1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_func_table; 49 50 struct loop_device { 51 int lo_number; 52 loff_t lo_offset; 53 loff_t lo_sizelimit; 54 int lo_flags; 55 char lo_file_name[LO_NAME_SIZE]; 56 57 struct file * lo_backing_file; 58 struct block_device *lo_device; 59 60 gfp_t old_gfp_mask; 61 62 spinlock_t lo_lock; 63 int lo_state; 64 spinlock_t lo_work_lock; 65 struct workqueue_struct *workqueue; 66 struct work_struct rootcg_work; 67 struct list_head rootcg_cmd_list; 68 struct list_head idle_worker_list; 69 struct rb_root worker_tree; 70 struct timer_list timer; 71 bool use_dio; 72 bool sysfs_inited; 73 74 struct request_queue *lo_queue; 75 struct blk_mq_tag_set tag_set; 76 struct gendisk *lo_disk; 77 struct mutex lo_mutex; 78 bool idr_visible; 79 }; 80 81 struct loop_cmd { 82 struct list_head list_entry; 83 bool use_aio; /* use AIO interface to handle I/O */ 84 atomic_t ref; /* only for aio */ 85 long ret; 86 struct kiocb iocb; 87 struct bio_vec *bvec; 88 struct cgroup_subsys_state *blkcg_css; 89 struct cgroup_subsys_state *memcg_css; 90 }; 91 92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 93 #define LOOP_DEFAULT_HW_Q_DEPTH 128 94 95 static DEFINE_IDR(loop_index_idr); 96 static DEFINE_MUTEX(loop_ctl_mutex); 97 static DEFINE_MUTEX(loop_validate_mutex); 98 99 /** 100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 101 * 102 * @lo: struct loop_device 103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 104 * 105 * Returns 0 on success, -EINTR otherwise. 106 * 107 * Since loop_validate_file() traverses on other "struct loop_device" if 108 * is_loop_device() is true, we need a global lock for serializing concurrent 109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 110 */ 111 static int loop_global_lock_killable(struct loop_device *lo, bool global) 112 { 113 int err; 114 115 if (global) { 116 err = mutex_lock_killable(&loop_validate_mutex); 117 if (err) 118 return err; 119 } 120 err = mutex_lock_killable(&lo->lo_mutex); 121 if (err && global) 122 mutex_unlock(&loop_validate_mutex); 123 return err; 124 } 125 126 /** 127 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 128 * 129 * @lo: struct loop_device 130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 131 */ 132 static void loop_global_unlock(struct loop_device *lo, bool global) 133 { 134 mutex_unlock(&lo->lo_mutex); 135 if (global) 136 mutex_unlock(&loop_validate_mutex); 137 } 138 139 static int max_part; 140 static int part_shift; 141 142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 143 { 144 loff_t loopsize; 145 146 /* Compute loopsize in bytes */ 147 loopsize = i_size_read(file->f_mapping->host); 148 if (offset > 0) 149 loopsize -= offset; 150 /* offset is beyond i_size, weird but possible */ 151 if (loopsize < 0) 152 return 0; 153 154 if (sizelimit > 0 && sizelimit < loopsize) 155 loopsize = sizelimit; 156 /* 157 * Unfortunately, if we want to do I/O on the device, 158 * the number of 512-byte sectors has to fit into a sector_t. 159 */ 160 return loopsize >> 9; 161 } 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 166 } 167 168 /* 169 * We support direct I/O only if lo_offset is aligned with the logical I/O size 170 * of backing device, and the logical block size of loop is bigger than that of 171 * the backing device. 172 */ 173 static bool lo_bdev_can_use_dio(struct loop_device *lo, 174 struct block_device *backing_bdev) 175 { 176 unsigned short sb_bsize = bdev_logical_block_size(backing_bdev); 177 178 if (queue_logical_block_size(lo->lo_queue) < sb_bsize) 179 return false; 180 if (lo->lo_offset & (sb_bsize - 1)) 181 return false; 182 return true; 183 } 184 185 static void __loop_update_dio(struct loop_device *lo, bool dio) 186 { 187 struct file *file = lo->lo_backing_file; 188 struct inode *inode = file->f_mapping->host; 189 struct block_device *backing_bdev = NULL; 190 bool use_dio; 191 192 if (S_ISBLK(inode->i_mode)) 193 backing_bdev = I_BDEV(inode); 194 else if (inode->i_sb->s_bdev) 195 backing_bdev = inode->i_sb->s_bdev; 196 197 use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) && 198 (!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev)); 199 200 if (lo->use_dio == use_dio) 201 return; 202 203 /* flush dirty pages before changing direct IO */ 204 vfs_fsync(file, 0); 205 206 /* 207 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 208 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 209 * will get updated by ioctl(LOOP_GET_STATUS) 210 */ 211 if (lo->lo_state == Lo_bound) 212 blk_mq_freeze_queue(lo->lo_queue); 213 lo->use_dio = use_dio; 214 if (use_dio) { 215 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 216 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 217 } else { 218 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 220 } 221 if (lo->lo_state == Lo_bound) 222 blk_mq_unfreeze_queue(lo->lo_queue); 223 } 224 225 /** 226 * loop_set_size() - sets device size and notifies userspace 227 * @lo: struct loop_device to set the size for 228 * @size: new size of the loop device 229 * 230 * Callers must validate that the size passed into this function fits into 231 * a sector_t, eg using loop_validate_size() 232 */ 233 static void loop_set_size(struct loop_device *lo, loff_t size) 234 { 235 if (!set_capacity_and_notify(lo->lo_disk, size)) 236 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 237 } 238 239 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 240 { 241 struct iov_iter i; 242 ssize_t bw; 243 244 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len); 245 246 bw = vfs_iter_write(file, &i, ppos, 0); 247 248 if (likely(bw == bvec->bv_len)) 249 return 0; 250 251 printk_ratelimited(KERN_ERR 252 "loop: Write error at byte offset %llu, length %i.\n", 253 (unsigned long long)*ppos, bvec->bv_len); 254 if (bw >= 0) 255 bw = -EIO; 256 return bw; 257 } 258 259 static int lo_write_simple(struct loop_device *lo, struct request *rq, 260 loff_t pos) 261 { 262 struct bio_vec bvec; 263 struct req_iterator iter; 264 int ret = 0; 265 266 rq_for_each_segment(bvec, rq, iter) { 267 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 268 if (ret < 0) 269 break; 270 cond_resched(); 271 } 272 273 return ret; 274 } 275 276 static int lo_read_simple(struct loop_device *lo, struct request *rq, 277 loff_t pos) 278 { 279 struct bio_vec bvec; 280 struct req_iterator iter; 281 struct iov_iter i; 282 ssize_t len; 283 284 rq_for_each_segment(bvec, rq, iter) { 285 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len); 286 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 287 if (len < 0) 288 return len; 289 290 flush_dcache_page(bvec.bv_page); 291 292 if (len != bvec.bv_len) { 293 struct bio *bio; 294 295 __rq_for_each_bio(bio, rq) 296 zero_fill_bio(bio); 297 break; 298 } 299 cond_resched(); 300 } 301 302 return 0; 303 } 304 305 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 306 int mode) 307 { 308 /* 309 * We use fallocate to manipulate the space mappings used by the image 310 * a.k.a. discard/zerorange. 