1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t lo_calculate_size(struct loop_device *lo, struct file *file) 141 { 142 loff_t loopsize; 143 int ret; 144 145 if (S_ISBLK(file_inode(file)->i_mode)) { 146 loopsize = i_size_read(file->f_mapping->host); 147 } else { 148 struct kstat stat; 149 150 /* 151 * Get the accurate file size. This provides better results than 152 * cached inode data, particularly for network filesystems where 153 * metadata may be stale. 154 */ 155 ret = vfs_getattr_nosec(&file->f_path, &stat, STATX_SIZE, 0); 156 if (ret) 157 return 0; 158 159 loopsize = stat.size; 160 } 161 162 if (lo->lo_offset > 0) 163 loopsize -= lo->lo_offset; 164 /* offset is beyond i_size, weird but possible */ 165 if (loopsize < 0) 166 return 0; 167 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 168 loopsize = lo->lo_sizelimit; 169 /* 170 * Unfortunately, if we want to do I/O on the device, 171 * the number of 512-byte sectors has to fit into a sector_t. 172 */ 173 return loopsize >> 9; 174 } 175 176 /* 177 * We support direct I/O only if lo_offset is aligned with the logical I/O size 178 * of backing device, and the logical block size of loop is bigger than that of 179 * the backing device. 180 */ 181 static bool lo_can_use_dio(struct loop_device *lo) 182 { 183 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 184 return false; 185 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 186 return false; 187 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 188 return false; 189 return true; 190 } 191 192 /* 193 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 194 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 195 * disabled when the device block size is too small or the offset is unaligned. 196 * 197 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 198 * not the originally passed in one. 199 */ 200 static inline void loop_update_dio(struct loop_device *lo) 201 { 202 lockdep_assert_held(&lo->lo_mutex); 203 WARN_ON_ONCE(lo->lo_state == Lo_bound && 204 lo->lo_queue->mq_freeze_depth == 0); 205 206 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 207 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 208 } 209 210 /** 211 * loop_set_size() - sets device size and notifies userspace 212 * @lo: struct loop_device to set the size for 213 * @size: new size of the loop device 214 * 215 * Callers must validate that the size passed into this function fits into 216 * a sector_t, eg using loop_validate_size() 217 */ 218 static void loop_set_size(struct loop_device *lo, loff_t size) 219 { 220 if (!set_capacity_and_notify(lo->lo_disk, size)) 221 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 222 } 223 224 static void loop_clear_limits(struct loop_device *lo, int mode) 225 { 226 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 227 228 if (mode & FALLOC_FL_ZERO_RANGE) 229 lim.max_write_zeroes_sectors = 0; 230 231 if (mode & FALLOC_FL_PUNCH_HOLE) { 232 lim.max_hw_discard_sectors = 0; 233 lim.discard_granularity = 0; 234 } 235 236 /* 237 * XXX: this updates the queue limits without freezing the queue, which 238 * is against the locking protocol and dangerous. But we can't just 239 * freeze the queue as we're inside the ->queue_rq method here. So this 240 * should move out into a workqueue unless we get the file operations to 241 * advertise if they support specific fallocate operations. 242 */ 243 queue_limits_commit_update(lo->lo_queue, &lim); 244 } 245 246 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 247 int mode) 248 { 249 /* 250 * We use fallocate to manipulate the space mappings used by the image 251 * a.k.a. discard/zerorange. 252 */ 253 struct file *file = lo->lo_backing_file; 254 int ret; 255 256 mode |= FALLOC_FL_KEEP_SIZE; 257 258 if (!bdev_max_discard_sectors(lo->lo_device)) 259 return -EOPNOTSUPP; 260 261 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 262 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 263 return -EIO; 264 265 /* 266 * We initially configure the limits in a hope that fallocate is 267 * supported and clear them here if that turns out not to be true. 268 */ 269 if (unlikely(ret == -EOPNOTSUPP)) 270 loop_clear_limits(lo, mode); 271 272 return ret; 273 } 274 275 static int lo_req_flush(struct loop_device *lo, struct request *rq) 276 { 277 int ret = vfs_fsync(lo->lo_backing_file, 0); 278 if (unlikely(ret && ret != -EINVAL)) 279 ret = -EIO; 280 281 return ret; 282 } 283 284 static void lo_complete_rq(struct request *rq) 285 { 286 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 287 blk_status_t ret = BLK_STS_OK; 288 289 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 290 req_op(rq) != REQ_OP_READ) { 291 if (cmd->ret < 0) 292 ret = errno_to_blk_status(cmd->ret); 293 goto end_io; 294 } 295 296 /* 297 * Short READ - if we got some data, advance our request and 298 * retry it. If we got no data, end the rest with EIO. 299 */ 300 if (cmd->ret) { 301 blk_update_request(rq, BLK_STS_OK, cmd->ret); 302 cmd->ret = 0; 303 blk_mq_requeue_request(rq, true); 304 } else { 305 struct bio *bio = rq->bio; 306 307 while (bio) { 308 zero_fill_bio(bio); 309 bio = bio->bi_next; 310 } 311 312 ret = BLK_STS_IOERR; 313 end_io: 314 blk_mq_end_request(rq, ret); 315 } 316 } 317 318 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 319 { 320 struct request *rq = blk_mq_rq_from_pdu(cmd); 321 322 if (!atomic_dec_and_test(&cmd->ref)) 323 return; 324 kfree(cmd->bvec); 325 cmd->bvec = NULL; 326 if (req_op(rq) == REQ_OP_WRITE) 327 kiocb_end_write(&cmd->iocb); 328 if (likely(!blk_should_fake_timeout(rq->q))) 329 blk_mq_complete_request(rq); 330 } 331 332 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 333 { 334 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 335 336 cmd->ret = ret; 337 lo_rw_aio_do_completion(cmd); 338 } 339 340 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 341 loff_t pos, int rw) 342 { 343 struct iov_iter iter; 344 struct req_iterator rq_iter; 345 struct bio_vec *bvec; 346 struct request *rq = blk_mq_rq_from_pdu(cmd); 347 struct bio *bio = rq->bio; 348 struct file *file = lo->lo_backing_file; 349 struct bio_vec tmp; 350 unsigned int offset; 351 unsigned int nr_bvec; 352 int ret; 353 354 nr_bvec = blk_rq_nr_bvec(rq); 355 356 if (rq->bio != rq->biotail) { 357 358 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 359 GFP_NOIO); 360 if (!bvec) 361 return -EIO; 362 cmd->bvec = bvec; 363 364 /* 365 * The bios of the request may be started from the middle of 366 * the 'bvec' because of bio splitting, so we can't directly 367 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 368 * API will take care of all details for us. 369 */ 370 rq_for_each_bvec(tmp, rq, rq_iter) { 371 *bvec = tmp; 372 bvec++; 373 } 374 bvec = cmd->bvec; 375 offset = 0; 376 } else { 377 /* 378 * Same here, this bio may be started from the middle of the 379 * 'bvec' because of bio splitting, so offset from the bvec 380 * must be passed to iov iterator 381 */ 382 offset = bio->bi_iter.bi_bvec_done; 383 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 384 } 385 atomic_set(&cmd->ref, 2); 386 387 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 388 iter.iov_offset = offset; 389 390 cmd->iocb.ki_pos = pos; 391 cmd->iocb.ki_filp = file; 392 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 393 if (cmd->use_aio) { 394 cmd->iocb.ki_complete = lo_rw_aio_complete; 395 cmd->iocb.ki_flags = IOCB_DIRECT; 396 } else { 397 cmd->iocb.ki_complete = NULL; 398 cmd->iocb.ki_flags = 0; 399 } 400 401 if (rw == ITER_SOURCE) { 402 kiocb_start_write(&cmd->iocb); 403 ret = file->f_op->write_iter(&cmd->iocb, &iter); 404 } else 405 ret = file->f_op->read_iter(&cmd->iocb, &iter); 406 407 lo_rw_aio_do_completion(cmd); 408 409 if (ret != -EIOCBQUEUED) 410 lo_rw_aio_complete(&cmd->iocb, ret); 411 return -EIOCBQUEUED; 412 } 413 414 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 415 { 416 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 417 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 418 419 switch (req_op(rq)) { 420 case REQ_OP_FLUSH: 421 return lo_req_flush(lo, rq); 422 case REQ_OP_WRITE_ZEROES: 423 /* 424 * If the caller doesn't want deallocation, call zeroout to 425 * write zeroes the range. Otherwise, punch them out. 426 */ 427 return lo_fallocate(lo, rq, pos, 428 (rq->cmd_flags & REQ_NOUNMAP) ? 