1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t lo_calculate_size(struct loop_device *lo, struct file *file) 141 { 142 loff_t loopsize; 143 int ret; 144 145 if (S_ISBLK(file_inode(file)->i_mode)) { 146 loopsize = i_size_read(file->f_mapping->host); 147 } else { 148 struct kstat stat; 149 150 /* 151 * Get the accurate file size. This provides better results than 152 * cached inode data, particularly for network filesystems where 153 * metadata may be stale. 154 */ 155 ret = vfs_getattr_nosec(&file->f_path, &stat, STATX_SIZE, 0); 156 if (ret) 157 return 0; 158 159 loopsize = stat.size; 160 } 161 162 if (lo->lo_offset > 0) 163 loopsize -= lo->lo_offset; 164 /* offset is beyond i_size, weird but possible */ 165 if (loopsize < 0) 166 return 0; 167 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 168 loopsize = lo->lo_sizelimit; 169 /* 170 * Unfortunately, if we want to do I/O on the device, 171 * the number of 512-byte sectors has to fit into a sector_t. 172 */ 173 return loopsize >> 9; 174 } 175 176 /* 177 * We support direct I/O only if lo_offset is aligned with the logical I/O size 178 * of backing device, and the logical block size of loop is bigger than that of 179 * the backing device. 180 */ 181 static bool lo_can_use_dio(struct loop_device *lo) 182 { 183 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 184 return false; 185 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 186 return false; 187 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 188 return false; 189 return true; 190 } 191 192 /* 193 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 194 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 195 * disabled when the device block size is too small or the offset is unaligned. 196 * 197 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 198 * not the originally passed in one. 199 */ 200 static inline void loop_update_dio(struct loop_device *lo) 201 { 202 lockdep_assert_held(&lo->lo_mutex); 203 WARN_ON_ONCE(lo->lo_state == Lo_bound && 204 lo->lo_queue->mq_freeze_depth == 0); 205 206 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 207 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 208 } 209 210 /** 211 * loop_set_size() - sets device size and notifies userspace 212 * @lo: struct loop_device to set the size for 213 * @size: new size of the loop device 214 * 215 * Callers must validate that the size passed into this function fits into 216 * a sector_t, eg using loop_validate_size() 217 */ 218 static void loop_set_size(struct loop_device *lo, loff_t size) 219 { 220 if (!set_capacity_and_notify(lo->lo_disk, size)) 221 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 222 } 223 224 static void loop_clear_limits(struct loop_device *lo, int mode) 225 { 226 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 227 228 if (mode & FALLOC_FL_ZERO_RANGE) 229 lim.max_write_zeroes_sectors = 0; 230 231 if (mode & FALLOC_FL_PUNCH_HOLE) { 232 lim.max_hw_discard_sectors = 0; 233 lim.discard_granularity = 0; 234 } 235 236 /* 237 * XXX: this updates the queue limits without freezing the queue, which 238 * is against the locking protocol and dangerous. But we can't just 239 * freeze the queue as we're inside the ->queue_rq method here. So this 240 * should move out into a workqueue unless we get the file operations to 241 * advertise if they support specific fallocate operations. 242 */ 243 queue_limits_commit_update(lo->lo_queue, &lim); 244 } 245 246 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 247 int mode) 248 { 249 /* 250 * We use fallocate to manipulate the space mappings used by the image 251 * a.k.a. discard/zerorange. 252 */ 253 struct file *file = lo->lo_backing_file; 254 int ret; 255 256 mode |= FALLOC_FL_KEEP_SIZE; 257 258 if (!bdev_max_discard_sectors(lo->lo_device)) 259 return -EOPNOTSUPP; 260 261 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 262 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 263 return -EIO; 264 265 /* 266 * We initially configure the limits in a hope that fallocate is 267 * supported and clear them here if that turns out not to be true. 268 */ 269 if (unlikely(ret == -EOPNOTSUPP)) 270 loop_clear_limits(lo, mode); 271 272 return ret; 273 } 274 275 static int lo_req_flush(struct loop_device *lo, struct request *rq) 276 { 277 int ret = vfs_fsync(lo->lo_backing_file, 0); 278 if (unlikely(ret && ret != -EINVAL)) 279 ret = -EIO; 280 281 return ret; 282 } 283 284 static void lo_complete_rq(struct request *rq) 285 { 286 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 287 blk_status_t ret = BLK_STS_OK; 288 289 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 290 req_op(rq) != REQ_OP_READ) { 291 if (cmd->ret < 0) 292 ret = errno_to_blk_status(cmd->ret); 293 goto end_io; 294 } 295 296 /* 297 * Short READ - if we got some data, advance our request and 298 * retry it. If we got no data, end the rest with EIO. 299 */ 300 if (cmd->ret) { 301 blk_update_request(rq, BLK_STS_OK, cmd->ret); 302 cmd->ret = 0; 303 blk_mq_requeue_request(rq, true); 304 } else { 305 struct bio *bio = rq->bio; 306 307 while (bio) { 308 zero_fill_bio(bio); 309 bio = bio->bi_next; 310 } 311 312 ret = BLK_STS_IOERR; 313 end_io: 314 blk_mq_end_request(rq, ret); 315 } 316 } 317 318 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 319 { 320 struct request *rq = blk_mq_rq_from_pdu(cmd); 321 322 if (!atomic_dec_and_test(&cmd->ref)) 323 return; 324 kfree(cmd->bvec); 325 cmd->bvec = NULL; 326 if (req_op(rq) == REQ_OP_WRITE) 327 kiocb_end_write(&cmd->iocb); 328 if (likely(!blk_should_fake_timeout(rq->q))) 329 blk_mq_complete_request(rq); 330 } 331 332 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 333 { 334 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 335 336 cmd->ret = ret; 337 lo_rw_aio_do_completion(cmd); 338 } 339 340 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 341 loff_t pos, int rw) 342 { 343 struct iov_iter iter; 344 struct req_iterator rq_iter; 345 struct bio_vec *bvec; 346 struct request *rq = blk_mq_rq_from_pdu(cmd); 347 struct bio *bio = rq->bio; 348 struct file *file = lo->lo_backing_file; 349 struct bio_vec tmp; 350 unsigned int offset; 351 unsigned int nr_bvec; 352 int ret; 353 354 nr_bvec = blk_rq_nr_bvec(rq); 355 356 if (rq->bio != rq->biotail) { 357 358 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 359 GFP_NOIO); 360 if (!bvec) 361 return -EIO; 362 cmd->bvec = bvec; 363 364 /* 365 * The bios of the request may be started from the middle of 366 * the 'bvec' because of bio splitting, so we can't directly 367 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 368 * API will take care of all details for us. 369 */ 370 rq_for_each_bvec(tmp, rq, rq_iter) { 371 *bvec = tmp; 372 bvec++; 373 } 374 bvec = cmd->bvec; 375 offset = 0; 376 } else { 377 /* 378 * Same here, this bio may be started from the middle of the 379 * 'bvec' because of bio splitting, so offset from the bvec 380 * must be passed to iov iterator 381 */ 382 offset = bio->bi_iter.bi_bvec_done; 383 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 384 } 385 atomic_set(&cmd->ref, 2); 386 387 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 388 iter.iov_offset = offset; 389 390 cmd->iocb.ki_pos = pos; 391 cmd->iocb.ki_filp = file; 392 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 393 if (cmd->use_aio) { 394 cmd->iocb.ki_complete = lo_rw_aio_complete; 395 cmd->iocb.ki_flags = IOCB_DIRECT; 396 } else { 397 cmd->iocb.ki_complete = NULL; 398 cmd->iocb.ki_flags = 0; 399 } 400 401 if (rw == ITER_SOURCE) { 402 kiocb_start_write(&cmd->iocb); 403 ret = file->f_op->write_iter(&cmd->iocb, &iter); 404 } else 405 ret = file->f_op->read_iter(&cmd->iocb, &iter); 406 407 lo_rw_aio_do_completion(cmd); 408 409 if (ret != -EIOCBQUEUED) 410 lo_rw_aio_complete(&cmd->iocb, ret); 411 return -EIOCBQUEUED; 412 } 413 414 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 415 { 416 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 417 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 418 419 switch (req_op(rq)) { 420 case REQ_OP_FLUSH: 421 return lo_req_flush(lo, rq); 422 case REQ_OP_WRITE_ZEROES: 423 /* 424 * If the caller doesn't want deallocation, call zeroout to 425 * write zeroes the range. Otherwise, punch them out. 426 */ 427 return lo_fallocate(lo, rq, pos, 428 (rq->cmd_flags & REQ_NOUNMAP) ? 