311 */ 312 struct file *file = lo->lo_backing_file; 313 int ret; 314 315 mode |= FALLOC_FL_KEEP_SIZE; 316 317 if (!bdev_max_discard_sectors(lo->lo_device)) 318 return -EOPNOTSUPP; 319 320 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 321 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 322 return -EIO; 323 return ret; 324 } 325 326 static int lo_req_flush(struct loop_device *lo, struct request *rq) 327 { 328 int ret = vfs_fsync(lo->lo_backing_file, 0); 329 if (unlikely(ret && ret != -EINVAL)) 330 ret = -EIO; 331 332 return ret; 333 } 334 335 static void lo_complete_rq(struct request *rq) 336 { 337 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 338 blk_status_t ret = BLK_STS_OK; 339 340 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 341 req_op(rq) != REQ_OP_READ) { 342 if (cmd->ret < 0) 343 ret = errno_to_blk_status(cmd->ret); 344 goto end_io; 345 } 346 347 /* 348 * Short READ - if we got some data, advance our request and 349 * retry it. If we got no data, end the rest with EIO. 350 */ 351 if (cmd->ret) { 352 blk_update_request(rq, BLK_STS_OK, cmd->ret); 353 cmd->ret = 0; 354 blk_mq_requeue_request(rq, true); 355 } else { 356 if (cmd->use_aio) { 357 struct bio *bio = rq->bio; 358 359 while (bio) { 360 zero_fill_bio(bio); 361 bio = bio->bi_next; 362 } 363 } 364 ret = BLK_STS_IOERR; 365 end_io: 366 blk_mq_end_request(rq, ret); 367 } 368 } 369 370 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 371 { 372 struct request *rq = blk_mq_rq_from_pdu(cmd); 373 374 if (!atomic_dec_and_test(&cmd->ref)) 375 return; 376 kfree(cmd->bvec); 377 cmd->bvec = NULL; 378 if (likely(!blk_should_fake_timeout(rq->q))) 379 blk_mq_complete_request(rq); 380 } 381 382 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 383 { 384 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 385 386 cmd->ret = ret; 387 lo_rw_aio_do_completion(cmd); 388 } 389 390 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 391 loff_t pos, int rw) 392 { 393 struct iov_iter iter; 394 struct req_iterator rq_iter; 395 struct bio_vec *bvec; 396 struct request *rq = blk_mq_rq_from_pdu(cmd); 397 struct bio *bio = rq->bio; 398 struct file *file = lo->lo_backing_file; 399 struct bio_vec tmp; 400 unsigned int offset; 401 int nr_bvec = 0; 402 int ret; 403 404 rq_for_each_bvec(tmp, rq, rq_iter) 405 nr_bvec++; 406 407 if (rq->bio != rq->biotail) { 408 409 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 410 GFP_NOIO); 411 if (!bvec) 412 return -EIO; 413 cmd->bvec = bvec; 414 415 /* 416 * The bios of the request may be started from the middle of 417 * the 'bvec' because of bio splitting, so we can't directly 418 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 419 * API will take care of all details for us. 420 */ 421 rq_for_each_bvec(tmp, rq, rq_iter) { 422 *bvec = tmp; 423 bvec++; 424 } 425 bvec = cmd->bvec; 426 offset = 0; 427 } else { 428 /* 429 * Same here, this bio may be started from the middle of the 430 * 'bvec' because of bio splitting, so offset from the bvec 431 * must be passed to iov iterator 432 */ 433 offset = bio->bi_iter.bi_bvec_done; 434 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 435 } 436 atomic_set(&cmd->ref, 2); 437 438 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 439 iter.iov_offset = offset; 440 441 cmd->iocb.ki_pos = pos; 442 cmd->iocb.ki_filp = file; 443 cmd->iocb.ki_complete = lo_rw_aio_complete; 444 cmd->iocb.ki_flags = IOCB_DIRECT; 445 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 446 447 if (rw == ITER_SOURCE) 448 ret = file->f_op->write_iter(&cmd->iocb, &iter); 449 else 450 ret = file->f_op->read_iter(&cmd->iocb, &iter); 451 452 lo_rw_aio_do_completion(cmd); 453 454 if (ret != -EIOCBQUEUED) 455 lo_rw_aio_complete(&cmd->iocb, ret); 456 return 0; 457 } 458 459 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 460 { 461 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 462 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 463 464 /* 465 * lo_write_simple and lo_read_simple should have been covered 466 * by io submit style function like lo_rw_aio(), one blocker 467 * is that lo_read_simple() need to call flush_dcache_page after 468 * the page is written from kernel, and it isn't easy to handle 469 * this in io submit style function which submits all segments 470 * of the req at one time. And direct read IO doesn't need to 471 * run flush_dcache_page(). 472 */ 473 switch (req_op(rq)) { 474 case REQ_OP_FLUSH: 475 return lo_req_flush(lo, rq); 476 case REQ_OP_WRITE_ZEROES: 477 /* 478 * If the caller doesn't want deallocation, call zeroout to 479 * write zeroes the range. Otherwise, punch them out. 480 */ 481 return lo_fallocate(lo, rq, pos, 482 (rq->cmd_flags & REQ_NOUNMAP) ? 483 FALLOC_FL_ZERO_RANGE : 484 FALLOC_FL_PUNCH_HOLE); 485 case REQ_OP_DISCARD: 486 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 487 case REQ_OP_WRITE: 488 if (cmd->use_aio) 489 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 490 else 491 return lo_write_simple(lo, rq, pos); 492 case REQ_OP_READ: 493 if (cmd->use_aio) 494 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 495 else 496 return lo_read_simple(lo, rq, pos); 497 default: 498 WARN_ON_ONCE(1); 499 return -EIO; 500 } 501 } 502 503 static inline void loop_update_dio(struct loop_device *lo) 504 { 505 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 506 lo->use_dio); 507 } 508 509 static void loop_reread_partitions(struct loop_device *lo) 510 { 511 int rc; 512 513 mutex_lock(&lo->lo_disk->open_mutex); 514 rc = bdev_disk_changed(lo->lo_disk, false); 515 mutex_unlock(&lo->lo_disk->open_mutex); 516 if (rc) 517 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 518 __func__, lo->lo_number, lo->lo_file_name, rc); 519 } 520 521 static inline int is_loop_device(struct file *file) 522 { 523 struct inode *i = file->f_mapping->host; 524 525 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 526 } 527 528 static int loop_validate_file(struct file *file, struct block_device *bdev) 529 { 530 struct inode *inode = file->f_mapping->host; 531 struct file *f = file; 532 533 /* Avoid recursion */ 534 while (is_loop_device(f)) { 535 struct loop_device *l; 536 537 lockdep_assert_held(&loop_validate_mutex); 538 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 539 return -EBADF; 540 541 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 542 if (l->lo_state != Lo_bound) 543 return -EINVAL; 544 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 545 rmb(); 546 f = l->lo_backing_file; 547 } 548 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 549 return -EINVAL; 550 return 0; 551 } 552 553 /* 554 * loop_change_fd switched the backing store of a loopback device to 555 * a new file. This is useful for operating system installers to free up 556 * the original file and in High Availability environments to switch to 557 * an alternative location for the content in case of server meltdown. 558 * This can only work if the loop device is used read-only, and if the 559 * new backing store is the same size and type as the old backing store. 560 */ 561 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 562 unsigned int arg) 563 { 564 struct file *file = fget(arg); 565 struct file *old_file; 566 int error; 567 bool partscan; 568 bool is_loop; 569 570 if (!file) 571 return -EBADF; 572 573 /* suppress uevents while reconfiguring the device */ 574 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 575 576 is_loop = is_loop_device(file); 577 error = loop_global_lock_killable(lo, is_loop); 578 if (error) 579 goto out_putf; 580 error = -ENXIO; 581 if (lo->lo_state != Lo_bound) 582 goto out_err; 583 584 /* the loop device has to be read-only */ 585 error = -EINVAL; 586 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 587 goto out_err; 588 589 error = loop_validate_file(file, bdev); 590 if (error) 591 goto out_err; 592 593 old_file = lo->lo_backing_file; 594 595 error = -EINVAL; 596 597 /* size of the new backing store needs to be the same */ 598 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 599 goto out_err; 600 601 /* and ... switch */ 602 disk_force_media_change(lo->lo_disk); 603 blk_mq_freeze_queue(lo->lo_queue); 604 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 605 lo->lo_backing_file = file; 606 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 607 mapping_set_gfp_mask(file->f_mapping, 608 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 609 loop_update_dio(lo); 610 blk_mq_unfreeze_queue(lo->lo_queue); 611 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 612 loop_global_unlock(lo, is_loop); 613 614 /* 615 * Flush loop_validate_file() before fput(), for l->lo_backing_file 616 * might be pointing at old_file which might be the last reference. 617 */ 618 if (!is_loop) { 619 mutex_lock(&loop_validate_mutex); 620 mutex_unlock(&loop_validate_mutex); 621 } 622 /* 623 * We must drop file reference outside of lo_mutex as dropping 624 * the file ref can take open_mutex which creates circular locking 625 * dependency. 