xref: /linux/drivers/block/loop.c (revision 5b026e34120766408e76ba19a0e33a9dc996f9f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 1993 by Theodore Ts'o.
4  */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39 
40 /* Possible states of device */
41 enum {
42 	Lo_unbound,
43 	Lo_bound,
44 	Lo_rundown,
45 	Lo_deleting,
46 };
47 
48 struct loop_func_table;
49 
50 struct loop_device {
51 	int		lo_number;
52 	loff_t		lo_offset;
53 	loff_t		lo_sizelimit;
54 	int		lo_flags;
55 	char		lo_file_name[LO_NAME_SIZE];
56 
57 	struct file *	lo_backing_file;
58 	struct block_device *lo_device;
59 
60 	gfp_t		old_gfp_mask;
61 
62 	spinlock_t		lo_lock;
63 	int			lo_state;
64 	spinlock_t              lo_work_lock;
65 	struct workqueue_struct *workqueue;
66 	struct work_struct      rootcg_work;
67 	struct list_head        rootcg_cmd_list;
68 	struct list_head        idle_worker_list;
69 	struct rb_root          worker_tree;
70 	struct timer_list       timer;
71 	bool			use_dio;
72 	bool			sysfs_inited;
73 
74 	struct request_queue	*lo_queue;
75 	struct blk_mq_tag_set	tag_set;
76 	struct gendisk		*lo_disk;
77 	struct mutex		lo_mutex;
78 	bool			idr_visible;
79 };
80 
81 struct loop_cmd {
82 	struct list_head list_entry;
83 	bool use_aio; /* use AIO interface to handle I/O */
84 	atomic_t ref; /* only for aio */
85 	long ret;
86 	struct kiocb iocb;
87 	struct bio_vec *bvec;
88 	struct cgroup_subsys_state *blkcg_css;
89 	struct cgroup_subsys_state *memcg_css;
90 };
91 
92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
93 #define LOOP_DEFAULT_HW_Q_DEPTH 128
94 
95 static DEFINE_IDR(loop_index_idr);
96 static DEFINE_MUTEX(loop_ctl_mutex);
97 static DEFINE_MUTEX(loop_validate_mutex);
98 
99 /**
100  * loop_global_lock_killable() - take locks for safe loop_validate_file() test
101  *
102  * @lo: struct loop_device
103  * @global: true if @lo is about to bind another "struct loop_device", false otherwise
104  *
105  * Returns 0 on success, -EINTR otherwise.
106  *
107  * Since loop_validate_file() traverses on other "struct loop_device" if
108  * is_loop_device() is true, we need a global lock for serializing concurrent
109  * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
110  */
111 static int loop_global_lock_killable(struct loop_device *lo, bool global)
112 {
113 	int err;
114 
115 	if (global) {
116 		err = mutex_lock_killable(&loop_validate_mutex);
117 		if (err)
118 			return err;
119 	}
120 	err = mutex_lock_killable(&lo->lo_mutex);
121 	if (err && global)
122 		mutex_unlock(&loop_validate_mutex);
123 	return err;
124 }
125 
126 /**
127  * loop_global_unlock() - release locks taken by loop_global_lock_killable()
128  *
129  * @lo: struct loop_device
130  * @global: true if @lo was about to bind another "struct loop_device", false otherwise
131  */
132 static void loop_global_unlock(struct loop_device *lo, bool global)
133 {
134 	mutex_unlock(&lo->lo_mutex);
135 	if (global)
136 		mutex_unlock(&loop_validate_mutex);
137 }
138 
139 static int max_part;
140 static int part_shift;
141 
142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 {
144 	loff_t loopsize;
145 
146 	/* Compute loopsize in bytes */
147 	loopsize = i_size_read(file->f_mapping->host);
148 	if (offset > 0)
149 		loopsize -= offset;
150 	/* offset is beyond i_size, weird but possible */
151 	if (loopsize < 0)
152 		return 0;
153 
154 	if (sizelimit > 0 && sizelimit < loopsize)
155 		loopsize = sizelimit;
156 	/*
157 	 * Unfortunately, if we want to do I/O on the device,
158 	 * the number of 512-byte sectors has to fit into a sector_t.
159 	 */
160 	return loopsize >> 9;
161 }
162 
163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
166 }
167 
168 /*
169  * We support direct I/O only if lo_offset is aligned with the logical I/O size
170  * of backing device, and the logical block size of loop is bigger than that of
171  * the backing device.
172  */
173 static bool lo_bdev_can_use_dio(struct loop_device *lo,
174 		struct block_device *backing_bdev)
175 {
176 	unsigned short sb_bsize = bdev_logical_block_size(backing_bdev);
177 
178 	if (queue_logical_block_size(lo->lo_queue) < sb_bsize)
179 		return false;
180 	if (lo->lo_offset & (sb_bsize - 1))
181 		return false;
182 	return true;
183 }
184 
185 static void __loop_update_dio(struct loop_device *lo, bool dio)
186 {
187 	struct file *file = lo->lo_backing_file;
188 	struct inode *inode = file->f_mapping->host;
189 	struct block_device *backing_bdev = NULL;
190 	bool use_dio;
191 
192 	if (S_ISBLK(inode->i_mode))
193 		backing_bdev = I_BDEV(inode);
194 	else if (inode->i_sb->s_bdev)
195 		backing_bdev = inode->i_sb->s_bdev;
196 
197 	use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) &&
198 		(!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev));
199 
200 	if (lo->use_dio == use_dio)
201 		return;
202 
203 	/* flush dirty pages before changing direct IO */
204 	vfs_fsync(file, 0);
205 
206 	/*
207 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
208 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
209 	 * will get updated by ioctl(LOOP_GET_STATUS)
210 	 */
211 	if (lo->lo_state == Lo_bound)
212 		blk_mq_freeze_queue(lo->lo_queue);
213 	lo->use_dio = use_dio;
214 	if (use_dio)
215 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
216 	else
217 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
218 	if (lo->lo_state == Lo_bound)
219 		blk_mq_unfreeze_queue(lo->lo_queue);
220 }
221 
222 /**
223  * loop_set_size() - sets device size and notifies userspace
224  * @lo: struct loop_device to set the size for
225  * @size: new size of the loop device
226  *
227  * Callers must validate that the size passed into this function fits into
228  * a sector_t, eg using loop_validate_size()
229  */
230 static void loop_set_size(struct loop_device *lo, loff_t size)
231 {
232 	if (!set_capacity_and_notify(lo->lo_disk, size))
233 		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
234 }
235 
236 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
237 {
238 	struct iov_iter i;
239 	ssize_t bw;
240 
241 	iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len);
242 
243 	bw = vfs_iter_write(file, &i, ppos, 0);
244 
245 	if (likely(bw ==  bvec->bv_len))
246 		return 0;
247 
248 	printk_ratelimited(KERN_ERR
249 		"loop: Write error at byte offset %llu, length %i.\n",
250 		(unsigned long long)*ppos, bvec->bv_len);
251 	if (bw >= 0)
252 		bw = -EIO;
253 	return bw;
254 }
255 
256 static int lo_write_simple(struct loop_device *lo, struct request *rq,
257 		loff_t pos)
258 {
259 	struct bio_vec bvec;
260 	struct req_iterator iter;
261 	int ret = 0;
262 
263 	rq_for_each_segment(bvec, rq, iter) {
264 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
265 		if (ret < 0)
266 			break;
267 		cond_resched();
268 	}
269 
270 	return ret;
271 }
272 
273 static int lo_read_simple(struct loop_device *lo, struct request *rq,
274 		loff_t pos)
275 {
276 	struct bio_vec bvec;
277 	struct req_iterator iter;
278 	struct iov_iter i;
279 	ssize_t len;
280 
281 	rq_for_each_segment(bvec, rq, iter) {
282 		iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len);
283 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
284 		if (len < 0)
285 			return len;
286 
287 		flush_dcache_page(bvec.bv_page);
288 
289 		if (len != bvec.bv_len) {
290 			struct bio *bio;
291 
292 			__rq_for_each_bio(bio, rq)
293 				zero_fill_bio(bio);
294 			break;
295 		}
296 		cond_resched();
297 	}
298 
299 	return 0;
300 }
301 
302 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
303 			int mode)
304 {
305 	/*
306 	 * We use fallocate to manipulate the space mappings used by the image
307 	 * a.k.a. discard/zerorange.
