1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 141 { 142 loff_t loopsize; 143 144 /* Compute loopsize in bytes */ 145 loopsize = i_size_read(file->f_mapping->host); 146 if (offset > 0) 147 loopsize -= offset; 148 /* offset is beyond i_size, weird but possible */ 149 if (loopsize < 0) 150 return 0; 151 152 if (sizelimit > 0 && sizelimit < loopsize) 153 loopsize = sizelimit; 154 /* 155 * Unfortunately, if we want to do I/O on the device, 156 * the number of 512-byte sectors has to fit into a sector_t. 157 */ 158 return loopsize >> 9; 159 } 160 161 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 162 { 163 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 164 } 165 166 /* 167 * We support direct I/O only if lo_offset is aligned with the logical I/O size 168 * of backing device, and the logical block size of loop is bigger than that of 169 * the backing device. 170 */ 171 static bool lo_can_use_dio(struct loop_device *lo) 172 { 173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 174 return false; 175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 176 return false; 177 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 178 return false; 179 return true; 180 } 181 182 /* 183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 185 * disabled when the device block size is too small or the offset is unaligned. 186 * 187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 188 * not the originally passed in one. 189 */ 190 static inline void loop_update_dio(struct loop_device *lo) 191 { 192 lockdep_assert_held(&lo->lo_mutex); 193 WARN_ON_ONCE(lo->lo_state == Lo_bound && 194 lo->lo_queue->mq_freeze_depth == 0); 195 196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 198 } 199 200 /** 201 * loop_set_size() - sets device size and notifies userspace 202 * @lo: struct loop_device to set the size for 203 * @size: new size of the loop device 204 * 205 * Callers must validate that the size passed into this function fits into 206 * a sector_t, eg using loop_validate_size() 207 */ 208 static void loop_set_size(struct loop_device *lo, loff_t size) 209 { 210 if (!set_capacity_and_notify(lo->lo_disk, size)) 211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 212 } 213 214 static void loop_clear_limits(struct loop_device *lo, int mode) 215 { 216 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 217 218 if (mode & FALLOC_FL_ZERO_RANGE) 219 lim.max_write_zeroes_sectors = 0; 220 221 if (mode & FALLOC_FL_PUNCH_HOLE) { 222 lim.max_hw_discard_sectors = 0; 223 lim.discard_granularity = 0; 224 } 225 226 /* 227 * XXX: this updates the queue limits without freezing the queue, which 228 * is against the locking protocol and dangerous. But we can't just 229 * freeze the queue as we're inside the ->queue_rq method here. So this 230 * should move out into a workqueue unless we get the file operations to 231 * advertise if they support specific fallocate operations. 232 */ 233 queue_limits_commit_update(lo->lo_queue, &lim); 234 } 235 236 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 237 int mode) 238 { 239 /* 240 * We use fallocate to manipulate the space mappings used by the image 241 * a.k.a. discard/zerorange. 242 */ 243 struct file *file = lo->lo_backing_file; 244 int ret; 245 246 mode |= FALLOC_FL_KEEP_SIZE; 247 248 if (!bdev_max_discard_sectors(lo->lo_device)) 249 return -EOPNOTSUPP; 250 251 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 252 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 253 return -EIO; 254 255 /* 256 * We initially configure the limits in a hope that fallocate is 257 * supported and clear them here if that turns out not to be true. 258 */ 259 if (unlikely(ret == -EOPNOTSUPP)) 260 loop_clear_limits(lo, mode); 261 262 return ret; 263 } 264 265 static int lo_req_flush(struct loop_device *lo, struct request *rq) 266 { 267 int ret = vfs_fsync(lo->lo_backing_file, 0); 268 if (unlikely(ret && ret != -EINVAL)) 269 ret = -EIO; 270 271 return ret; 272 } 273 274 static void lo_complete_rq(struct request *rq) 275 { 276 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 277 blk_status_t ret = BLK_STS_OK; 278 279 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 280 req_op(rq) != REQ_OP_READ) { 281 if (cmd->ret < 0) 282 ret = errno_to_blk_status(cmd->ret); 283 goto end_io; 284 } 285 286 /* 287 * Short READ - if we got some data, advance our request and 288 * retry it. If we got no data, end the rest with EIO. 289 */ 290 if (cmd->ret) { 291 blk_update_request(rq, BLK_STS_OK, cmd->ret); 292 cmd->ret = 0; 293 blk_mq_requeue_request(rq, true); 294 } else { 295 struct bio *bio = rq->bio; 296 297 while (bio) { 298 zero_fill_bio(bio); 299 bio = bio->bi_next; 300 } 301 302 ret = BLK_STS_IOERR; 303 end_io: 304 blk_mq_end_request(rq, ret); 305 } 306 } 307 308 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 309 { 310 struct request *rq = blk_mq_rq_from_pdu(cmd); 311 312 if (!atomic_dec_and_test(&cmd->ref)) 313 return; 314 kfree(cmd->bvec); 315 cmd->bvec = NULL; 316 if (likely(!blk_should_fake_timeout(rq->q))) 317 blk_mq_complete_request(rq); 318 } 319 320 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 321 { 322 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 323 324 cmd->ret = ret; 325 lo_rw_aio_do_completion(cmd); 326 } 327 328 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 329 loff_t pos, int rw) 330 { 331 struct iov_iter iter; 332 struct req_iterator rq_iter; 333 struct bio_vec *bvec; 334 struct request *rq = blk_mq_rq_from_pdu(cmd); 335 struct bio *bio = rq->bio; 336 struct file *file = lo->lo_backing_file; 337 struct bio_vec tmp; 338 unsigned int offset; 339 int nr_bvec = 0; 340 int ret; 341 342 rq_for_each_bvec(tmp, rq, rq_iter) 343 nr_bvec++; 344 345 if (rq->bio != rq->biotail) { 346 347 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 348 GFP_NOIO); 349 if (!bvec) 350 return -EIO; 351 cmd->bvec = bvec; 352 353 /* 354 * The bios of the request may be started from the middle of 355 * the 'bvec' because of bio splitting, so we can't directly 356 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 357 * API will take care of all details for us. 358 */ 359 rq_for_each_bvec(tmp, rq, rq_iter) { 360 *bvec = tmp; 361 bvec++; 362 } 363 bvec = cmd->bvec; 364 offset = 0; 365 } else { 366 /* 367 * Same here, this bio may be started from the middle of the 368 * 'bvec' because of bio splitting, so offset from the bvec 369 * must be passed to iov iterator 370 */ 371 offset = bio->bi_iter.bi_bvec_done; 372 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 373 } 374 atomic_set(&cmd->ref, 2); 375 376 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 377 iter.iov_offset = offset; 378 379 cmd->iocb.ki_pos = pos; 380 cmd->iocb.ki_filp = file; 381 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 382 if (cmd->use_aio) { 383 cmd->iocb.ki_complete = lo_rw_aio_complete; 384 cmd->iocb.ki_flags = IOCB_DIRECT; 385 } else { 386 cmd->iocb.ki_complete = NULL; 387 cmd->iocb.ki_flags = 0; 388 } 389 390 if (rw == ITER_SOURCE) 391 ret = file->f_op->write_iter(&cmd->iocb, &iter); 392 else 393 ret = file->f_op->read_iter(&cmd->iocb, &iter); 394 395 lo_rw_aio_do_completion(cmd); 396 397 if (ret != -EIOCBQUEUED) 398 lo_rw_aio_complete(&cmd->iocb, ret); 399 return -EIOCBQUEUED; 400 } 401 402 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 403 { 404 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 405 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 406 407 switch (req_op(rq)) { 408 case REQ_OP_FLUSH: 409 return lo_req_flush(lo, rq); 410 case REQ_OP_WRITE_ZEROES: 411 /* 412 * If the caller doesn't want deallocation, call zeroout to 413 * write zeroes the range. Otherwise, punch them out. 414 */ 415 return lo_fallocate(lo, rq, pos, 416 (rq->cmd_flags & REQ_NOUNMAP) ? 