429 FALLOC_FL_ZERO_RANGE : 430 FALLOC_FL_PUNCH_HOLE); 431 case REQ_OP_DISCARD: 432 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 433 case REQ_OP_WRITE: 434 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 435 case REQ_OP_READ: 436 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 437 default: 438 WARN_ON_ONCE(1); 439 return -EIO; 440 } 441 } 442 443 static void loop_reread_partitions(struct loop_device *lo) 444 { 445 int rc; 446 447 mutex_lock(&lo->lo_disk->open_mutex); 448 rc = bdev_disk_changed(lo->lo_disk, false); 449 mutex_unlock(&lo->lo_disk->open_mutex); 450 if (rc) 451 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 452 __func__, lo->lo_number, lo->lo_file_name, rc); 453 } 454 455 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 456 { 457 struct file *file = lo->lo_backing_file; 458 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 459 struct kstat st; 460 461 /* 462 * Use the minimal dio alignment of the file system if provided. 463 */ 464 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 465 (st.result_mask & STATX_DIOALIGN)) 466 return st.dio_offset_align; 467 468 /* 469 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 470 * a handful of file systems support the STATX_DIOALIGN flag. 471 */ 472 if (sb_bdev) 473 return bdev_logical_block_size(sb_bdev); 474 return SECTOR_SIZE; 475 } 476 477 static inline int is_loop_device(struct file *file) 478 { 479 struct inode *i = file->f_mapping->host; 480 481 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 482 } 483 484 static int loop_validate_file(struct file *file, struct block_device *bdev) 485 { 486 struct inode *inode = file->f_mapping->host; 487 struct file *f = file; 488 489 /* Avoid recursion */ 490 while (is_loop_device(f)) { 491 struct loop_device *l; 492 493 lockdep_assert_held(&loop_validate_mutex); 494 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 495 return -EBADF; 496 497 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 498 if (l->lo_state != Lo_bound) 499 return -EINVAL; 500 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 501 rmb(); 502 f = l->lo_backing_file; 503 } 504 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 505 return -EINVAL; 506 return 0; 507 } 508 509 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 510 { 511 lo->lo_backing_file = file; 512 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 513 mapping_set_gfp_mask(file->f_mapping, 514 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 515 if (lo->lo_backing_file->f_flags & O_DIRECT) 516 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 517 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 518 } 519 520 static int loop_check_backing_file(struct file *file) 521 { 522 if (!file->f_op->read_iter) 523 return -EINVAL; 524 525 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter) 526 return -EINVAL; 527 528 return 0; 529 } 530 531 /* 532 * loop_change_fd switched the backing store of a loopback device to 533 * a new file. This is useful for operating system installers to free up 534 * the original file and in High Availability environments to switch to 535 * an alternative location for the content in case of server meltdown. 536 * This can only work if the loop device is used read-only, and if the 537 * new backing store is the same size and type as the old backing store. 538 */ 539 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 540 unsigned int arg) 541 { 542 struct file *file = fget(arg); 543 struct file *old_file; 544 unsigned int memflags; 545 int error; 546 bool partscan; 547 bool is_loop; 548 549 if (!file) 550 return -EBADF; 551 552 error = loop_check_backing_file(file); 553 if (error) { 554 fput(file); 555 return error; 556 } 557 558 /* suppress uevents while reconfiguring the device */ 559 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 560 561 is_loop = is_loop_device(file); 562 error = loop_global_lock_killable(lo, is_loop); 563 if (error) 564 goto out_putf; 565 error = -ENXIO; 566 if (lo->lo_state != Lo_bound) 567 goto out_err; 568 569 /* the loop device has to be read-only */ 570 error = -EINVAL; 571 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 572 goto out_err; 573 574 error = loop_validate_file(file, bdev); 575 if (error) 576 goto out_err; 577 578 old_file = lo->lo_backing_file; 579 580 error = -EINVAL; 581 582 /* size of the new backing store needs to be the same */ 583 if (lo_calculate_size(lo, file) != lo_calculate_size(lo, old_file)) 584 goto out_err; 585 586 /* 587 * We might switch to direct I/O mode for the loop device, write back 588 * all dirty data the page cache now that so that the individual I/O 589 * operations don't have to do that. 590 */ 591 vfs_fsync(file, 0); 592 593 /* and ... switch */ 594 disk_force_media_change(lo->lo_disk); 595 memflags = blk_mq_freeze_queue(lo->lo_queue); 596 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 597 loop_assign_backing_file(lo, file); 598 loop_update_dio(lo); 599 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 600 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 601 loop_global_unlock(lo, is_loop); 602 603 /* 604 * Flush loop_validate_file() before fput(), for l->lo_backing_file 605 * might be pointing at old_file which might be the last reference. 606 */ 607 if (!is_loop) { 608 mutex_lock(&loop_validate_mutex); 609 mutex_unlock(&loop_validate_mutex); 610 } 611 /* 612 * We must drop file reference outside of lo_mutex as dropping 613 * the file ref can take open_mutex which creates circular locking 614 * dependency. 615 */ 616 fput(old_file); 617 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 618 if (partscan) 619 loop_reread_partitions(lo); 620 621 error = 0; 622 done: 623 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 624 return error; 625 626 out_err: 627 loop_global_unlock(lo, is_loop); 628 out_putf: 629 fput(file); 630 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 631 goto done; 632 } 633 634 /* loop sysfs attributes */ 635 636 static ssize_t loop_attr_show(struct device *dev, char *page, 637 ssize_t (*callback)(struct loop_device *, char *)) 638 { 639 struct gendisk *disk = dev_to_disk(dev); 640 struct loop_device *lo = disk->private_data; 641 642 return callback(lo, page); 643 } 644 645 #define LOOP_ATTR_RO(_name) \ 646 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 647 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 648 struct device_attribute *attr, char *b) \ 649 { \ 650 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 651 } \ 652 static struct device_attribute loop_attr_##_name = \ 653 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 654 655 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 656 { 657 ssize_t ret; 658 char *p = NULL; 659 660 spin_lock_irq(&lo->lo_lock); 661 if (lo->lo_backing_file) 662 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 663 spin_unlock_irq(&lo->lo_lock); 664 665 if (IS_ERR_OR_NULL(p)) 666 ret = PTR_ERR(p); 667 else { 668 ret = strlen(p); 669 memmove(buf, p, ret); 670 buf[ret++] = '\n'; 671 buf[ret] = 0; 672 } 673 674 return ret; 675 } 676 677 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 678 { 679 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 680 } 681 682 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 683 { 684 