308 	 */
309 	struct file *file = lo->lo_backing_file;
310 	int ret;
311 
312 	mode |= FALLOC_FL_KEEP_SIZE;
313 
314 	if (!bdev_max_discard_sectors(lo->lo_device))
315 		return -EOPNOTSUPP;
316 
317 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
318 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
319 		return -EIO;
320 	return ret;
321 }
322 
323 static int lo_req_flush(struct loop_device *lo, struct request *rq)
324 {
325 	int ret = vfs_fsync(lo->lo_backing_file, 0);
326 	if (unlikely(ret && ret != -EINVAL))
327 		ret = -EIO;
328 
329 	return ret;
330 }
331 
332 static void lo_complete_rq(struct request *rq)
333 {
334 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
335 	blk_status_t ret = BLK_STS_OK;
336 
337 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
338 	    req_op(rq) != REQ_OP_READ) {
339 		if (cmd->ret < 0)
340 			ret = errno_to_blk_status(cmd->ret);
341 		goto end_io;
342 	}
343 
344 	/*
345 	 * Short READ - if we got some data, advance our request and
346 	 * retry it. If we got no data, end the rest with EIO.
347 	 */
348 	if (cmd->ret) {
349 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
350 		cmd->ret = 0;
351 		blk_mq_requeue_request(rq, true);
352 	} else {
353 		if (cmd->use_aio) {
354 			struct bio *bio = rq->bio;
355 
356 			while (bio) {
357 				zero_fill_bio(bio);
358 				bio = bio->bi_next;
359 			}
360 		}
361 		ret = BLK_STS_IOERR;
362 end_io:
363 		blk_mq_end_request(rq, ret);
364 	}
365 }
366 
367 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
368 {
369 	struct request *rq = blk_mq_rq_from_pdu(cmd);
370 
371 	if (!atomic_dec_and_test(&cmd->ref))
372 		return;
373 	kfree(cmd->bvec);
374 	cmd->bvec = NULL;
375 	if (likely(!blk_should_fake_timeout(rq->q)))
376 		blk_mq_complete_request(rq);
377 }
378 
379 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
380 {
381 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
382 
383 	cmd->ret = ret;
384 	lo_rw_aio_do_completion(cmd);
385 }
386 
387 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
388 		     loff_t pos, int rw)
389 {
390 	struct iov_iter iter;
391 	struct req_iterator rq_iter;
392 	struct bio_vec *bvec;
393 	struct request *rq = blk_mq_rq_from_pdu(cmd);
394 	struct bio *bio = rq->bio;
395 	struct file *file = lo->lo_backing_file;
396 	struct bio_vec tmp;
397 	unsigned int offset;
398 	int nr_bvec = 0;
399 	int ret;
400 
401 	rq_for_each_bvec(tmp, rq, rq_iter)
402 		nr_bvec++;
403 
404 	if (rq->bio != rq->biotail) {
405 
406 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
407 				     GFP_NOIO);
408 		if (!bvec)
409 			return -EIO;
410 		cmd->bvec = bvec;
411 
412 		/*
413 		 * The bios of the request may be started from the middle of
414 		 * the 'bvec' because of bio splitting, so we can't directly
415 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
416 		 * API will take care of all details for us.
417 		 */
418 		rq_for_each_bvec(tmp, rq, rq_iter) {
419 			*bvec = tmp;
420 			bvec++;
421 		}
422 		bvec = cmd->bvec;
423 		offset = 0;
424 	} else {
425 		/*
426 		 * Same here, this bio may be started from the middle of the
427 		 * 'bvec' because of bio splitting, so offset from the bvec
428 		 * must be passed to iov iterator
429 		 */
430 		offset = bio->bi_iter.bi_bvec_done;
431 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
432 	}
433 	atomic_set(&cmd->ref, 2);
434 
435 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
436 	iter.iov_offset = offset;
437 
438 	cmd->iocb.ki_pos = pos;
439 	cmd->iocb.ki_filp = file;
440 	cmd->iocb.ki_complete = lo_rw_aio_complete;
441 	cmd->iocb.ki_flags = IOCB_DIRECT;
442 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
443 
444 	if (rw == ITER_SOURCE)
445 		ret = file->f_op->write_iter(&cmd->iocb, &iter);
446 	else
447 		ret = file->f_op->read_iter(&cmd->iocb, &iter);
448 
449 	lo_rw_aio_do_completion(cmd);
450 
451 	if (ret != -EIOCBQUEUED)
452 		lo_rw_aio_complete(&cmd->iocb, ret);
453 	return 0;
454 }
455 
456 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
457 {
458 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
459 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
460 
461 	/*
462 	 * lo_write_simple and lo_read_simple should have been covered
463 	 * by io submit style function like lo_rw_aio(), one blocker
464 	 * is that lo_read_simple() need to call flush_dcache_page after
465 	 * the page is written from kernel, and it isn't easy to handle
466 	 * this in io submit style function which submits all segments
467 	 * of the req at one time. And direct read IO doesn't need to
468 	 * run flush_dcache_page().
469 	 */
470 	switch (req_op(rq)) {
471 	case REQ_OP_FLUSH:
472 		return lo_req_flush(lo, rq);
473 	case REQ_OP_WRITE_ZEROES:
474 		/*
475 		 * If the caller doesn't want deallocation, call zeroout to
476 		 * write zeroes the range.  Otherwise, punch them out.
477 		 */
478 		return lo_fallocate(lo, rq, pos,
479 			(rq->cmd_flags & REQ_NOUNMAP) ?
480 				FALLOC_FL_ZERO_RANGE :
481 				FALLOC_FL_PUNCH_HOLE);
482 	case REQ_OP_DISCARD:
483 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
484 	case REQ_OP_WRITE:
485 		if (cmd->use_aio)
486 			return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
487 		else
488 			return lo_write_simple(lo, rq, pos);
489 	case REQ_OP_READ:
490 		if (cmd->use_aio)
491 			return lo_rw_aio(lo, cmd, pos, ITER_DEST);
492 		else
493 			return lo_read_simple(lo, rq, pos);
494 	default:
495 		WARN_ON_ONCE(1);
496 		return -EIO;
497 	}
498 }
499 
500 static inline void loop_update_dio(struct loop_device *lo)
501 {
502 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
503 				lo->use_dio);
504 }
505 
506 static void loop_reread_partitions(struct loop_device *lo)
507 {
508 	int rc;
509 
510 	mutex_lock(&lo->lo_disk->open_mutex);
511 	rc = bdev_disk_changed(lo->lo_disk, false);
512 	mutex_unlock(&lo->lo_disk->open_mutex);
513 	if (rc)
514 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
515 			__func__, lo->lo_number, lo->lo_file_name, rc);
516 }
517 
518 static inline int is_loop_device(struct file *file)
519 {
520 	struct inode *i = file->f_mapping->host;
521 
522 	return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
523 }
524 
525 static int loop_validate_file(struct file *file, struct block_device *bdev)
526 {
527 	struct inode	*inode = file->f_mapping->host;
528 	struct file	*f = file;
529 
530 	/* Avoid recursion */
531 	while (is_loop_device(f)) {
532 		struct loop_device *l;
533 
534 		lockdep_assert_held(&loop_validate_mutex);
535 		if (f->f_mapping->host->i_rdev == bdev->bd_dev)
536 			return -EBADF;
537 
538 		l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
539 		if (l->lo_state != Lo_bound)
540 			return -EINVAL;
541 		/* Order wrt setting lo->lo_backing_file in loop_configure(). */
542 		rmb();
543 		f = l->lo_backing_file;
544 	}
545 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
546 		return -EINVAL;
547 	return 0;
548 }
549 
550 /*
551  * loop_change_fd switched the backing store of a loopback device to
552  * a new file. This is useful for operating system installers to free up
553  * the original file and in High Availability environments to switch to
554  * an alternative location for the content in case of server meltdown.
555  * This can only work if the loop device is used read-only, and if the
556  * new backing store is the same size and type as the old backing store.
557  */
558 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
559 			  unsigned int arg)
560 {
561 	struct file *file = fget(arg);
562 	struct file *old_file;
563 	int error;
564 	bool partscan;
565 	bool is_loop;
566 
567 	if (!file)
568 		return -EBADF;
569 
570 	/* suppress uevents while reconfiguring the device */
571 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
572 
573 	is_loop = is_loop_device(file);
574 	error = loop_global_lock_killable(lo, is_loop);
575 	if (error)
576 		goto out_putf;
577 	error = -ENXIO;
578 	if (lo->lo_state != Lo_bound)
579 		goto out_err;
580 
581 	/* the loop device has to be read-only */
582 	error = -EINVAL;
583 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
584 		goto out_err;
585 
586 	error = loop_validate_file(file, bdev);
587 	if (error)
588 		goto out_err;
589 
590 	old_file = lo->lo_backing_file;
591 
592 	error = -EINVAL;
593 
594 	/* size of the new backing store needs to be the same */
595 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
596 		goto out_err;
597 
598 	/* and ... switch */
599 	disk_force_media_change(lo->lo_disk);
600 	blk_mq_freeze_queue(lo->lo_queue);
601 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
602 	lo->lo_backing_file = file;
603 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
604 	mapping_set_gfp_mask(file->f_mapping,
605 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
606 	loop_update_dio(lo);
607 	blk_mq_unfreeze_queue(lo->lo_queue);
608 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
609 	loop_global_unlock(lo, is_loop);
610 
611 	/*
612 	 * Flush loop_validate_file() before fput(), for l->lo_backing_file
613 	 * might be pointing at old_file which might be the last reference.