626 */ 627 fput(old_file); 628 if (partscan) 629 loop_reread_partitions(lo); 630 631 error = 0; 632 done: 633 /* enable and uncork uevent now that we are done */ 634 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 635 return error; 636 637 out_err: 638 loop_global_unlock(lo, is_loop); 639 out_putf: 640 fput(file); 641 goto done; 642 } 643 644 /* loop sysfs attributes */ 645 646 static ssize_t loop_attr_show(struct device *dev, char *page, 647 ssize_t (*callback)(struct loop_device *, char *)) 648 { 649 struct gendisk *disk = dev_to_disk(dev); 650 struct loop_device *lo = disk->private_data; 651 652 return callback(lo, page); 653 } 654 655 #define LOOP_ATTR_RO(_name) \ 656 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 657 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 658 struct device_attribute *attr, char *b) \ 659 { \ 660 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 661 } \ 662 static struct device_attribute loop_attr_##_name = \ 663 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 664 665 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 666 { 667 ssize_t ret; 668 char *p = NULL; 669 670 spin_lock_irq(&lo->lo_lock); 671 if (lo->lo_backing_file) 672 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 673 spin_unlock_irq(&lo->lo_lock); 674 675 if (IS_ERR_OR_NULL(p)) 676 ret = PTR_ERR(p); 677 else { 678 ret = strlen(p); 679 memmove(buf, p, ret); 680 buf[ret++] = '\n'; 681 buf[ret] = 0; 682 } 683 684 return ret; 685 } 686 687 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 688 { 689 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 690 } 691 692 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 693 { 694 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 695 } 696 697 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 698 { 699 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 700 701 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 702 } 703 704 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 705 { 706 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 707 708 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 709 } 710 711 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 712 { 713 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 714 715 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 716 } 717 718 LOOP_ATTR_RO(backing_file); 719 LOOP_ATTR_RO(offset); 720 LOOP_ATTR_RO(sizelimit); 721 LOOP_ATTR_RO(autoclear); 722 LOOP_ATTR_RO(partscan); 723 LOOP_ATTR_RO(dio); 724 725 static struct attribute *loop_attrs[] = { 726 &loop_attr_backing_file.attr, 727 &loop_attr_offset.attr, 728 &loop_attr_sizelimit.attr, 729 &loop_attr_autoclear.attr, 730 &loop_attr_partscan.attr, 731 &loop_attr_dio.attr, 732 NULL, 733 }; 734 735 static struct attribute_group loop_attribute_group = { 736 .name = "loop", 737 .attrs= loop_attrs, 738 }; 739 740 static void loop_sysfs_init(struct loop_device *lo) 741 { 742 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 743 &loop_attribute_group); 744 } 745 746 static void loop_sysfs_exit(struct loop_device *lo) 747 { 748 if (lo->sysfs_inited) 749 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 750 &loop_attribute_group); 751 } 752 753 static void loop_config_discard(struct loop_device *lo, 754 struct queue_limits *lim) 755 { 756 struct file *file = lo->lo_backing_file; 757 struct inode *inode = file->f_mapping->host; 758 u32 granularity = 0, max_discard_sectors = 0; 759 struct kstatfs sbuf; 760 761 /* 762 * If the backing device is a block device, mirror its zeroing 763 * capability. Set the discard sectors to the block device's zeroing 764 * capabilities because loop discards result in blkdev_issue_zeroout(), 765 * not blkdev_issue_discard(). This maintains consistent behavior with 766 * file-backed loop devices: discarded regions read back as zero. 767 */ 768 if (S_ISBLK(inode->i_mode)) { 769 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 770 771 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 772 granularity = bdev_discard_granularity(I_BDEV(inode)) ?: 773 queue_physical_block_size(backingq); 774 775 /* 776 * We use punch hole to reclaim the free space used by the 777 * image a.k.a. discard. 778 */ 779 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 780 max_discard_sectors = UINT_MAX >> 9; 781 granularity = sbuf.f_bsize; 782 } 783 784 lim->max_hw_discard_sectors = max_discard_sectors; 785 lim->max_write_zeroes_sectors = max_discard_sectors; 786 if (max_discard_sectors) 787 lim->discard_granularity = granularity; 788 else 789 lim->discard_granularity = 0; 790 } 791 792 struct loop_worker { 793 struct rb_node rb_node; 794 struct work_struct work; 795 struct list_head cmd_list; 796 struct list_head idle_list; 797 struct loop_device *lo; 798 struct cgroup_subsys_state *blkcg_css; 799 unsigned long last_ran_at; 800 }; 801 802 static void loop_workfn(struct work_struct *work); 803 804 #ifdef CONFIG_BLK_CGROUP 805 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 806 { 807 return !css || css == blkcg_root_css; 808 } 809 #else 810 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 811 { 812 return !css; 813 } 814 #endif 815 816 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 817 { 818 struct rb_node **node, *parent = NULL; 819 struct loop_worker *cur_worker, *worker = NULL; 820 struct work_struct *work; 821 struct list_head *cmd_list; 822 823 spin_lock_irq(&lo->lo_work_lock); 824 825 if (queue_on_root_worker(cmd->blkcg_css)) 826 goto queue_work; 827 828 node = &lo->worker_tree.rb_node; 829 830 while (*node) { 831 parent = *node; 832 cur_worker = container_of(*node, struct loop_worker, rb_node); 833 if (cur_worker->blkcg_css == cmd->blkcg_css) { 834 worker = cur_worker; 835 break; 836 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 837 node = &(*node)->rb_left; 838 } else { 839 node = &(*node)->rb_right; 840 } 841 } 842 if (worker) 843 goto queue_work; 844 845 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 846 /* 847 * In the event we cannot allocate a worker, just queue on the 848 * rootcg worker and issue the I/O as the rootcg 849 */ 850 if (!worker) { 851 cmd->blkcg_css = NULL; 852 if (cmd->memcg_css) 853 css_put(cmd->memcg_css); 854 cmd->memcg_css = NULL; 855 goto queue_work; 856 } 857 858 worker->blkcg_css = cmd->blkcg_css; 859 css_get(worker->blkcg_css); 860 INIT_WORK(&worker->work, loop_workfn); 861 INIT_LIST_HEAD(&worker->cmd_list); 862 INIT_LIST_HEAD(&worker->idle_list); 863 worker->lo = lo; 864 rb_link_node(&worker->rb_node, parent, node); 865 rb_insert_color(&worker->rb_node, &lo->worker_tree); 866 queue_work: 867 if (worker) { 868 /* 869 * We need to remove from the idle list here while 870 * holding the lock so that the idle timer doesn't 871 * free the worker 872 */ 873 if (!list_empty(&worker->idle_list)) 874 list_del_init(&worker->idle_list); 875 work = &worker->work; 876 cmd_list = &worker->cmd_list; 877 } else { 878 work = &lo->rootcg_work; 879 cmd_list = &lo->rootcg_cmd_list; 880 } 881 list_add_tail(&cmd->list_entry, cmd_list); 882 queue_work(lo->workqueue, work); 883 spin_unlock_irq(&lo->lo_work_lock); 884 } 885 886 static void loop_set_timer(struct loop_device *lo) 887 { 888 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 889 } 890 891 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 892 { 893 struct loop_worker *pos, *worker; 894 895 spin_lock_irq(&lo->lo_work_lock); 896 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 897 idle_list) { 898 if (!delete_all && 899 time_is_after_jiffies(worker->last_ran_at + 900 LOOP_IDLE_WORKER_TIMEOUT)) 901 break; 902 list_del(&worker->idle_list); 903 rb_erase(&worker->rb_node, &lo->worker_tree); 904 css_put(worker->blkcg_css); 905 kfree(worker); 906 } 907 if (!list_empty(&lo->idle_worker_list)) 908 loop_set_timer(lo); 909 spin_unlock_irq(&lo->lo_work_lock); 910 } 911 912 static void loop_free_idle_workers_timer(struct timer_list *timer) 913 { 914 struct loop_device *lo = container_of(timer, struct loop_device, timer); 915 916 return loop_free_idle_workers(lo, false); 917 } 918 919 /** 920 * loop_set_status_from_info - configure device from loop_info 921 * @lo: struct loop_device to configure 922 * @info: struct loop_info64 to configure the device with 923 * 924 * Configures the loop device parameters according to the passed 925 * in loop_info64 configuration. 