417 FALLOC_FL_ZERO_RANGE : 418 FALLOC_FL_PUNCH_HOLE); 419 case REQ_OP_DISCARD: 420 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 421 case REQ_OP_WRITE: 422 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 423 case REQ_OP_READ: 424 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 425 default: 426 WARN_ON_ONCE(1); 427 return -EIO; 428 } 429 } 430 431 static void loop_reread_partitions(struct loop_device *lo) 432 { 433 int rc; 434 435 mutex_lock(&lo->lo_disk->open_mutex); 436 rc = bdev_disk_changed(lo->lo_disk, false); 437 mutex_unlock(&lo->lo_disk->open_mutex); 438 if (rc) 439 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 440 __func__, lo->lo_number, lo->lo_file_name, rc); 441 } 442 443 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 444 { 445 struct file *file = lo->lo_backing_file; 446 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 447 struct kstat st; 448 449 /* 450 * Use the minimal dio alignment of the file system if provided. 451 */ 452 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 453 (st.result_mask & STATX_DIOALIGN)) 454 return st.dio_offset_align; 455 456 /* 457 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 458 * a handful of file systems support the STATX_DIOALIGN flag. 459 */ 460 if (sb_bdev) 461 return bdev_logical_block_size(sb_bdev); 462 return SECTOR_SIZE; 463 } 464 465 static inline int is_loop_device(struct file *file) 466 { 467 struct inode *i = file->f_mapping->host; 468 469 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 470 } 471 472 static int loop_validate_file(struct file *file, struct block_device *bdev) 473 { 474 struct inode *inode = file->f_mapping->host; 475 struct file *f = file; 476 477 /* Avoid recursion */ 478 while (is_loop_device(f)) { 479 struct loop_device *l; 480 481 lockdep_assert_held(&loop_validate_mutex); 482 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 483 return -EBADF; 484 485 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 486 if (l->lo_state != Lo_bound) 487 return -EINVAL; 488 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 489 rmb(); 490 f = l->lo_backing_file; 491 } 492 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 493 return -EINVAL; 494 return 0; 495 } 496 497 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 498 { 499 lo->lo_backing_file = file; 500 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 501 mapping_set_gfp_mask(file->f_mapping, 502 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 503 if (lo->lo_backing_file->f_flags & O_DIRECT) 504 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 505 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 506 } 507 508 /* 509 * loop_change_fd switched the backing store of a loopback device to 510 * a new file. This is useful for operating system installers to free up 511 * the original file and in High Availability environments to switch to 512 * an alternative location for the content in case of server meltdown. 513 * This can only work if the loop device is used read-only, and if the 514 * new backing store is the same size and type as the old backing store. 515 */ 516 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 517 unsigned int arg) 518 { 519 struct file *file = fget(arg); 520 struct file *old_file; 521 unsigned int memflags; 522 int error; 523 bool partscan; 524 bool is_loop; 525 526 if (!file) 527 return -EBADF; 528 529 /* suppress uevents while reconfiguring the device */ 530 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 531 532 is_loop = is_loop_device(file); 533 error = loop_global_lock_killable(lo, is_loop); 534 if (error) 535 goto out_putf; 536 error = -ENXIO; 537 if (lo->lo_state != Lo_bound) 538 goto out_err; 539 540 /* the loop device has to be read-only */ 541 error = -EINVAL; 542 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 543 goto out_err; 544 545 error = loop_validate_file(file, bdev); 546 if (error) 547 goto out_err; 548 549 old_file = lo->lo_backing_file; 550 551 error = -EINVAL; 552 553 /* size of the new backing store needs to be the same */ 554 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 555 goto out_err; 556 557 /* 558 * We might switch to direct I/O mode for the loop device, write back 559 * all dirty data the page cache now that so that the individual I/O 560 * operations don't have to do that. 561 */ 562 vfs_fsync(file, 0); 563 564 /* and ... switch */ 565 disk_force_media_change(lo->lo_disk); 566 memflags = blk_mq_freeze_queue(lo->lo_queue); 567 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 568 loop_assign_backing_file(lo, file); 569 loop_update_dio(lo); 570 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 571 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 572 loop_global_unlock(lo, is_loop); 573 574 /* 575 * Flush loop_validate_file() before fput(), for l->lo_backing_file 576 * might be pointing at old_file which might be the last reference. 577 */ 578 if (!is_loop) { 579 mutex_lock(&loop_validate_mutex); 580 mutex_unlock(&loop_validate_mutex); 581 } 582 /* 583 * We must drop file reference outside of lo_mutex as dropping 584 * the file ref can take open_mutex which creates circular locking 585 * dependency. 586 */ 587 fput(old_file); 588 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 589 if (partscan) 590 loop_reread_partitions(lo); 591 592 error = 0; 593 done: 594 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 595 return error; 596 597 out_err: 598 loop_global_unlock(lo, is_loop); 599 out_putf: 600 fput(file); 601 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 602 goto done; 603 } 604 605 /* loop sysfs attributes */ 606 607 static ssize_t loop_attr_show(struct device *dev, char *page, 608 ssize_t (*callback)(struct loop_device *, char *)) 609 { 610 struct gendisk *disk = dev_to_disk(dev); 611 struct loop_device *lo = disk->private_data; 612 613 return callback(lo, page); 614 } 615 616 #define LOOP_ATTR_RO(_name) \ 617 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 618 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 619 struct device_attribute *attr, char *b) \ 620 { \ 621 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 622 } \ 623 static struct device_attribute loop_attr_##_name = \ 624 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 625 626 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 627 { 628 ssize_t ret; 629 char *p = NULL; 630 631 spin_lock_irq(&lo->lo_lock); 632 if (lo->lo_backing_file) 633 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 634 spin_unlock_irq(&lo->lo_lock); 635 636 if (IS_ERR_OR_NULL(p)) 637 ret = PTR_ERR(p); 638 else { 639 ret = strlen(p); 640 memmove(buf, p, ret); 641 buf[ret++] = '\n'; 642 buf[ret] = 0; 643 } 644 645 return ret; 646 } 647 648 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 649 { 650 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 651 } 652 653 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 654 { 655 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 656 } 657 658 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 659 { 660 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 661 662 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 663 } 664 665 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 666 { 667 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 668 669 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 