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 685 } 686 687 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 688 { 689 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 690 691 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 692 } 693 694 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 695 { 696 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 697 698 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 699 } 700 701 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 702 { 703 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 704 705 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 706 } 707 708 LOOP_ATTR_RO(backing_file); 709 LOOP_ATTR_RO(offset); 710 LOOP_ATTR_RO(sizelimit); 711 LOOP_ATTR_RO(autoclear); 712 LOOP_ATTR_RO(partscan); 713 LOOP_ATTR_RO(dio); 714 715 static struct attribute *loop_attrs[] = { 716 &loop_attr_backing_file.attr, 717 &loop_attr_offset.attr, 718 &loop_attr_sizelimit.attr, 719 &loop_attr_autoclear.attr, 720 &loop_attr_partscan.attr, 721 &loop_attr_dio.attr, 722 NULL, 723 }; 724 725 static struct attribute_group loop_attribute_group = { 726 .name = "loop", 727 .attrs= loop_attrs, 728 }; 729 730 static void loop_sysfs_init(struct loop_device *lo) 731 { 732 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 733 &loop_attribute_group); 734 } 735 736 static void loop_sysfs_exit(struct loop_device *lo) 737 { 738 if (lo->sysfs_inited) 739 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 740 &loop_attribute_group); 741 } 742 743 static void loop_get_discard_config(struct loop_device *lo, 744 u32 *granularity, u32 *max_discard_sectors) 745 { 746 struct file *file = lo->lo_backing_file; 747 struct inode *inode = file->f_mapping->host; 748 struct kstatfs sbuf; 749 750 /* 751 * If the backing device is a block device, mirror its zeroing 752 * capability. Set the discard sectors to the block device's zeroing 753 * capabilities because loop discards result in blkdev_issue_zeroout(), 754 * not blkdev_issue_discard(). This maintains consistent behavior with 755 * file-backed loop devices: discarded regions read back as zero. 756 */ 757 if (S_ISBLK(inode->i_mode)) { 758 struct block_device *bdev = I_BDEV(inode); 759 760 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 761 *granularity = bdev_discard_granularity(bdev); 762 763 /* 764 * We use punch hole to reclaim the free space used by the 765 * image a.k.a. discard. 766 */ 767 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 768 *max_discard_sectors = UINT_MAX >> 9; 769 *granularity = sbuf.f_bsize; 770 } 771 } 772 773 struct loop_worker { 774 struct rb_node rb_node; 775 struct work_struct work; 776 struct list_head cmd_list; 777 struct list_head idle_list; 778 struct loop_device *lo; 779 struct cgroup_subsys_state *blkcg_css; 780 unsigned long last_ran_at; 781 }; 782 783 static void loop_workfn(struct work_struct *work); 784 785 #ifdef CONFIG_BLK_CGROUP 786 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 787 { 788 return !css || css == blkcg_root_css; 789 } 790 #else 791 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 792 { 793 return !css; 794 } 795 #endif 796 797 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 798 { 799 struct rb_node **node, *parent = NULL; 800 struct loop_worker *cur_worker, *worker = NULL; 801 struct work_struct *work; 802 struct list_head *cmd_list; 803 804 spin_lock_irq(&lo->lo_work_lock); 805 806 if (queue_on_root_worker(cmd->blkcg_css)) 807 goto queue_work; 808 809 node = &lo->worker_tree.rb_node; 810 811 while (*node) { 812 parent = *node; 813 cur_worker = container_of(*node, struct loop_worker, rb_node); 814 if (cur_worker->blkcg_css == cmd->blkcg_css) { 815 worker = cur_worker; 816 break; 817 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 818 node = &(*node)->rb_left; 819 } else { 820 node = &(*node)->rb_right; 821 } 822 } 823 if (worker) 824 goto queue_work; 825 826 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT); 827 /* 828 * In the event we cannot allocate a worker, just queue on the 829 * rootcg worker and issue the I/O as the rootcg 830 */ 831 if (!worker) { 832 cmd->blkcg_css = NULL; 833 if (cmd->memcg_css) 834 css_put(cmd->memcg_css); 835 cmd->memcg_css = NULL; 836 goto queue_work; 837 } 838 839 worker->blkcg_css = cmd->blkcg_css; 840 css_get(worker->blkcg_css); 841 INIT_WORK(&worker->work, loop_workfn); 842 INIT_LIST_HEAD(&worker->cmd_list); 843 INIT_LIST_HEAD(&worker->idle_list); 844 worker->lo = lo; 845 rb_link_node(&worker->rb_node, parent, node); 846 rb_insert_color(&worker->rb_node, &lo->worker_tree); 847 queue_work: 848 if (worker) { 849 /* 850 * We need to remove from the idle list here while 851 * holding the lock so that the idle timer doesn't 852 * free the worker 853 */ 854 if (!list_empty(&worker->idle_list)) 855 list_del_init(&worker->idle_list); 856 work = &worker->work; 857 cmd_list = &worker->cmd_list; 858 } else { 859 work = &lo->rootcg_work; 860 cmd_list = &lo->rootcg_cmd_list; 861 } 862 list_add_tail(&cmd->list_entry, cmd_list); 863 queue_work(lo->workqueue, work); 864 spin_unlock_irq(&lo->lo_work_lock); 865 } 866 867 static void loop_set_timer(struct loop_device *lo) 868 { 869 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 870 } 871 872 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 873 { 874 struct loop_worker *pos, *worker; 875 876 spin_lock_irq(&lo->lo_work_lock); 877 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 878 idle_list) { 879 if (!delete_all && 880 time_is_after_jiffies(worker->last_ran_at + 881 LOOP_IDLE_WORKER_TIMEOUT)) 882 break; 883 list_del(&worker->idle_list); 884 rb_erase(&worker->rb_node, &lo->worker_tree); 885 css_put(worker->blkcg_css); 886 kfree(worker); 887 } 888 if (!list_empty(&lo->idle_worker_list)) 889 loop_set_timer(lo); 890 spin_unlock_irq(&lo->lo_work_lock); 891 } 892 893 static void loop_free_idle_workers_timer(struct timer_list *timer) 894 { 895 struct loop_device *lo = container_of(timer, struct loop_device, timer); 896 897 return loop_free_idle_workers(lo, false); 898 } 899 900 /** 901 * loop_set_status_from_info - configure device from loop_info 902 * @lo: struct loop_device to configure 903 * @info: struct loop_info64 to configure the device with 904 * 905 * Configures the loop device parameters according to the passed 906 * in loop_info64 configuration. 907 */ 908 static int 909 loop_set_status_from_info(struct loop_device *lo, 910 const struct loop_info64 *info) 911 { 912 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 913 return -EINVAL; 914 915 switch (info->lo_encrypt_type) { 916 case LO_CRYPT_NONE: 917 break; 918 case LO_CRYPT_XOR: 919 pr_warn("support for the xor transformation has been removed.