614 	 */
615 	if (!is_loop) {
616 		mutex_lock(&loop_validate_mutex);
617 		mutex_unlock(&loop_validate_mutex);
618 	}
619 	/*
620 	 * We must drop file reference outside of lo_mutex as dropping
621 	 * the file ref can take open_mutex which creates circular locking
622 	 * dependency.
623 	 */
624 	fput(old_file);
625 	if (partscan)
626 		loop_reread_partitions(lo);
627 
628 	error = 0;
629 done:
630 	/* enable and uncork uevent now that we are done */
631 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
632 	return error;
633 
634 out_err:
635 	loop_global_unlock(lo, is_loop);
636 out_putf:
637 	fput(file);
638 	goto done;
639 }
640 
641 /* loop sysfs attributes */
642 
643 static ssize_t loop_attr_show(struct device *dev, char *page,
644 			      ssize_t (*callback)(struct loop_device *, char *))
645 {
646 	struct gendisk *disk = dev_to_disk(dev);
647 	struct loop_device *lo = disk->private_data;
648 
649 	return callback(lo, page);
650 }
651 
652 #define LOOP_ATTR_RO(_name)						\
653 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
654 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
655 				struct device_attribute *attr, char *b)	\
656 {									\
657 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
658 }									\
659 static struct device_attribute loop_attr_##_name =			\
660 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
661 
662 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
663 {
664 	ssize_t ret;
665 	char *p = NULL;
666 
667 	spin_lock_irq(&lo->lo_lock);
668 	if (lo->lo_backing_file)
669 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
670 	spin_unlock_irq(&lo->lo_lock);
671 
672 	if (IS_ERR_OR_NULL(p))
673 		ret = PTR_ERR(p);
674 	else {
675 		ret = strlen(p);
676 		memmove(buf, p, ret);
677 		buf[ret++] = '\n';
678 		buf[ret] = 0;
679 	}
680 
681 	return ret;
682 }
683 
684 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
685 {
686 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
687 }
688 
689 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
690 {
691 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
692 }
693 
694 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
695 {
696 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
697 
698 	return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
699 }
700 
701 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
702 {
703 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
704 
705 	return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
706 }
707 
708 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
709 {
710 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
711 
712 	return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
713 }
714 
715 LOOP_ATTR_RO(backing_file);
716 LOOP_ATTR_RO(offset);
717 LOOP_ATTR_RO(sizelimit);
718 LOOP_ATTR_RO(autoclear);
719 LOOP_ATTR_RO(partscan);
720 LOOP_ATTR_RO(dio);
721 
722 static struct attribute *loop_attrs[] = {
723 	&loop_attr_backing_file.attr,
724 	&loop_attr_offset.attr,
725 	&loop_attr_sizelimit.attr,
726 	&loop_attr_autoclear.attr,
727 	&loop_attr_partscan.attr,
728 	&loop_attr_dio.attr,
729 	NULL,
730 };
731 
732 static struct attribute_group loop_attribute_group = {
733 	.name = "loop",
734 	.attrs= loop_attrs,
735 };
736 
737 static void loop_sysfs_init(struct loop_device *lo)
738 {
739 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
740 						&loop_attribute_group);
741 }
742 
743 static void loop_sysfs_exit(struct loop_device *lo)
744 {
745 	if (lo->sysfs_inited)
746 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
747 				   &loop_attribute_group);
748 }
749 
750 static void loop_config_discard(struct loop_device *lo,
751 		struct queue_limits *lim)
752 {
753 	struct file *file = lo->lo_backing_file;
754 	struct inode *inode = file->f_mapping->host;
755 	u32 granularity = 0, max_discard_sectors = 0;
756 	struct kstatfs sbuf;
757 
758 	/*
759 	 * If the backing device is a block device, mirror its zeroing
760 	 * capability. Set the discard sectors to the block device's zeroing
761 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
762 	 * not blkdev_issue_discard(). This maintains consistent behavior with
763 	 * file-backed loop devices: discarded regions read back as zero.
764 	 */
765 	if (S_ISBLK(inode->i_mode)) {
766 		struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
767 
768 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
769 		granularity = bdev_discard_granularity(I_BDEV(inode)) ?:
770 			queue_physical_block_size(backingq);
771 
772 	/*
773 	 * We use punch hole to reclaim the free space used by the
774 	 * image a.k.a. discard.
775 	 */
776 	} else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
777 		max_discard_sectors = UINT_MAX >> 9;
778 		granularity = sbuf.f_bsize;
779 	}
780 
781 	lim->max_hw_discard_sectors = max_discard_sectors;
782 	lim->max_write_zeroes_sectors = max_discard_sectors;
783 	if (max_discard_sectors)
784 		lim->discard_granularity = granularity;
785 	else
786 		lim->discard_granularity = 0;
787 }
788 
789 struct loop_worker {
790 	struct rb_node rb_node;
791 	struct work_struct work;
792 	struct list_head cmd_list;
793 	struct list_head idle_list;
794 	struct loop_device *lo;
795 	struct cgroup_subsys_state *blkcg_css;
796 	unsigned long last_ran_at;
797 };
798 
799 static void loop_workfn(struct work_struct *work);
800 
801 #ifdef CONFIG_BLK_CGROUP
802 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
803 {
804 	return !css || css == blkcg_root_css;
805 }
806 #else
807 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
808 {
809 	return !css;
810 }
811 #endif
812 
813 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
814 {
815 	struct rb_node **node, *parent = NULL;
816 	struct loop_worker *cur_worker, *worker = NULL;
817 	struct work_struct *work;
818 	struct list_head *cmd_list;
819 
820 	spin_lock_irq(&lo->lo_work_lock);
821 
822 	if (queue_on_root_worker(cmd->blkcg_css))
823 		goto queue_work;
824 
825 	node = &lo->worker_tree.rb_node;
826 
827 	while (*node) {
828 		parent = *node;
829 		cur_worker = container_of(*node, struct loop_worker, rb_node);
830 		if (cur_worker->blkcg_css == cmd->blkcg_css) {
831 			worker = cur_worker;
832 			break;
833 		} else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
834 			node = &(*node)->rb_left;
835 		} else {
836 			node = &(*node)->rb_right;
837 		}
838 	}
839 	if (worker)
840 		goto queue_work;
841 
842 	worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
843 	/*
844 	 * In the event we cannot allocate a worker, just queue on the
845 	 * rootcg worker and issue the I/O as the rootcg
846 	 */
847 	if (!worker) {
848 		cmd->blkcg_css = NULL;
849 		if (cmd->memcg_css)
850 			css_put(cmd->memcg_css);
851 		cmd->memcg_css = NULL;
852 		goto queue_work;
853 	}
854 
855 	worker->blkcg_css = cmd->blkcg_css;
856 	css_get(worker->blkcg_css);
857 	INIT_WORK(&worker->work, loop_workfn);
858 	INIT_LIST_HEAD(&worker->cmd_list);
859 	INIT_LIST_HEAD(&worker->idle_list);
860 	worker->lo = lo;
861 	rb_link_node(&worker->rb_node, parent, node);
862 	rb_insert_color(&worker->rb_node, &lo->worker_tree);
863 queue_work:
864 	if (worker) {
865 		/*
866 		 * We need to remove from the idle list here while
867 		 * holding the lock so that the idle timer doesn't
868 		 * free the worker
869 		 */
870 		if (!list_empty(&worker->idle_list))
871 			list_del_init(&worker->idle_list);
872 		work = &worker->work;
873 		cmd_list = &worker->cmd_list;
874 	} else {
875 		work = &lo->rootcg_work;
876 		cmd_list = &lo->rootcg_cmd_list;
877 	}
878 	list_add_tail(&cmd->list_entry, cmd_list);
879 	queue_work(lo->workqueue, work);
880 	spin_unlock_irq(&lo->lo_work_lock);
881 }
882 
883 static void loop_set_timer(struct loop_device *lo)
884 {
885 	timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
886 }
887 
888 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
889 {
890 	struct loop_worker *pos, *worker;
891 
892 	spin_lock_irq(&lo->lo_work_lock);
893 	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
894 				idle_list) {
895 		if (!delete_all &&
896 		    time_is_after_jiffies(worker->last_ran_at +
897 					  LOOP_IDLE_WORKER_TIMEOUT))
898 			break;
899 		list_del(&worker->idle_list);
900 		rb_erase(&worker->rb_node, &lo->worker_tree);
901 		css_put(worker->blkcg_css);
902 		kfree(worker);
903 	}
904 	if (!list_empty(&lo->idle_worker_list))
905 		loop_set_timer(lo);
906 	spin_unlock_irq(&lo->lo_work_lock);
907 }
908 
909 static void loop_free_idle_workers_timer(struct timer_list *timer)
910 {
911 	struct loop_device *lo = container_of(timer, struct loop_device, timer);
912 
913 	return loop_free_idle_workers(lo, false);
914 }
915 
916 /**
917  * loop_set_status_from_info - configure device from loop_info
918  * @lo: struct loop_device to configure
919  * @info: struct loop_info64 to configure the device with
920  *
921  * Configures the loop device parameters according to the passed
922  * in loop_info64 configuration.