429 FALLOC_FL_ZERO_RANGE : 430 FALLOC_FL_PUNCH_HOLE); 431 case REQ_OP_DISCARD: 432 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 433 case REQ_OP_WRITE: 434 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 435 case REQ_OP_READ: 436 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 437 default: 438 WARN_ON_ONCE(1); 439 return -EIO; 440 } 441 } 442 443 static void loop_reread_partitions(struct loop_device *lo) 444 { 445 int rc; 446 447 mutex_lock(&lo->lo_disk->open_mutex); 448 rc = bdev_disk_changed(lo->lo_disk, false); 449 mutex_unlock(&lo->lo_disk->open_mutex); 450 if (rc) 451 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 452 __func__, lo->lo_number, lo->lo_file_name, rc); 453 } 454 455 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 456 { 457 struct file *file = lo->lo_backing_file; 458 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 459 struct kstat st; 460 461 /* 462 * Use the minimal dio alignment of the file system if provided. 463 */ 464 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 465 (st.result_mask & STATX_DIOALIGN)) 466 return st.dio_offset_align; 467 468 /* 469 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 470 * a handful of file systems support the STATX_DIOALIGN flag. 471 */ 472 if (sb_bdev) 473 return bdev_logical_block_size(sb_bdev); 474 return SECTOR_SIZE; 475 } 476 477 static inline int is_loop_device(struct file *file) 478 { 479 struct inode *i = file->f_mapping->host; 480 481 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 482 } 483 484 static int loop_validate_file(struct file *file, struct block_device *bdev) 485 { 486 struct inode *inode = file->f_mapping->host; 487 struct file *f = file; 488 489 /* Avoid recursion */ 490 while (is_loop_device(f)) { 491 struct loop_device *l; 492 493 lockdep_assert_held(&loop_validate_mutex); 494 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 495 return -EBADF; 496 497 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 498 if (l->lo_state != Lo_bound) 499 return -EINVAL; 500 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 501 rmb(); 502 f = l->lo_backing_file; 503 } 504 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 505 return -EINVAL; 506 return 0; 507 } 508 509 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 510 { 511 lo->lo_backing_file = file; 512 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 513 mapping_set_gfp_mask(file->f_mapping, 514 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 515 if (lo->lo_backing_file->f_flags & O_DIRECT) 516 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 517 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 518 } 519 520 static int loop_check_backing_file(struct file *file) 521 { 522 if (!file->f_op->read_iter) 523 return -EINVAL; 524 525 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter) 526 return -EINVAL; 527 528 return 0; 529 } 530 531 /* 532 * loop_change_fd switched the backing store of a loopback device to 533 * a new file. This is useful for operating system installers to free up 534 * the original file and in High Availability environments to switch to 535 * an alternative location for the content in case of server meltdown. 536 * This can only work if the loop device is used read-only, and if the 537 * new backing store is the same size and type as the old backing store. 538 */ 539 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 540 unsigned int arg) 541 { 542 struct file *file = fget(arg); 543 struct file *old_file; 544 unsigned int memflags; 545 int error; 546 bool partscan; 547 bool is_loop; 548 549 if (!file) 550 return -EBADF; 551 552 error = loop_check_backing_file(file); 553 if (error) { 554 fput(file); 555 return error; 556 } 557 558 /* suppress uevents while reconfiguring the device */ 559 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 560 561 is_loop = is_loop_device(file); 562 error = loop_global_lock_killable(lo, is_loop); 563 if (error) 564 goto out_putf; 565 error = -ENXIO; 566 if (lo->lo_state != Lo_bound) 567 goto out_err; 568 569 /* the loop device has to be read-only */ 570 error = -EINVAL; 571 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 572 goto out_err; 573 574 error = loop_validate_file(file, bdev); 575 if (error) 576 goto out_err; 577 578 old_file = lo->lo_backing_file; 579 580 error = -EINVAL; 581 582 /* size of the new backing store needs to be the same */ 583 if (lo_calculate_size(lo, file) != lo_calculate_size(lo, old_file)) 584 goto out_err; 585 586 /* 587 * We might switch to direct I/O mode for the loop device, write back 588 * all dirty data the page cache now that so that the individual I/O 589 * operations don't have to do that. 590 */ 591 vfs_fsync(file, 0); 592 593 /* and ... switch */ 594 disk_force_media_change(lo->lo_disk); 595 memflags = blk_mq_freeze_queue(lo->lo_queue); 596 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 597 loop_assign_backing_file(lo, file); 598 loop_update_dio(lo); 599 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 600 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 601 loop_global_unlock(lo, is_loop); 602 603 /* 604 * Flush loop_validate_file() before fput(), for l->lo_backing_file 605 * might be pointing at old_file which might be the last reference. 606 */ 607 if (!is_loop) { 608 mutex_lock(&loop_validate_mutex); 609 mutex_unlock(&loop_validate_mutex); 610 } 611 /* 612 * We must drop file reference outside of lo_mutex as dropping 613 * the file ref can take open_mutex which creates circular locking 614 * dependency. 615 */ 616 fput(old_file); 617 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 618 if (partscan) 619 loop_reread_partitions(lo); 620 621 error = 0; 622 done: 623 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 624 return error; 625 626 out_err: 627 loop_global_unlock(lo, is_loop); 628 out_putf: 629 fput(file); 630 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 631 goto done; 632 } 633 634 /* loop sysfs attributes */ 635 636 static ssize_t loop_attr_show(struct device *dev, char *page, 637 ssize_t (*callback)(struct loop_device *, char *)) 638 { 639 struct gendisk *disk = dev_to_disk(dev); 640 struct loop_device *lo = disk->private_data; 641 642 return callback(lo, page); 643 } 644 645 #define LOOP_ATTR_RO(_name) \ 646 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 647 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 648 struct device_attribute *attr, char *b) \ 649 { \ 650 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 651 } \ 652 static struct device_attribute loop_attr_##_name = \ 653 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 654 655 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 656 { 657 ssize_t ret; 658 char *p = NULL; 659 660 spin_lock_irq(&lo->lo_lock); 661 if (lo->lo_backing_file) 662 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 663 spin_unlock_irq(&lo->lo_lock); 664 665 if (IS_ERR_OR_NULL(p)) 666 ret = PTR_ERR(p); 667 else { 668 ret = strlen(p); 669 memmove(buf, p, ret); 670 buf[ret++] = '\n'; 671 buf[ret] = 0; 672 } 673 674 return ret; 675 } 676 677 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 678 { 679 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 680 } 681 682 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 683 { 684 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 685 } 686 687 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 688 { 689 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 690 691 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 