\n"); 920 return -EINVAL; 921 case LO_CRYPT_CRYPTOAPI: 922 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 923 return -EINVAL; 924 default: 925 return -EINVAL; 926 } 927 928 /* Avoid assigning overflow values */ 929 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 930 return -EOVERFLOW; 931 932 lo->lo_offset = info->lo_offset; 933 lo->lo_sizelimit = info->lo_sizelimit; 934 935 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 936 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 937 return 0; 938 } 939 940 static unsigned int loop_default_blocksize(struct loop_device *lo) 941 { 942 /* In case of direct I/O, match underlying minimum I/O size */ 943 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 944 return lo->lo_min_dio_size; 945 return SECTOR_SIZE; 946 } 947 948 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 949 unsigned int bsize) 950 { 951 struct file *file = lo->lo_backing_file; 952 struct inode *inode = file->f_mapping->host; 953 struct block_device *backing_bdev = NULL; 954 u32 granularity = 0, max_discard_sectors = 0; 955 956 if (S_ISBLK(inode->i_mode)) 957 backing_bdev = I_BDEV(inode); 958 else if (inode->i_sb->s_bdev) 959 backing_bdev = inode->i_sb->s_bdev; 960 961 if (!bsize) 962 bsize = loop_default_blocksize(lo); 963 964 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 965 966 lim->logical_block_size = bsize; 967 lim->physical_block_size = bsize; 968 lim->io_min = bsize; 969 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 970 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 971 lim->features |= BLK_FEAT_WRITE_CACHE; 972 if (backing_bdev && !bdev_nonrot(backing_bdev)) 973 lim->features |= BLK_FEAT_ROTATIONAL; 974 lim->max_hw_discard_sectors = max_discard_sectors; 975 lim->max_write_zeroes_sectors = max_discard_sectors; 976 if (max_discard_sectors) 977 lim->discard_granularity = granularity; 978 else 979 lim->discard_granularity = 0; 980 } 981 982 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 983 struct block_device *bdev, 984 const struct loop_config *config) 985 { 986 struct file *file = fget(config->fd); 987 struct queue_limits lim; 988 int error; 989 loff_t size; 990 bool partscan; 991 bool is_loop; 992 993 if (!file) 994 return -EBADF; 995 996 error = loop_check_backing_file(file); 997 if (error) { 998 fput(file); 999 return error; 1000 } 1001 1002 is_loop = is_loop_device(file); 1003 1004 /* This is safe, since we have a reference from open(). */ 1005 __module_get(THIS_MODULE); 1006 1007 /* 1008 * If we don't hold exclusive handle for the device, upgrade to it 1009 * here to avoid changing device under exclusive owner. 1010 */ 1011 if (!(mode & BLK_OPEN_EXCL)) { 1012 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1013 if (error) 1014 goto out_putf; 1015 } 1016 1017 error = loop_global_lock_killable(lo, is_loop); 1018 if (error) 1019 goto out_bdev; 1020 1021 error = -EBUSY; 1022 if (lo->lo_state != Lo_unbound) 1023 goto out_unlock; 1024 1025 error = loop_validate_file(file, bdev); 1026 if (error) 1027 goto out_unlock; 1028 1029 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1030 error = -EINVAL; 1031 goto out_unlock; 1032 } 1033 1034 error = loop_set_status_from_info(lo, &config->info); 1035 if (error) 1036 goto out_unlock; 1037 lo->lo_flags = config->info.lo_flags; 1038 1039 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1040 !file->f_op->write_iter) 1041 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1042 1043 if (!lo->workqueue) { 1044 lo->workqueue = alloc_workqueue("loop%d", 1045 WQ_UNBOUND | WQ_FREEZABLE, 1046 0, lo->lo_number); 1047 if (!lo->workqueue) { 1048 error = -ENOMEM; 1049 goto out_unlock; 1050 } 1051 } 1052 1053 /* suppress uevents while reconfiguring the device */ 1054 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1055 1056 disk_force_media_change(lo->lo_disk); 1057 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1058 1059 lo->lo_device = bdev; 1060 loop_assign_backing_file(lo, file); 1061 1062 lim = queue_limits_start_update(lo->lo_queue); 1063 loop_update_limits(lo, &lim, config->block_size); 1064 /* No need to freeze the queue as the device isn't bound yet. */ 1065 error = queue_limits_commit_update(lo->lo_queue, &lim); 1066 if (error) 1067 goto out_unlock; 1068 1069 /* 1070 * We might switch to direct I/O mode for the loop device, write back 1071 * all dirty data the page cache now that so that the individual I/O 1072 * operations don't have to do that. 1073 */ 1074 vfs_fsync(file, 0); 1075 1076 loop_update_dio(lo); 1077 loop_sysfs_init(lo); 1078 1079 size = lo_calculate_size(lo, file); 1080 loop_set_size(lo, size); 1081 1082 /* Order wrt reading lo_state in loop_validate_file(). */ 1083 wmb(); 1084 1085 WRITE_ONCE(lo->lo_state, Lo_bound); 1086 if (part_shift) 1087 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1088 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1089 if (partscan) 1090 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1091 1092 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1093 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1094 1095 loop_global_unlock(lo, is_loop); 1096 if (partscan) 1097 loop_reread_partitions(lo); 1098 1099 if (!(mode & BLK_OPEN_EXCL)) 1100 bd_abort_claiming(bdev, loop_configure); 1101 1102 return 0; 1103 1104 out_unlock: 1105 loop_global_unlock(lo, is_loop); 1106 out_bdev: 1107 if (!(mode & BLK_OPEN_EXCL)) 1108 bd_abort_claiming(bdev, loop_configure); 1109 out_putf: 1110 fput(file); 1111 /* This is safe: open() is still holding a reference. */ 1112 module_put(THIS_MODULE); 1113 return error; 1114 } 1115 1116 static void __loop_clr_fd(struct loop_device *lo) 1117 { 1118 struct queue_limits lim; 1119 struct file *filp; 1120 gfp_t gfp = lo->old_gfp_mask; 1121 1122 spin_lock_irq(&lo->lo_lock); 1123 filp = lo->lo_backing_file; 1124 lo->lo_backing_file = NULL; 1125 spin_unlock_irq(&lo->lo_lock); 1126 1127 lo->lo_device = NULL; 1128 lo->lo_offset = 0; 1129 lo->lo_sizelimit = 0; 1130 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1131 1132 /* 1133 * Reset the block size to the default. 1134 * 1135 * No queue freezing needed because this is called from the final 1136 * ->release call only, so there can't be any outstanding I/O. 1137 */ 1138 lim = queue_limits_start_update(lo->lo_queue); 1139 lim.logical_block_size = SECTOR_SIZE; 1140 lim.physical_block_size = SECTOR_SIZE; 1141 lim.io_min = SECTOR_SIZE; 1142 queue_limits_commit_update(lo->lo_queue, &lim); 1143 1144 invalidate_disk(lo->lo_disk); 1145 loop_sysfs_exit(lo); 1146 /* let user-space know about this change */ 1147 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1148 mapping_set_gfp_mask(filp->f_mapping, gfp); 1149 /* This is safe: open() is still holding a reference. */ 1150 module_put(THIS_MODULE); 1151 1152 disk_force_media_change(lo->lo_disk); 1153 1154 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1155 int err; 1156 1157 /* 1158 * open_mutex has been held already in release path, so don't 1159 * acquire it if this function is called in such case. 1160 * 1161 * If the reread partition isn't from release path, lo_refcnt 1162 * must be at least one and it can only become zero when the 1163 * current holder is released. 1164 */ 1165 err = bdev_disk_changed(lo->lo_disk, false); 1166 if (err) 1167 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1168 __func__, lo->lo_number, err); 1169 /* Device is gone, no point in returning error */ 1170 } 1171 1172 /* 1173 * lo->lo_state is set to Lo_unbound here after above partscan has 1174 * finished. There cannot be anybody else entering __loop_clr_fd() as 1175 * Lo_rundown state protects us from all the other places trying to 1176 * change the 'lo' device. 1177 */ 1178 lo->lo_flags = 0; 1179 if (!part_shift) 1180 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1181 mutex_lock(&lo->lo_mutex); 1182 WRITE_ONCE(lo->lo_state, Lo_unbound); 1183 mutex_unlock(&lo->lo_mutex); 1184 1185 /* 1186 * Need not hold lo_mutex to fput backing file. Calling fput holding 1187 * lo_mutex triggers a circular lock dependency possibility warning as 1188 * fput can take open_mutex which is usually taken before lo_mutex. 1189 */ 1190 fput(filp); 1191 } 1192 1193 static int loop_clr_fd(struct loop_device *lo) 1194 { 1195 int err; 1196 1197 /* 1198 * Since lo_ioctl() is called without locks held, it is possible that 1199 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1200 * 1201 * Therefore, use global lock when setting Lo_rundown state in order to 1202 * make sure that loop_validate_file() will fail if the "struct file" 1203 * which loop_configure()/loop_change_fd() found via fget() was this 1204 * loop device. 1205 */ 1206 err = loop_global_lock_killable(lo, true); 1207 if (err) 1208 return err; 1209 if (lo->lo_state != Lo_bound) { 1210 loop_global_unlock(lo, true); 1211 return -ENXIO; 1212 } 1213 /* 1214 * Mark the device for removing the backing device on last close. 