923  */
924 static int
925 loop_set_status_from_info(struct loop_device *lo,
926 			  const struct loop_info64 *info)
927 {
928 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
929 		return -EINVAL;
930 
931 	switch (info->lo_encrypt_type) {
932 	case LO_CRYPT_NONE:
933 		break;
934 	case LO_CRYPT_XOR:
935 		pr_warn("support for the xor transformation has been removed.\n");
936 		return -EINVAL;
937 	case LO_CRYPT_CRYPTOAPI:
938 		pr_warn("support for cryptoloop has been removed.  Use dm-crypt instead.\n");
939 		return -EINVAL;
940 	default:
941 		return -EINVAL;
942 	}
943 
944 	/* Avoid assigning overflow values */
945 	if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
946 		return -EOVERFLOW;
947 
948 	lo->lo_offset = info->lo_offset;
949 	lo->lo_sizelimit = info->lo_sizelimit;
950 
951 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
952 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
953 	lo->lo_flags = info->lo_flags;
954 	return 0;
955 }
956 
957 static unsigned short loop_default_blocksize(struct loop_device *lo,
958 		struct block_device *backing_bdev)
959 {
960 	/* In case of direct I/O, match underlying block size */
961 	if ((lo->lo_backing_file->f_flags & O_DIRECT) && backing_bdev)
962 		return bdev_logical_block_size(backing_bdev);
963 	return SECTOR_SIZE;
964 }
965 
966 static int loop_reconfigure_limits(struct loop_device *lo, unsigned short bsize)
967 {
968 	struct file *file = lo->lo_backing_file;
969 	struct inode *inode = file->f_mapping->host;
970 	struct block_device *backing_bdev = NULL;
971 	struct queue_limits lim;
972 
973 	if (S_ISBLK(inode->i_mode))
974 		backing_bdev = I_BDEV(inode);
975 	else if (inode->i_sb->s_bdev)
976 		backing_bdev = inode->i_sb->s_bdev;
977 
978 	if (!bsize)
979 		bsize = loop_default_blocksize(lo, backing_bdev);
980 
981 	lim = queue_limits_start_update(lo->lo_queue);
982 	lim.logical_block_size = bsize;
983 	lim.physical_block_size = bsize;
984 	lim.io_min = bsize;
985 	lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
986 	if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
987 		lim.features |= BLK_FEAT_WRITE_CACHE;
988 	if (backing_bdev && !bdev_nonrot(backing_bdev))
989 		lim.features |= BLK_FEAT_ROTATIONAL;
990 	loop_config_discard(lo, &lim);
991 	return queue_limits_commit_update(lo->lo_queue, &lim);
992 }
993 
994 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
995 			  struct block_device *bdev,
996 			  const struct loop_config *config)
997 {
998 	struct file *file = fget(config->fd);
999 	struct inode *inode;
1000 	struct address_space *mapping;
1001 	int error;
1002 	loff_t size;
1003 	bool partscan;
1004 	bool is_loop;
1005 
1006 	if (!file)
1007 		return -EBADF;
1008 	is_loop = is_loop_device(file);
1009 
1010 	/* This is safe, since we have a reference from open(). */
1011 	__module_get(THIS_MODULE);
1012 
1013 	/*
1014 	 * If we don't hold exclusive handle for the device, upgrade to it
1015 	 * here to avoid changing device under exclusive owner.
1016 	 */
1017 	if (!(mode & BLK_OPEN_EXCL)) {
1018 		error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1019 		if (error)
1020 			goto out_putf;
1021 	}
1022 
1023 	error = loop_global_lock_killable(lo, is_loop);
1024 	if (error)
1025 		goto out_bdev;
1026 
1027 	error = -EBUSY;
1028 	if (lo->lo_state != Lo_unbound)
1029 		goto out_unlock;
1030 
1031 	error = loop_validate_file(file, bdev);
1032 	if (error)
1033 		goto out_unlock;
1034 
1035 	mapping = file->f_mapping;
1036 	inode = mapping->host;
1037 
1038 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1039 		error = -EINVAL;
1040 		goto out_unlock;
1041 	}
1042 
1043 	if (config->block_size) {
1044 		error = blk_validate_block_size(config->block_size);
1045 		if (error)
1046 			goto out_unlock;
1047 	}
1048 
1049 	error = loop_set_status_from_info(lo, &config->info);
1050 	if (error)
1051 		goto out_unlock;
1052 
1053 	if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1054 	    !file->f_op->write_iter)
1055 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1056 
1057 	if (!lo->workqueue) {
1058 		lo->workqueue = alloc_workqueue("loop%d",
1059 						WQ_UNBOUND | WQ_FREEZABLE,
1060 						0, lo->lo_number);
1061 		if (!lo->workqueue) {
1062 			error = -ENOMEM;
1063 			goto out_unlock;
1064 		}
1065 	}
1066 
1067 	/* suppress uevents while reconfiguring the device */
1068 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1069 
1070 	disk_force_media_change(lo->lo_disk);
1071 	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1072 
1073 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1074 	lo->lo_device = bdev;
1075 	lo->lo_backing_file = file;
1076 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1077 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1078 
1079 	error = loop_reconfigure_limits(lo, config->block_size);
1080 	if (WARN_ON_ONCE(error))
1081 		goto out_unlock;
1082 
1083 	loop_update_dio(lo);
1084 	loop_sysfs_init(lo);
1085 
1086 	size = get_loop_size(lo, file);
1087 	loop_set_size(lo, size);
1088 
1089 	/* Order wrt reading lo_state in loop_validate_file(). */
1090 	wmb();
1091 
1092 	lo->lo_state = Lo_bound;
1093 	if (part_shift)
1094 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1095 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1096 	if (partscan)
1097 		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1098 
1099 	/* enable and uncork uevent now that we are done */
1100 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1101 
1102 	loop_global_unlock(lo, is_loop);
1103 	if (partscan)
1104 		loop_reread_partitions(lo);
1105 
1106 	if (!(mode & BLK_OPEN_EXCL))
1107 		bd_abort_claiming(bdev, loop_configure);
1108 
1109 	return 0;
1110 
1111 out_unlock:
1112 	loop_global_unlock(lo, is_loop);
1113 out_bdev:
1114 	if (!(mode & BLK_OPEN_EXCL))
1115 		bd_abort_claiming(bdev, loop_configure);
1116 out_putf:
1117 	fput(file);
1118 	/* This is safe: open() is still holding a reference. */
1119 	module_put(THIS_MODULE);
1120 	return error;
1121 }
1122 
1123 static void __loop_clr_fd(struct loop_device *lo)
1124 {
1125 	struct queue_limits lim;
1126 	struct file *filp;
1127 	gfp_t gfp = lo->old_gfp_mask;
1128 
1129 	spin_lock_irq(&lo->lo_lock);
1130 	filp = lo->lo_backing_file;
1131 	lo->lo_backing_file = NULL;
1132 	spin_unlock_irq(&lo->lo_lock);
1133 
1134 	lo->lo_device = NULL;
1135 	lo->lo_offset = 0;
1136 	lo->lo_sizelimit = 0;
1137 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1138 
1139 	/* reset the block size to the default */
1140 	lim = queue_limits_start_update(lo->lo_queue);
1141 	lim.logical_block_size = SECTOR_SIZE;
1142 	lim.physical_block_size = SECTOR_SIZE;
1143 	lim.io_min = SECTOR_SIZE;
1144 	queue_limits_commit_update(lo->lo_queue, &lim);
1145 
1146 	invalidate_disk(lo->lo_disk);
1147 	loop_sysfs_exit(lo);
1148 	/* let user-space know about this change */
1149 	kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1150 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1151 	/* This is safe: open() is still holding a reference. */
1152 	module_put(THIS_MODULE);
1153 
1154 	disk_force_media_change(lo->lo_disk);
1155 
1156 	if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1157 		int err;
1158 
1159 		/*
1160 		 * open_mutex has been held already in release path, so don't
1161 		 * acquire it if this function is called in such case.
1162 		 *
1163 		 * If the reread partition isn't from release path, lo_refcnt
1164 		 * must be at least one and it can only become zero when the
1165 		 * current holder is released.
1166 		 */
1167 		err = bdev_disk_changed(lo->lo_disk, false);
1168 		if (err)
1169 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1170 				__func__, lo->lo_number, err);
1171 		/* Device is gone, no point in returning error */
1172 	}
1173 
1174 	/*
1175 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1176 	 * finished. There cannot be anybody else entering __loop_clr_fd() as
1177 	 * Lo_rundown state protects us from all the other places trying to
1178 	 * change the 'lo' device.
