensures that it 1953 * is safe to free any worker on the idle list 1954 */ 1955 if (worker && !work_pending(&worker->work)) { 1956 worker->last_ran_at = jiffies; 1957 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1958 loop_set_timer(lo); 1959 } 1960 spin_unlock_irq(&lo->lo_work_lock); 1961 current->flags = orig_flags; 1962 } 1963 1964 static void loop_workfn(struct work_struct *work) 1965 { 1966 struct loop_worker *worker = 1967 container_of(work, struct loop_worker, work); 1968 loop_process_work(worker, &worker->cmd_list, worker->lo); 1969 } 1970 1971 static void loop_rootcg_workfn(struct work_struct *work) 1972 { 1973 struct loop_device *lo = 1974 container_of(work, struct loop_device, rootcg_work); 1975 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1976 } 1977 1978 static const struct blk_mq_ops loop_mq_ops = { 1979 .queue_rq = loop_queue_rq, 1980 .complete = lo_complete_rq, 1981 }; 1982 1983 static int loop_add(int i) 1984 { 1985 struct queue_limits lim = { 1986 /* 1987 * Random number picked from the historic block max_sectors cap. 1988 */ 1989 .max_hw_sectors = 2560u, 1990 }; 1991 struct loop_device *lo; 1992 struct gendisk *disk; 1993 int err; 1994 1995 err = -ENOMEM; 1996 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1997 if (!lo) 1998 goto out; 1999 lo->worker_tree = RB_ROOT; 2000 INIT_LIST_HEAD(&lo->idle_worker_list); 2001 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2002 lo->lo_state = Lo_unbound; 2003 2004 err = mutex_lock_killable(&loop_ctl_mutex); 2005 if (err) 2006 goto out_free_dev; 2007 2008 /* allocate id, if @id >= 0, we're requesting that specific id */ 2009 if (i >= 0) { 2010 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2011 if (err == -ENOSPC) 2012 err = -EEXIST; 2013 } else { 2014 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2015 } 2016 mutex_unlock(&loop_ctl_mutex); 2017 if (err < 0) 2018 goto out_free_dev; 2019 i = err; 2020 2021 lo->tag_set.ops = &loop_mq_ops; 2022 lo->tag_set.nr_hw_queues = 1; 2023 lo->tag_set.queue_depth = hw_queue_depth; 2024 lo->tag_set.numa_node = NUMA_NO_NODE; 2025 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2026 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 2027 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2028 lo->tag_set.driver_data = lo; 2029 2030 err = blk_mq_alloc_tag_set(&lo->tag_set); 2031 if (err) 2032 goto out_free_idr; 2033 2034 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2035 if (IS_ERR(disk)) { 2036 err = PTR_ERR(disk); 2037 goto out_cleanup_tags; 2038 } 2039 lo->lo_queue = lo->lo_disk->queue; 2040 2041 /* 2042 * Disable partition scanning by default. The in-kernel partition 2043 * scanning can be requested individually per-device during its 2044 * setup. Userspace can always add and remove partitions from all 2045 * devices. The needed partition minors are allocated from the 2046 * extended minor space, the main loop device numbers will continue 2047 * to match the loop minors, regardless of the number of partitions 2048 * used. 2049 * 2050 * If max_part is given, partition scanning is globally enabled for 2051 * all loop devices. The minors for the main loop devices will be 2052 * multiples of max_part. 2053 * 2054 * Note: Global-for-all-devices, set-only-at-init, read-only module 2055 * parameteters like 'max_loop' and 'max_part' make things needlessly 2056 * complicated, are too static, inflexible and may surprise 2057 * userspace tools. Parameters like this in general should be avoided. 