692 } 693 694 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 695 { 696 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 697 698 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 699 } 700 701 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 702 { 703 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 704 705 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 706 } 707 708 LOOP_ATTR_RO(backing_file); 709 LOOP_ATTR_RO(offset); 710 LOOP_ATTR_RO(sizelimit); 711 LOOP_ATTR_RO(autoclear); 712 LOOP_ATTR_RO(partscan); 713 LOOP_ATTR_RO(dio); 714 715 static struct attribute *loop_attrs[] = { 716 &loop_attr_backing_file.attr, 717 &loop_attr_offset.attr, 718 &loop_attr_sizelimit.attr, 719 &loop_attr_autoclear.attr, 720 &loop_attr_partscan.attr, 721 &loop_attr_dio.attr, 722 NULL, 723 }; 724 725 static struct attribute_group loop_attribute_group = { 726 .name = "loop", 727 .attrs= loop_attrs, 728 }; 729 730 static void loop_sysfs_init(struct loop_device *lo) 731 { 732 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 733 &loop_attribute_group); 734 } 735 736 static void loop_sysfs_exit(struct loop_device *lo) 737 { 738 if (lo->sysfs_inited) 739 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 740 &loop_attribute_group); 741 } 742 743 static void loop_get_discard_config(struct loop_device *lo, 744 u32 *granularity, u32 *max_discard_sectors) 745 { 746 struct file *file = lo->lo_backing_file; 747 struct inode *inode = file->f_mapping->host; 748 struct kstatfs sbuf; 749 750 /* 751 * If the backing device is a block device, mirror its zeroing 752 * capability. Set the discard sectors to the block device's zeroing 753 * capabilities because loop discards result in blkdev_issue_zeroout(), 754 * not blkdev_issue_discard(). This maintains consistent behavior with 755 * file-backed loop devices: discarded regions read back as zero. 756 */ 757 if (S_ISBLK(inode->i_mode)) { 758 struct block_device *bdev = I_BDEV(inode); 759 760 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 761 *granularity = bdev_discard_granularity(bdev); 762 763 /* 764 * We use punch hole to reclaim the free space used by the 765 * image a.k.a. discard. 766 */ 767 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 768 *max_discard_sectors = UINT_MAX >> 9; 769 *granularity = sbuf.f_bsize; 770 } 771 } 772 773 struct loop_worker { 774 struct rb_node rb_node; 775 struct work_struct work; 776 struct list_head cmd_list; 777 struct list_head idle_list; 778 struct loop_device *lo; 779 struct cgroup_subsys_state *blkcg_css; 780 unsigned long last_ran_at; 781 }; 782 783 static void loop_workfn(struct work_struct *work); 784 785 #ifdef CONFIG_BLK_CGROUP 786 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 787 { 788 return !css || css == blkcg_root_css; 789 } 790 #else 791 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 792 { 793 return !css; 794 } 795 #endif 796 797 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 798 { 799 struct rb_node **node, *parent = NULL; 800 struct loop_worker *cur_worker, *worker = NULL; 801 struct work_struct *work; 802 struct list_head *cmd_list; 803 804 spin_lock_irq(&lo->lo_work_lock); 805 806 if (queue_on_root_worker(cmd->blkcg_css)) 807 goto queue_work; 808 809 node = &lo->worker_tree.rb_node; 810 811 while (*node) { 812 parent = *node; 813 cur_worker = container_of(*node, struct loop_worker, rb_node); 814 if (cur_worker->blkcg_css == cmd->blkcg_css) { 815 worker = cur_worker; 816 break; 817 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 818 node = &(*node)->rb_left; 819 } else { 820 node = &(*node)->rb_right; 821 } 822 } 823 if (worker) 824 goto queue_work; 825 826 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT); 827 /* 828 * In the event we cannot allocate a worker, just queue on the 829 * rootcg worker and issue the I/O as the rootcg 830 */ 831 if (!worker) { 832 cmd->blkcg_css = NULL; 833 if (cmd->memcg_css) 834 css_put(cmd->memcg_css); 835 cmd->memcg_css = NULL; 836 goto queue_work; 837 } 838 839 worker->blkcg_css = cmd->blkcg_css; 840 css_get(worker->blkcg_css); 841 INIT_WORK(&worker->work, loop_workfn); 842 INIT_LIST_HEAD(&worker->cmd_list); 843 INIT_LIST_HEAD(&worker->idle_list); 844 worker->lo = lo; 845 rb_link_node(&worker->rb_node, parent, node); 846 rb_insert_color(&worker->rb_node, &lo->worker_tree); 847 queue_work: 848 if (worker) { 849 /* 850 * We need to remove from the idle list here while 851 * holding the lock so that the idle timer doesn't 852 * free the worker 853 */ 854 if (!list_empty(&worker->idle_list)) 855 list_del_init(&worker->idle_list); 856 work = &worker->work; 857 cmd_list = &worker->cmd_list; 858 } else { 859 work = &lo->rootcg_work; 860 cmd_list = &lo->rootcg_cmd_list; 861 } 862 list_add_tail(&cmd->list_entry, cmd_list); 863 queue_work(lo->workqueue, work); 864 spin_unlock_irq(&lo->lo_work_lock); 865 } 866 867 static void loop_set_timer(struct loop_device *lo) 868 { 869 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 870 } 871 872 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 873 { 874 struct loop_worker *pos, *worker; 875 876 spin_lock_irq(&lo->lo_work_lock); 877 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 878 idle_list) { 879 if (!delete_all && 880 time_is_after_jiffies(worker->last_ran_at + 881 LOOP_IDLE_WORKER_TIMEOUT)) 882 break; 883 list_del(&worker->idle_list); 884 rb_erase(&worker->rb_node, &lo->worker_tree); 885 css_put(worker->blkcg_css); 886 kfree(worker); 887 } 888 if (!list_empty(&lo->idle_worker_list)) 889 loop_set_timer(lo); 890 spin_unlock_irq(&lo->lo_work_lock); 891 } 892 893 static void loop_free_idle_workers_timer(struct timer_list *timer) 894 { 895 struct loop_device *lo = container_of(timer, struct loop_device, timer); 896 897 return loop_free_idle_workers(lo, false); 898 } 899 900 /** 901 * loop_set_status_from_info - configure device from loop_info 902 * @lo: struct loop_device to configure 903 * @info: struct loop_info64 to configure the device with 904 * 905 * Configures the loop device parameters according to the passed 906 * in loop_info64 configuration. 907 */ 908 static int 909 loop_set_status_from_info(struct loop_device *lo, 910 const struct loop_info64 *info) 911 { 912 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 913 return -EINVAL; 914 915 switch (info->lo_encrypt_type) { 916 case LO_CRYPT_NONE: 917 break; 918 case LO_CRYPT_XOR: 919 pr_warn("support for the xor transformation has been removed.\n"); 920 return -EINVAL; 921 case LO_CRYPT_CRYPTOAPI: 922 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 923 return -EINVAL; 924 default: 925 return -EINVAL; 926 } 927 928 /* Avoid assigning overflow values */ 929 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 930 return -EOVERFLOW; 931 932 lo->lo_offset = info->lo_offset; 933 lo->lo_sizelimit = info->lo_sizelimit; 934 935 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 936 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 937 return 0; 938 } 939 940 static unsigned int loop_default_blocksize(struct loop_device *lo) 941 { 942 /* In case of direct I/O, match underlying minimum I/O size */ 943 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 944 return lo->lo_min_dio_size; 945 return SECTOR_SIZE; 946 } 947 948 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 949 unsigned int bsize) 950 { 951 struct file *file = lo->lo_backing_file; 952 struct inode *inode = file->f_mapping->host; 953 struct block_device *backing_bdev = NULL; 954 u32 granularity = 0, max_discard_sectors = 0; 955 956 if (S_ISBLK(inode->i_mode)) 957 backing_bdev = I_BDEV(inode); 958 else if (inode->i_sb->s_bdev) 959 backing_bdev = inode->i_sb->s_bdev; 960 961 if (!bsize) 962 bsize = loop_default_blocksize(lo); 963 964 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 965 966 lim->logical_block_size = bsize; 967 lim->physical_block_size = bsize; 968 lim->io_min = bsize; 969 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 970 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 971 lim->features |= BLK_FEAT_WRITE_CACHE; 972 if (backing_bdev && !bdev_nonrot(backing_bdev)) 973 lim->features |= BLK_FEAT_ROTATIONAL; 974 lim->max_hw_discard_sectors = max_discard_sectors; 975 lim->max_write_zeroes_sectors = max_discard_sectors; 976 if (max_discard_sectors) 977 lim->discard_granularity = granularity; 978 else 979 lim->discard_granularity = 0; 980 } 981 982 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 983 struct block_device *bdev, 984 const struct loop_config *config) 985 { 986 struct file *file = fget(config->fd); 987 struct queue_limits lim; 988 int error; 989 loff_t size; 990 bool partscan; 991 bool is_loop; 992 993 if (!file) 994 return -EBADF; 995 996 error = loop_check_backing_file(file); 997 if (error) { 998 fput(file); 999 return error; 1000 } 1001 1002 is_loop = is_loop_device(file); 1003 1004 /* This is safe, since we have a reference from open(). */ 1005 __module_get(THIS_MODULE); 1006 1007 /* 1008 * If we don't hold exclusive handle for the device, upgrade to it 1009 * here to avoid changing device under exclusive owner. 1010 */ 1011 if (!(mode & BLK_OPEN_EXCL)) { 1012 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1013 if (error) 1014 goto out_putf; 1015 } 1016 1017 error = loop_global_lock_killable(lo, is_loop); 1018 if (error) 1019 goto out_bdev; 1020 1021 error = -EBUSY; 1022 if (lo->lo_state != Lo_unbound) 1023 goto out_unlock; 1024 1025 error = loop_validate_file(file, bdev); 1026 if (error) 1027 goto out_unlock; 1028 1029 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1030 error = -EINVAL; 1031 goto out_unlock; 1032 } 1033 1034 error = loop_set_status_from_info(lo, &config->info); 1035 if (error) 1036 goto out_unlock; 1037 lo->lo_flags = config->info.lo_flags; 1038 1039 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1040 !file->f_op->write_iter) 1041 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1042 1043 if (!lo->workqueue) { 1044 lo->workqueue = alloc_workqueue("loop%d", 1045 WQ_UNBOUND | WQ_FREEZABLE, 1046 0, lo->lo_number); 1047 if (!lo->workqueue) { 1048 error = -ENOMEM; 1049 goto out_unlock; 1050 } 1051 } 1052 1053 /* suppress uevents while reconfiguring the device */ 1054 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1055 1056 disk_force_media_change(lo->lo_disk); 1057 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1058 1059 lo->lo_device = bdev; 1060 loop_assign_backing_file(lo, file); 1061 1062 lim = queue_limits_start_update(lo->lo_queue); 1063 loop_update_limits(lo, &lim, config->block_size); 1064 /* No need to freeze the queue as the device isn't bound yet. */ 1065 error = queue_limits_commit_update(lo->lo_queue, &lim); 1066 if (error) 1067 goto out_unlock; 1068 1069 /* 1070 * We might switch to direct I/O mode for the loop device, write back 1071 * all dirty data the page cache now that so that the individual I/O 1072 * operations don't have to do that. 1073 */ 1074 vfs_fsync(file, 0); 1075 1076 loop_update_dio(lo); 1077 loop_sysfs_init(lo); 1078 1079 size = lo_calculate_size(lo, file); 1080 loop_set_size(lo, size); 1081 1082 /* Order wrt reading lo_state in loop_validate_file(). */ 1083 wmb(); 1084 1085 WRITE_ONCE(lo->lo_state, Lo_bound); 1086 if (part_shift) 1087 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1088 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1089 if (partscan) 1090 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1091 1092 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1093 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1094 1095 loop_global_unlock(lo, is_loop); 1096 if (partscan) 1097 loop_reread_partitions(lo); 1098 1099 if (!(mode & BLK_OPEN_EXCL)) 1100 bd_abort_claiming(bdev, loop_configure); 1101 1102 return 0; 1103 1104 out_unlock: 1105 loop_global_unlock(lo, is_loop); 1106 out_bdev: 1107 if (!(mode & BLK_OPEN_EXCL)) 1108 bd_abort_claiming(bdev, loop_configure); 1109 out_putf: 1110 fput(file); 1111 /* This is safe: open() is still holding a reference. */ 1112 module_put(THIS_MODULE); 1113 return error; 1114 } 1115 1116 static void __loop_clr_fd(struct loop_device *lo) 1117 { 1118 struct queue_limits lim; 1119 struct file *filp; 1120 gfp_t gfp = lo->old_gfp_mask; 1121 1122 spin_lock_irq(&lo->lo_lock); 1123 filp = lo->lo_backing_file; 1124 lo->lo_backing_file = NULL; 1125 spin_unlock_irq(&lo->lo_lock); 1126 1127 lo->lo_device = NULL; 1128 lo->lo_offset = 0; 1129 lo->lo_sizelimit = 0; 1130 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1131 1132 /* 1133 * Reset the block size to the default. 1134 * 1135 * No queue freezing needed because this is called from the final 1136 * ->release call only, so there can't be any outstanding I/O. 1137 */ 1138 lim = queue_limits_start_update(lo->lo_queue); 1139 lim.logical_block_size = SECTOR_SIZE; 1140 lim.physical_block_size = SECTOR_SIZE; 1141 lim.io_min = SECTOR_SIZE; 1142 queue_limits_commit_update(lo->lo_queue, &lim); 1143 1144 invalidate_disk(lo->lo_disk); 1145 loop_sysfs_exit(lo); 1146 /* let user-space know about this change */ 1147 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1148 mapping_set_gfp_mask(filp->f_mapping, gfp); 1149 /* This is safe: open() is still holding a reference. */ 1150 module_put(THIS_MODULE); 1151 1152 disk_force_media_change(lo->lo_disk); 1153 1154 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1155 int err; 1156 1157 /* 1158 * open_mutex has been held already in release path, so don't 1159 * acquire it if this function is called in such case. 1160 * 1161 * If the reread partition isn't from release path, lo_refcnt 1162 * must be at least one and it can only become zero when the 1163 * current holder is released. 1164 */ 1165 err = bdev_disk_changed(lo->lo_disk, false); 1166 if (err) 1167 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1168 __func__, lo->lo_number, err); 1169 /* Device is gone, no point in returning error */ 1170 } 1171 1172 /* 1173 * lo->lo_state is set to Lo_unbound here after above partscan has 1174 * finished. There cannot be anybody else entering __loop_clr_fd() as 1175 * Lo_rundown state protects us from all the other places trying to 1176 * change the 'lo' device. 1177 */ 1178 lo->lo_flags = 0; 1179 if (!part_shift) 1180 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1181 mutex_lock(&lo->lo_mutex); 1182 WRITE_ONCE(lo->lo_state, Lo_unbound); 1183 mutex_unlock(&lo->lo_mutex); 1184 1185 /* 1186 * Need not hold lo_mutex to fput backing file. Calling fput holding 1187 * lo_mutex triggers a circular lock dependency possibility warning as 1188 * fput can take open_mutex which is usually taken before lo_mutex. 1189 */ 1190 fput(filp); 1191 } 1192 1193 static int loop_clr_fd(struct loop_device *lo) 1194 { 1195 int err; 1196 1197 /* 1198 * Since lo_ioctl() is called without locks held, it is possible that 1199 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1200 * 1201 * Therefore, use global lock when setting Lo_rundown state in order to 1202 * make sure that loop_validate_file() will fail if the "struct file" 1203 * which loop_configure()/loop_change_fd() found via fget() was this 1204 * loop device. 1205 */ 1206 err = loop_global_lock_killable(lo, true); 1207 if (err) 1208 return err; 1209 if (lo->lo_state != Lo_bound) { 1210 loop_global_unlock(lo, true); 1211 return -ENXIO; 1212 } 1213 /* 1214 * Mark the device for removing the backing device on last close. 1215 * If we are the only opener, also switch the state to roundown here to 1216 * prevent new openers from coming in. 1217 */ 1218 1219 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1220 if (disk_openers(lo->lo_disk) == 1) 1221 WRITE_ONCE(lo->lo_state, Lo_rundown); 1222 loop_global_unlock(lo, true); 1223 1224 return 0; 1225 } 1226 1227 static int 1228 loop_set_status(struct loop_device *lo, blk_mode_t mode, 1229 struct block_device *bdev, const struct loop_info64 *info) 1230 { 1231 int err; 1232 bool partscan = false; 1233 bool size_changed = false; 1234 unsigned int memflags; 1235 1236 /* 1237 * If we don't hold exclusive handle for the device, upgrade to it 1238 * here to avoid changing device under exclusive owner. 