926 */ 927 static int 928 loop_set_status_from_info(struct loop_device *lo, 929 const struct loop_info64 *info) 930 { 931 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 932 return -EINVAL; 933 934 switch (info->lo_encrypt_type) { 935 case LO_CRYPT_NONE: 936 break; 937 case LO_CRYPT_XOR: 938 pr_warn("support for the xor transformation has been removed.\n"); 939 return -EINVAL; 940 case LO_CRYPT_CRYPTOAPI: 941 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 942 return -EINVAL; 943 default: 944 return -EINVAL; 945 } 946 947 /* Avoid assigning overflow values */ 948 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 949 return -EOVERFLOW; 950 951 lo->lo_offset = info->lo_offset; 952 lo->lo_sizelimit = info->lo_sizelimit; 953 954 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 955 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 956 lo->lo_flags = info->lo_flags; 957 return 0; 958 } 959 960 static unsigned short loop_default_blocksize(struct loop_device *lo, 961 struct block_device *backing_bdev) 962 { 963 /* In case of direct I/O, match underlying block size */ 964 if ((lo->lo_backing_file->f_flags & O_DIRECT) && backing_bdev) 965 return bdev_logical_block_size(backing_bdev); 966 return SECTOR_SIZE; 967 } 968 969 static int loop_reconfigure_limits(struct loop_device *lo, unsigned short bsize) 970 { 971 struct file *file = lo->lo_backing_file; 972 struct inode *inode = file->f_mapping->host; 973 struct block_device *backing_bdev = NULL; 974 struct queue_limits lim; 975 976 if (S_ISBLK(inode->i_mode)) 977 backing_bdev = I_BDEV(inode); 978 else if (inode->i_sb->s_bdev) 979 backing_bdev = inode->i_sb->s_bdev; 980 981 if (!bsize) 982 bsize = loop_default_blocksize(lo, backing_bdev); 983 984 lim = queue_limits_start_update(lo->lo_queue); 985 lim.logical_block_size = bsize; 986 lim.physical_block_size = bsize; 987 lim.io_min = bsize; 988 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 989 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 990 lim.features |= BLK_FEAT_WRITE_CACHE; 991 if (backing_bdev && !bdev_nonrot(backing_bdev)) 992 lim.features |= BLK_FEAT_ROTATIONAL; 993 loop_config_discard(lo, &lim); 994 return queue_limits_commit_update(lo->lo_queue, &lim); 995 } 996 997 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 998 struct block_device *bdev, 999 const struct loop_config *config) 1000 { 1001 struct file *file = fget(config->fd); 1002 struct inode *inode; 1003 struct address_space *mapping; 1004 int error; 1005 loff_t size; 1006 bool partscan; 1007 bool is_loop; 1008 1009 if (!file) 1010 return -EBADF; 1011 is_loop = is_loop_device(file); 1012 1013 /* This is safe, since we have a reference from open(). */ 1014 __module_get(THIS_MODULE); 1015 1016 /* 1017 * If we don't hold exclusive handle for the device, upgrade to it 1018 * here to avoid changing device under exclusive owner. 1019 */ 1020 if (!(mode & BLK_OPEN_EXCL)) { 1021 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1022 if (error) 1023 goto out_putf; 1024 } 1025 1026 error = loop_global_lock_killable(lo, is_loop); 1027 if (error) 1028 goto out_bdev; 1029 1030 error = -EBUSY; 1031 if (lo->lo_state != Lo_unbound) 1032 goto out_unlock; 1033 1034 error = loop_validate_file(file, bdev); 1035 if (error) 1036 goto out_unlock; 1037 1038 mapping = file->f_mapping; 1039 inode = mapping->host; 1040 1041 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1042 error = -EINVAL; 1043 goto out_unlock; 1044 } 1045 1046 if (config->block_size) { 1047 error = blk_validate_block_size(config->block_size); 1048 if (error) 1049 goto out_unlock; 1050 } 1051 1052 error = loop_set_status_from_info(lo, &config->info); 1053 if (error) 1054 goto out_unlock; 1055 1056 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1057 !file->f_op->write_iter) 1058 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1059 1060 if (!lo->workqueue) { 1061 lo->workqueue = alloc_workqueue("loop%d", 1062 WQ_UNBOUND | WQ_FREEZABLE, 1063 0, lo->lo_number); 1064 if (!lo->workqueue) { 1065 error = -ENOMEM; 1066 goto out_unlock; 1067 } 1068 } 1069 1070 /* suppress uevents while reconfiguring the device */ 1071 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1072 1073 disk_force_media_change(lo->lo_disk); 1074 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1075 1076 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1077 lo->lo_device = bdev; 1078 lo->lo_backing_file = file; 1079 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1080 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1081 1082 error = loop_reconfigure_limits(lo, config->block_size); 1083 if (WARN_ON_ONCE(error)) 1084 goto out_unlock; 1085 1086 loop_update_dio(lo); 1087 loop_sysfs_init(lo); 1088 1089 size = get_loop_size(lo, file); 1090 loop_set_size(lo, size); 1091 1092 /* Order wrt reading lo_state in loop_validate_file(). */ 1093 wmb(); 1094 1095 lo->lo_state = Lo_bound; 1096 if (part_shift) 1097 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1098 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1099 if (partscan) 1100 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1101 1102 /* enable and uncork uevent now that we are done */ 1103 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1104 1105 loop_global_unlock(lo, is_loop); 1106 if (partscan) 1107 loop_reread_partitions(lo); 1108 1109 if (!(mode & BLK_OPEN_EXCL)) 1110 bd_abort_claiming(bdev, loop_configure); 1111 1112 return 0; 1113 1114 out_unlock: 1115 loop_global_unlock(lo, is_loop); 1116 out_bdev: 1117 if (!(mode & BLK_OPEN_EXCL)) 1118 bd_abort_claiming(bdev, loop_configure); 1119 out_putf: 1120 fput(file); 1121 /* This is safe: open() is still holding a reference. */ 1122 module_put(THIS_MODULE); 1123 return error; 1124 } 1125 1126 static void __loop_clr_fd(struct loop_device *lo, bool release) 1127 { 1128 struct queue_limits lim; 1129 struct file *filp; 1130 gfp_t gfp = lo->old_gfp_mask; 1131 1132 /* 1133 * Freeze the request queue when unbinding on a live file descriptor and 1134 * thus an open device. When called from ->release we are guaranteed 1135 * that there is no I/O in progress already. 1136 */ 1137 if (!release) 1138 blk_mq_freeze_queue(lo->lo_queue); 1139 1140 spin_lock_irq(&lo->lo_lock); 1141 filp = lo->lo_backing_file; 1142 lo->lo_backing_file = NULL; 1143 spin_unlock_irq(&lo->lo_lock); 1144 1145 lo->lo_device = NULL; 1146 lo->lo_offset = 0; 1147 lo->lo_sizelimit = 0; 1148 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1149 1150 /* reset the block size to the default */ 1151 lim = queue_limits_start_update(lo->lo_queue); 1152 lim.logical_block_size = SECTOR_SIZE; 1153 lim.physical_block_size = SECTOR_SIZE; 1154 lim.io_min = SECTOR_SIZE; 1155 queue_limits_commit_update(lo->lo_queue, &lim); 1156 1157 invalidate_disk(lo->lo_disk); 1158 loop_sysfs_exit(lo); 1159 /* let user-space know about this change */ 1160 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1161 mapping_set_gfp_mask(filp->f_mapping, gfp); 1162 /* This is safe: open() is still holding a reference. */ 1163 module_put(THIS_MODULE); 1164 if (!release) 1165 blk_mq_unfreeze_queue(lo->lo_queue); 1166 1167 disk_force_media_change(lo->lo_disk); 1168 1169 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1170 int err; 1171 1172 /* 1173 * open_mutex has been held already in release path, so don't 1174 * acquire it if this function is called in such case. 1175 * 1176 * If the reread partition isn't from release path, lo_refcnt 1177 * must be at least one and it can only become zero when the 1178 * current holder is released. 