1215 * If we are the only opener, also switch the state to roundown here to 1216 * prevent new openers from coming in. 1217 */ 1218 1219 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1220 if (disk_openers(lo->lo_disk) == 1) 1221 WRITE_ONCE(lo->lo_state, Lo_rundown); 1222 loop_global_unlock(lo, true); 1223 1224 return 0; 1225 } 1226 1227 static int 1228 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1229 { 1230 int err; 1231 bool partscan = false; 1232 bool size_changed = false; 1233 unsigned int memflags; 1234 1235 err = mutex_lock_killable(&lo->lo_mutex); 1236 if (err) 1237 return err; 1238 if (lo->lo_state != Lo_bound) { 1239 err = -ENXIO; 1240 goto out_unlock; 1241 } 1242 1243 if (lo->lo_offset != info->lo_offset || 1244 lo->lo_sizelimit != info->lo_sizelimit) { 1245 size_changed = true; 1246 sync_blockdev(lo->lo_device); 1247 invalidate_bdev(lo->lo_device); 1248 } 1249 1250 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1251 memflags = blk_mq_freeze_queue(lo->lo_queue); 1252 1253 err = loop_set_status_from_info(lo, info); 1254 if (err) 1255 goto out_unfreeze; 1256 1257 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1258 (info->lo_flags & LO_FLAGS_PARTSCAN); 1259 1260 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1261 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1262 1263 /* update the direct I/O flag if lo_offset changed */ 1264 loop_update_dio(lo); 1265 1266 out_unfreeze: 1267 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1268 if (partscan) 1269 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1270 if (!err && size_changed) { 1271 loff_t new_size = lo_calculate_size(lo, lo->lo_backing_file); 1272 loop_set_size(lo, new_size); 1273 } 1274 out_unlock: 1275 mutex_unlock(&lo->lo_mutex); 1276 if (partscan) 1277 loop_reread_partitions(lo); 1278 1279 return err; 1280 } 1281 1282 static int 1283 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1284 { 1285 struct path path; 1286 struct kstat stat; 1287 int ret; 1288 1289 ret = mutex_lock_killable(&lo->lo_mutex); 1290 if (ret) 1291 return ret; 1292 if (lo->lo_state != Lo_bound) { 1293 mutex_unlock(&lo->lo_mutex); 1294 return -ENXIO; 1295 } 1296 1297 memset(info, 0, sizeof(*info)); 1298 info->lo_number = lo->lo_number; 1299 info->lo_offset = lo->lo_offset; 1300 info->lo_sizelimit = lo->lo_sizelimit; 1301 info->lo_flags = lo->lo_flags; 1302 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1303 1304 /* Drop lo_mutex while we call into the filesystem. */ 1305 path = lo->lo_backing_file->f_path; 1306 path_get(&path); 1307 mutex_unlock(&lo->lo_mutex); 1308 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1309 if (!ret) { 1310 info->lo_device = huge_encode_dev(stat.dev); 1311 info->lo_inode = stat.ino; 1312 info->lo_rdevice = huge_encode_dev(stat.rdev); 1313 } 1314 path_put(&path); 1315 return ret; 1316 } 1317 1318 static void 1319 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1320 { 1321 memset(info64, 0, sizeof(*info64)); 1322 info64->lo_number = info->lo_number; 1323 info64->lo_device = info->lo_device; 1324 info64->lo_inode = info->lo_inode; 1325 info64->lo_rdevice = info->lo_rdevice; 1326 info64->lo_offset = info->lo_offset; 1327 info64->lo_sizelimit = 0; 1328 info64->lo_flags = info->lo_flags; 1329 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1330 } 1331 1332 static int 1333 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1334 { 1335 memset(info, 0, sizeof(*info)); 1336 info->lo_number = info64->lo_number; 1337 info->lo_device = info64->lo_device; 1338 info->lo_inode = info64->lo_inode; 1339 info->lo_rdevice = info64->lo_rdevice; 1340 info->lo_offset = info64->lo_offset; 1341 info->lo_flags = info64->lo_flags; 1342 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1343 1344 /* error in case values were truncated */ 1345 if (info->lo_device != info64->lo_device || 1346 info->lo_rdevice != info64->lo_rdevice || 1347 info->lo_inode != info64->lo_inode || 1348 info->lo_offset != info64->lo_offset) 1349 return -EOVERFLOW; 1350 1351 return 0; 1352 } 1353 1354 static int 1355 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1356 { 1357 struct loop_info info; 1358 struct loop_info64 info64; 1359 1360 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1361 return -EFAULT; 1362 loop_info64_from_old(&info, &info64); 1363 return loop_set_status(lo, &info64); 1364 } 1365 1366 static int 1367 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1368 { 1369 struct loop_info64 info64; 1370 1371 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1372 return -EFAULT; 1373 return loop_set_status(lo, &info64); 1374 } 1375 1376 static int 1377 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1378 struct loop_info info; 1379 struct loop_info64 info64; 1380 int err; 1381 1382 if (!arg) 1383 return -EINVAL; 1384 err = loop_get_status(lo, &info64); 1385 if (!err) 1386 err = loop_info64_to_old(&info64, &info); 1387 if (!err && copy_to_user(arg, &info, sizeof(info))) 1388 err = -EFAULT; 1389 1390 return err; 1391 } 1392 1393 static int 1394 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1395 struct loop_info64 info64; 1396 int err; 1397 1398 if (!arg) 1399 return -EINVAL; 1400 err = loop_get_status(lo, &info64); 1401 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1402 err = -EFAULT; 1403 1404 return err; 1405 } 1406 1407 static int loop_set_capacity(struct loop_device *lo) 1408 { 1409 loff_t size; 1410 1411 if (unlikely(lo->lo_state != Lo_bound)) 1412 return -ENXIO; 1413 1414 size = lo_calculate_size(lo, lo->lo_backing_file); 1415 loop_set_size(lo, size); 1416 1417 return 0; 1418 } 1419 1420 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1421 { 1422 bool use_dio = !!arg; 1423 unsigned int memflags; 1424 1425 if (lo->lo_state != Lo_bound) 1426 return -ENXIO; 1427 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1428 return 0; 1429 1430 if (use_dio) { 1431 if (!lo_can_use_dio(lo)) 1432 return -EINVAL; 1433 /* flush dirty pages before starting to use direct I/O */ 1434 vfs_fsync(lo->lo_backing_file, 0); 1435 } 1436 1437 memflags = blk_mq_freeze_queue(lo->lo_queue); 1438 if (use_dio) 1439 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1440 else 1441 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1442 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1443 return 0; 1444 } 1445 1446 static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode, 1447 struct block_device *bdev, unsigned long arg) 1448 { 1449 struct queue_limits lim; 1450 unsigned int memflags; 1451 int err = 0; 1452 1453 /* 1454 * If we don't hold exclusive handle for the device, upgrade to it 1455 * here to avoid changing device under exclusive owner. 1456 */ 1457 if (!(mode & BLK_OPEN_EXCL)) { 1458 err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL); 1459 if (err) 1460 return err; 1461 } 1462 1463 err = mutex_lock_killable(&lo->lo_mutex); 1464 if (err) 1465 goto abort_claim; 1466 1467 if (lo->lo_state != Lo_bound) { 1468 err = -ENXIO; 1469 goto unlock; 1470 } 1471 1472 if (lo->lo_queue->limits.logical_block_size == arg) 1473 goto unlock; 1474 1475 sync_blockdev(lo->lo_device); 1476 invalidate_bdev(lo->lo_device); 1477 1478 lim = queue_limits_start_update(lo->lo_queue); 1479 loop_update_limits(lo, &lim, arg); 1480 1481 memflags = blk_mq_freeze_queue(lo->lo_queue); 1482 err = queue_limits_commit_update(lo->lo_queue, &lim); 1483 loop_update_dio(lo); 1484 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1485 1486 unlock: 1487 mutex_unlock(&lo->lo_mutex); 1488 abort_claim: 1489 if (!