1239 */ 1240 if (!(mode & BLK_OPEN_EXCL)) { 1241 err = bd_prepare_to_claim(bdev, loop_set_status, NULL); 1242 if (err) 1243 goto out_reread_partitions; 1244 } 1245 1246 err = mutex_lock_killable(&lo->lo_mutex); 1247 if (err) 1248 goto out_abort_claiming; 1249 1250 if (lo->lo_state != Lo_bound) { 1251 err = -ENXIO; 1252 goto out_unlock; 1253 } 1254 1255 if (lo->lo_offset != info->lo_offset || 1256 lo->lo_sizelimit != info->lo_sizelimit) { 1257 size_changed = true; 1258 sync_blockdev(lo->lo_device); 1259 invalidate_bdev(lo->lo_device); 1260 } 1261 1262 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1263 memflags = blk_mq_freeze_queue(lo->lo_queue); 1264 1265 err = loop_set_status_from_info(lo, info); 1266 if (err) 1267 goto out_unfreeze; 1268 1269 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1270 (info->lo_flags & LO_FLAGS_PARTSCAN); 1271 1272 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1273 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1274 1275 /* update the direct I/O flag if lo_offset changed */ 1276 loop_update_dio(lo); 1277 1278 out_unfreeze: 1279 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1280 if (partscan) 1281 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1282 if (!err && size_changed) { 1283 loff_t new_size = lo_calculate_size(lo, lo->lo_backing_file); 1284 loop_set_size(lo, new_size); 1285 } 1286 out_unlock: 1287 mutex_unlock(&lo->lo_mutex); 1288 out_abort_claiming: 1289 if (!(mode & BLK_OPEN_EXCL)) 1290 bd_abort_claiming(bdev, loop_set_status); 1291 out_reread_partitions: 1292 if (partscan) 1293 loop_reread_partitions(lo); 1294 1295 return err; 1296 } 1297 1298 static int 1299 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1300 { 1301 struct path path; 1302 struct kstat stat; 1303 int ret; 1304 1305 ret = mutex_lock_killable(&lo->lo_mutex); 1306 if (ret) 1307 return ret; 1308 if (lo->lo_state != Lo_bound) { 1309 mutex_unlock(&lo->lo_mutex); 1310 return -ENXIO; 1311 } 1312 1313 memset(info, 0, sizeof(*info)); 1314 info->lo_number = lo->lo_number; 1315 info->lo_offset = lo->lo_offset; 1316 info->lo_sizelimit = lo->lo_sizelimit; 1317 info->lo_flags = lo->lo_flags; 1318 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1319 1320 /* Drop lo_mutex while we call into the filesystem. */ 1321 path = lo->lo_backing_file->f_path; 1322 path_get(&path); 1323 mutex_unlock(&lo->lo_mutex); 1324 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1325 if (!ret) { 1326 info->lo_device = huge_encode_dev(stat.dev); 1327 info->lo_inode = stat.ino; 1328 info->lo_rdevice = huge_encode_dev(stat.rdev); 1329 } 1330 path_put(&path); 1331 return ret; 1332 } 1333 1334 static void 1335 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1336 { 1337 memset(info64, 0, sizeof(*info64)); 1338 info64->lo_number = info->lo_number; 1339 info64->lo_device = info->lo_device; 1340 info64->lo_inode = info->lo_inode; 1341 info64->lo_rdevice = info->lo_rdevice; 1342 info64->lo_offset = info->lo_offset; 1343 info64->lo_sizelimit = 0; 1344 info64->lo_flags = info->lo_flags; 1345 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1346 } 1347 1348 static int 1349 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1350 { 1351 memset(info, 0, sizeof(*info)); 1352 info->lo_number = info64->lo_number; 1353 info->lo_device = info64->lo_device; 1354 info->lo_inode = info64->lo_inode; 1355 info->lo_rdevice = info64->lo_rdevice; 1356 info->lo_offset = info64->lo_offset; 1357 info->lo_flags = info64->lo_flags; 1358 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1359 1360 /* error in case values were truncated */ 1361 if (info->lo_device != info64->lo_device || 1362 info->lo_rdevice != info64->lo_rdevice || 1363 info->lo_inode != info64->lo_inode || 1364 info->lo_offset != info64->lo_offset) 1365 return -EOVERFLOW; 1366 1367 return 0; 1368 } 1369 1370 static int 1371 loop_set_status_old(struct loop_device *lo, blk_mode_t mode, 1372 struct block_device *bdev, 1373 const struct loop_info __user *arg) 1374 { 1375 struct loop_info info; 1376 struct loop_info64 info64; 1377 1378 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1379 return -EFAULT; 1380 loop_info64_from_old(&info, &info64); 1381 return loop_set_status(lo, mode, bdev, &info64); 1382 } 1383 1384 static int 1385 loop_set_status64(struct loop_device *lo, blk_mode_t mode, 1386 struct block_device *bdev, 1387 const struct loop_info64 __user *arg) 1388 { 1389 struct loop_info64 info64; 1390 1391 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1392 return -EFAULT; 1393 return loop_set_status(lo, mode, bdev, &info64); 1394 } 1395 1396 static int 1397 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1398 struct loop_info info; 1399 struct loop_info64 info64; 1400 int err; 1401 1402 if (!arg) 1403 return -EINVAL; 1404 err = loop_get_status(lo, &info64); 1405 if (!err) 1406 err = loop_info64_to_old(&info64, &info); 1407 if (!err && copy_to_user(arg, &info, sizeof(info))) 1408 err = -EFAULT; 1409 1410 return err; 1411 } 1412 1413 static int 1414 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1415 struct loop_info64 info64; 1416 int err; 1417 1418 if (!arg) 1419 return -EINVAL; 1420 err = loop_get_status(lo, &info64); 1421 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1422 err = -EFAULT; 1423 1424 return err; 1425 } 1426 1427 static int loop_set_capacity(struct loop_device *lo) 1428 { 1429 loff_t size; 1430 1431 if (unlikely(lo->lo_state != Lo_bound)) 1432 return -ENXIO; 1433 1434 size = lo_calculate_size(lo, lo->lo_backing_file); 1435 loop_set_size(lo, size); 1436 1437 return 0; 1438 } 1439 1440 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1441 { 1442 bool use_dio = !!arg; 1443 unsigned int memflags; 1444 1445 if (lo->lo_state != Lo_bound) 1446 return -ENXIO; 1447 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1448 return 0; 1449 1450 if (use_dio) { 1451 if (!lo_can_use_dio(lo)) 1452 return -EINVAL; 1453 /* flush dirty pages before starting to use direct I/O */ 1454 vfs_fsync(lo->lo_backing_file, 0); 1455 } 1456 1457 memflags = blk_mq_freeze_queue(lo->lo_queue); 1458 if (use_dio) 1459 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1460 else 1461 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1462 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1463 return 0; 1464 } 1465 1466 static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode, 1467 struct block_device *bdev, unsigned long arg) 1468 { 1469 struct queue_limits lim; 1470 unsigned int memflags; 1471 int err = 0; 1472 1473 /* 1474 * If we don't hold exclusive handle for the device, upgrade to it 1475 * here to avoid changing device under exclusive owner. 1476 */ 1477 if (!(mode & BLK_OPEN_EXCL)) { 1478 err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL); 1479 if (err) 1480 return err; 1481 } 1482 1483 err = mutex_lock_killable(&lo->lo_mutex); 1484 if (err) 1485 goto abort_claim; 1486 1487 if (lo->lo_state != Lo_bound) { 1488 err = -ENXIO; 1489 goto unlock; 1490 } 1491 1492 if (lo->lo_queue->limits.logical_block_size == arg) 1493 goto unlock; 1494 1495 sync_blockdev(lo->lo_device); 1496 invalidate_bdev(lo->lo_device); 1497 1498 lim = queue_limits_start_update(lo->lo_queue); 1499 loop_update_limits(lo, &lim, arg); 1500 1501 memflags = blk_mq_freeze_queue(lo->lo_queue); 1502 err = queue_limits_commit_update(lo->lo_queue, &lim); 1503 loop_update_dio(lo); 1504 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1505 1506 unlock: 1507 mutex_unlock(&lo->lo_mutex); 1508 abort_claim: 1509 if (!