1179 */ 1180 if (!release) 1181 mutex_lock(&lo->lo_disk->open_mutex); 1182 err = bdev_disk_changed(lo->lo_disk, false); 1183 if (!release) 1184 mutex_unlock(&lo->lo_disk->open_mutex); 1185 if (err) 1186 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1187 __func__, lo->lo_number, err); 1188 /* Device is gone, no point in returning error */ 1189 } 1190 1191 /* 1192 * lo->lo_state is set to Lo_unbound here after above partscan has 1193 * finished. There cannot be anybody else entering __loop_clr_fd() as 1194 * Lo_rundown state protects us from all the other places trying to 1195 * change the 'lo' device. 1196 */ 1197 lo->lo_flags = 0; 1198 if (!part_shift) 1199 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1200 mutex_lock(&lo->lo_mutex); 1201 lo->lo_state = Lo_unbound; 1202 mutex_unlock(&lo->lo_mutex); 1203 1204 /* 1205 * Need not hold lo_mutex to fput backing file. Calling fput holding 1206 * lo_mutex triggers a circular lock dependency possibility warning as 1207 * fput can take open_mutex which is usually taken before lo_mutex. 1208 */ 1209 fput(filp); 1210 } 1211 1212 static int loop_clr_fd(struct loop_device *lo) 1213 { 1214 int err; 1215 1216 /* 1217 * Since lo_ioctl() is called without locks held, it is possible that 1218 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1219 * 1220 * Therefore, use global lock when setting Lo_rundown state in order to 1221 * make sure that loop_validate_file() will fail if the "struct file" 1222 * which loop_configure()/loop_change_fd() found via fget() was this 1223 * loop device. 1224 */ 1225 err = loop_global_lock_killable(lo, true); 1226 if (err) 1227 return err; 1228 if (lo->lo_state != Lo_bound) { 1229 loop_global_unlock(lo, true); 1230 return -ENXIO; 1231 } 1232 /* 1233 * If we've explicitly asked to tear down the loop device, 1234 * and it has an elevated reference count, set it for auto-teardown when 1235 * the last reference goes away. This stops $!~#$@ udev from 1236 * preventing teardown because it decided that it needs to run blkid on 1237 * the loopback device whenever they appear. xfstests is notorious for 1238 * failing tests because blkid via udev races with a losetup 1239 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1240 * command to fail with EBUSY. 1241 */ 1242 if (disk_openers(lo->lo_disk) > 1) { 1243 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1244 loop_global_unlock(lo, true); 1245 return 0; 1246 } 1247 lo->lo_state = Lo_rundown; 1248 loop_global_unlock(lo, true); 1249 1250 __loop_clr_fd(lo, false); 1251 return 0; 1252 } 1253 1254 static int 1255 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1256 { 1257 int err; 1258 int prev_lo_flags; 1259 bool partscan = false; 1260 bool size_changed = false; 1261 1262 err = mutex_lock_killable(&lo->lo_mutex); 1263 if (err) 1264 return err; 1265 if (lo->lo_state != Lo_bound) { 1266 err = -ENXIO; 1267 goto out_unlock; 1268 } 1269 1270 if (lo->lo_offset != info->lo_offset || 1271 lo->lo_sizelimit != info->lo_sizelimit) { 1272 size_changed = true; 1273 sync_blockdev(lo->lo_device); 1274 invalidate_bdev(lo->lo_device); 1275 } 1276 1277 /* I/O need to be drained during transfer transition */ 1278 blk_mq_freeze_queue(lo->lo_queue); 1279 1280 prev_lo_flags = lo->lo_flags; 1281 1282 err = loop_set_status_from_info(lo, info); 1283 if (err) 1284 goto out_unfreeze; 1285 1286 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1287 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1288 /* For those flags, use the previous values instead */ 1289 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1290 /* For flags that can't be cleared, use previous values too */ 1291 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1292 1293 if (size_changed) { 1294 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1295 lo->lo_backing_file); 1296 loop_set_size(lo, new_size); 1297 } 1298 1299 /* update dio if lo_offset or transfer is changed */ 1300 __loop_update_dio(lo, lo->use_dio); 1301 1302 out_unfreeze: 1303 blk_mq_unfreeze_queue(lo->lo_queue); 1304 1305 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1306 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1307 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1308 partscan = true; 1309 } 1310 out_unlock: 1311 mutex_unlock(&lo->lo_mutex); 1312 if (partscan) 1313 loop_reread_partitions(lo); 1314 1315 return err; 1316 } 1317 1318 static int 1319 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1320 { 1321 struct path path; 1322 struct kstat stat; 1323 int ret; 1324 1325 ret = mutex_lock_killable(&lo->lo_mutex); 1326 if (ret) 1327 return ret; 1328 if (lo->lo_state != Lo_bound) { 1329 mutex_unlock(&lo->lo_mutex); 1330 return -ENXIO; 1331 } 1332 1333 memset(info, 0, sizeof(*info)); 1334 info->lo_number = lo->lo_number; 1335 info->lo_offset = lo->lo_offset; 1336 info->lo_sizelimit = lo->lo_sizelimit; 1337 info->lo_flags = lo->lo_flags; 1338 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1339 1340 /* Drop lo_mutex while we call into the filesystem. */ 1341 path = lo->lo_backing_file->f_path; 1342 path_get(&path); 1343 mutex_unlock(&lo->lo_mutex); 1344 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1345 if (!ret) { 1346 info->lo_device = huge_encode_dev(stat.dev); 1347 info->lo_inode = stat.ino; 1348 info->lo_rdevice = huge_encode_dev(stat.rdev); 1349 } 1350 path_put(&path); 1351 return ret; 1352 } 1353 1354 static void 1355 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1356 { 1357 memset(info64, 0, sizeof(*info64)); 1358 info64->lo_number = info->lo_number; 1359 info64->lo_device = info->lo_device; 1360 info64->lo_inode = info->lo_inode; 1361 info64->lo_rdevice = info->lo_rdevice; 1362 info64->lo_offset = info->lo_offset; 1363 info64->lo_sizelimit = 0; 1364 info64->lo_flags = info->lo_flags; 1365 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1366 } 1367 1368 static int 1369 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1370 { 1371 memset(info, 0, sizeof(*info)); 1372 info->lo_number = info64->lo_number; 1373 info->lo_device = info64->lo_device; 1374 info->lo_inode = info64->lo_inode; 1375 info->lo_rdevice = info64->lo_rdevice; 1376 info->lo_offset = info64->lo_offset; 1377 info->lo_flags = info64->lo_flags; 1378 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1379 1380 /* error in case values were truncated */ 1381 if (info->lo_device != info64->lo_device || 1382 info->lo_rdevice != info64->lo_rdevice || 1383 info->lo_inode != info64->lo_inode || 1384 info->lo_offset != info64->lo_offset) 1385 return -EOVERFLOW; 1386 1387 return 0; 1388 } 1389 1390 static int 1391 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1392 { 1393 struct loop_info info; 1394 struct loop_info64 info64; 1395 1396 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1397 return -EFAULT; 1398 loop_info64_from_old(&info, &info64); 1399 return loop_set_status(lo, &info64); 1400 } 1401 1402 static int 1403 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1404 { 1405 struct loop_info64 info64; 1406 1407 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1408 return -EFAULT; 1409 return loop_set_status(lo, &info64); 1410 } 1411 1412 static int 1413 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1414 struct loop_info info; 1415 struct loop_info64 info64; 1416 int err; 1417 1418 if (!arg) 1419 return -EINVAL; 1420 err = loop_get_status(lo, &info64); 1421 if (!err) 1422 err = loop_info64_to_old(&info64, &info); 1423 if (!err && copy_to_user(arg, &info, sizeof(info))) 1424 err = -EFAULT; 1425 1426 return err; 1427 } 1428 1429 static int 1430 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1431 struct loop_info64 info64; 1432 int err; 1433 1434 if (!arg) 1435 return -EINVAL; 1436 err = loop_get_status(lo, &info64); 1437 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1438 err = -EFAULT; 1439 1440 return err; 1441 } 1442 1443 static int loop_set_capacity(struct loop_device *lo) 1444 { 1445 loff_t size; 1446 1447 if (unlikely(lo->lo_state != Lo_bound)) 1448 return -ENXIO; 1449 1450 size = get_loop_size(lo, lo->lo_backing_file); 1451 loop_set_size(lo, size); 1452 1453 return 0; 1454 } 1455 1456 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1457 { 1458 int error = -ENXIO; 1459 if (lo->lo_state != Lo_bound) 1460 goto out; 1461 1462 __loop_update_dio(lo, !!arg); 1463 if (lo->use_dio == !!arg) 1464 return 0; 1465 error = -EINVAL; 1466 out: 1467 return error; 1468 } 1469 1470 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1471 { 1472 int err = 0; 1473 1474 if (lo->lo_state != Lo_bound) 1475 return -ENXIO; 1476 1477 err = blk_validate_block_size(arg); 1478 if (err) 1479 return err; 1480 1481 if (lo->lo_queue->limits.logical_block_size == arg) 1482 return 0; 1483 1484 sync_blockdev(lo->lo_device); 1485 invalidate_bdev(lo->lo_device); 1486 1487 blk_mq_freeze_queue(lo->lo_queue); 1488 err = loop_reconfigure_limits(lo, arg); 1489 loop_update_dio(lo); 1490 blk_mq_unfreeze_queue(lo->lo_queue); 1491 1492 return err; 1493 } 1494 1495 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1496 unsigned long arg) 1497 { 1498 int err; 1499 1500 err = mutex_lock_killable(&lo->lo_mutex); 1501 if (err) 1502 return err; 1503 switch (cmd) { 1504 case LOOP_SET_CAPACITY: 1505 err = loop_set_capacity(lo); 1506 break; 1507 case LOOP_SET_DIRECT_IO: 1508 err = loop_set_dio(lo, arg); 1509 break; 1510 case LOOP_SET_BLOCK_SIZE: 1511 err = loop_set_block_size(lo, arg); 1512 break; 1513 default: 1514 err = -EINVAL; 1515 } 1516 mutex_unlock(&lo->lo_mutex); 1517 return err; 1518 } 1519 1520 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1521 unsigned int cmd, unsigned long arg) 1522 { 1523 struct loop_device *lo = bdev->bd_disk->private_data; 1524 void __user *argp = (void __user *) arg; 1525 int err; 1526 1527 switch (cmd) { 1528 case LOOP_SET_FD: { 1529 /* 1530 * Legacy case - pass in a zeroed out struct loop_config with 1531 * only the file descriptor set , which corresponds with the 1532 * default parameters we'd have used otherwise. 1533 */ 1534 struct loop_config config; 1535 1536 memset(&config, 0, sizeof(config)); 1537 config.fd = arg; 1538 1539 return loop_configure(lo, mode, bdev, &config); 1540 } 1541 case LOOP_CONFIGURE: { 1542 struct loop_config config; 1543 1544 if (copy_from_user(&config, argp, sizeof(config))) 1545 return -EFAULT; 1546 1547 return loop_configure(lo, mode, bdev, &config); 1548 } 1549 case LOOP_CHANGE_FD: 1550 return loop_change_fd(lo, bdev, arg); 1551 case LOOP_CLR_FD: 1552 return loop_clr_fd(lo); 1553 case LOOP_SET_STATUS: 1554 err = -EPERM; 1555 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1556 err = loop_set_status_old(lo, argp); 1557 break; 1558 case LOOP_GET_STATUS: 1559 return loop_get_status_old(lo, argp); 1560 case LOOP_SET_STATUS64: 1561 err = -EPERM; 1562 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1563 err = loop_set_status64(lo, argp); 1564 break; 1565 case LOOP_GET_STATUS64: 1566 return loop_get_status64(lo, argp); 1567 case LOOP_SET_CAPACITY: 1568 case LOOP_SET_DIRECT_IO: 1569 case LOOP_SET_BLOCK_SIZE: 1570 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1571 return -EPERM; 1572 fallthrough; 1573 default: 1574 err = lo_simple_ioctl(lo, cmd, arg); 1575 break; 1576 } 1577 1578 return err; 1579 } 1580 1581 #ifdef CONFIG_COMPAT 1582 struct compat_loop_info { 1583 compat_int_t lo_number; /* ioctl r/o */ 1584 compat_dev_t lo_device; /* ioctl r/o */ 1585 compat_ulong_t lo_inode; /* ioctl r/o */ 1586 compat_dev_t lo_rdevice; /* ioctl r/o */ 1587 compat_int_t lo_offset; 1588 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1589 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1590 compat_int_t lo_flags; /* ioctl r/o */ 1591 char lo_name[LO_NAME_SIZE]; 1592 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1593 compat_ulong_t lo_init[2]; 1594 char reserved[4]; 1595 }; 1596 1597 /* 1598 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1599 * - noinlined to reduce stack space usage in main part of driver 1600 */ 1601 static noinline int 1602 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1603 struct loop_info64 *info64) 1604 { 1605 struct compat_loop_info info; 1606 1607 if (copy_from_user(&info, arg, sizeof(info))) 1608 return -EFAULT; 1609 1610 memset(info64, 0, sizeof(*info64)); 1611 info64->lo_number = info.lo_number; 1612 info64->lo_device = info.lo_device; 1613 info64->lo_inode = info.lo_inode; 1614 info64->lo_rdevice = info.lo_rdevice; 1615 info64->lo_offset = info.lo_offset; 1616 info64->lo_sizelimit = 0; 1617 info64->lo_flags = info.lo_flags; 1618 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1619 return 0; 1620 } 1621 1622 /* 1623 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1624 * - noinlined to reduce stack space usage in main part of driver 1625 */ 1626 static noinline int 1627 loop_info64_to_compat(const struct loop_info64 *info64, 1628 struct compat_loop_info __user *arg) 1629 { 1630 struct compat_loop_info info; 1631 1632 memset(&info, 0, sizeof(info)); 1633 info.lo_number = info64->lo_number; 1634 info.lo_device = info64->lo_device; 1635 info.lo_inode = info64->lo_inode; 1636 info.lo_rdevice = info64->lo_rdevice; 1637 info.lo_offset = info64->lo_offset; 1638 info.lo_flags = info64->lo_flags; 1639 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1640 1641 /* error in case values were truncated */ 1642 if (info.lo_device != info64->lo_device || 1643 info.lo_rdevice != info64->lo_rdevice || 1644 info.lo_inode != info64->lo_inode || 1645 info.lo_offset != info64->lo_offset) 1646 return -EOVERFLOW; 1647 1648 if (copy_to_user(arg, &info, sizeof(info))) 1649 return -EFAULT; 1650 return 0; 1651 } 1652 1653 static int 1654 loop_set_status_compat(struct loop_device *lo, 1655 const struct compat_loop_info __user *arg) 1656 { 1657 struct loop_info64 info64; 1658 int ret; 1659 1660 ret = loop_info64_from_compat(arg, &info64); 1661 if (ret < 0) 1662 return ret; 1663 return loop_set_status(lo, &info64); 1664 } 1665 1666 static int 1667 loop_get_status_compat(struct loop_device *lo, 1668 struct compat_loop_info __user *arg) 1669 { 1670 struct loop_info64 info64; 1671 int err; 1672 1673 if (!arg) 1674 return -EINVAL; 1675 err = loop_get_status(lo, &info64); 1676 if (!err) 1677 err = loop_info64_to_compat(&info64, arg); 1678 return err; 1679 } 1680 1681 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1682 unsigned int cmd, unsigned long arg) 1683 { 1684 struct loop_device *lo = bdev->bd_disk->private_data; 1685 int err; 1686 1687 switch(cmd) { 1688 case LOOP_SET_STATUS: 1689 err = loop_set_status_compat(lo, 1690 (const struct compat_loop_info __user *)arg); 1691 break; 1692 case LOOP_GET_STATUS: 1693 err = loop_get_status_compat(lo, 1694 (struct compat_loop_info __user *)arg); 1695 break; 1696 case LOOP_SET_CAPACITY: 1697 case LOOP_CLR_FD: 1698 case LOOP_GET_STATUS64: 1699 case LOOP_SET_STATUS64: 1700 case LOOP_CONFIGURE: 1701 arg = (unsigned long) compat_ptr(arg); 1702 fallthrough; 1703 case LOOP_SET_FD: 1704 case LOOP_CHANGE_FD: 1705 case LOOP_SET_BLOCK_SIZE: 1706 case LOOP_SET_DIRECT_IO: 1707 err = lo_ioctl(bdev, mode, cmd, arg); 1708 break; 1709 default: 1710 err = -ENOIOCTLCMD; 1711 break; 1712 } 1713 return err; 1714 } 1715 #endif 1716 1717 static void lo_release(struct gendisk *disk) 1718 { 1719 struct loop_device *lo = disk->private_data; 1720 1721 if (disk_openers(disk) > 0) 1722 return; 1723 1724 mutex_lock(&lo->lo_mutex); 1725 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) { 1726 lo->lo_state = Lo_rundown; 1727 mutex_unlock(&lo->lo_mutex); 1728 /* 1729 * In autoclear mode, stop the loop thread 1730 * and remove configuration after last close. 1731 */ 1732 __loop_clr_fd(lo, true); 1733 return; 1734 } 1735 mutex_unlock(&lo->lo_mutex); 1736 } 1737 1738 static void lo_free_disk(struct gendisk *disk) 1739 { 1740 struct loop_device *lo = disk->private_data; 1741 1742 if (lo->workqueue) 1743 destroy_workqueue(lo->workqueue); 1744 loop_free_idle_workers(lo, true); 1745 timer_shutdown_sync(&lo->timer); 1746 mutex_destroy(&lo->lo_mutex); 1747 kfree(lo); 1748 } 1749 1750 static const struct block_device_operations lo_fops = { 1751 .owner = THIS_MODULE, 1752 .release = lo_release, 1753 .ioctl = lo_ioctl, 1754 #ifdef CONFIG_COMPAT 1755 .compat_ioctl = lo_compat_ioctl, 1756 #endif 1757 .free_disk = lo_free_disk, 1758 }; 1759 1760 /* 1761 * And now the modules code and kernel interface. 