670 } 671 672 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 673 { 674 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 675 676 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 677 } 678 679 LOOP_ATTR_RO(backing_file); 680 LOOP_ATTR_RO(offset); 681 LOOP_ATTR_RO(sizelimit); 682 LOOP_ATTR_RO(autoclear); 683 LOOP_ATTR_RO(partscan); 684 LOOP_ATTR_RO(dio); 685 686 static struct attribute *loop_attrs[] = { 687 &loop_attr_backing_file.attr, 688 &loop_attr_offset.attr, 689 &loop_attr_sizelimit.attr, 690 &loop_attr_autoclear.attr, 691 &loop_attr_partscan.attr, 692 &loop_attr_dio.attr, 693 NULL, 694 }; 695 696 static struct attribute_group loop_attribute_group = { 697 .name = "loop", 698 .attrs= loop_attrs, 699 }; 700 701 static void loop_sysfs_init(struct loop_device *lo) 702 { 703 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 704 &loop_attribute_group); 705 } 706 707 static void loop_sysfs_exit(struct loop_device *lo) 708 { 709 if (lo->sysfs_inited) 710 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 711 &loop_attribute_group); 712 } 713 714 static void loop_get_discard_config(struct loop_device *lo, 715 u32 *granularity, u32 *max_discard_sectors) 716 { 717 struct file *file = lo->lo_backing_file; 718 struct inode *inode = file->f_mapping->host; 719 struct kstatfs sbuf; 720 721 /* 722 * If the backing device is a block device, mirror its zeroing 723 * capability. Set the discard sectors to the block device's zeroing 724 * capabilities because loop discards result in blkdev_issue_zeroout(), 725 * not blkdev_issue_discard(). This maintains consistent behavior with 726 * file-backed loop devices: discarded regions read back as zero. 727 */ 728 if (S_ISBLK(inode->i_mode)) { 729 struct block_device *bdev = I_BDEV(inode); 730 731 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 732 *granularity = bdev_discard_granularity(bdev); 733 734 /* 735 * We use punch hole to reclaim the free space used by the 736 * image a.k.a. discard. 737 */ 738 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 739 *max_discard_sectors = UINT_MAX >> 9; 740 *granularity = sbuf.f_bsize; 741 } 742 } 743 744 struct loop_worker { 745 struct rb_node rb_node; 746 struct work_struct work; 747 struct list_head cmd_list; 748 struct list_head idle_list; 749 struct loop_device *lo; 750 struct cgroup_subsys_state *blkcg_css; 751 unsigned long last_ran_at; 752 }; 753 754 static void loop_workfn(struct work_struct *work); 755 756 #ifdef CONFIG_BLK_CGROUP 757 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 758 { 759 return !css || css == blkcg_root_css; 760 } 761 #else 762 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 763 { 764 return !css; 765 } 766 #endif 767 768 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 769 { 770 struct rb_node **node, *parent = NULL; 771 struct loop_worker *cur_worker, *worker = NULL; 772 struct work_struct *work; 773 struct list_head *cmd_list; 774 775 spin_lock_irq(&lo->lo_work_lock); 776 777 if (queue_on_root_worker(cmd->blkcg_css)) 778 goto queue_work; 779 780 node = &lo->worker_tree.rb_node; 781 782 while (*node) { 783 parent = *node; 784 cur_worker = container_of(*node, struct loop_worker, rb_node); 785 if (cur_worker->blkcg_css == cmd->blkcg_css) { 786 worker = cur_worker; 787 break; 788 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 789 node = &(*node)->rb_left; 790 } else { 791 node = &(*node)->rb_right; 792 } 793 } 794 if (worker) 795 goto queue_work; 796 797 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 798 /* 799 * In the event we cannot allocate a worker, just queue on the 800 * rootcg worker and issue the I/O as the rootcg 801 */ 802 if (!worker) { 803 cmd->blkcg_css = NULL; 804 if (cmd->memcg_css) 805 css_put(cmd->memcg_css); 806 cmd->memcg_css = NULL; 807 goto queue_work; 808 } 809 810 worker->blkcg_css = cmd->blkcg_css; 811 css_get(worker->blkcg_css); 812 INIT_WORK(&worker->work, loop_workfn); 813 INIT_LIST_HEAD(&worker->cmd_list); 814 INIT_LIST_HEAD(&worker->idle_list); 815 worker->lo = lo; 816 rb_link_node(&worker->rb_node, parent, node); 817 rb_insert_color(&worker->rb_node, &lo->worker_tree); 818 queue_work: 819 if (worker) { 820 /* 821 * We need to remove from the idle list here while 822 * holding the lock so that the idle timer doesn't 823 * free the worker 824 */ 825 if (!list_empty(&worker->idle_list)) 826 list_del_init(&worker->idle_list); 827 work = &worker->work; 828 cmd_list = &worker->cmd_list; 829 } else { 830 work = &lo->rootcg_work; 831 cmd_list = &lo->rootcg_cmd_list; 832 } 833 list_add_tail(&cmd->list_entry, cmd_list); 834 queue_work(lo->workqueue, work); 835 spin_unlock_irq(&lo->lo_work_lock); 836 } 837 838 static void loop_set_timer(struct loop_device *lo) 839 { 840 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 841 } 842 843 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 844 { 845 struct loop_worker *pos, *worker; 846 847 spin_lock_irq(&lo->lo_work_lock); 848 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 849 idle_list) { 850 if (!delete_all && 851 time_is_after_jiffies(worker->last_ran_at + 852 LOOP_IDLE_WORKER_TIMEOUT)) 853 break; 854 list_del(&worker->idle_list); 855 rb_erase(&worker->rb_node, &lo->worker_tree); 856 css_put(worker->blkcg_css); 857 kfree(worker); 858 } 859 if (!list_empty(&lo->idle_worker_list)) 860 loop_set_timer(lo); 861 spin_unlock_irq(&lo->lo_work_lock); 862 } 863 864 static void loop_free_idle_workers_timer(struct timer_list *timer) 865 { 866 struct loop_device *lo = container_of(timer, struct loop_device, timer); 867 868 return loop_free_idle_workers(lo, false); 869 } 870 871 /** 872 * loop_set_status_from_info - configure device from loop_info 873 * @lo: struct loop_device to configure 874 * @info: struct loop_info64 to configure the device with 875 * 876 * Configures the loop device parameters according to the passed 877 * in loop_info64 configuration. 878 */ 879 static int 880 loop_set_status_from_info(struct loop_device *lo, 881 const struct loop_info64 *info) 882 { 883 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 884 return -EINVAL; 885 886 switch (info->lo_encrypt_type) { 887 case LO_CRYPT_NONE: 888 break; 889 case LO_CRYPT_XOR: 890 pr_warn("support for the xor transformation has been removed.\n"); 891 return -EINVAL; 892 case LO_CRYPT_CRYPTOAPI: 893 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 894 return -EINVAL; 895 default: 896 return -EINVAL; 897 } 898 899 /* Avoid assigning overflow values */ 900 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 901 return -EOVERFLOW; 902 903 lo->lo_offset = info->lo_offset; 904 lo->lo_sizelimit = info->lo_sizelimit; 905 906 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 907 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 908 return 0; 909 } 910 911 static unsigned int loop_default_blocksize(struct loop_device *lo) 912 { 913 /* In case of direct I/O, match underlying minimum I/O size */ 914 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 915 return lo->lo_min_dio_size; 916 return SECTOR_SIZE; 917 } 918 919 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 920 unsigned int bsize) 921 { 922 struct file *file = lo->lo_backing_file; 923 struct inode *inode = file->f_mapping->host; 924 struct block_device *backing_bdev = NULL; 925 u32 granularity = 0, max_discard_sectors = 0; 926 927 if (S_ISBLK(inode->i_mode)) 928 backing_bdev = I_BDEV(inode); 929 else if (inode->i_sb->s_bdev) 930 backing_bdev = inode->i_sb->s_bdev; 931 932 if (!bsize) 933 bsize = loop_default_blocksize(lo); 934 935 