2058 */ 2059 if (!part_shift) 2060 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2061 mutex_init(&lo->lo_mutex); 2062 lo->lo_number = i; 2063 spin_lock_init(&lo->lo_lock); 2064 spin_lock_init(&lo->lo_work_lock); 2065 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2066 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2067 disk->major = LOOP_MAJOR; 2068 disk->first_minor = i << part_shift; 2069 disk->minors = 1 << part_shift; 2070 disk->fops = &lo_fops; 2071 disk->private_data = lo; 2072 disk->queue = lo->lo_queue; 2073 disk->events = DISK_EVENT_MEDIA_CHANGE; 2074 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2075 sprintf(disk->disk_name, "loop%d", i); 2076 /* Make this loop device reachable from pathname. */ 2077 err = add_disk(disk); 2078 if (err) 2079 goto out_cleanup_disk; 2080 2081 /* Show this loop device. */ 2082 mutex_lock(&loop_ctl_mutex); 2083 lo->idr_visible = true; 2084 mutex_unlock(&loop_ctl_mutex); 2085 2086 return i; 2087 2088 out_cleanup_disk: 2089 put_disk(disk); 2090 out_cleanup_tags: 2091 blk_mq_free_tag_set(&lo->tag_set); 2092 out_free_idr: 2093 mutex_lock(&loop_ctl_mutex); 2094 idr_remove(&loop_index_idr, i); 2095 mutex_unlock(&loop_ctl_mutex); 2096 out_free_dev: 2097 kfree(lo); 2098 out: 2099 return err; 2100 } 2101 2102 static void loop_remove(struct loop_device *lo) 2103 { 2104 /* Make this loop device unreachable from pathname. */ 2105 del_gendisk(lo->lo_disk); 2106 blk_mq_free_tag_set(&lo->tag_set); 2107 2108 mutex_lock(&loop_ctl_mutex); 2109 idr_remove(&loop_index_idr, lo->lo_number); 2110 mutex_unlock(&loop_ctl_mutex); 2111 2112 put_disk(lo->lo_disk); 2113 } 2114 2115 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2116 static void loop_probe(dev_t dev) 2117 { 2118 int idx = MINOR(dev) >> part_shift; 2119 2120 if (max_loop_specified && max_loop && idx >= max_loop) 2121 return; 2122 loop_add(idx); 2123 } 2124 #else 2125 #define loop_probe NULL 2126 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2127 2128 static int loop_control_remove(int idx) 2129 { 2130 struct loop_device *lo; 2131 int ret; 2132 2133 if (idx < 0) { 2134 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2135 return -EINVAL; 2136 } 2137 2138 /* Hide this loop device for serialization. */ 2139 ret = mutex_lock_killable(&loop_ctl_mutex); 2140 if (ret) 2141 return ret; 2142 lo = idr_find(&loop_index_idr, idx); 2143 if (!lo || !lo->idr_visible) 2144 ret = -ENODEV; 2145 else 2146 lo->idr_visible = false; 2147 mutex_unlock(&loop_ctl_mutex); 2148 if (ret) 2149 return ret; 2150 2151 /* Check whether this loop device can be removed. */ 2152 ret = mutex_lock_killable(&lo->lo_mutex); 2153 if (ret) 2154 goto mark_visible; 2155 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2156 mutex_unlock(&lo->lo_mutex); 2157 ret = -EBUSY; 2158 goto mark_visible; 2159 } 2160 /* Mark this loop device as no more bound, but not quite unbound yet */ 2161 lo->lo_state = Lo_deleting; 2162 mutex_unlock(&lo->lo_mutex); 2163 2164 loop_remove(lo); 2165 return 0; 2166 2167 mark_visible: 2168 /* Show this loop device again. */ 2169 mutex_lock(&loop_ctl_mutex); 2170 lo->idr_visible = true; 2171 mutex_unlock(&loop_ctl_mutex); 2172 return ret; 2173 } 2174 2175 static int loop_control_get_free(int idx) 2176 { 2177 struct loop_device *lo; 2178 int id, ret; 2179 2180 ret = mutex_lock_killable(&loop_ctl_mutex); 2181 if (ret) 2182 return ret; 2183 idr_for_each_entry(&loop_index_idr, lo, id) { 2184 /* Hitting a race results in creating a new loop device which is harmless. */ 2185 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2186 goto found; 2187 } 2188 mutex_unlock(&loop_ctl_mutex); 2189 return loop_add(-1); 2190 found: 2191 mutex_unlock(&loop_ctl_mutex); 2192 return id; 2193 } 2194 2195 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2196 unsigned long parm) 2197 { 2198 switch (cmd) { 2199 case LOOP_CTL_ADD: 2200 return loop_add(parm); 2201 case LOOP_CTL_REMOVE: 2202 return loop_control_remove(parm); 2203 case LOOP_CTL_GET_FREE: 2204 return loop_control_get_free(parm); 2205 default: 2206 return -ENOSYS; 2207 } 2208 } 2209 2210 static const struct file_operations loop_ctl_fops = { 2211 .open = nonseekable_open, 2212 .unlocked_ioctl = loop_control_ioctl, 2213 .compat_ioctl = loop_control_ioctl, 2214 .owner = THIS_MODULE, 2215 .llseek = noop_llseek, 2216 }; 2217 2218 static struct miscdevice loop_misc = { 2219 .minor = LOOP_CTRL_MINOR, 2220 .name = "loop-control", 2221 .fops = &loop_ctl_fops, 2222 }; 2223 2224 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2225 MODULE_ALIAS("devname:loop-control"); 2226 2227 static int __init loop_init(void) 2228 { 2229 int i; 2230 int err; 2231 2232 part_shift = 0; 2233 if (max_part > 0) { 2234 part_shift = fls(max_part); 2235 2236 /* 2237 * Adjust max_part according to part_shift as it is exported 2238 * to user space so that user can decide correct minor number 2239 * if [s]he want to create more devices. 2240 * 2241 * Note that -1 is required because partition 0 is reserved 2242 * for the whole disk. 2243 */ 2244 max_part = (1UL << part_shift) - 1; 2245 } 2246 2247 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2248 err = -EINVAL; 2249 goto err_out; 2250 } 2251 2252 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2253 err = -EINVAL; 2254 goto err_out; 2255 } 2256 2257 err = misc_register(&loop_misc); 2258 if (err < 0) 2259 goto err_out; 2260 2261 2262 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2263 err = -EIO; 2264 goto misc_out; 2265 } 2266 2267 /* pre-create number of devices given by config or max_loop */ 2268 for (i = 0; i < max_loop; i++) 2269 loop_add(i); 2270 2271 printk(KERN_INFO "loop: module loaded\n"); 2272 return 0; 2273 2274 misc_out: 2275 misc_deregister(&loop_misc); 2276 err_out: 2277 return err; 2278 } 2279 2280 static void __exit loop_exit(void) 2281 { 2282 struct loop_device *lo; 2283 int id; 2284 2285 unregister_blkdev(LOOP_MAJOR, "loop"); 2286 misc_deregister(&loop_misc); 2287 2288 /* 2289 * There is no need to use loop_ctl_mutex here, for nobody else can 2290 * access loop_index_idr when this module is unloading (unless forced 2291 * module unloading is requested). If this is not a clean unloading, 2292 * we have no means to avoid kernel crash. 2293 */ 2294 idr_for_each_entry(&loop_index_idr, lo, id) 2295 loop_remove(lo); 2296 2297 idr_destroy(&loop_index_idr); 2298 } 2299 2300 module_init(loop_init); 2301 module_exit(loop_exit); 2302 2303 #ifndef MODULE 2304 static int __init max_loop_setup(char *str) 2305 { 2306 max_loop = simple_strtol(str, NULL, 0); 2307 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2308 max_loop_specified = true; 2309 #endif 2310 return 1; 2311 } 2312 2313 __setup("max_loop=", max_loop_setup); 2314 #endif 2315