1762 */ 1763 1764 /* 1765 * If max_loop is specified, create that many devices upfront. 1766 * This also becomes a hard limit. If max_loop is not specified, 1767 * the default isn't a hard limit (as before commit 85c50197716c 1768 * changed the default value from 0 for max_loop=0 reasons), just 1769 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1770 * init time. Loop devices can be requested on-demand with the 1771 * /dev/loop-control interface, or be instantiated by accessing 1772 * a 'dead' device node. 1773 */ 1774 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1775 1776 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1777 static bool max_loop_specified; 1778 1779 static int max_loop_param_set_int(const char *val, 1780 const struct kernel_param *kp) 1781 { 1782 int ret; 1783 1784 ret = param_set_int(val, kp); 1785 if (ret < 0) 1786 return ret; 1787 1788 max_loop_specified = true; 1789 return 0; 1790 } 1791 1792 static const struct kernel_param_ops max_loop_param_ops = { 1793 .set = max_loop_param_set_int, 1794 .get = param_get_int, 1795 }; 1796 1797 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1798 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1799 #else 1800 module_param(max_loop, int, 0444); 1801 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1802 #endif 1803 1804 module_param(max_part, int, 0444); 1805 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1806 1807 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1808 1809 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1810 { 1811 int qd, ret; 1812 1813 ret = kstrtoint(s, 0, &qd); 1814 if (ret < 0) 1815 return ret; 1816 if (qd < 1) 1817 return -EINVAL; 1818 hw_queue_depth = qd; 1819 return 0; 1820 } 1821 1822 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1823 .set = loop_set_hw_queue_depth, 1824 .get = param_get_int, 1825 }; 1826 1827 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1828 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1829 1830 MODULE_LICENSE("GPL"); 1831 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1832 1833 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1834 const struct blk_mq_queue_data *bd) 1835 { 1836 struct request *rq = bd->rq; 1837 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1838 struct loop_device *lo = rq->q->queuedata; 1839 1840 blk_mq_start_request(rq); 1841 1842 if (lo->lo_state != Lo_bound) 1843 return BLK_STS_IOERR; 1844 1845 switch (req_op(rq)) { 1846 case REQ_OP_FLUSH: 1847 case REQ_OP_DISCARD: 1848 case REQ_OP_WRITE_ZEROES: 1849 cmd->use_aio = false; 1850 break; 1851 default: 1852 cmd->use_aio = lo->use_dio; 1853 break; 1854 } 1855 1856 /* always use the first bio's css */ 1857 cmd->blkcg_css = NULL; 1858 cmd->memcg_css = NULL; 1859 #ifdef CONFIG_BLK_CGROUP 1860 if (rq->bio) { 1861 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1862 #ifdef CONFIG_MEMCG 1863 if (cmd->blkcg_css) { 1864 cmd->memcg_css = 1865 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1866 &memory_cgrp_subsys); 1867 } 1868 #endif 1869 } 1870 #endif 1871 loop_queue_work(lo, cmd); 1872 1873 return BLK_STS_OK; 1874 } 1875 1876 static void loop_handle_cmd(struct loop_cmd *cmd) 1877 { 1878 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1879 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1880 struct request *rq = blk_mq_rq_from_pdu(cmd); 1881 const bool write = op_is_write(req_op(rq)); 1882 struct loop_device *lo = rq->q->queuedata; 1883 int ret = 0; 1884 struct mem_cgroup *old_memcg = NULL; 1885 const bool use_aio = cmd->use_aio; 1886 1887 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1888 ret = -EIO; 1889 goto failed; 1890 } 1891 1892 if (cmd_blkcg_css) 1893 kthread_associate_blkcg(cmd_blkcg_css); 1894 if (cmd_memcg_css) 1895 old_memcg = set_active_memcg( 1896 mem_cgroup_from_css(cmd_memcg_css)); 1897 1898 /* 1899 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1900 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1901 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1902 * not yet been completed. 1903 */ 1904 ret = do_req_filebacked(lo, rq); 1905 1906 if (cmd_blkcg_css) 1907 kthread_associate_blkcg(NULL); 1908 1909 if (cmd_memcg_css) { 1910 set_active_memcg(old_memcg); 1911 css_put(cmd_memcg_css); 1912 } 1913 failed: 1914 /* complete non-aio request */ 1915 if (!use_aio || ret) { 1916 if (ret == -EOPNOTSUPP) 1917 cmd->ret = ret; 1918 else 1919 cmd->ret = ret ? -EIO : 0; 1920 if (likely(!blk_should_fake_timeout(rq->q))) 1921 blk_mq_complete_request(rq); 1922 } 1923 } 1924 1925 static void loop_process_work(struct loop_worker *worker, 1926 struct list_head *cmd_list, struct loop_device *lo) 1927 { 1928 int orig_flags = current->flags; 1929 struct loop_cmd *cmd; 1930 1931 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1932 spin_lock_irq(&lo->lo_work_lock); 1933 while (!list_empty(cmd_list)) { 1934 cmd = container_of( 1935 cmd_list->next, struct loop_cmd, list_entry); 1936 list_del(cmd_list->next); 1937 spin_unlock_irq(&lo->lo_work_lock); 1938 1939 loop_handle_cmd(cmd); 1940 cond_resched(); 1941 1942 spin_lock_irq(&lo->lo_work_lock); 1943 } 1944 1945 /* 1946 * We only add to the idle list if there are no pending cmds 1947 * *and* the worker will not run again which ensures that it 1948 * is safe to free any worker on the idle list 1949 */ 1950 if (worker && !work_pending(&worker->work)) { 1951 worker->last_ran_at = jiffies; 1952 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1953 loop_set_timer(lo); 1954 } 1955 spin_unlock_irq(&lo->lo_work_lock); 1956 current->flags = orig_flags; 1957 } 1958 1959 static void loop_workfn(struct work_struct *work) 1960 { 1961 struct loop_worker *worker = 1962 container_of(work, struct loop_worker, work); 1963 loop_process_work(worker, &worker->cmd_list, worker->lo); 1964 } 1965 1966 static void loop_rootcg_workfn(struct work_struct *work) 1967 { 1968 struct loop_device *lo = 1969 container_of(work, struct loop_device, rootcg_work); 1970 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1971 } 1972 1973 static const struct blk_mq_ops loop_mq_ops = { 1974 .queue_rq = loop_queue_rq, 1975 .complete = lo_complete_rq, 1976 }; 1977 1978 static int loop_add(int i) 1979 { 1980 struct queue_limits lim = { 1981 /* 1982 * Random number picked from the historic block max_sectors cap. 1983 */ 1984 .max_hw_sectors = 2560u, 1985 }; 1986 struct loop_device *lo; 1987 struct gendisk *disk; 1988 int err; 1989 1990 err = -ENOMEM; 1991 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1992 if (!lo) 1993 goto out; 1994 lo->worker_tree = RB_ROOT; 1995 INIT_LIST_HEAD(&lo->idle_worker_list); 1996 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 1997 lo->lo_state = Lo_unbound; 1998 1999 err = mutex_lock_killable(&loop_ctl_mutex); 2000 if (err) 2001 goto out_free_dev; 2002 2003 /* allocate id, if @id >= 0, we're requesting that specific id */ 2004 if (i >= 0) { 2005 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2006 if (err == -ENOSPC) 2007 err = -EEXIST; 2008 } else { 2009 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2010 } 2011 mutex_unlock(&loop_ctl_mutex); 2012 if (err < 0) 2013 goto out_free_dev; 2014 i = err; 2015 2016 lo->tag_set.ops = &loop_mq_ops; 2017 lo->tag_set.nr_hw_queues = 1; 2018 lo->tag_set.queue_depth = hw_queue_depth; 2019 lo->tag_set.numa_node = NUMA_NO_NODE; 2020 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2021 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 2022 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2023 lo->tag_set.driver_data = lo; 2024 2025 err = blk_mq_alloc_tag_set(&lo->tag_set); 2026 if (err) 2027 goto out_free_idr; 2028 2029 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2030 if (IS_ERR(disk)) { 2031 err = PTR_ERR(disk); 2032 goto out_cleanup_tags; 2033 } 2034 lo->lo_queue = lo->lo_disk->queue; 2035 2036 /* 2037 * By default, we do buffer IO, so it doesn't make sense to enable 2038 * merge because the I/O submitted to backing file is handled page by 2039 * page. For directio mode, merge does help to dispatch bigger request 2040 * to underlayer disk. We will enable merge once directio is enabled. 