1179 	 */
1180 	lo->lo_flags = 0;
1181 	if (!part_shift)
1182 		set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1183 	mutex_lock(&lo->lo_mutex);
1184 	lo->lo_state = Lo_unbound;
1185 	mutex_unlock(&lo->lo_mutex);
1186 
1187 	/*
1188 	 * Need not hold lo_mutex to fput backing file. Calling fput holding
1189 	 * lo_mutex triggers a circular lock dependency possibility warning as
1190 	 * fput can take open_mutex which is usually taken before lo_mutex.
1191 	 */
1192 	fput(filp);
1193 }
1194 
1195 static int loop_clr_fd(struct loop_device *lo)
1196 {
1197 	int err;
1198 
1199 	/*
1200 	 * Since lo_ioctl() is called without locks held, it is possible that
1201 	 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1202 	 *
1203 	 * Therefore, use global lock when setting Lo_rundown state in order to
1204 	 * make sure that loop_validate_file() will fail if the "struct file"
1205 	 * which loop_configure()/loop_change_fd() found via fget() was this
1206 	 * loop device.
1207 	 */
1208 	err = loop_global_lock_killable(lo, true);
1209 	if (err)
1210 		return err;
1211 	if (lo->lo_state != Lo_bound) {
1212 		loop_global_unlock(lo, true);
1213 		return -ENXIO;
1214 	}
1215 	/*
1216 	 * Mark the device for removing the backing device on last close.
1217 	 * If we are the only opener, also switch the state to roundown here to
1218 	 * prevent new openers from coming in.
1219 	 */
1220 
1221 	lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1222 	if (disk_openers(lo->lo_disk) == 1)
1223 		lo->lo_state = Lo_rundown;
1224 	loop_global_unlock(lo, true);
1225 
1226 	return 0;
1227 }
1228 
1229 static int
1230 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1231 {
1232 	int err;
1233 	int prev_lo_flags;
1234 	bool partscan = false;
1235 	bool size_changed = false;
1236 
1237 	err = mutex_lock_killable(&lo->lo_mutex);
1238 	if (err)
1239 		return err;
1240 	if (lo->lo_state != Lo_bound) {
1241 		err = -ENXIO;
1242 		goto out_unlock;
1243 	}
1244 
1245 	if (lo->lo_offset != info->lo_offset ||
1246 	    lo->lo_sizelimit != info->lo_sizelimit) {
1247 		size_changed = true;
1248 		sync_blockdev(lo->lo_device);
1249 		invalidate_bdev(lo->lo_device);
1250 	}
1251 
1252 	/* I/O need to be drained during transfer transition */
1253 	blk_mq_freeze_queue(lo->lo_queue);
1254 
1255 	prev_lo_flags = lo->lo_flags;
1256 
1257 	err = loop_set_status_from_info(lo, info);
1258 	if (err)
1259 		goto out_unfreeze;
1260 
1261 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1262 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1263 	/* For those flags, use the previous values instead */
1264 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1265 	/* For flags that can't be cleared, use previous values too */
1266 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1267 
1268 	if (size_changed) {
1269 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1270 					   lo->lo_backing_file);
1271 		loop_set_size(lo, new_size);
1272 	}
1273 
1274 	/* update dio if lo_offset or transfer is changed */
1275 	__loop_update_dio(lo, lo->use_dio);
1276 
1277 out_unfreeze:
1278 	blk_mq_unfreeze_queue(lo->lo_queue);
1279 
1280 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1281 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1282 		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1283 		partscan = true;
1284 	}
1285 out_unlock:
1286 	mutex_unlock(&lo->lo_mutex);
1287 	if (partscan)
1288 		loop_reread_partitions(lo);
1289 
1290 	return err;
1291 }
1292 
1293 static int
1294 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1295 {
1296 	struct path path;
1297 	struct kstat stat;
1298 	int ret;
1299 
1300 	ret = mutex_lock_killable(&lo->lo_mutex);
1301 	if (ret)
1302 		return ret;
1303 	if (lo->lo_state != Lo_bound) {
1304 		mutex_unlock(&lo->lo_mutex);
1305 		return -ENXIO;
1306 	}
1307 
1308 	memset(info, 0, sizeof(*info));
1309 	info->lo_number = lo->lo_number;
1310 	info->lo_offset = lo->lo_offset;
1311 	info->lo_sizelimit = lo->lo_sizelimit;
1312 	info->lo_flags = lo->lo_flags;
1313 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1314 
1315 	/* Drop lo_mutex while we call into the filesystem. */
1316 	path = lo->lo_backing_file->f_path;
1317 	path_get(&path);
1318 	mutex_unlock(&lo->lo_mutex);
1319 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1320 	if (!ret) {
1321 		info->lo_device = huge_encode_dev(stat.dev);
1322 		info->lo_inode = stat.ino;
1323 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1324 	}
1325 	path_put(&path);
1326 	return ret;
1327 }
1328 
1329 static void
1330 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1331 {
1332 	memset(info64, 0, sizeof(*info64));
1333 	info64->lo_number = info->lo_number;
1334 	info64->lo_device = info->lo_device;
1335 	info64->lo_inode = info->lo_inode;
1336 	info64->lo_rdevice = info->lo_rdevice;
1337 	info64->lo_offset = info->lo_offset;
1338 	info64->lo_sizelimit = 0;
1339 	info64->lo_flags = info->lo_flags;
1340 	memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1341 }
1342 
1343 static int
1344 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1345 {
1346 	memset(info, 0, sizeof(*info));
1347 	info->lo_number = info64->lo_number;
1348 	info->lo_device = info64->lo_device;
1349 	info->lo_inode = info64->lo_inode;
1350 	info->lo_rdevice = info64->lo_rdevice;
1351 	info->lo_offset = info64->lo_offset;
1352 	info->lo_flags = info64->lo_flags;
1353 	memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1354 
1355 	/* error in case values were truncated */
1356 	if (info->lo_device != info64->lo_device ||
1357 	    info->lo_rdevice != info64->lo_rdevice ||
1358 	    info->lo_inode != info64->lo_inode ||
1359 	    info->lo_offset != info64->lo_offset)
1360 		return -EOVERFLOW;
1361 
1362 	return 0;
1363 }
1364 
1365 static int
1366 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1367 {
1368 	struct loop_info info;
1369 	struct loop_info64 info64;
1370 
1371 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1372 		return -EFAULT;
1373 	loop_info64_from_old(&info, &info64);
1374 	return loop_set_status(lo, &info64);
1375 }
1376 
1377 static int
1378 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1379 {
1380 	struct loop_info64 info64;
1381 
1382 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1383 		return -EFAULT;
1384 	return loop_set_status(lo, &info64);
1385 }
1386 
1387 static int
1388 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1389 	struct loop_info info;
1390 	struct loop_info64 info64;
1391 	int err;
1392 
1393 	if (!arg)
1394 		return -EINVAL;
1395 	err = loop_get_status(lo, &info64);
1396 	if (!err)
1397 		err = loop_info64_to_old(&info64, &info);
1398 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1399 		err = -EFAULT;
1400 
1401 	return err;
1402 }
1403 
1404 static int
1405 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1406 	struct loop_info64 info64;
1407 	int err;
1408 
1409 	if (!arg)
1410 		return -EINVAL;
1411 	err = loop_get_status(lo, &info64);
1412 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1413 		err = -EFAULT;
1414 
1415 	return err;
1416 }
1417 
1418 static int loop_set_capacity(struct loop_device *lo)
1419 {
1420 	loff_t size;
1421 
1422 	if (unlikely(lo->lo_state != Lo_bound))
1423 		return -ENXIO;
1424 
1425 	size = get_loop_size(lo, lo->lo_backing_file);
1426 	loop_set_size(lo, size);
1427 
1428 	return 0;
1429 }
1430 
1431 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1432 {
1433 	int error = -ENXIO;
1434 	if (lo->lo_state != Lo_bound)
1435 		goto out;
1436 
1437 	__loop_update_dio(lo, !!arg);
1438 	if (lo->use_dio == !!arg)
1439 		return 0;
1440 	error = -EINVAL;
1441  out:
1442 	return error;
1443 }
1444 
1445 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1446 {
1447 	int err = 0;
1448 
1449 	if (lo->lo_state != Lo_bound)
1450 		return -ENXIO;
1451 
1452 	err = blk_validate_block_size(arg);
1453 	if (err)
1454 		return err;
1455 
1456 	if (lo->lo_queue->limits.logical_block_size == arg)
1457 		return 0;
1458 
1459 	sync_blockdev(lo->lo_device);
1460 	invalidate_bdev(lo->lo_device);
1461 
1462 	blk_mq_freeze_queue(lo->lo_queue);
1463 	err = loop_reconfigure_limits(lo, arg);
1464 	loop_update_dio(lo);
1465 	blk_mq_unfreeze_queue(lo->lo_queue);
1466 
1467 	return err;
1468 }
1469 
1470 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1471 			   unsigned long arg)
1472 {
1473 	int err;
1474 
1475 	err = mutex_lock_killable(&lo->lo_mutex);
1476 	if (err)
1477 		return err;
1478 	switch (cmd) {
1479 	case LOOP_SET_CAPACITY:
1480 		err = loop_set_capacity(lo);
1481 		break;
1482 	case LOOP_SET_DIRECT_IO:
1483 		err = loop_set_dio(lo, arg);
1484 		break;
1485 	case LOOP_SET_BLOCK_SIZE:
1486 		err = loop_set_block_size(lo, arg);
1487 		break;
1488 	default:
1489 		err = -EINVAL;
1490 	}
1491 	mutex_unlock(&lo->lo_mutex);
1492 	return err;
1493 }
1494 
1495 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1496 	unsigned int cmd, unsigned long arg)
1497 {
1498 	struct loop_device *lo = bdev->bd_disk->private_data;
1499 	void __user *argp = (void __user *) arg;
1500 	int err;
1501 
1502 	switch (cmd) {
1503 	case LOOP_SET_FD: {
1504 		/*
1505 		 * Legacy case - pass in a zeroed out struct loop_config with
1506 		 * only the file descriptor set , which corresponds with the
1507 		 * default parameters we'd have used otherwise.