(mode & BLK_OPEN_EXCL)) 1490 bd_abort_claiming(bdev, loop_set_block_size); 1491 return err; 1492 } 1493 1494 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1495 unsigned long arg) 1496 { 1497 int err; 1498 1499 err = mutex_lock_killable(&lo->lo_mutex); 1500 if (err) 1501 return err; 1502 switch (cmd) { 1503 case LOOP_SET_CAPACITY: 1504 err = loop_set_capacity(lo); 1505 break; 1506 case LOOP_SET_DIRECT_IO: 1507 err = loop_set_dio(lo, arg); 1508 break; 1509 default: 1510 err = -EINVAL; 1511 } 1512 mutex_unlock(&lo->lo_mutex); 1513 return err; 1514 } 1515 1516 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1517 unsigned int cmd, unsigned long arg) 1518 { 1519 struct loop_device *lo = bdev->bd_disk->private_data; 1520 void __user *argp = (void __user *) arg; 1521 int err; 1522 1523 switch (cmd) { 1524 case LOOP_SET_FD: { 1525 /* 1526 * Legacy case - pass in a zeroed out struct loop_config with 1527 * only the file descriptor set , which corresponds with the 1528 * default parameters we'd have used otherwise. 1529 */ 1530 struct loop_config config; 1531 1532 memset(&config, 0, sizeof(config)); 1533 config.fd = arg; 1534 1535 return loop_configure(lo, mode, bdev, &config); 1536 } 1537 case LOOP_CONFIGURE: { 1538 struct loop_config config; 1539 1540 if (copy_from_user(&config, argp, sizeof(config))) 1541 return -EFAULT; 1542 1543 return loop_configure(lo, mode, bdev, &config); 1544 } 1545 case LOOP_CHANGE_FD: 1546 return loop_change_fd(lo, bdev, arg); 1547 case LOOP_CLR_FD: 1548 return loop_clr_fd(lo); 1549 case LOOP_SET_STATUS: 1550 err = -EPERM; 1551 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1552 err = loop_set_status_old(lo, argp); 1553 break; 1554 case LOOP_GET_STATUS: 1555 return loop_get_status_old(lo, argp); 1556 case LOOP_SET_STATUS64: 1557 err = -EPERM; 1558 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1559 err = loop_set_status64(lo, argp); 1560 break; 1561 case LOOP_GET_STATUS64: 1562 return loop_get_status64(lo, argp); 1563 case LOOP_SET_BLOCK_SIZE: 1564 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1565 return -EPERM; 1566 return loop_set_block_size(lo, mode, bdev, arg); 1567 case LOOP_SET_CAPACITY: 1568 case LOOP_SET_DIRECT_IO: 1569 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1570 return -EPERM; 1571 fallthrough; 1572 default: 1573 err = lo_simple_ioctl(lo, cmd, arg); 1574 break; 1575 } 1576 1577 return err; 1578 } 1579 1580 #ifdef CONFIG_COMPAT 1581 struct compat_loop_info { 1582 compat_int_t lo_number; /* ioctl r/o */ 1583 compat_dev_t lo_device; /* ioctl r/o */ 1584 compat_ulong_t lo_inode; /* ioctl r/o */ 1585 compat_dev_t lo_rdevice; /* ioctl r/o */ 1586 compat_int_t lo_offset; 1587 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1588 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1589 compat_int_t lo_flags; /* ioctl r/o */ 1590 char lo_name[LO_NAME_SIZE]; 1591 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1592 compat_ulong_t lo_init[2]; 1593 char reserved[4]; 1594 }; 1595 1596 /* 1597 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1598 * - noinlined to reduce stack space usage in main part of driver 1599 */ 1600 static noinline int 1601 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1602 struct loop_info64 *info64) 1603 { 1604 struct compat_loop_info info; 1605 1606 if (copy_from_user(&info, arg, sizeof(info))) 1607 return -EFAULT; 1608 1609 memset(info64, 0, sizeof(*info64)); 1610 info64->lo_number = info.lo_number; 1611 info64->lo_device = info.lo_device; 1612 info64->lo_inode = info.lo_inode; 1613 info64->lo_rdevice = info.lo_rdevice; 1614 info64->lo_offset = info.lo_offset; 1615 info64->lo_sizelimit = 0; 1616 info64->lo_flags = info.lo_flags; 1617 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1618 return 0; 1619 } 1620 1621 /* 1622 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1623 * - noinlined to reduce stack space usage in main part of driver 1624 */ 1625 static noinline int 1626 loop_info64_to_compat(const struct loop_info64 *info64, 1627 struct compat_loop_info __user *arg) 1628 { 1629 struct compat_loop_info info; 1630 1631 memset(&info, 0, sizeof(info)); 1632 info.lo_number = info64->lo_number; 1633 info.lo_device = info64->lo_device; 1634 info.lo_inode = info64->lo_inode; 1635 info.lo_rdevice = info64->lo_rdevice; 1636 info.lo_offset = info64->lo_offset; 1637 info.lo_flags = info64->lo_flags; 1638 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1639 1640 /* error in case values were truncated */ 1641 if (info.lo_device != info64->lo_device || 1642 info.lo_rdevice != info64->lo_rdevice || 1643 info.lo_inode != info64->lo_inode || 1644 info.lo_offset != info64->lo_offset) 1645 return -EOVERFLOW; 1646 1647 if (copy_to_user(arg, &info, sizeof(info))) 1648 return -EFAULT; 1649 return 0; 1650 } 1651 1652 static int 1653 loop_set_status_compat(struct loop_device *lo, 1654 const struct compat_loop_info __user *arg) 1655 { 1656 struct loop_info64 info64; 1657 int ret; 1658 1659 ret = loop_info64_from_compat(arg, &info64); 1660 if (ret < 0) 1661 return ret; 1662 return loop_set_status(lo, &info64); 1663 } 1664 1665 static int 1666 loop_get_status_compat(struct loop_device *lo, 1667 struct compat_loop_info __user *arg) 1668 { 1669 struct loop_info64 info64; 1670 int err; 1671 1672 if (!arg) 1673 return -EINVAL; 1674 err = loop_get_status(lo, &info64); 1675 if (!err) 1676 err = loop_info64_to_compat(&info64, arg); 1677 return err; 1678 } 1679 1680 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1681 unsigned int cmd, unsigned long arg) 1682 { 1683 struct loop_device *lo = bdev->bd_disk->private_data; 1684 int err; 1685 1686 switch(cmd) { 1687 case LOOP_SET_STATUS: 1688 err = loop_set_status_compat(lo, 1689 (const struct compat_loop_info __user *)arg); 1690 break; 1691 case LOOP_GET_STATUS: 1692 err = loop_get_status_compat(lo, 1693 (struct compat_loop_info __user *)arg); 1694 break; 1695 case LOOP_SET_CAPACITY: 1696 case LOOP_CLR_FD: 1697 case LOOP_GET_STATUS64: 1698 case LOOP_SET_STATUS64: 1699 case LOOP_CONFIGURE: 1700 arg = (unsigned long) compat_ptr(arg); 1701 fallthrough; 1702 case LOOP_SET_FD: 1703 case LOOP_CHANGE_FD: 1704 case LOOP_SET_BLOCK_SIZE: 1705 case LOOP_SET_DIRECT_IO: 1706 err = lo_ioctl(bdev, mode, cmd, arg); 1707 break; 1708 default: 1709 err = -ENOIOCTLCMD; 1710 break; 1711 } 1712 return err; 1713 } 1714 #endif 1715 1716 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1717 { 1718 struct loop_device *lo = disk->private_data; 1719 int err; 1720 1721 err = mutex_lock_killable(&lo->lo_mutex); 1722 if (err) 1723 return err; 1724 1725 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1726 err = -ENXIO; 1727 mutex_unlock(&lo->lo_mutex); 1728 return err; 1729 } 1730 1731 static void lo_release(struct gendisk *disk) 1732 { 1733 struct loop_device *lo = disk->private_data; 1734 bool need_clear = false; 1735 1736 if (disk_openers(disk) > 0) 1737 return; 1738 /* 1739 * Clear the backing device information if this is the last close of 1740 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1741 * has been called. 1742 */ 1743 1744 mutex_lock(&lo->lo_mutex); 1745 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1746 WRITE_ONCE(lo->lo_state, Lo_rundown); 1747 1748 need_clear = (lo->lo_state == Lo_rundown); 1749 mutex_unlock(&lo->lo_mutex); 1750 1751 if (need_clear) 1752 __loop_clr_fd(lo); 1753 } 1754 1755 static void lo_free_disk(struct gendisk *disk) 1756 { 1757 struct loop_device *lo = disk->private_data; 1758 1759 if (lo->workqueue) 1760 destroy_workqueue(lo->workqueue); 1761 loop_free_idle_workers(lo, true); 1762 timer_shutdown_sync(&lo->timer); 1763 mutex_destroy(&lo->lo_mutex); 1764 kfree(lo); 1765 } 1766 1767 static const struct block_device_operations lo_fops = { 1768 .owner = THIS_MODULE, 1769 .open = lo_open, 1770 .release = lo_release, 1771 .ioctl = lo_ioctl, 1772 #ifdef CONFIG_COMPAT 1773 .compat_ioctl = lo_compat_ioctl, 1774 #endif 1775 .free_disk = lo_free_disk, 1776 }; 1777 1778 /* 1779 * And now the modules code and kernel interface. 1780 */ 1781 1782 /* 1783 * If max_loop is specified, create that many devices upfront. 