(mode & BLK_OPEN_EXCL)) 1510 bd_abort_claiming(bdev, loop_set_block_size); 1511 return err; 1512 } 1513 1514 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1515 unsigned long arg) 1516 { 1517 int err; 1518 1519 err = mutex_lock_killable(&lo->lo_mutex); 1520 if (err) 1521 return err; 1522 switch (cmd) { 1523 case LOOP_SET_CAPACITY: 1524 err = loop_set_capacity(lo); 1525 break; 1526 case LOOP_SET_DIRECT_IO: 1527 err = loop_set_dio(lo, arg); 1528 break; 1529 default: 1530 err = -EINVAL; 1531 } 1532 mutex_unlock(&lo->lo_mutex); 1533 return err; 1534 } 1535 1536 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1537 unsigned int cmd, unsigned long arg) 1538 { 1539 struct loop_device *lo = bdev->bd_disk->private_data; 1540 void __user *argp = (void __user *) arg; 1541 int err; 1542 1543 switch (cmd) { 1544 case LOOP_SET_FD: { 1545 /* 1546 * Legacy case - pass in a zeroed out struct loop_config with 1547 * only the file descriptor set , which corresponds with the 1548 * default parameters we'd have used otherwise. 1549 */ 1550 struct loop_config config; 1551 1552 memset(&config, 0, sizeof(config)); 1553 config.fd = arg; 1554 1555 return loop_configure(lo, mode, bdev, &config); 1556 } 1557 case LOOP_CONFIGURE: { 1558 struct loop_config config; 1559 1560 if (copy_from_user(&config, argp, sizeof(config))) 1561 return -EFAULT; 1562 1563 return loop_configure(lo, mode, bdev, &config); 1564 } 1565 case LOOP_CHANGE_FD: 1566 return loop_change_fd(lo, bdev, arg); 1567 case LOOP_CLR_FD: 1568 return loop_clr_fd(lo); 1569 case LOOP_SET_STATUS: 1570 err = -EPERM; 1571 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1572 err = loop_set_status_old(lo, mode, bdev, argp); 1573 break; 1574 case LOOP_GET_STATUS: 1575 return loop_get_status_old(lo, argp); 1576 case LOOP_SET_STATUS64: 1577 err = -EPERM; 1578 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1579 err = loop_set_status64(lo, mode, bdev, argp); 1580 break; 1581 case LOOP_GET_STATUS64: 1582 return loop_get_status64(lo, argp); 1583 case LOOP_SET_BLOCK_SIZE: 1584 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1585 return -EPERM; 1586 return loop_set_block_size(lo, mode, bdev, arg); 1587 case LOOP_SET_CAPACITY: 1588 case LOOP_SET_DIRECT_IO: 1589 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1590 return -EPERM; 1591 fallthrough; 1592 default: 1593 err = lo_simple_ioctl(lo, cmd, arg); 1594 break; 1595 } 1596 1597 return err; 1598 } 1599 1600 #ifdef CONFIG_COMPAT 1601 struct compat_loop_info { 1602 compat_int_t lo_number; /* ioctl r/o */ 1603 compat_dev_t lo_device; /* ioctl r/o */ 1604 compat_ulong_t lo_inode; /* ioctl r/o */ 1605 compat_dev_t lo_rdevice; /* ioctl r/o */ 1606 compat_int_t lo_offset; 1607 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1608 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1609 compat_int_t lo_flags; /* ioctl r/o */ 1610 char lo_name[LO_NAME_SIZE]; 1611 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1612 compat_ulong_t lo_init[2]; 1613 char reserved[4]; 1614 }; 1615 1616 /* 1617 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1618 * - noinlined to reduce stack space usage in main part of driver 1619 */ 1620 static noinline int 1621 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1622 struct loop_info64 *info64) 1623 { 1624 struct compat_loop_info info; 1625 1626 if (copy_from_user(&info, arg, sizeof(info))) 1627 return -EFAULT; 1628 1629 memset(info64, 0, sizeof(*info64)); 1630 info64->lo_number = info.lo_number; 1631 info64->lo_device = info.lo_device; 1632 info64->lo_inode = info.lo_inode; 1633 info64->lo_rdevice = info.lo_rdevice; 1634 info64->lo_offset = info.lo_offset; 1635 info64->lo_sizelimit = 0; 1636 info64->lo_flags = info.lo_flags; 1637 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1638 return 0; 1639 } 1640 1641 /* 1642 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1643 * - noinlined to reduce stack space usage in main part of driver 1644 */ 1645 static noinline int 1646 loop_info64_to_compat(const struct loop_info64 *info64, 1647 struct compat_loop_info __user *arg) 1648 { 1649 struct compat_loop_info info; 1650 1651 memset(&info, 0, sizeof(info)); 1652 info.lo_number = info64->lo_number; 1653 info.lo_device = info64->lo_device; 1654 info.lo_inode = info64->lo_inode; 1655 info.lo_rdevice = info64->lo_rdevice; 1656 info.lo_offset = info64->lo_offset; 1657 info.lo_flags = info64->lo_flags; 1658 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1659 1660 /* error in case values were truncated */ 1661 if (info.lo_device != info64->lo_device || 1662 info.lo_rdevice != info64->lo_rdevice || 1663 info.lo_inode != info64->lo_inode || 1664 info.lo_offset != info64->lo_offset) 1665 return -EOVERFLOW; 1666 1667 if (copy_to_user(arg, &info, sizeof(info))) 1668 return -EFAULT; 1669 return 0; 1670 } 1671 1672 static int 1673 loop_set_status_compat(struct loop_device *lo, blk_mode_t mode, 1674 struct block_device *bdev, 1675 const struct compat_loop_info __user *arg) 1676 { 1677 struct loop_info64 info64; 1678 int ret; 1679 1680 ret = loop_info64_from_compat(arg, &info64); 1681 if (ret < 0) 1682 return ret; 1683 return loop_set_status(lo, mode, bdev, &info64); 1684 } 1685 1686 static int 1687 loop_get_status_compat(struct loop_device *lo, 1688 struct compat_loop_info __user *arg) 1689 { 1690 struct loop_info64 info64; 1691 int err; 1692 1693 if (!arg) 1694 return -EINVAL; 1695 err = loop_get_status(lo, &info64); 1696 if (!err) 1697 err = loop_info64_to_compat(&info64, arg); 1698 return err; 1699 } 1700 1701 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1702 unsigned int cmd, unsigned long arg) 1703 { 1704 struct loop_device *lo = bdev->bd_disk->private_data; 1705 int err; 1706 1707 switch(cmd) { 1708 case LOOP_SET_STATUS: 1709 err = loop_set_status_compat(lo, mode, bdev, 1710 (const struct compat_loop_info __user *)arg); 1711 break; 1712 case LOOP_GET_STATUS: 1713 err = loop_get_status_compat(lo, 1714 (struct compat_loop_info __user *)arg); 1715 break; 1716 case LOOP_SET_CAPACITY: 1717 case LOOP_CLR_FD: 1718 case LOOP_GET_STATUS64: 1719 case LOOP_SET_STATUS64: 1720 case LOOP_CONFIGURE: 1721 arg = (unsigned long) compat_ptr(arg); 1722 fallthrough; 1723 case LOOP_SET_FD: 1724 case LOOP_CHANGE_FD: 1725 case LOOP_SET_BLOCK_SIZE: 1726 case LOOP_SET_DIRECT_IO: 1727 err = lo_ioctl(bdev, mode, cmd, arg); 1728 break; 1729 default: 1730 err = -ENOIOCTLCMD; 1731 break; 1732 } 1733 return err; 1734 } 1735 #endif 1736 1737 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1738 { 1739 struct loop_device *lo = disk->private_data; 1740 int err; 1741 1742 err = mutex_lock_killable(&lo->lo_mutex); 1743 if (err) 1744 return err; 1745 1746 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1747 err = -ENXIO; 1748 mutex_unlock(&lo->lo_mutex); 1749 return err; 1750 } 1751 1752 static void lo_release(struct gendisk *disk) 1753 { 1754 struct loop_device *lo = disk->private_data; 1755 bool need_clear = false; 1756 1757 if (disk_openers(disk) > 0) 1758 return; 1759 /* 1760 * Clear the backing device information if this is the last close of 1761 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1762 * has been called. 1763 */ 1764 1765 mutex_lock(&lo->lo_mutex); 1766 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1767 WRITE_ONCE(lo->lo_state, Lo_rundown); 1768 1769 need_clear = (lo->lo_state == Lo_rundown); 1770 mutex_unlock(&lo->lo_mutex); 1771 1772 if (need_clear) 1773 __loop_clr_fd(lo); 1774 } 1775 1776 static void lo_free_disk(struct gendisk *disk) 1777 { 1778 struct loop_device *lo = disk->private_data; 1779 1780 if (lo->workqueue) 1781 destroy_workqueue(lo->workqueue); 1782 loop_free_idle_workers(lo, true); 1783 timer_shutdown_sync(&lo->timer); 1784 mutex_destroy(&lo->lo_mutex); 1785 kfree(lo); 1786 } 1787 1788 static const struct block_device_operations lo_fops = { 1789 .owner = THIS_MODULE, 1790 .open = lo_open, 1791 .release = lo_release, 1792 .ioctl = lo_ioctl, 1793 #ifdef CONFIG_COMPAT 1794 .compat_ioctl = lo_compat_ioctl, 1795 #endif 1796 .free_disk = lo_free_disk, 1797 }; 1798 1799 /* 1800 * And now the modules code and kernel interface. 