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 936 937 lim->logical_block_size = bsize; 938 lim->physical_block_size = bsize; 939 lim->io_min = bsize; 940 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 941 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 942 lim->features |= BLK_FEAT_WRITE_CACHE; 943 if (backing_bdev && !bdev_nonrot(backing_bdev)) 944 lim->features |= BLK_FEAT_ROTATIONAL; 945 lim->max_hw_discard_sectors = max_discard_sectors; 946 lim->max_write_zeroes_sectors = max_discard_sectors; 947 if (max_discard_sectors) 948 lim->discard_granularity = granularity; 949 else 950 lim->discard_granularity = 0; 951 } 952 953 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 954 struct block_device *bdev, 955 const struct loop_config *config) 956 { 957 struct file *file = fget(config->fd); 958 struct queue_limits lim; 959 int error; 960 loff_t size; 961 bool partscan; 962 bool is_loop; 963 964 if (!file) 965 return -EBADF; 966 is_loop = is_loop_device(file); 967 968 /* This is safe, since we have a reference from open(). */ 969 __module_get(THIS_MODULE); 970 971 /* 972 * If we don't hold exclusive handle for the device, upgrade to it 973 * here to avoid changing device under exclusive owner. 974 */ 975 if (!(mode & BLK_OPEN_EXCL)) { 976 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 977 if (error) 978 goto out_putf; 979 } 980 981 error = loop_global_lock_killable(lo, is_loop); 982 if (error) 983 goto out_bdev; 984 985 error = -EBUSY; 986 if (lo->lo_state != Lo_unbound) 987 goto out_unlock; 988 989 error = loop_validate_file(file, bdev); 990 if (error) 991 goto out_unlock; 992 993 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 994 error = -EINVAL; 995 goto out_unlock; 996 } 997 998 error = loop_set_status_from_info(lo, &config->info); 999 if (error) 1000 goto out_unlock; 1001 lo->lo_flags = config->info.lo_flags; 1002 1003 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1004 !file->f_op->write_iter) 1005 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1006 1007 if (!lo->workqueue) { 1008 lo->workqueue = alloc_workqueue("loop%d", 1009 WQ_UNBOUND | WQ_FREEZABLE, 1010 0, lo->lo_number); 1011 if (!lo->workqueue) { 1012 error = -ENOMEM; 1013 goto out_unlock; 1014 } 1015 } 1016 1017 /* suppress uevents while reconfiguring the device */ 1018 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1019 1020 disk_force_media_change(lo->lo_disk); 1021 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1022 1023 lo->lo_device = bdev; 1024 loop_assign_backing_file(lo, file); 1025 1026 lim = queue_limits_start_update(lo->lo_queue); 1027 loop_update_limits(lo, &lim, config->block_size); 1028 /* No need to freeze the queue as the device isn't bound yet. */ 1029 error = queue_limits_commit_update(lo->lo_queue, &lim); 1030 if (error) 1031 goto out_unlock; 1032 1033 /* 1034 * We might switch to direct I/O mode for the loop device, write back 1035 * all dirty data the page cache now that so that the individual I/O 1036 * operations don't have to do that. 1037 */ 1038 vfs_fsync(file, 0); 1039 1040 loop_update_dio(lo); 1041 loop_sysfs_init(lo); 1042 1043 size = get_loop_size(lo, file); 1044 loop_set_size(lo, size); 1045 1046 /* Order wrt reading lo_state in loop_validate_file(). */ 1047 wmb(); 1048 1049 lo->lo_state = Lo_bound; 1050 if (part_shift) 1051 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1052 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1053 if (partscan) 1054 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1055 1056 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1057 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1058 1059 loop_global_unlock(lo, is_loop); 1060 if (partscan) 1061 loop_reread_partitions(lo); 1062 1063 if (!(mode & BLK_OPEN_EXCL)) 1064 bd_abort_claiming(bdev, loop_configure); 1065 1066 return 0; 1067 1068 out_unlock: 1069 loop_global_unlock(lo, is_loop); 1070 out_bdev: 1071 if (!(mode & BLK_OPEN_EXCL)) 1072 bd_abort_claiming(bdev, loop_configure); 1073 out_putf: 1074 fput(file); 1075 /* This is safe: open() is still holding a reference. */ 1076 module_put(THIS_MODULE); 1077 return error; 1078 } 1079 1080 static void __loop_clr_fd(struct loop_device *lo) 1081 { 1082 struct queue_limits lim; 1083 struct file *filp; 1084 gfp_t gfp = lo->old_gfp_mask; 1085 1086 spin_lock_irq(&lo->lo_lock); 1087 filp = lo->lo_backing_file; 1088 lo->lo_backing_file = NULL; 1089 spin_unlock_irq(&lo->lo_lock); 1090 1091 lo->lo_device = NULL; 1092 lo->lo_offset = 0; 1093 lo->lo_sizelimit = 0; 1094 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1095 1096 /* 1097 * Reset the block size to the default. 1098 * 1099 * No queue freezing needed because this is called from the final 1100 * ->release call only, so there can't be any outstanding I/O. 1101 */ 1102 lim = queue_limits_start_update(lo->lo_queue); 1103 lim.logical_block_size = SECTOR_SIZE; 1104 lim.physical_block_size = SECTOR_SIZE; 1105 lim.io_min = SECTOR_SIZE; 1106 queue_limits_commit_update(lo->lo_queue, &lim); 1107 1108 invalidate_disk(lo->lo_disk); 1109 loop_sysfs_exit(lo); 1110 /* let user-space know about this change */ 1111 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1112 mapping_set_gfp_mask(filp->f_mapping, gfp); 1113 /* This is safe: open() is still holding a reference. */ 1114 module_put(THIS_MODULE); 1115 1116 disk_force_media_change(lo->lo_disk); 1117 1118 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1119 int err; 1120 1121 /* 1122 * open_mutex has been held already in release path, so don't 1123 * acquire it if this function is called in such case. 1124 * 1125 * If the reread partition isn't from release path, lo_refcnt 1126 * must be at least one and it can only become zero when the 1127 * current holder is released. 1128 */ 1129 err = bdev_disk_changed(lo->lo_disk, false); 1130 if (err) 1131 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1132 __func__, lo->lo_number, err); 1133 /* Device is gone, no point in returning error */ 1134 } 1135 1136 /* 1137 * lo->lo_state is set to Lo_unbound here after above partscan has 1138 * finished. There cannot be anybody else entering __loop_clr_fd() as 1139 * Lo_rundown state protects us from all the other places trying to 1140 * change the 'lo' device. 1141 */ 1142 lo->lo_flags = 0; 1143 if (!part_shift) 1144 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1145 mutex_lock(&lo->lo_mutex); 1146 lo->lo_state = Lo_unbound; 1147 mutex_unlock(&lo->lo_mutex); 1148 1149 /* 1150 * Need not hold lo_mutex to fput backing file. Calling fput holding 1151 * lo_mutex triggers a circular lock dependency possibility warning as 1152 * fput can take open_mutex which is usually taken before lo_mutex. 1153 */ 1154 fput(filp); 1155 } 1156 1157 static int loop_clr_fd(struct loop_device *lo) 1158 { 1159 int err; 1160 1161 /* 1162 * Since lo_ioctl() is called without locks held, it is possible that 1163 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1164 * 1165 * Therefore, use global lock when setting Lo_rundown state in order to 1166 * make sure that loop_validate_file() will fail if the "struct file" 1167 * which loop_configure()/loop_change_fd() found via fget() was this 1168 * loop device. 1169 */ 1170 err = loop_global_lock_killable(lo, true); 1171 if (err) 1172 return err; 1173 if (lo->lo_state != Lo_bound) { 1174 loop_global_unlock(lo, true); 1175 return -ENXIO; 1176 } 1177 /* 1178 * Mark the device for removing the backing device on last close. 