1508 		 */
1509 		struct loop_config config;
1510 
1511 		memset(&config, 0, sizeof(config));
1512 		config.fd = arg;
1513 
1514 		return loop_configure(lo, mode, bdev, &config);
1515 	}
1516 	case LOOP_CONFIGURE: {
1517 		struct loop_config config;
1518 
1519 		if (copy_from_user(&config, argp, sizeof(config)))
1520 			return -EFAULT;
1521 
1522 		return loop_configure(lo, mode, bdev, &config);
1523 	}
1524 	case LOOP_CHANGE_FD:
1525 		return loop_change_fd(lo, bdev, arg);
1526 	case LOOP_CLR_FD:
1527 		return loop_clr_fd(lo);
1528 	case LOOP_SET_STATUS:
1529 		err = -EPERM;
1530 		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1531 			err = loop_set_status_old(lo, argp);
1532 		break;
1533 	case LOOP_GET_STATUS:
1534 		return loop_get_status_old(lo, argp);
1535 	case LOOP_SET_STATUS64:
1536 		err = -EPERM;
1537 		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1538 			err = loop_set_status64(lo, argp);
1539 		break;
1540 	case LOOP_GET_STATUS64:
1541 		return loop_get_status64(lo, argp);
1542 	case LOOP_SET_CAPACITY:
1543 	case LOOP_SET_DIRECT_IO:
1544 	case LOOP_SET_BLOCK_SIZE:
1545 		if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1546 			return -EPERM;
1547 		fallthrough;
1548 	default:
1549 		err = lo_simple_ioctl(lo, cmd, arg);
1550 		break;
1551 	}
1552 
1553 	return err;
1554 }
1555 
1556 #ifdef CONFIG_COMPAT
1557 struct compat_loop_info {
1558 	compat_int_t	lo_number;      /* ioctl r/o */
1559 	compat_dev_t	lo_device;      /* ioctl r/o */
1560 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1561 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1562 	compat_int_t	lo_offset;
1563 	compat_int_t	lo_encrypt_type;        /* obsolete, ignored */
1564 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1565 	compat_int_t	lo_flags;       /* ioctl r/o */
1566 	char		lo_name[LO_NAME_SIZE];
1567 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1568 	compat_ulong_t	lo_init[2];
1569 	char		reserved[4];
1570 };
1571 
1572 /*
1573  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1574  * - noinlined to reduce stack space usage in main part of driver
1575  */
1576 static noinline int
1577 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1578 			struct loop_info64 *info64)
1579 {
1580 	struct compat_loop_info info;
1581 
1582 	if (copy_from_user(&info, arg, sizeof(info)))
1583 		return -EFAULT;
1584 
1585 	memset(info64, 0, sizeof(*info64));
1586 	info64->lo_number = info.lo_number;
1587 	info64->lo_device = info.lo_device;
1588 	info64->lo_inode = info.lo_inode;
1589 	info64->lo_rdevice = info.lo_rdevice;
1590 	info64->lo_offset = info.lo_offset;
1591 	info64->lo_sizelimit = 0;
1592 	info64->lo_flags = info.lo_flags;
1593 	memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1594 	return 0;
1595 }
1596 
1597 /*
1598  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1599  * - noinlined to reduce stack space usage in main part of driver
1600  */
1601 static noinline int
1602 loop_info64_to_compat(const struct loop_info64 *info64,
1603 		      struct compat_loop_info __user *arg)
1604 {
1605 	struct compat_loop_info info;
1606 
1607 	memset(&info, 0, sizeof(info));
1608 	info.lo_number = info64->lo_number;
1609 	info.lo_device = info64->lo_device;
1610 	info.lo_inode = info64->lo_inode;
1611 	info.lo_rdevice = info64->lo_rdevice;
1612 	info.lo_offset = info64->lo_offset;
1613 	info.lo_flags = info64->lo_flags;
1614 	memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1615 
1616 	/* error in case values were truncated */
1617 	if (info.lo_device != info64->lo_device ||
1618 	    info.lo_rdevice != info64->lo_rdevice ||
1619 	    info.lo_inode != info64->lo_inode ||
1620 	    info.lo_offset != info64->lo_offset)
1621 		return -EOVERFLOW;
1622 
1623 	if (copy_to_user(arg, &info, sizeof(info)))
1624 		return -EFAULT;
1625 	return 0;
1626 }
1627 
1628 static int
1629 loop_set_status_compat(struct loop_device *lo,
1630 		       const struct compat_loop_info __user *arg)
1631 {
1632 	struct loop_info64 info64;
1633 	int ret;
1634 
1635 	ret = loop_info64_from_compat(arg, &info64);
1636 	if (ret < 0)
1637 		return ret;
1638 	return loop_set_status(lo, &info64);
1639 }
1640 
1641 static int
1642 loop_get_status_compat(struct loop_device *lo,
1643 		       struct compat_loop_info __user *arg)
1644 {
1645 	struct loop_info64 info64;
1646 	int err;
1647 
1648 	if (!arg)
1649 		return -EINVAL;
1650 	err = loop_get_status(lo, &info64);
1651 	if (!err)
1652 		err = loop_info64_to_compat(&info64, arg);
1653 	return err;
1654 }
1655 
1656 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1657 			   unsigned int cmd, unsigned long arg)
1658 {
1659 	struct loop_device *lo = bdev->bd_disk->private_data;
1660 	int err;
1661 
1662 	switch(cmd) {
1663 	case LOOP_SET_STATUS:
1664 		err = loop_set_status_compat(lo,
1665 			     (const struct compat_loop_info __user *)arg);
1666 		break;
1667 	case LOOP_GET_STATUS:
1668 		err = loop_get_status_compat(lo,
1669 				     (struct compat_loop_info __user *)arg);
1670 		break;
1671 	case LOOP_SET_CAPACITY:
1672 	case LOOP_CLR_FD:
1673 	case LOOP_GET_STATUS64:
1674 	case LOOP_SET_STATUS64:
1675 	case LOOP_CONFIGURE:
1676 		arg = (unsigned long) compat_ptr(arg);
1677 		fallthrough;
1678 	case LOOP_SET_FD:
1679 	case LOOP_CHANGE_FD:
1680 	case LOOP_SET_BLOCK_SIZE:
1681 	case LOOP_SET_DIRECT_IO:
1682 		err = lo_ioctl(bdev, mode, cmd, arg);
1683 		break;
1684 	default:
1685 		err = -ENOIOCTLCMD;
1686 		break;
1687 	}
1688 	return err;
1689 }
1690 #endif
1691 
1692 static int lo_open(struct gendisk *disk, blk_mode_t mode)
1693 {
1694 	struct loop_device *lo = disk->private_data;
1695 	int err;
1696 
1697 	err = mutex_lock_killable(&lo->lo_mutex);
1698 	if (err)
1699 		return err;
1700 
1701 	if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1702 		err = -ENXIO;
1703 	mutex_unlock(&lo->lo_mutex);
1704 	return err;
1705 }
1706 
1707 static void lo_release(struct gendisk *disk)
1708 {
1709 	struct loop_device *lo = disk->private_data;
1710 	bool need_clear = false;
1711 
1712 	if (disk_openers(disk) > 0)
1713 		return;
1714 	/*
1715 	 * Clear the backing device information if this is the last close of
1716 	 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1717 	 * has been called.