1784 * This also becomes a hard limit. If max_loop is not specified, 1785 * the default isn't a hard limit (as before commit 85c50197716c 1786 * changed the default value from 0 for max_loop=0 reasons), just 1787 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1788 * init time. Loop devices can be requested on-demand with the 1789 * /dev/loop-control interface, or be instantiated by accessing 1790 * a 'dead' device node. 1791 */ 1792 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1793 1794 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1795 static bool max_loop_specified; 1796 1797 static int max_loop_param_set_int(const char *val, 1798 const struct kernel_param *kp) 1799 { 1800 int ret; 1801 1802 ret = param_set_int(val, kp); 1803 if (ret < 0) 1804 return ret; 1805 1806 max_loop_specified = true; 1807 return 0; 1808 } 1809 1810 static const struct kernel_param_ops max_loop_param_ops = { 1811 .set = max_loop_param_set_int, 1812 .get = param_get_int, 1813 }; 1814 1815 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1816 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1817 #else 1818 module_param(max_loop, int, 0444); 1819 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1820 #endif 1821 1822 module_param(max_part, int, 0444); 1823 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1824 1825 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1826 1827 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1828 { 1829 int qd, ret; 1830 1831 ret = kstrtoint(s, 0, &qd); 1832 if (ret < 0) 1833 return ret; 1834 if (qd < 1) 1835 return -EINVAL; 1836 hw_queue_depth = qd; 1837 return 0; 1838 } 1839 1840 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1841 .set = loop_set_hw_queue_depth, 1842 .get = param_get_int, 1843 }; 1844 1845 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1846 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1847 1848 MODULE_DESCRIPTION("Loopback device support"); 1849 MODULE_LICENSE("GPL"); 1850 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1851 1852 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1853 const struct blk_mq_queue_data *bd) 1854 { 1855 struct request *rq = bd->rq; 1856 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1857 struct loop_device *lo = rq->q->queuedata; 1858 1859 blk_mq_start_request(rq); 1860 1861 if (data_race(READ_ONCE(lo->lo_state)) != Lo_bound) 1862 return BLK_STS_IOERR; 1863 1864 switch (req_op(rq)) { 1865 case REQ_OP_FLUSH: 1866 case REQ_OP_DISCARD: 1867 case REQ_OP_WRITE_ZEROES: 1868 cmd->use_aio = false; 1869 break; 1870 default: 1871 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1872 break; 1873 } 1874 1875 /* always use the first bio's css */ 1876 cmd->blkcg_css = NULL; 1877 cmd->memcg_css = NULL; 1878 #ifdef CONFIG_BLK_CGROUP 1879 if (rq->bio) { 1880 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1881 #ifdef CONFIG_MEMCG 1882 if (cmd->blkcg_css) { 1883 cmd->memcg_css = 1884 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1885 &memory_cgrp_subsys); 1886 } 1887 #endif 1888 } 1889 #endif 1890 loop_queue_work(lo, cmd); 1891 1892 return BLK_STS_OK; 1893 } 1894 1895 static void loop_handle_cmd(struct loop_cmd *cmd) 1896 { 1897 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1898 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1899 struct request *rq = blk_mq_rq_from_pdu(cmd); 1900 const bool write = op_is_write(req_op(rq)); 1901 struct loop_device *lo = rq->q->queuedata; 1902 int ret = 0; 1903 struct mem_cgroup *old_memcg = NULL; 1904 1905 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1906 ret = -EIO; 1907 goto failed; 1908 } 1909 1910 /* We can block in this context, so ignore REQ_NOWAIT. */ 1911 if (rq->cmd_flags & REQ_NOWAIT) 1912 rq->cmd_flags &= ~REQ_NOWAIT; 1913 1914 if (cmd_blkcg_css) 1915 kthread_associate_blkcg(cmd_blkcg_css); 1916 if (cmd_memcg_css) 1917 old_memcg = set_active_memcg( 1918 mem_cgroup_from_css(cmd_memcg_css)); 1919 1920 /* 1921 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1922 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1923 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1924 * not yet been completed. 1925 */ 1926 ret = do_req_filebacked(lo, rq); 1927 1928 if (cmd_blkcg_css) 1929 kthread_associate_blkcg(NULL); 1930 1931 if (cmd_memcg_css) { 1932 set_active_memcg(old_memcg); 1933 css_put(cmd_memcg_css); 1934 } 1935 failed: 1936 /* complete non-aio request */ 1937 if (ret != -EIOCBQUEUED) { 1938 if (ret == -EOPNOTSUPP) 1939 cmd->ret = ret; 1940 else 1941 cmd->ret = ret ? -EIO : 0; 1942 if (likely(!blk_should_fake_timeout(rq->q))) 1943 blk_mq_complete_request(rq); 1944 } 1945 } 1946 1947 static void loop_process_work(struct loop_worker *worker, 1948 struct list_head *cmd_list, struct loop_device *lo) 1949 { 1950 int orig_flags = current->flags; 1951 struct loop_cmd *cmd; 1952 1953 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1954 spin_lock_irq(&lo->lo_work_lock); 1955 while (!list_empty(cmd_list)) { 1956 cmd = container_of( 1957 cmd_list->next, struct loop_cmd, list_entry); 1958 list_del(cmd_list->next); 1959 spin_unlock_irq(&lo->lo_work_lock); 1960 1961 loop_handle_cmd(cmd); 1962 cond_resched(); 1963 1964 spin_lock_irq(&lo->lo_work_lock); 1965 } 1966 1967 /* 1968 * We only add to the idle list if there are no pending cmds 1969 * *and* the worker will not run again which ensures that it 1970 * is safe to free any worker on the idle list 1971 */ 1972 if (worker && !work_pending(&worker->work)) { 1973 worker->last_ran_at = jiffies; 1974 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1975 loop_set_timer(lo); 1976 } 1977 spin_unlock_irq(&lo->lo_work_lock); 1978 current->flags = orig_flags; 1979 } 1980 1981 static void loop_workfn(struct work_struct *work) 1982 { 1983 struct loop_worker *worker = 1984 container_of(work, struct loop_worker, work); 1985 loop_process_work(worker, &worker->cmd_list, worker->lo); 1986 } 1987 1988 static void loop_rootcg_workfn(struct work_struct *work) 1989 { 1990 struct loop_device *lo = 1991 container_of(work, struct loop_device, rootcg_work); 1992 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1993 } 1994 1995 static const struct blk_mq_ops loop_mq_ops = { 1996 .queue_rq = loop_queue_rq, 1997 .complete = lo_complete_rq, 1998 }; 1999 2000 static int loop_add(int i) 2001 { 2002 struct queue_limits lim = { 2003 /* 2004 * Random number picked from the historic block max_sectors cap. 2005 */ 2006 .max_hw_sectors = 2560u, 2007 }; 2008 struct loop_device *lo; 2009 struct gendisk *disk; 2010 int err; 2011 2012 err = -ENOMEM; 2013 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2014 if (!lo) 2015 goto out; 2016 lo->worker_tree = RB_ROOT; 2017 INIT_LIST_HEAD(&lo->idle_worker_list); 2018 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2019 WRITE_ONCE(lo->lo_state, Lo_unbound); 2020 2021 err = mutex_lock_killable(&loop_ctl_mutex); 2022 if (err) 2023 goto out_free_dev; 2024 2025 /* allocate id, if @id >= 0, we're requesting that specific id */ 2026 if (i >= 0) { 2027 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2028 if (err == -ENOSPC) 2029 err = -EEXIST; 2030 } else { 2031 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2032 } 2033 mutex_unlock(&loop_ctl_mutex); 2034 if (err < 0) 2035 goto out_free_dev; 2036 i = err; 2037 2038 lo->tag_set.ops = &loop_mq_ops; 2039 lo->tag_set.nr_hw_queues = 1; 2040 lo->tag_set.queue_depth = hw_queue_depth; 2041 lo->tag_set.numa_node = NUMA_NO_NODE; 2042 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2043 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2044 lo->tag_set.driver_data = lo; 2045 2046 err = blk_mq_alloc_tag_set(&lo->tag_set); 2047 if (err) 2048 goto out_free_idr; 2049 2050 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2051 if (IS_ERR(disk)) { 2052 err = PTR_ERR(disk); 2053 goto out_cleanup_tags; 2054 } 2055 lo->lo_queue = lo->lo_disk->queue; 2056 2057 /* 2058 * Disable partition scanning by default. The in-kernel partition 2059 * scanning can be requested individually per-device during its 2060 * setup. Userspace can always add and remove partitions from all 2061 * devices. The needed partition minors are allocated from the 2062 * extended minor space, the main loop device numbers will continue 2063 * to match the loop minors, regardless of the number of partitions 2064 * used. 2065 * 2066 * If max_part is given, partition scanning is globally enabled for 2067 * all loop devices. The minors for the main loop devices will be 2068 * multiples of max_part. 2069 * 2070 * Note: Global-for-all-devices, set-only-at-init, read-only module 2071 * parameteters like 'max_loop' and 'max_part' make things needlessly 2072 * complicated, are too static, inflexible and may surprise 2073 * userspace tools. Parameters like this in general should be avoided. 