1179 * If we are the only opener, also switch the state to roundown here to 1180 * prevent new openers from coming in. 1181 */ 1182 1183 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1184 if (disk_openers(lo->lo_disk) == 1) 1185 lo->lo_state = Lo_rundown; 1186 loop_global_unlock(lo, true); 1187 1188 return 0; 1189 } 1190 1191 static int 1192 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1193 { 1194 int err; 1195 bool partscan = false; 1196 bool size_changed = false; 1197 unsigned int memflags; 1198 1199 err = mutex_lock_killable(&lo->lo_mutex); 1200 if (err) 1201 return err; 1202 if (lo->lo_state != Lo_bound) { 1203 err = -ENXIO; 1204 goto out_unlock; 1205 } 1206 1207 if (lo->lo_offset != info->lo_offset || 1208 lo->lo_sizelimit != info->lo_sizelimit) { 1209 size_changed = true; 1210 sync_blockdev(lo->lo_device); 1211 invalidate_bdev(lo->lo_device); 1212 } 1213 1214 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1215 memflags = blk_mq_freeze_queue(lo->lo_queue); 1216 1217 err = loop_set_status_from_info(lo, info); 1218 if (err) 1219 goto out_unfreeze; 1220 1221 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1222 (info->lo_flags & LO_FLAGS_PARTSCAN); 1223 1224 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1225 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1226 1227 if (size_changed) { 1228 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1229 lo->lo_backing_file); 1230 loop_set_size(lo, new_size); 1231 } 1232 1233 /* update the direct I/O flag if lo_offset changed */ 1234 loop_update_dio(lo); 1235 1236 out_unfreeze: 1237 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1238 if (partscan) 1239 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1240 out_unlock: 1241 mutex_unlock(&lo->lo_mutex); 1242 if (partscan) 1243 loop_reread_partitions(lo); 1244 1245 return err; 1246 } 1247 1248 static int 1249 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1250 { 1251 struct path path; 1252 struct kstat stat; 1253 int ret; 1254 1255 ret = mutex_lock_killable(&lo->lo_mutex); 1256 if (ret) 1257 return ret; 1258 if (lo->lo_state != Lo_bound) { 1259 mutex_unlock(&lo->lo_mutex); 1260 return -ENXIO; 1261 } 1262 1263 memset(info, 0, sizeof(*info)); 1264 info->lo_number = lo->lo_number; 1265 info->lo_offset = lo->lo_offset; 1266 info->lo_sizelimit = lo->lo_sizelimit; 1267 info->lo_flags = lo->lo_flags; 1268 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1269 1270 /* Drop lo_mutex while we call into the filesystem. */ 1271 path = lo->lo_backing_file->f_path; 1272 path_get(&path); 1273 mutex_unlock(&lo->lo_mutex); 1274 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1275 if (!ret) { 1276 info->lo_device = huge_encode_dev(stat.dev); 1277 info->lo_inode = stat.ino; 1278 info->lo_rdevice = huge_encode_dev(stat.rdev); 1279 } 1280 path_put(&path); 1281 return ret; 1282 } 1283 1284 static void 1285 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1286 { 1287 memset(info64, 0, sizeof(*info64)); 1288 info64->lo_number = info->lo_number; 1289 info64->lo_device = info->lo_device; 1290 info64->lo_inode = info->lo_inode; 1291 info64->lo_rdevice = info->lo_rdevice; 1292 info64->lo_offset = info->lo_offset; 1293 info64->lo_sizelimit = 0; 1294 info64->lo_flags = info->lo_flags; 1295 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1296 } 1297 1298 static int 1299 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1300 { 1301 memset(info, 0, sizeof(*info)); 1302 info->lo_number = info64->lo_number; 1303 info->lo_device = info64->lo_device; 1304 info->lo_inode = info64->lo_inode; 1305 info->lo_rdevice = info64->lo_rdevice; 1306 info->lo_offset = info64->lo_offset; 1307 info->lo_flags = info64->lo_flags; 1308 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1309 1310 /* error in case values were truncated */ 1311 if (info->lo_device != info64->lo_device || 1312 info->lo_rdevice != info64->lo_rdevice || 1313 info->lo_inode != info64->lo_inode || 1314 info->lo_offset != info64->lo_offset) 1315 return -EOVERFLOW; 1316 1317 return 0; 1318 } 1319 1320 static int 1321 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1322 { 1323 struct loop_info info; 1324 struct loop_info64 info64; 1325 1326 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1327 return -EFAULT; 1328 loop_info64_from_old(&info, &info64); 1329 return loop_set_status(lo, &info64); 1330 } 1331 1332 static int 1333 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1334 { 1335 struct loop_info64 info64; 1336 1337 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1338 return -EFAULT; 1339 return loop_set_status(lo, &info64); 1340 } 1341 1342 static int 1343 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1344 struct loop_info info; 1345 struct loop_info64 info64; 1346 int err; 1347 1348 if (!arg) 1349 return -EINVAL; 1350 err = loop_get_status(lo, &info64); 1351 if (!err) 1352 err = loop_info64_to_old(&info64, &info); 1353 if (!err && copy_to_user(arg, &info, sizeof(info))) 1354 err = -EFAULT; 1355 1356 return err; 1357 } 1358 1359 static int 1360 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1361 struct loop_info64 info64; 1362 int err; 1363 1364 if (!arg) 1365 return -EINVAL; 1366 err = loop_get_status(lo, &info64); 1367 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1368 err = -EFAULT; 1369 1370 return err; 1371 } 1372 1373 static int loop_set_capacity(struct loop_device *lo) 1374 { 1375 loff_t size; 1376 1377 if (unlikely(lo->lo_state != Lo_bound)) 1378 return -ENXIO; 1379 1380 size = get_loop_size(lo, lo->lo_backing_file); 1381 loop_set_size(lo, size); 1382 1383 return 0; 1384 } 1385 1386 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1387 { 1388 bool use_dio = !!arg; 1389 unsigned int memflags; 1390 1391 if (lo->lo_state != Lo_bound) 1392 return -ENXIO; 1393 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1394 return 0; 1395 1396 if (use_dio) { 1397 if (!lo_can_use_dio(lo)) 1398 return -EINVAL; 1399 /* flush dirty pages before starting to use direct I/O */ 1400 vfs_fsync(lo->lo_backing_file, 0); 1401 } 1402 1403 memflags = blk_mq_freeze_queue(lo->lo_queue); 1404 if (use_dio) 1405 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1406 else 1407 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1408 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1409 return 0; 1410 } 1411 1412 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1413 { 1414 struct queue_limits lim; 1415 unsigned int memflags; 1416 int err = 0; 1417 1418 if (lo->lo_state != Lo_bound) 1419 return -ENXIO; 1420 1421 if (lo->lo_queue->limits.logical_block_size == arg) 1422 return 0; 1423 1424 sync_blockdev(lo->lo_device); 1425 invalidate_bdev(lo->lo_device); 1426 1427 lim = queue_limits_start_update(lo->lo_queue); 1428 loop_update_limits(lo, &lim, arg); 1429 1430 memflags = blk_mq_freeze_queue(lo->lo_queue); 1431 err = queue_limits_commit_update(lo->lo_queue, &lim); 1432 loop_update_dio(lo); 1433 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1434 1435 return err; 1436 } 1437 1438 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1439 unsigned long arg) 1440 { 1441 int err; 1442 1443 err = mutex_lock_killable(&lo->lo_mutex); 1444 if (err) 1445 return err; 1446 switch (cmd) { 1447 case LOOP_SET_CAPACITY: 1448 err = loop_set_capacity(lo); 1449 break; 1450 case LOOP_SET_DIRECT_IO: 1451 err = loop_set_dio(lo, arg); 1452 break; 1453 case LOOP_SET_BLOCK_SIZE: 1454 err = loop_set_block_size(lo, arg); 1455 break; 1456 default: 1457 err = -EINVAL; 1458 } 1459 mutex_unlock(&lo->lo_mutex); 1460 return err; 1461 } 1462 1463 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1464 unsigned int cmd, unsigned long arg) 1465 { 1466 struct loop_device *lo = bdev->bd_disk->private_data; 1467 void __user *argp = (void __user *) arg; 1468 int err; 1469 1470 switch (cmd) { 1471 case LOOP_SET_FD: { 1472 /* 1473 * Legacy case - pass in a zeroed out struct loop_config with 1474 * only the file descriptor set , which corresponds with the 1475 * default parameters we'd have used otherwise. 