1718 	 */
1719 
1720 	mutex_lock(&lo->lo_mutex);
1721 	if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1722 		lo->lo_state = Lo_rundown;
1723 
1724 	need_clear = (lo->lo_state == Lo_rundown);
1725 	mutex_unlock(&lo->lo_mutex);
1726 
1727 	if (need_clear)
1728 		__loop_clr_fd(lo);
1729 }
1730 
1731 static void lo_free_disk(struct gendisk *disk)
1732 {
1733 	struct loop_device *lo = disk->private_data;
1734 
1735 	if (lo->workqueue)
1736 		destroy_workqueue(lo->workqueue);
1737 	loop_free_idle_workers(lo, true);
1738 	timer_shutdown_sync(&lo->timer);
1739 	mutex_destroy(&lo->lo_mutex);
1740 	kfree(lo);
1741 }
1742 
1743 static const struct block_device_operations lo_fops = {
1744 	.owner =	THIS_MODULE,
1745 	.open =         lo_open,
1746 	.release =	lo_release,
1747 	.ioctl =	lo_ioctl,
1748 #ifdef CONFIG_COMPAT
1749 	.compat_ioctl =	lo_compat_ioctl,
1750 #endif
1751 	.free_disk =	lo_free_disk,
1752 };
1753 
1754 /*
1755  * And now the modules code and kernel interface.
1756  */
1757 
1758 /*
1759  * If max_loop is specified, create that many devices upfront.
1760  * This also becomes a hard limit. If max_loop is not specified,
1761  * the default isn't a hard limit (as before commit 85c50197716c
1762  * changed the default value from 0 for max_loop=0 reasons), just
1763  * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1764  * init time. Loop devices can be requested on-demand with the
1765  * /dev/loop-control interface, or be instantiated by accessing
1766  * a 'dead' device node.
1767  */
1768 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1769 
1770 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1771 static bool max_loop_specified;
1772 
1773 static int max_loop_param_set_int(const char *val,
1774 				  const struct kernel_param *kp)
1775 {
1776 	int ret;
1777 
1778 	ret = param_set_int(val, kp);
1779 	if (ret < 0)
1780 		return ret;
1781 
1782 	max_loop_specified = true;
1783 	return 0;
1784 }
1785 
1786 static const struct kernel_param_ops max_loop_param_ops = {
1787 	.set = max_loop_param_set_int,
1788 	.get = param_get_int,
1789 };
1790 
1791 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1792 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1793 #else
1794 module_param(max_loop, int, 0444);
1795 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1796 #endif
1797 
1798 module_param(max_part, int, 0444);
1799 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1800 
1801 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1802 
1803 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1804 {
1805 	int qd, ret;
1806 
1807 	ret = kstrtoint(s, 0, &qd);
1808 	if (ret < 0)
1809 		return ret;
1810 	if (qd < 1)
1811 		return -EINVAL;
1812 	hw_queue_depth = qd;
1813 	return 0;
1814 }
1815 
1816 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1817 	.set	= loop_set_hw_queue_depth,
1818 	.get	= param_get_int,
1819 };
1820 
1821 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1822 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1823 
1824 MODULE_LICENSE("GPL");
1825 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1826 
1827 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1828 		const struct blk_mq_queue_data *bd)
1829 {
1830 	struct request *rq = bd->rq;
1831 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1832 	struct loop_device *lo = rq->q->queuedata;
1833 
1834 	blk_mq_start_request(rq);
1835 
1836 	if (lo->lo_state != Lo_bound)
1837 		return BLK_STS_IOERR;
1838 
1839 	switch (req_op(rq)) {
1840 	case REQ_OP_FLUSH:
1841 	case REQ_OP_DISCARD:
1842 	case REQ_OP_WRITE_ZEROES:
1843 		cmd->use_aio = false;
1844 		break;
1845 	default:
1846 		cmd->use_aio = lo->use_dio;
1847 		break;
1848 	}
1849 
1850 	/* always use the first bio's css */
1851 	cmd->blkcg_css = NULL;
1852 	cmd->memcg_css = NULL;
1853 #ifdef CONFIG_BLK_CGROUP
1854 	if (rq->bio) {
1855 		cmd->blkcg_css = bio_blkcg_css(rq->bio);
1856 #ifdef CONFIG_MEMCG
1857 		if (cmd->blkcg_css) {
1858 			cmd->memcg_css =
1859 				cgroup_get_e_css(cmd->blkcg_css->cgroup,
1860 						&memory_cgrp_subsys);
1861 		}
1862 #endif
1863 	}
1864 #endif
1865 	loop_queue_work(lo, cmd);
1866 
1867 	return BLK_STS_OK;
1868 }
1869 
1870 static void loop_handle_cmd(struct loop_cmd *cmd)
1871 {
1872 	struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1873 	struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1874 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1875 	const bool write = op_is_write(req_op(rq));
1876 	struct loop_device *lo = rq->q->queuedata;
1877 	int ret = 0;
1878 	struct mem_cgroup *old_memcg = NULL;
1879 	const bool use_aio = cmd->use_aio;
1880 
1881 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1882 		ret = -EIO;
1883 		goto failed;
1884 	}
1885 
1886 	if (cmd_blkcg_css)
1887 		kthread_associate_blkcg(cmd_blkcg_css);
1888 	if (cmd_memcg_css)
1889 		old_memcg = set_active_memcg(
1890 			mem_cgroup_from_css(cmd_memcg_css));
1891 
1892 	/*
1893 	 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1894 	 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1895 	 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1896 	 * not yet been completed.
1897 	 */
1898 	ret = do_req_filebacked(lo, rq);
1899 
1900 	if (cmd_blkcg_css)
1901 		kthread_associate_blkcg(NULL);
1902 
1903 	if (cmd_memcg_css) {
1904 		set_active_memcg(old_memcg);
1905 		css_put(cmd_memcg_css);
1906 	}
1907  failed:
1908 	/* complete non-aio request */
1909 	if (!use_aio || ret) {
1910 		if (ret == -EOPNOTSUPP)
1911 			cmd->ret = ret;
1912 		else
1913 			cmd->ret = ret ? -EIO : 0;
1914 		if (likely(!blk_should_fake_timeout(rq->q)))
1915 			blk_mq_complete_request(rq);
1916 	}
1917 }
1918 
1919 static void loop_process_work(struct loop_worker *worker,
1920 			struct list_head *cmd_list, struct loop_device *lo)
1921 {
1922 	int orig_flags = current->flags;
1923 	struct loop_cmd *cmd;
1924 
1925 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1926 	spin_lock_irq(&lo->lo_work_lock);
1927 	while (!list_empty(cmd_list)) {
1928 		cmd = container_of(
1929 			cmd_list->next, struct loop_cmd, list_entry);
1930 		list_del(cmd_list->next);
1931 		spin_unlock_irq(&lo->lo_work_lock);
1932 
1933 		loop_handle_cmd(cmd);
1934 		cond_resched();
1935 
1936 		spin_lock_irq(&lo->lo_work_lock);
1937 	}
1938 
1939 	/*
1940 	 * We only add to the idle list if there are no pending cmds
1941 	 * *and* the worker will not run again which ensures that it
1942 	 * is safe to free any worker on the idle list
1943 	 */
1944 	if (worker && !work_pending(&worker->work)) {
1945 		worker->last_ran_at = jiffies;
1946 		list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1947 		loop_set_timer(lo);
1948 	}
1949 	spin_unlock_irq(&lo->lo_work_lock);
1950 	current->flags = orig_flags;
1951 }
1952 
1953 static void loop_workfn(struct work_struct *work)
1954 {
1955 	struct loop_worker *worker =
1956 		container_of(work, struct loop_worker, work);
1957 	loop_process_work(worker, &worker->cmd_list, worker->lo);
1958 }
1959 
1960 static void loop_rootcg_workfn(struct work_struct *work)
1961 {
1962 	struct loop_device *lo =
1963 		container_of(work, struct loop_device, rootcg_work);
1964 	loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1965 }
1966 
1967 static const struct blk_mq_ops loop_mq_ops = {
1968 	.queue_rq       = loop_queue_rq,
1969 	.complete	= lo_complete_rq,
1970 };
1971 
1972 static int loop_add(int i)
1973 {
1974 	struct queue_limits lim = {
1975 		/*
1976 		 * Random number picked from the historic block max_sectors cap.