2074 */ 2075 if (!part_shift) 2076 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2077 mutex_init(&lo->lo_mutex); 2078 lo->lo_number = i; 2079 spin_lock_init(&lo->lo_lock); 2080 spin_lock_init(&lo->lo_work_lock); 2081 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2082 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2083 disk->major = LOOP_MAJOR; 2084 disk->first_minor = i << part_shift; 2085 disk->minors = 1 << part_shift; 2086 disk->fops = &lo_fops; 2087 disk->private_data = lo; 2088 disk->queue = lo->lo_queue; 2089 disk->events = DISK_EVENT_MEDIA_CHANGE; 2090 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2091 sprintf(disk->disk_name, "loop%d", i); 2092 /* Make this loop device reachable from pathname. */ 2093 err = add_disk(disk); 2094 if (err) 2095 goto out_cleanup_disk; 2096 2097 /* Show this loop device. */ 2098 mutex_lock(&loop_ctl_mutex); 2099 lo->idr_visible = true; 2100 mutex_unlock(&loop_ctl_mutex); 2101 2102 return i; 2103 2104 out_cleanup_disk: 2105 put_disk(disk); 2106 out_cleanup_tags: 2107 blk_mq_free_tag_set(&lo->tag_set); 2108 out_free_idr: 2109 mutex_lock(&loop_ctl_mutex); 2110 idr_remove(&loop_index_idr, i); 2111 mutex_unlock(&loop_ctl_mutex); 2112 out_free_dev: 2113 kfree(lo); 2114 out: 2115 return err; 2116 } 2117 2118 static void loop_remove(struct loop_device *lo) 2119 { 2120 /* Make this loop device unreachable from pathname. */ 2121 del_gendisk(lo->lo_disk); 2122 blk_mq_free_tag_set(&lo->tag_set); 2123 2124 mutex_lock(&loop_ctl_mutex); 2125 idr_remove(&loop_index_idr, lo->lo_number); 2126 mutex_unlock(&loop_ctl_mutex); 2127 2128 put_disk(lo->lo_disk); 2129 } 2130 2131 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2132 static void loop_probe(dev_t dev) 2133 { 2134 int idx = MINOR(dev) >> part_shift; 2135 2136 if (max_loop_specified && max_loop && idx >= max_loop) 2137 return; 2138 loop_add(idx); 2139 } 2140 #else 2141 #define loop_probe NULL 2142 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2143 2144 static int loop_control_remove(int idx) 2145 { 2146 struct loop_device *lo; 2147 int ret; 2148 2149 if (idx < 0) { 2150 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2151 return -EINVAL; 2152 } 2153 2154 /* Hide this loop device for serialization. */ 2155 ret = mutex_lock_killable(&loop_ctl_mutex); 2156 if (ret) 2157 return ret; 2158 lo = idr_find(&loop_index_idr, idx); 2159 if (!lo || !lo->idr_visible) 2160 ret = -ENODEV; 2161 else 2162 lo->idr_visible = false; 2163 mutex_unlock(&loop_ctl_mutex); 2164 if (ret) 2165 return ret; 2166 2167 /* Check whether this loop device can be removed. */ 2168 ret = mutex_lock_killable(&lo->lo_mutex); 2169 if (ret) 2170 goto mark_visible; 2171 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2172 mutex_unlock(&lo->lo_mutex); 2173 ret = -EBUSY; 2174 goto mark_visible; 2175 } 2176 /* Mark this loop device as no more bound, but not quite unbound yet */ 2177 WRITE_ONCE(lo->lo_state, Lo_deleting); 2178 mutex_unlock(&lo->lo_mutex); 2179 2180 loop_remove(lo); 2181 return 0; 2182 2183 mark_visible: 2184 /* Show this loop device again. */ 2185 mutex_lock(&loop_ctl_mutex); 2186 lo->idr_visible = true; 2187 mutex_unlock(&loop_ctl_mutex); 2188 return ret; 2189 } 2190 2191 static int loop_control_get_free(int idx) 2192 { 2193 struct loop_device *lo; 2194 int id, ret; 2195 2196 ret = mutex_lock_killable(&loop_ctl_mutex); 2197 if (ret) 2198 return ret; 2199 idr_for_each_entry(&loop_index_idr, lo, id) { 2200 /* 2201 * Hitting a race results in creating a new loop device 2202 * which is harmless. 2203 */ 2204 if (lo->idr_visible && 2205 data_race(READ_ONCE(lo->lo_state)) == Lo_unbound) 2206 goto found; 2207 } 2208 mutex_unlock(&loop_ctl_mutex); 2209 return loop_add(-1); 2210 found: 2211 mutex_unlock(&loop_ctl_mutex); 2212 return id; 2213 } 2214 2215 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2216 unsigned long parm) 2217 { 2218 switch (cmd) { 2219 case LOOP_CTL_ADD: 2220 return loop_add(parm); 2221 case LOOP_CTL_REMOVE: 2222 return loop_control_remove(parm); 2223 case LOOP_CTL_GET_FREE: 2224 return loop_control_get_free(parm); 2225 default: 2226 return -ENOSYS; 2227 } 2228 } 2229 2230 static const struct file_operations loop_ctl_fops = { 2231 .open = nonseekable_open, 2232 .unlocked_ioctl = loop_control_ioctl, 2233 .compat_ioctl = loop_control_ioctl, 2234 .owner = THIS_MODULE, 2235 .llseek = noop_llseek, 2236 }; 2237 2238 static struct miscdevice loop_misc = { 2239 .minor = LOOP_CTRL_MINOR, 2240 .name = "loop-control", 2241 .fops = &loop_ctl_fops, 2242 }; 2243 2244 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2245 MODULE_ALIAS("devname:loop-control"); 2246 2247 static int __init loop_init(void) 2248 { 2249 int i; 2250 int err; 2251 2252 part_shift = 0; 2253 if (max_part > 0) { 2254 part_shift = fls(max_part); 2255 2256 /* 2257 * Adjust max_part according to part_shift as it is exported 2258 * to user space so that user can decide correct minor number 2259 * if [s]he want to create more devices. 2260 * 2261 * Note that -1 is required because partition 0 is reserved 2262 * for the whole disk. 2263 */ 2264 max_part = (1UL << part_shift) - 1; 2265 } 2266 2267 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2268 err = -EINVAL; 2269 goto err_out; 2270 } 2271 2272 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2273 err = -EINVAL; 2274 goto err_out; 2275 } 2276 2277 err = misc_register(&loop_misc); 2278 if (err < 0) 2279 goto err_out; 2280 2281 2282 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2283 err = -EIO; 2284 goto misc_out; 2285 } 2286 2287 /* pre-create number of devices given by config or max_loop */ 2288 for (i = 0; i < max_loop; i++) 2289 loop_add(i); 2290 2291 printk(KERN_INFO "loop: module loaded\n"); 2292 return 0; 2293 2294 misc_out: 2295 misc_deregister(&loop_misc); 2296 err_out: 2297 return err; 2298 } 2299 2300 static void __exit loop_exit(void) 2301 { 2302 struct loop_device *lo; 2303 int id; 2304 2305 unregister_blkdev(LOOP_MAJOR, "loop"); 2306 misc_deregister(&loop_misc); 2307 2308 /* 2309 * There is no need to use loop_ctl_mutex here, for nobody else can 2310 * access loop_index_idr when this module is unloading (unless forced 2311 * module unloading is requested). If this is not a clean unloading, 2312 * we have no means to avoid kernel crash. 2313 */ 2314 idr_for_each_entry(&loop_index_idr, lo, id) 2315 loop_remove(lo); 2316 2317 idr_destroy(&loop_index_idr); 2318 } 2319 2320 module_init(loop_init); 2321 module_exit(loop_exit); 2322 2323 #ifndef MODULE 2324 static int __init max_loop_setup(char *str) 2325 { 2326 max_loop = simple_strtol(str, NULL, 0); 2327 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2328 max_loop_specified = true; 2329 #endif 2330 return 1; 2331 } 2332 2333 __setup("max_loop=", max_loop_setup); 2334 #endif 2335