2041 */ 2042 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2043 2044 /* 2045 * Disable partition scanning by default. The in-kernel partition 2046 * scanning can be requested individually per-device during its 2047 * setup. Userspace can always add and remove partitions from all 2048 * devices. The needed partition minors are allocated from the 2049 * extended minor space, the main loop device numbers will continue 2050 * to match the loop minors, regardless of the number of partitions 2051 * used. 2052 * 2053 * If max_part is given, partition scanning is globally enabled for 2054 * all loop devices. The minors for the main loop devices will be 2055 * multiples of max_part. 2056 * 2057 * Note: Global-for-all-devices, set-only-at-init, read-only module 2058 * parameteters like 'max_loop' and 'max_part' make things needlessly 2059 * complicated, are too static, inflexible and may surprise 2060 * userspace tools. Parameters like this in general should be avoided. 2061 */ 2062 if (!part_shift) 2063 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2064 mutex_init(&lo->lo_mutex); 2065 lo->lo_number = i; 2066 spin_lock_init(&lo->lo_lock); 2067 spin_lock_init(&lo->lo_work_lock); 2068 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2069 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2070 disk->major = LOOP_MAJOR; 2071 disk->first_minor = i << part_shift; 2072 disk->minors = 1 << part_shift; 2073 disk->fops = &lo_fops; 2074 disk->private_data = lo; 2075 disk->queue = lo->lo_queue; 2076 disk->events = DISK_EVENT_MEDIA_CHANGE; 2077 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2078 sprintf(disk->disk_name, "loop%d", i); 2079 /* Make this loop device reachable from pathname. */ 2080 err = add_disk(disk); 2081 if (err) 2082 goto out_cleanup_disk; 2083 2084 /* Show this loop device. */ 2085 mutex_lock(&loop_ctl_mutex); 2086 lo->idr_visible = true; 2087 mutex_unlock(&loop_ctl_mutex); 2088 2089 return i; 2090 2091 out_cleanup_disk: 2092 put_disk(disk); 2093 out_cleanup_tags: 2094 blk_mq_free_tag_set(&lo->tag_set); 2095 out_free_idr: 2096 mutex_lock(&loop_ctl_mutex); 2097 idr_remove(&loop_index_idr, i); 2098 mutex_unlock(&loop_ctl_mutex); 2099 out_free_dev: 2100 kfree(lo); 2101 out: 2102 return err; 2103 } 2104 2105 static void loop_remove(struct loop_device *lo) 2106 { 2107 /* Make this loop device unreachable from pathname. */ 2108 del_gendisk(lo->lo_disk); 2109 blk_mq_free_tag_set(&lo->tag_set); 2110 2111 mutex_lock(&loop_ctl_mutex); 2112 idr_remove(&loop_index_idr, lo->lo_number); 2113 mutex_unlock(&loop_ctl_mutex); 2114 2115 put_disk(lo->lo_disk); 2116 } 2117 2118 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2119 static void loop_probe(dev_t dev) 2120 { 2121 int idx = MINOR(dev) >> part_shift; 2122 2123 if (max_loop_specified && max_loop && idx >= max_loop) 2124 return; 2125 loop_add(idx); 2126 } 2127 #else 2128 #define loop_probe NULL 2129 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2130 2131 static int loop_control_remove(int idx) 2132 { 2133 struct loop_device *lo; 2134 int ret; 2135 2136 if (idx < 0) { 2137 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2138 return -EINVAL; 2139 } 2140 2141 /* Hide this loop device for serialization. */ 2142 ret = mutex_lock_killable(&loop_ctl_mutex); 2143 if (ret) 2144 return ret; 2145 lo = idr_find(&loop_index_idr, idx); 2146 if (!lo || !lo->idr_visible) 2147 ret = -ENODEV; 2148 else 2149 lo->idr_visible = false; 2150 mutex_unlock(&loop_ctl_mutex); 2151 if (ret) 2152 return ret; 2153 2154 /* Check whether this loop device can be removed. */ 2155 ret = mutex_lock_killable(&lo->lo_mutex); 2156 if (ret) 2157 goto mark_visible; 2158 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2159 mutex_unlock(&lo->lo_mutex); 2160 ret = -EBUSY; 2161 goto mark_visible; 2162 } 2163 /* Mark this loop device as no more bound, but not quite unbound yet */ 2164 lo->lo_state = Lo_deleting; 2165 mutex_unlock(&lo->lo_mutex); 2166 2167 loop_remove(lo); 2168 return 0; 2169 2170 mark_visible: 2171 /* Show this loop device again. */ 2172 mutex_lock(&loop_ctl_mutex); 2173 lo->idr_visible = true; 2174 mutex_unlock(&loop_ctl_mutex); 2175 return ret; 2176 } 2177 2178 static int loop_control_get_free(int idx) 2179 { 2180 struct loop_device *lo; 2181 int id, ret; 2182 2183 ret = mutex_lock_killable(&loop_ctl_mutex); 2184 if (ret) 2185 return ret; 2186 idr_for_each_entry(&loop_index_idr, lo, id) { 2187 /* Hitting a race results in creating a new loop device which is harmless. */ 2188 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2189 goto found; 2190 } 2191 mutex_unlock(&loop_ctl_mutex); 2192 return loop_add(-1); 2193 found: 2194 mutex_unlock(&loop_ctl_mutex); 2195 return id; 2196 } 2197 2198 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2199 unsigned long parm) 2200 { 2201 switch (cmd) { 2202 case LOOP_CTL_ADD: 2203 return loop_add(parm); 2204 case LOOP_CTL_REMOVE: 2205 return loop_control_remove(parm); 2206 case LOOP_CTL_GET_FREE: 2207 return loop_control_get_free(parm); 2208 default: 2209 return -ENOSYS; 2210 } 2211 } 2212 2213 static const struct file_operations loop_ctl_fops = { 2214 .open = nonseekable_open, 2215 .unlocked_ioctl = loop_control_ioctl, 2216 .compat_ioctl = loop_control_ioctl, 2217 .owner = THIS_MODULE, 2218 .llseek = noop_llseek, 2219 }; 2220 2221 static struct miscdevice loop_misc = { 2222 .minor = LOOP_CTRL_MINOR, 2223 .name = "loop-control", 2224 .fops = &loop_ctl_fops, 2225 }; 2226 2227 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2228 MODULE_ALIAS("devname:loop-control"); 2229 2230 static int __init loop_init(void) 2231 { 2232 int i; 2233 int err; 2234 2235 part_shift = 0; 2236 if (max_part > 0) { 2237 part_shift = fls(max_part); 2238 2239 /* 2240 * Adjust max_part according to part_shift as it is exported 2241 * to user space so that user can decide correct minor number 2242 * if [s]he want to create more devices. 2243 * 2244 * Note that -1 is required because partition 0 is reserved 2245 * for the whole disk. 2246 */ 2247 max_part = (1UL << part_shift) - 1; 2248 } 2249 2250 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2251 err = -EINVAL; 2252 goto err_out; 2253 } 2254 2255 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2256 err = -EINVAL; 2257 goto err_out; 2258 } 2259 2260 err = misc_register(&loop_misc); 2261 if (err < 0) 2262 goto err_out; 2263 2264 2265 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2266 err = -EIO; 2267 goto misc_out; 2268 } 2269 2270 /* pre-create number of devices given by config or max_loop */ 2271 for (i = 0; i < max_loop; i++) 2272 loop_add(i); 2273 2274 printk(KERN_INFO "loop: module loaded\n"); 2275 return 0; 2276 2277 misc_out: 2278 misc_deregister(&loop_misc); 2279 err_out: 2280 return err; 2281 } 2282 2283 static void __exit loop_exit(void) 2284 { 2285 struct loop_device *lo; 2286 int id; 2287 2288 unregister_blkdev(LOOP_MAJOR, "loop"); 2289 misc_deregister(&loop_misc); 2290 2291 /* 2292 * There is no need to use loop_ctl_mutex here, for nobody else can 2293 * access loop_index_idr when this module is unloading (unless forced 2294 * module unloading is requested). If this is not a clean unloading, 2295 * we have no means to avoid kernel crash. 2296 */ 2297 idr_for_each_entry(&loop_index_idr, lo, id) 2298 loop_remove(lo); 2299 2300 idr_destroy(&loop_index_idr); 2301 } 2302 2303 module_init(loop_init); 2304 module_exit(loop_exit); 2305 2306 #ifndef MODULE 2307 static int __init max_loop_setup(char *str) 2308 { 2309 max_loop = simple_strtol(str, NULL, 0); 2310 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2311 max_loop_specified = true; 2312 #endif 2313 return 1; 2314 } 2315 2316 __setup("max_loop=", max_loop_setup); 2317 #endif 2318