1476 */ 1477 struct loop_config config; 1478 1479 memset(&config, 0, sizeof(config)); 1480 config.fd = arg; 1481 1482 return loop_configure(lo, mode, bdev, &config); 1483 } 1484 case LOOP_CONFIGURE: { 1485 struct loop_config config; 1486 1487 if (copy_from_user(&config, argp, sizeof(config))) 1488 return -EFAULT; 1489 1490 return loop_configure(lo, mode, bdev, &config); 1491 } 1492 case LOOP_CHANGE_FD: 1493 return loop_change_fd(lo, bdev, arg); 1494 case LOOP_CLR_FD: 1495 return loop_clr_fd(lo); 1496 case LOOP_SET_STATUS: 1497 err = -EPERM; 1498 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1499 err = loop_set_status_old(lo, argp); 1500 break; 1501 case LOOP_GET_STATUS: 1502 return loop_get_status_old(lo, argp); 1503 case LOOP_SET_STATUS64: 1504 err = -EPERM; 1505 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1506 err = loop_set_status64(lo, argp); 1507 break; 1508 case LOOP_GET_STATUS64: 1509 return loop_get_status64(lo, argp); 1510 case LOOP_SET_CAPACITY: 1511 case LOOP_SET_DIRECT_IO: 1512 case LOOP_SET_BLOCK_SIZE: 1513 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1514 return -EPERM; 1515 fallthrough; 1516 default: 1517 err = lo_simple_ioctl(lo, cmd, arg); 1518 break; 1519 } 1520 1521 return err; 1522 } 1523 1524 #ifdef CONFIG_COMPAT 1525 struct compat_loop_info { 1526 compat_int_t lo_number; /* ioctl r/o */ 1527 compat_dev_t lo_device; /* ioctl r/o */ 1528 compat_ulong_t lo_inode; /* ioctl r/o */ 1529 compat_dev_t lo_rdevice; /* ioctl r/o */ 1530 compat_int_t lo_offset; 1531 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1532 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1533 compat_int_t lo_flags; /* ioctl r/o */ 1534 char lo_name[LO_NAME_SIZE]; 1535 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1536 compat_ulong_t lo_init[2]; 1537 char reserved[4]; 1538 }; 1539 1540 /* 1541 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1542 * - noinlined to reduce stack space usage in main part of driver 1543 */ 1544 static noinline int 1545 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1546 struct loop_info64 *info64) 1547 { 1548 struct compat_loop_info info; 1549 1550 if (copy_from_user(&info, arg, sizeof(info))) 1551 return -EFAULT; 1552 1553 memset(info64, 0, sizeof(*info64)); 1554 info64->lo_number = info.lo_number; 1555 info64->lo_device = info.lo_device; 1556 info64->lo_inode = info.lo_inode; 1557 info64->lo_rdevice = info.lo_rdevice; 1558 info64->lo_offset = info.lo_offset; 1559 info64->lo_sizelimit = 0; 1560 info64->lo_flags = info.lo_flags; 1561 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1562 return 0; 1563 } 1564 1565 /* 1566 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1567 * - noinlined to reduce stack space usage in main part of driver 1568 */ 1569 static noinline int 1570 loop_info64_to_compat(const struct loop_info64 *info64, 1571 struct compat_loop_info __user *arg) 1572 { 1573 struct compat_loop_info info; 1574 1575 memset(&info, 0, sizeof(info)); 1576 info.lo_number = info64->lo_number; 1577 info.lo_device = info64->lo_device; 1578 info.lo_inode = info64->lo_inode; 1579 info.lo_rdevice = info64->lo_rdevice; 1580 info.lo_offset = info64->lo_offset; 1581 info.lo_flags = info64->lo_flags; 1582 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1583 1584 /* error in case values were truncated */ 1585 if (info.lo_device != info64->lo_device || 1586 info.lo_rdevice != info64->lo_rdevice || 1587 info.lo_inode != info64->lo_inode || 1588 info.lo_offset != info64->lo_offset) 1589 return -EOVERFLOW; 1590 1591 if (copy_to_user(arg, &info, sizeof(info))) 1592 return -EFAULT; 1593 return 0; 1594 } 1595 1596 static int 1597 loop_set_status_compat(struct loop_device *lo, 1598 const struct compat_loop_info __user *arg) 1599 { 1600 struct loop_info64 info64; 1601 int ret; 1602 1603 ret = loop_info64_from_compat(arg, &info64); 1604 if (ret < 0) 1605 return ret; 1606 return loop_set_status(lo, &info64); 1607 } 1608 1609 static int 1610 loop_get_status_compat(struct loop_device *lo, 1611 struct compat_loop_info __user *arg) 1612 { 1613 struct loop_info64 info64; 1614 int err; 1615 1616 if (!arg) 1617 return -EINVAL; 1618 err = loop_get_status(lo, &info64); 1619 if (!err) 1620 err = loop_info64_to_compat(&info64, arg); 1621 return err; 1622 } 1623 1624 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1625 unsigned int cmd, unsigned long arg) 1626 { 1627 struct loop_device *lo = bdev->bd_disk->private_data; 1628 int err; 1629 1630 switch(cmd) { 1631 case LOOP_SET_STATUS: 1632 err = loop_set_status_compat(lo, 1633 (const struct compat_loop_info __user *)arg); 1634 break; 1635 case LOOP_GET_STATUS: 1636 err = loop_get_status_compat(lo, 1637 (struct compat_loop_info __user *)arg); 1638 break; 1639 case LOOP_SET_CAPACITY: 1640 case LOOP_CLR_FD: 1641 case LOOP_GET_STATUS64: 1642 case LOOP_SET_STATUS64: 1643 case LOOP_CONFIGURE: 1644 arg = (unsigned long) compat_ptr(arg); 1645 fallthrough; 1646 case LOOP_SET_FD: 1647 case LOOP_CHANGE_FD: 1648 case LOOP_SET_BLOCK_SIZE: 1649 case LOOP_SET_DIRECT_IO: 1650 err = lo_ioctl(bdev, mode, cmd, arg); 1651 break; 1652 default: 1653 err = -ENOIOCTLCMD; 1654 break; 1655 } 1656 return err; 1657 } 1658 #endif 1659 1660 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1661 { 1662 struct loop_device *lo = disk->private_data; 1663 int err; 1664 1665 err = mutex_lock_killable(&lo->lo_mutex); 1666 if (err) 1667 return err; 1668 1669 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1670 err = -ENXIO; 1671 mutex_unlock(&lo->lo_mutex); 1672 return err; 1673 } 1674 1675 static void lo_release(struct gendisk *disk) 1676 { 1677 struct loop_device *lo = disk->private_data; 1678 bool need_clear = false; 1679 1680 if (disk_openers(disk) > 0) 1681 return; 1682 /* 1683 * Clear the backing device information if this is the last close of 1684 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1685 * has been called. 1686 */ 1687 1688 mutex_lock(&lo->lo_mutex); 1689 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1690 lo->lo_state = Lo_rundown; 1691 1692 need_clear = (lo->lo_state == Lo_rundown); 1693 mutex_unlock(&lo->lo_mutex); 1694 1695 if (need_clear) 1696 __loop_clr_fd(lo); 1697 } 1698 1699 static void lo_free_disk(struct gendisk *disk) 1700 { 1701 struct loop_device *lo = disk->private_data; 1702 1703 if (lo->workqueue) 1704 destroy_workqueue(lo->workqueue); 1705 loop_free_idle_workers(lo, true); 1706 timer_shutdown_sync(&lo->timer); 1707 mutex_destroy(&lo->lo_mutex); 1708 kfree(lo); 1709 } 1710 1711 static const struct block_device_operations lo_fops = { 1712 .owner = THIS_MODULE, 1713 .open = lo_open, 1714 .release = lo_release, 1715 .ioctl = lo_ioctl, 1716 #ifdef CONFIG_COMPAT 1717 .compat_ioctl = lo_compat_ioctl, 1718 #endif 1719 .free_disk = lo_free_disk, 1720 }; 1721 1722 /* 1723 * And now the modules code and kernel interface. 1724 */ 1725 1726 /* 1727 * If max_loop is specified, create that many devices upfront. 