1801 */ 1802 1803 /* 1804 * If max_loop is specified, create that many devices upfront. 1805 * This also becomes a hard limit. If max_loop is not specified, 1806 * the default isn't a hard limit (as before commit 85c50197716c 1807 * changed the default value from 0 for max_loop=0 reasons), just 1808 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1809 * init time. Loop devices can be requested on-demand with the 1810 * /dev/loop-control interface, or be instantiated by accessing 1811 * a 'dead' device node. 1812 */ 1813 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1814 1815 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1816 static bool max_loop_specified; 1817 1818 static int max_loop_param_set_int(const char *val, 1819 const struct kernel_param *kp) 1820 { 1821 int ret; 1822 1823 ret = param_set_int(val, kp); 1824 if (ret < 0) 1825 return ret; 1826 1827 max_loop_specified = true; 1828 return 0; 1829 } 1830 1831 static const struct kernel_param_ops max_loop_param_ops = { 1832 .set = max_loop_param_set_int, 1833 .get = param_get_int, 1834 }; 1835 1836 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1837 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1838 #else 1839 module_param(max_loop, int, 0444); 1840 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1841 #endif 1842 1843 module_param(max_part, int, 0444); 1844 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1845 1846 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1847 1848 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1849 { 1850 int qd, ret; 1851 1852 ret = kstrtoint(s, 0, &qd); 1853 if (ret < 0) 1854 return ret; 1855 if (qd < 1) 1856 return -EINVAL; 1857 hw_queue_depth = qd; 1858 return 0; 1859 } 1860 1861 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1862 .set = loop_set_hw_queue_depth, 1863 .get = param_get_int, 1864 }; 1865 1866 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1867 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1868 1869 MODULE_DESCRIPTION("Loopback device support"); 1870 MODULE_LICENSE("GPL"); 1871 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1872 1873 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1874 const struct blk_mq_queue_data *bd) 1875 { 1876 struct request *rq = bd->rq; 1877 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1878 struct loop_device *lo = rq->q->queuedata; 1879 1880 blk_mq_start_request(rq); 1881 1882 if (data_race(READ_ONCE(lo->lo_state)) != Lo_bound) 1883 return BLK_STS_IOERR; 1884 1885 switch (req_op(rq)) { 1886 case REQ_OP_FLUSH: 1887 case REQ_OP_DISCARD: 1888 case REQ_OP_WRITE_ZEROES: 1889 cmd->use_aio = false; 1890 break; 1891 default: 1892 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1893 break; 1894 } 1895 1896 /* always use the first bio's css */ 1897 cmd->blkcg_css = NULL; 1898 cmd->memcg_css = NULL; 1899 #ifdef CONFIG_BLK_CGROUP 1900 if (rq->bio) { 1901 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1902 #ifdef CONFIG_MEMCG 1903 if (cmd->blkcg_css) { 1904 cmd->memcg_css = 1905 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1906 &memory_cgrp_subsys); 1907 } 1908 #endif 1909 } 1910 #endif 1911 loop_queue_work(lo, cmd); 1912 1913 return BLK_STS_OK; 1914 } 1915 1916 static void loop_handle_cmd(struct loop_cmd *cmd) 1917 { 1918 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1919 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1920 struct request *rq = blk_mq_rq_from_pdu(cmd); 1921 const bool write = op_is_write(req_op(rq)); 1922 struct loop_device *lo = rq->q->queuedata; 1923 int ret = 0; 1924 struct mem_cgroup *old_memcg = NULL; 1925 1926 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1927 ret = -EIO; 1928 goto failed; 1929 } 1930 1931 /* We can block in this context, so ignore REQ_NOWAIT. */ 1932 if (rq->cmd_flags & REQ_NOWAIT) 1933 rq->cmd_flags &= ~REQ_NOWAIT; 1934 1935 if (cmd_blkcg_css) 1936 kthread_associate_blkcg(cmd_blkcg_css); 1937 if (cmd_memcg_css) 1938 old_memcg = set_active_memcg( 1939 mem_cgroup_from_css(cmd_memcg_css)); 1940 1941 /* 1942 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1943 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1944 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1945 * not yet been completed. 1946 */ 1947 ret = do_req_filebacked(lo, rq); 1948 1949 if (cmd_blkcg_css) 1950 kthread_associate_blkcg(NULL); 1951 1952 if (cmd_memcg_css) { 1953 set_active_memcg(old_memcg); 1954 css_put(cmd_memcg_css); 1955 } 1956 failed: 1957 /* complete non-aio request */ 1958 if (ret != -EIOCBQUEUED) { 1959 if (ret == -EOPNOTSUPP) 1960 cmd->ret = ret; 1961 else 1962 cmd->ret = ret ? -EIO : 0; 1963 if (likely(!blk_should_fake_timeout(rq->q))) 1964 blk_mq_complete_request(rq); 1965 } 1966 } 1967 1968 static void loop_process_work(struct loop_worker *worker, 1969 struct list_head *cmd_list, struct loop_device *lo) 1970 { 1971 int orig_flags = current->flags; 1972 struct loop_cmd *cmd; 1973 1974 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1975 spin_lock_irq(&lo->lo_work_lock); 1976 while (!list_empty(cmd_list)) { 1977 cmd = container_of( 1978 cmd_list->next, struct loop_cmd, list_entry); 1979 list_del(cmd_list->next); 1980 spin_unlock_irq(&lo->lo_work_lock); 1981 1982 loop_handle_cmd(cmd); 1983 cond_resched(); 1984 1985 spin_lock_irq(&lo->lo_work_lock); 1986 } 1987 1988 /* 1989 * We only add to the idle list if there are no pending cmds 1990 * *and* the worker will not run again which ensures that it 1991 * is safe to free any worker on the idle list 1992 */ 1993 if (worker && !work_pending(&worker->work)) { 1994 worker->last_ran_at = jiffies; 1995 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1996 loop_set_timer(lo); 1997 } 1998 spin_unlock_irq(&lo->lo_work_lock); 1999 current->flags = orig_flags; 2000 } 2001 2002 static void loop_workfn(struct work_struct *work) 2003 { 2004 struct loop_worker *worker = 2005 container_of(work, struct loop_worker, work); 2006 loop_process_work(worker, &worker->cmd_list, worker->lo); 2007 } 2008 2009 static void loop_rootcg_workfn(struct work_struct *work) 2010 { 2011 struct loop_device *lo = 2012 container_of(work, struct loop_device, rootcg_work); 2013 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 2014 } 2015 2016 static const struct blk_mq_ops loop_mq_ops = { 2017 .queue_rq = loop_queue_rq, 2018 .complete = lo_complete_rq, 2019 }; 2020 2021 static int loop_add(int i) 2022 { 2023 struct queue_limits lim = { 2024 /* 2025 * Random number picked from the historic block max_sectors cap. 2026 */ 2027 .max_hw_sectors = 2560u, 2028 }; 2029 struct loop_device *lo; 2030 struct gendisk *disk; 2031 int err; 2032 2033 err = -ENOMEM; 2034 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2035 if (!lo) 2036 goto out; 2037 lo->worker_tree = RB_ROOT; 2038 INIT_LIST_HEAD(&lo->idle_worker_list); 2039 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2040 WRITE_ONCE(lo->lo_state, Lo_unbound); 2041 2042 err = mutex_lock_killable(&loop_ctl_mutex); 2043 if (err) 2044 goto out_free_dev; 2045 2046 /* allocate id, if @id >= 0, we're requesting that specific id */ 2047 if (i >= 0) { 2048 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2049 if (err == -ENOSPC) 2050 err = -EEXIST; 2051 } else { 2052 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2053 } 2054 mutex_unlock(&loop_ctl_mutex); 2055 if (err < 0) 2056 goto out_free_dev; 2057 i = err; 2058 2059 lo->tag_set.ops = &loop_mq_ops; 2060 lo->tag_set.nr_hw_queues = 1; 2061 lo->tag_set.queue_depth = hw_queue_depth; 2062 lo->tag_set.numa_node = NUMA_NO_NODE; 2063 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2064 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2065 lo->tag_set.driver_data = lo; 2066 2067 err = blk_mq_alloc_tag_set(&lo->tag_set); 2068 if (err) 2069 goto out_free_idr; 2070 2071 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2072 if (IS_ERR(disk)) { 2073 err = PTR_ERR(disk); 2074 goto out_cleanup_tags; 2075 } 2076 lo->lo_queue = lo->lo_disk->queue; 2077 2078 /* 2079 * Disable partition scanning by default. The in-kernel partition 2080 * scanning can be requested individually per-device during its 2081 * setup. Userspace can always add and remove partitions from all 2082 * devices. The needed partition minors are allocated from the 2083 * extended minor space, the main loop device numbers will continue 2084 * to match the loop minors, regardless of the number of partitions 2085 * used. 2086 * 2087 * If max_part is given, partition scanning is globally enabled for 2088 * all loop devices. The minors for the main loop devices will be 2089 * multiples of max_part. 2090 * 2091 * Note: Global-for-all-devices, set-only-at-init, read-only module 2092 * parameteters like 'max_loop' and 'max_part' make things needlessly 2093 * complicated, are too static, inflexible and may surprise 2094 * userspace tools. Parameters like this in general should be avoided. 