1728 * This also becomes a hard limit. If max_loop is not specified, 1729 * the default isn't a hard limit (as before commit 85c50197716c 1730 * changed the default value from 0 for max_loop=0 reasons), just 1731 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1732 * init time. Loop devices can be requested on-demand with the 1733 * /dev/loop-control interface, or be instantiated by accessing 1734 * a 'dead' device node. 1735 */ 1736 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1737 1738 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1739 static bool max_loop_specified; 1740 1741 static int max_loop_param_set_int(const char *val, 1742 const struct kernel_param *kp) 1743 { 1744 int ret; 1745 1746 ret = param_set_int(val, kp); 1747 if (ret < 0) 1748 return ret; 1749 1750 max_loop_specified = true; 1751 return 0; 1752 } 1753 1754 static const struct kernel_param_ops max_loop_param_ops = { 1755 .set = max_loop_param_set_int, 1756 .get = param_get_int, 1757 }; 1758 1759 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1760 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1761 #else 1762 module_param(max_loop, int, 0444); 1763 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1764 #endif 1765 1766 module_param(max_part, int, 0444); 1767 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1768 1769 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1770 1771 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1772 { 1773 int qd, ret; 1774 1775 ret = kstrtoint(s, 0, &qd); 1776 if (ret < 0) 1777 return ret; 1778 if (qd < 1) 1779 return -EINVAL; 1780 hw_queue_depth = qd; 1781 return 0; 1782 } 1783 1784 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1785 .set = loop_set_hw_queue_depth, 1786 .get = param_get_int, 1787 }; 1788 1789 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1790 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1791 1792 MODULE_DESCRIPTION("Loopback device support"); 1793 MODULE_LICENSE("GPL"); 1794 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1795 1796 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1797 const struct blk_mq_queue_data *bd) 1798 { 1799 struct request *rq = bd->rq; 1800 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1801 struct loop_device *lo = rq->q->queuedata; 1802 1803 blk_mq_start_request(rq); 1804 1805 if (lo->lo_state != Lo_bound) 1806 return BLK_STS_IOERR; 1807 1808 switch (req_op(rq)) { 1809 case REQ_OP_FLUSH: 1810 case REQ_OP_DISCARD: 1811 case REQ_OP_WRITE_ZEROES: 1812 cmd->use_aio = false; 1813 break; 1814 default: 1815 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1816 break; 1817 } 1818 1819 /* always use the first bio's css */ 1820 cmd->blkcg_css = NULL; 1821 cmd->memcg_css = NULL; 1822 #ifdef CONFIG_BLK_CGROUP 1823 if (rq->bio) { 1824 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1825 #ifdef CONFIG_MEMCG 1826 if (cmd->blkcg_css) { 1827 cmd->memcg_css = 1828 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1829 &memory_cgrp_subsys); 1830 } 1831 #endif 1832 } 1833 #endif 1834 loop_queue_work(lo, cmd); 1835 1836 return BLK_STS_OK; 1837 } 1838 1839 static void loop_handle_cmd(struct loop_cmd *cmd) 1840 { 1841 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1842 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1843 struct request *rq = blk_mq_rq_from_pdu(cmd); 1844 const bool write = op_is_write(req_op(rq)); 1845 struct loop_device *lo = rq->q->queuedata; 1846 int ret = 0; 1847 struct mem_cgroup *old_memcg = NULL; 1848 1849 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1850 ret = -EIO; 1851 goto failed; 1852 } 1853 1854 if (cmd_blkcg_css) 1855 kthread_associate_blkcg(cmd_blkcg_css); 1856 if (cmd_memcg_css) 1857 old_memcg = set_active_memcg( 1858 mem_cgroup_from_css(cmd_memcg_css)); 1859 1860 /* 1861 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1862 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1863 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1864 * not yet been completed. 1865 */ 1866 ret = do_req_filebacked(lo, rq); 1867 1868 if (cmd_blkcg_css) 1869 kthread_associate_blkcg(NULL); 1870 1871 if (cmd_memcg_css) { 1872 set_active_memcg(old_memcg); 1873 css_put(cmd_memcg_css); 1874 } 1875 failed: 1876 /* complete non-aio request */ 1877 if (ret != -EIOCBQUEUED) { 1878 if (ret == -EOPNOTSUPP) 1879 cmd->ret = ret; 1880 else 1881 cmd->ret = ret ? -EIO : 0; 1882 if (likely(!blk_should_fake_timeout(rq->q))) 1883 blk_mq_complete_request(rq); 1884 } 1885 } 1886 1887 static void loop_process_work(struct loop_worker *worker, 1888 struct list_head *cmd_list, struct loop_device *lo) 1889 { 1890 int orig_flags = current->flags; 1891 struct loop_cmd *cmd; 1892 1893 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1894 spin_lock_irq(&lo->lo_work_lock); 1895 while (!list_empty(cmd_list)) { 1896 cmd = container_of( 1897 cmd_list->next, struct loop_cmd, list_entry); 1898 list_del(cmd_list->next); 1899 spin_unlock_irq(&lo->lo_work_lock); 1900 1901 loop_handle_cmd(cmd); 1902 cond_resched(); 1903 1904 spin_lock_irq(&lo->lo_work_lock); 1905 } 1906 1907 /* 1908 * We only add to the idle list if there are no pending cmds 1909 * *and* the worker will not run again which ensures that it 1910 * is safe to free any worker on the idle list 1911 */ 1912 if (worker && !work_pending(&worker->work)) { 1913 worker->last_ran_at = jiffies; 1914 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1915 loop_set_timer(lo); 1916 } 1917 spin_unlock_irq(&lo->lo_work_lock); 1918 current->flags = orig_flags; 1919 } 1920 1921 static void loop_workfn(struct work_struct *work) 1922 { 1923 struct loop_worker *worker = 1924 container_of(work, struct loop_worker, work); 1925 loop_process_work(worker, &worker->cmd_list, worker->lo); 1926 } 1927 1928 static void loop_rootcg_workfn(struct work_struct *work) 1929 { 1930 struct loop_device *lo = 1931 container_of(work, struct loop_device, rootcg_work); 1932 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1933 } 1934 1935 static const struct blk_mq_ops loop_mq_ops = { 1936 .queue_rq = loop_queue_rq, 1937 .complete = lo_complete_rq, 1938 }; 1939 1940 static int loop_add(int i) 1941 { 1942 struct queue_limits lim = { 1943 /* 1944 * Random number picked from the historic block max_sectors cap. 1945 */ 1946 .max_hw_sectors = 2560u, 1947 }; 1948 struct loop_device *lo; 1949 struct gendisk *disk; 1950 int err; 1951 1952 err = -ENOMEM; 1953 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1954 if (!lo) 1955 goto out; 1956 lo->worker_tree = RB_ROOT; 1957 INIT_LIST_HEAD(&lo->idle_worker_list); 1958 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 1959 lo->lo_state = Lo_unbound; 1960 1961 err = mutex_lock_killable(&loop_ctl_mutex); 1962 if (err) 1963 goto out_free_dev; 1964 1965 /* allocate id, if @id >= 0, we're requesting that specific id */ 1966 if (i >= 0) { 1967 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1968 if (err == -ENOSPC) 1969 err = -EEXIST; 1970 } else { 1971 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1972 } 1973 mutex_unlock(&loop_ctl_mutex); 1974 if (err < 0) 1975 goto out_free_dev; 1976 i = err; 1977 1978 lo->tag_set.ops = &loop_mq_ops; 1979 lo->tag_set.nr_hw_queues = 1; 1980 lo->tag_set.queue_depth = hw_queue_depth; 1981 lo->tag_set.numa_node = NUMA_NO_NODE; 1982 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1983 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1984 lo->tag_set.driver_data = lo; 1985 1986 err = blk_mq_alloc_tag_set(&lo->tag_set); 1987 if (err) 1988 goto out_free_idr; 1989 1990 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 1991 if (IS_ERR(disk)) { 1992 err = PTR_ERR(disk); 1993 goto out_cleanup_tags; 1994 } 1995 lo->lo_queue = lo->lo_disk->queue; 1996 1997 /* 1998 * Disable partition scanning by default. The in-kernel partition 1999 * scanning can be requested individually per-device during its 2000 * setup. Userspace can always add and remove partitions from all 2001 * devices. The needed partition minors are allocated from the 2002 * extended minor space, the main loop device numbers will continue 2003 * to match the loop minors, regardless of the number of partitions 2004 * used. 2005 * 2006 * If max_part is given, partition scanning is globally enabled for 2007 * all loop devices. The minors for the main loop devices will be 2008 * multiples of max_part. 2009 * 2010 * Note: Global-for-all-devices, set-only-at-init, read-only module 2011 * parameteters like 'max_loop' and 'max_part' make things needlessly 2012 * complicated, are too static, inflexible and may surprise 2013 * userspace tools. Parameters like this in general should be avoided. 2014 */ 2015 if (!part_shift) 2016 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2017 mutex_init(&lo->lo_mutex); 2018 lo->lo_number = i; 2019 spin_lock_init(&lo->lo_lock); 2020 spin_lock_init(&lo->lo_work_lock); 2021 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2022 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2023 disk->major = LOOP_MAJOR; 2024 disk->first_minor = i << part_shift; 2025 disk->minors = 1 << part_shift; 2026 disk->fops = &lo_fops; 2027 disk->private_data = lo; 2028 disk->queue = lo->lo_queue; 2029 disk->events = DISK_EVENT_MEDIA_CHANGE; 2030 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2031 sprintf(disk->disk_name, "loop%d", i); 2032 /* Make this loop device reachable from pathname. */ 2033 err = add_disk(disk); 2034 if (err) 2035 goto out_cleanup_disk; 2036 2037 /* Show this loop device. */ 2038 mutex_lock(&loop_ctl_mutex); 2039 lo->idr_visible = true; 2040 mutex_unlock(&loop_ctl_mutex); 2041 2042 return i; 2043 2044 out_cleanup_disk: 2045 put_disk(disk); 2046 out_cleanup_tags: 2047 blk_mq_free_tag_set(&lo->tag_set); 2048 out_free_idr: 2049 mutex_lock(&loop_ctl_mutex); 2050 idr_remove(&loop_index_idr, i); 2051 mutex_unlock(&loop_ctl_mutex); 2052 out_free_dev: 2053 kfree(lo); 2054 out: 2055 return err; 2056 } 2057 2058 static void loop_remove(struct loop_device *lo) 2059 { 2060 /* Make this loop device unreachable from pathname. */ 2061 del_gendisk(lo->lo_disk); 2062 blk_mq_free_tag_set(&lo->tag_set); 2063 2064 mutex_lock(&loop_ctl_mutex); 2065 idr_remove(&loop_index_idr, lo->lo_number); 2066 mutex_unlock(&loop_ctl_mutex); 2067 2068 put_disk(lo->lo_disk); 2069 } 2070 2071 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2072 static void loop_probe(dev_t dev) 2073 { 2074 int idx = MINOR(dev) >> part_shift; 2075 2076 if (max_loop_specified && max_loop && idx >= max_loop) 2077 return; 2078 loop_add(idx); 2079 } 2080 #else 2081 #define loop_probe NULL 2082 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2083 2084 static int loop_control_remove(int idx) 2085 { 2086 struct loop_device *lo; 2087 int ret; 2088 2089 if (idx < 0) { 2090 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2091 return -EINVAL; 2092 } 2093 2094 /* Hide this loop device for serialization. */ 2095 ret = mutex_lock_killable(&loop_ctl_mutex); 2096 if (ret) 2097 return ret; 2098 lo = idr_find(&loop_index_idr, idx); 2099 if (!lo || !lo->idr_visible) 2100 ret = -ENODEV; 2101 else 2102 lo->idr_visible = false; 2103 mutex_unlock(&loop_ctl_mutex); 2104 if (ret) 2105 return ret; 2106 2107 /* Check whether this loop device can be removed. */ 2108 ret = mutex_lock_killable(&lo->lo_mutex); 2109 if (ret) 2110 goto mark_visible; 2111 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2112 mutex_unlock(&lo->lo_mutex); 2113 ret = -EBUSY; 2114 goto mark_visible; 2115 } 2116 /* Mark this loop device as no more bound, but not quite unbound yet */ 2117 lo->lo_state = Lo_deleting; 2118 mutex_unlock(&lo->lo_mutex); 2119 2120 loop_remove(lo); 2121 return 0; 2122 2123 mark_visible: 2124 /* Show this loop device again. */ 2125 mutex_lock(&loop_ctl_mutex); 2126 lo->idr_visible = true; 2127 mutex_unlock(&loop_ctl_mutex); 2128 return ret; 2129 } 2130 2131 static int loop_control_get_free(int idx) 2132 { 2133 struct loop_device *lo; 2134 int id, ret; 2135 2136 ret = mutex_lock_killable(&loop_ctl_mutex); 2137 if (ret) 2138 return ret; 2139 idr_for_each_entry(&loop_index_idr, lo, id) { 2140 /* Hitting a race results in creating a new loop device which is harmless. */ 2141 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2142 goto found; 2143 } 2144 mutex_unlock(&loop_ctl_mutex); 2145 return loop_add(-1); 2146 found: 2147 mutex_unlock(&loop_ctl_mutex); 2148 return id; 2149 } 2150 2151 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2152 unsigned long parm) 2153 { 2154 switch (cmd) { 2155 case LOOP_CTL_ADD: 2156 return loop_add(parm); 2157 case LOOP_CTL_REMOVE: 2158 return loop_control_remove(parm); 2159 case LOOP_CTL_GET_FREE: 2160 return loop_control_get_free(parm); 2161 default: 2162 return -ENOSYS; 2163 } 2164 } 2165 2166 static const struct file_operations loop_ctl_fops = { 2167 .open = nonseekable_open, 2168 .unlocked_ioctl = loop_control_ioctl, 2169 .compat_ioctl = loop_control_ioctl, 2170 .owner = THIS_MODULE, 2171 .llseek = noop_llseek, 2172 }; 2173 2174 static struct miscdevice loop_misc = { 2175 .minor = LOOP_CTRL_MINOR, 2176 .name = "loop-control", 2177 .fops = &loop_ctl_fops, 2178 }; 2179 2180 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2181 MODULE_ALIAS("devname:loop-control"); 2182 2183 static int __init loop_init(void) 2184 { 2185 int i; 2186 int err; 2187 2188 part_shift = 0; 2189 if (max_part > 0) { 2190 part_shift = fls(max_part); 2191 2192 /* 2193 * Adjust max_part according to part_shift as it is exported 2194 * to user space so that user can decide correct minor number 2195 * if [s]he want to create more devices. 2196 * 2197 * Note that -1 is required because partition 0 is reserved 2198 * for the whole disk. 2199 */ 2200 max_part = (1UL << part_shift) - 1; 2201 } 2202 2203 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2204 err = -EINVAL; 2205 goto err_out; 2206 } 2207 2208 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2209 err = -EINVAL; 2210 goto err_out; 2211 } 2212 2213 err = misc_register(&loop_misc); 2214 if (err < 0) 2215 goto err_out; 2216 2217 2218 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2219 err = -EIO; 2220 goto misc_out; 2221 } 2222 2223 /* pre-create number of devices given by config or max_loop */ 2224 for (i = 0; i < max_loop; i++) 2225 loop_add(i); 2226 2227 printk(KERN_INFO "loop: module loaded\n"); 2228 return 0; 2229 2230 misc_out: 2231 misc_deregister(&loop_misc); 2232 err_out: 2233 return err; 2234 } 2235 2236 static void __exit loop_exit(void) 2237 { 2238 struct loop_device *lo; 2239 int id; 2240 2241 unregister_blkdev(LOOP_MAJOR, "loop"); 2242 misc_deregister(&loop_misc); 2243 2244 /* 2245 * There is no need to use loop_ctl_mutex here, for nobody else can 2246 * access loop_index_idr when this module is unloading (unless forced 2247 * module unloading is requested). If this is not a clean unloading, 2248 * we have no means to avoid kernel crash. 2249 */ 2250 idr_for_each_entry(&loop_index_idr, lo, id) 2251 loop_remove(lo); 2252 2253 idr_destroy(&loop_index_idr); 2254 } 2255 2256 module_init(loop_init); 2257 module_exit(loop_exit); 2258 2259 #ifndef MODULE 2260 static int __init max_loop_setup(char *str) 2261 { 2262 max_loop = simple_strtol(str, NULL, 0); 2263 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2264 max_loop_specified = true; 2265 #endif 2266 return 1; 2267 } 2268 2269 __setup("max_loop=", max_loop_setup); 2270 #endif 2271