2095 */ 2096 if (!part_shift) 2097 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2098 mutex_init(&lo->lo_mutex); 2099 lo->lo_number = i; 2100 spin_lock_init(&lo->lo_lock); 2101 spin_lock_init(&lo->lo_work_lock); 2102 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2103 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2104 disk->major = LOOP_MAJOR; 2105 disk->first_minor = i << part_shift; 2106 disk->minors = 1 << part_shift; 2107 disk->fops = &lo_fops; 2108 disk->private_data = lo; 2109 disk->queue = lo->lo_queue; 2110 disk->events = DISK_EVENT_MEDIA_CHANGE; 2111 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2112 sprintf(disk->disk_name, "loop%d", i); 2113 /* Make this loop device reachable from pathname. */ 2114 err = add_disk(disk); 2115 if (err) 2116 goto out_cleanup_disk; 2117 2118 /* Show this loop device. */ 2119 mutex_lock(&loop_ctl_mutex); 2120 lo->idr_visible = true; 2121 mutex_unlock(&loop_ctl_mutex); 2122 2123 return i; 2124 2125 out_cleanup_disk: 2126 put_disk(disk); 2127 out_cleanup_tags: 2128 blk_mq_free_tag_set(&lo->tag_set); 2129 out_free_idr: 2130 mutex_lock(&loop_ctl_mutex); 2131 idr_remove(&loop_index_idr, i); 2132 mutex_unlock(&loop_ctl_mutex); 2133 out_free_dev: 2134 kfree(lo); 2135 out: 2136 return err; 2137 } 2138 2139 static void loop_remove(struct loop_device *lo) 2140 { 2141 /* Make this loop device unreachable from pathname. */ 2142 del_gendisk(lo->lo_disk); 2143 blk_mq_free_tag_set(&lo->tag_set); 2144 2145 mutex_lock(&loop_ctl_mutex); 2146 idr_remove(&loop_index_idr, lo->lo_number); 2147 mutex_unlock(&loop_ctl_mutex); 2148 2149 put_disk(lo->lo_disk); 2150 } 2151 2152 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2153 static void loop_probe(dev_t dev) 2154 { 2155 int idx = MINOR(dev) >> part_shift; 2156 2157 if (max_loop_specified && max_loop && idx >= max_loop) 2158 return; 2159 loop_add(idx); 2160 } 2161 #else 2162 #define loop_probe NULL 2163 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2164 2165 static int loop_control_remove(int idx) 2166 { 2167 struct loop_device *lo; 2168 int ret; 2169 2170 if (idx < 0) { 2171 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2172 return -EINVAL; 2173 } 2174 2175 /* Hide this loop device for serialization. */ 2176 ret = mutex_lock_killable(&loop_ctl_mutex); 2177 if (ret) 2178 return ret; 2179 lo = idr_find(&loop_index_idr, idx); 2180 if (!lo || !lo->idr_visible) 2181 ret = -ENODEV; 2182 else 2183 lo->idr_visible = false; 2184 mutex_unlock(&loop_ctl_mutex); 2185 if (ret) 2186 return ret; 2187 2188 /* Check whether this loop device can be removed. */ 2189 ret = mutex_lock_killable(&lo->lo_mutex); 2190 if (ret) 2191 goto mark_visible; 2192 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2193 mutex_unlock(&lo->lo_mutex); 2194 ret = -EBUSY; 2195 goto mark_visible; 2196 } 2197 /* Mark this loop device as no more bound, but not quite unbound yet */ 2198 WRITE_ONCE(lo->lo_state, Lo_deleting); 2199 mutex_unlock(&lo->lo_mutex); 2200 2201 loop_remove(lo); 2202 return 0; 2203 2204 mark_visible: 2205 /* Show this loop device again. */ 2206 mutex_lock(&loop_ctl_mutex); 2207 lo->idr_visible = true; 2208 mutex_unlock(&loop_ctl_mutex); 2209 return ret; 2210 } 2211 2212 static int loop_control_get_free(int idx) 2213 { 2214 struct loop_device *lo; 2215 int id, ret; 2216 2217 ret = mutex_lock_killable(&loop_ctl_mutex); 2218 if (ret) 2219 return ret; 2220 idr_for_each_entry(&loop_index_idr, lo, id) { 2221 /* 2222 * Hitting a race results in creating a new loop device 2223 * which is harmless. 2224 */ 2225 if (lo->idr_visible && 2226 data_race(READ_ONCE(lo->lo_state)) == Lo_unbound) 2227 goto found; 2228 } 2229 mutex_unlock(&loop_ctl_mutex); 2230 return loop_add(-1); 2231 found: 2232 mutex_unlock(&loop_ctl_mutex); 2233 return id; 2234 } 2235 2236 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2237 unsigned long parm) 2238 { 2239 switch (cmd) { 2240 case LOOP_CTL_ADD: 2241 return loop_add(parm); 2242 case LOOP_CTL_REMOVE: 2243 return loop_control_remove(parm); 2244 case LOOP_CTL_GET_FREE: 2245 return loop_control_get_free(parm); 2246 default: 2247 return -ENOSYS; 2248 } 2249 } 2250 2251 static const struct file_operations loop_ctl_fops = { 2252 .open = nonseekable_open, 2253 .unlocked_ioctl = loop_control_ioctl, 2254 .compat_ioctl = loop_control_ioctl, 2255 .owner = THIS_MODULE, 2256 .llseek = noop_llseek, 2257 }; 2258 2259 static struct miscdevice loop_misc = { 2260 .minor = LOOP_CTRL_MINOR, 2261 .name = "loop-control", 2262 .fops = &loop_ctl_fops, 2263 }; 2264 2265 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2266 MODULE_ALIAS("devname:loop-control"); 2267 2268 static int __init loop_init(void) 2269 { 2270 int i; 2271 int err; 2272 2273 part_shift = 0; 2274 if (max_part > 0) { 2275 part_shift = fls(max_part); 2276 2277 /* 2278 * Adjust max_part according to part_shift as it is exported 2279 * to user space so that user can decide correct minor number 2280 * if [s]he want to create more devices. 2281 * 2282 * Note that -1 is required because partition 0 is reserved 2283 * for the whole disk. 2284 */ 2285 max_part = (1UL << part_shift) - 1; 2286 } 2287 2288 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2289 err = -EINVAL; 2290 goto err_out; 2291 } 2292 2293 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2294 err = -EINVAL; 2295 goto err_out; 2296 } 2297 2298 err = misc_register(&loop_misc); 2299 if (err < 0) 2300 goto err_out; 2301 2302 2303 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2304 err = -EIO; 2305 goto misc_out; 2306 } 2307 2308 /* pre-create number of devices given by config or max_loop */ 2309 for (i = 0; i < max_loop; i++) 2310 loop_add(i); 2311 2312 printk(KERN_INFO "loop: module loaded\n"); 2313 return 0; 2314 2315 misc_out: 2316 misc_deregister(&loop_misc); 2317 err_out: 2318 return err; 2319 } 2320 2321 static void __exit loop_exit(void) 2322 { 2323 struct loop_device *lo; 2324 int id; 2325 2326 unregister_blkdev(LOOP_MAJOR, "loop"); 2327 misc_deregister(&loop_misc); 2328 2329 /* 2330 * There is no need to use loop_ctl_mutex here, for nobody else can 2331 * access loop_index_idr when this module is unloading (unless forced 2332 * module unloading is requested). If this is not a clean unloading, 2333 * we have no means to avoid kernel crash. 2334 */ 2335 idr_for_each_entry(&loop_index_idr, lo, id) 2336 loop_remove(lo); 2337 2338 idr_destroy(&loop_index_idr); 2339 } 2340 2341 module_init(loop_init); 2342 module_exit(loop_exit); 2343 2344 #ifndef MODULE 2345 static int __init max_loop_setup(char *str) 2346 { 2347 max_loop = simple_strtol(str, NULL, 0); 2348 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2349 max_loop_specified = true; 2350 #endif 2351 return 1; 2352 } 2353 2354 __setup("max_loop=", max_loop_setup); 2355 #endif 2356