1977 		 */
1978 		.max_hw_sectors		= 2560u,
1979 	};
1980 	struct loop_device *lo;
1981 	struct gendisk *disk;
1982 	int err;
1983 
1984 	err = -ENOMEM;
1985 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1986 	if (!lo)
1987 		goto out;
1988 	lo->worker_tree = RB_ROOT;
1989 	INIT_LIST_HEAD(&lo->idle_worker_list);
1990 	timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
1991 	lo->lo_state = Lo_unbound;
1992 
1993 	err = mutex_lock_killable(&loop_ctl_mutex);
1994 	if (err)
1995 		goto out_free_dev;
1996 
1997 	/* allocate id, if @id >= 0, we're requesting that specific id */
1998 	if (i >= 0) {
1999 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2000 		if (err == -ENOSPC)
2001 			err = -EEXIST;
2002 	} else {
2003 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2004 	}
2005 	mutex_unlock(&loop_ctl_mutex);
2006 	if (err < 0)
2007 		goto out_free_dev;
2008 	i = err;
2009 
2010 	lo->tag_set.ops = &loop_mq_ops;
2011 	lo->tag_set.nr_hw_queues = 1;
2012 	lo->tag_set.queue_depth = hw_queue_depth;
2013 	lo->tag_set.numa_node = NUMA_NO_NODE;
2014 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2015 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2016 		BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2017 	lo->tag_set.driver_data = lo;
2018 
2019 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2020 	if (err)
2021 		goto out_free_idr;
2022 
2023 	disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2024 	if (IS_ERR(disk)) {
2025 		err = PTR_ERR(disk);
2026 		goto out_cleanup_tags;
2027 	}
2028 	lo->lo_queue = lo->lo_disk->queue;
2029 
2030 	/*
2031 	 * Disable partition scanning by default. The in-kernel partition
2032 	 * scanning can be requested individually per-device during its
2033 	 * setup. Userspace can always add and remove partitions from all
2034 	 * devices. The needed partition minors are allocated from the
2035 	 * extended minor space, the main loop device numbers will continue
2036 	 * to match the loop minors, regardless of the number of partitions
2037 	 * used.
2038 	 *
2039 	 * If max_part is given, partition scanning is globally enabled for
2040 	 * all loop devices. The minors for the main loop devices will be
2041 	 * multiples of max_part.
2042 	 *
2043 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2044 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2045 	 * complicated, are too static, inflexible and may surprise
2046 	 * userspace tools. Parameters like this in general should be avoided.
2047 	 */
2048 	if (!part_shift)
2049 		set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2050 	mutex_init(&lo->lo_mutex);
2051 	lo->lo_number		= i;
2052 	spin_lock_init(&lo->lo_lock);
2053 	spin_lock_init(&lo->lo_work_lock);
2054 	INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2055 	INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2056 	disk->major		= LOOP_MAJOR;
2057 	disk->first_minor	= i << part_shift;
2058 	disk->minors		= 1 << part_shift;
2059 	disk->fops		= &lo_fops;
2060 	disk->private_data	= lo;
2061 	disk->queue		= lo->lo_queue;
2062 	disk->events		= DISK_EVENT_MEDIA_CHANGE;
2063 	disk->event_flags	= DISK_EVENT_FLAG_UEVENT;
2064 	sprintf(disk->disk_name, "loop%d", i);
2065 	/* Make this loop device reachable from pathname. */
2066 	err = add_disk(disk);
2067 	if (err)
2068 		goto out_cleanup_disk;
2069 
2070 	/* Show this loop device. */
2071 	mutex_lock(&loop_ctl_mutex);
2072 	lo->idr_visible = true;
2073 	mutex_unlock(&loop_ctl_mutex);
2074 
2075 	return i;
2076 
2077 out_cleanup_disk:
2078 	put_disk(disk);
2079 out_cleanup_tags:
2080 	blk_mq_free_tag_set(&lo->tag_set);
2081 out_free_idr:
2082 	mutex_lock(&loop_ctl_mutex);
2083 	idr_remove(&loop_index_idr, i);
2084 	mutex_unlock(&loop_ctl_mutex);
2085 out_free_dev:
2086 	kfree(lo);
2087 out:
2088 	return err;
2089 }
2090 
2091 static void loop_remove(struct loop_device *lo)
2092 {
2093 	/* Make this loop device unreachable from pathname. */
2094 	del_gendisk(lo->lo_disk);
2095 	blk_mq_free_tag_set(&lo->tag_set);
2096 
2097 	mutex_lock(&loop_ctl_mutex);
2098 	idr_remove(&loop_index_idr, lo->lo_number);
2099 	mutex_unlock(&loop_ctl_mutex);
2100 
2101 	put_disk(lo->lo_disk);
2102 }
2103 
2104 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2105 static void loop_probe(dev_t dev)
2106 {
2107 	int idx = MINOR(dev) >> part_shift;
2108 
2109 	if (max_loop_specified && max_loop && idx >= max_loop)
2110 		return;
2111 	loop_add(idx);
2112 }
2113 #else
2114 #define loop_probe NULL
2115 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2116 
2117 static int loop_control_remove(int idx)
2118 {
2119 	struct loop_device *lo;
2120 	int ret;
2121 
2122 	if (idx < 0) {
2123 		pr_warn_once("deleting an unspecified loop device is not supported.\n");
2124 		return -EINVAL;
2125 	}
2126 
2127 	/* Hide this loop device for serialization. */
2128 	ret = mutex_lock_killable(&loop_ctl_mutex);
2129 	if (ret)
2130 		return ret;
2131 	lo = idr_find(&loop_index_idr, idx);
2132 	if (!lo || !lo->idr_visible)
2133 		ret = -ENODEV;
2134 	else
2135 		lo->idr_visible = false;
2136 	mutex_unlock(&loop_ctl_mutex);
2137 	if (ret)
2138 		return ret;
2139 
2140 	/* Check whether this loop device can be removed. */
2141 	ret = mutex_lock_killable(&lo->lo_mutex);
2142 	if (ret)
2143 		goto mark_visible;
2144 	if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2145 		mutex_unlock(&lo->lo_mutex);
2146 		ret = -EBUSY;
2147 		goto mark_visible;
2148 	}
2149 	/* Mark this loop device as no more bound, but not quite unbound yet */
2150 	lo->lo_state = Lo_deleting;
2151 	mutex_unlock(&lo->lo_mutex);
2152 
2153 	loop_remove(lo);
2154 	return 0;
2155 
2156 mark_visible:
2157 	/* Show this loop device again. */
2158 	mutex_lock(&loop_ctl_mutex);
2159 	lo->idr_visible = true;
2160 	mutex_unlock(&loop_ctl_mutex);
2161 	return ret;
2162 }
2163 
2164 static int loop_control_get_free(int idx)
2165 {
2166 	struct loop_device *lo;
2167 	int id, ret;
2168 
2169 	ret = mutex_lock_killable(&loop_ctl_mutex);
2170 	if (ret)
2171 		return ret;
2172 	idr_for_each_entry(&loop_index_idr, lo, id) {
2173 		/* Hitting a race results in creating a new loop device which is harmless. */
2174 		if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2175 			goto found;
2176 	}
2177 	mutex_unlock(&loop_ctl_mutex);
2178 	return loop_add(-1);
2179 found:
2180 	mutex_unlock(&loop_ctl_mutex);
2181 	return id;
2182 }
2183 
2184 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2185 			       unsigned long parm)
2186 {
2187 	switch (cmd) {
2188 	case LOOP_CTL_ADD:
2189 		return loop_add(parm);
2190 	case LOOP_CTL_REMOVE:
2191 		return loop_control_remove(parm);
2192 	case LOOP_CTL_GET_FREE:
2193 		return loop_control_get_free(parm);
2194 	default:
2195 		return -ENOSYS;
2196 	}
2197 }
2198 
2199 static const struct file_operations loop_ctl_fops = {
2200 	.open		= nonseekable_open,
2201 	.unlocked_ioctl	= loop_control_ioctl,
2202 	.compat_ioctl	= loop_control_ioctl,
2203 	.owner		= THIS_MODULE,
2204 	.llseek		= noop_llseek,
2205 };
2206 
2207 static struct miscdevice loop_misc = {
2208 	.minor		= LOOP_CTRL_MINOR,
2209 	.name		= "loop-control",
2210 	.fops		= &loop_ctl_fops,
2211 };
2212 
2213 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2214 MODULE_ALIAS("devname:loop-control");
2215 
2216 static int __init loop_init(void)
2217 {
2218 	int i;
2219 	int err;
2220 
2221 	part_shift = 0;
2222 	if (max_part > 0) {
2223 		part_shift = fls(max_part);
2224 
2225 		/*
2226 		 * Adjust max_part according to part_shift as it is exported
2227 		 * to user space so that user can decide correct minor number
2228 		 * if [s]he want to create more devices.
2229 		 *
2230 		 * Note that -1 is required because partition 0 is reserved
2231 		 * for the whole disk.
2232 		 */
2233 		max_part = (1UL << part_shift) - 1;
2234 	}
2235 
2236 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2237 		err = -EINVAL;
2238 		goto err_out;
2239 	}
2240 
2241 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2242 		err = -EINVAL;
2243 		goto err_out;
2244 	}
2245 
2246 	err = misc_register(&loop_misc);
2247 	if (err < 0)
2248 		goto err_out;
2249 
2250 
2251 	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2252 		err = -EIO;
2253 		goto misc_out;
2254 	}
2255 
2256 	/* pre-create number of devices given by config or max_loop */
2257 	for (i = 0; i < max_loop; i++)
2258 		loop_add(i);
2259 
2260 	printk(KERN_INFO "loop: module loaded\n");
2261 	return 0;
2262 
2263 misc_out:
2264 	misc_deregister(&loop_misc);
2265 err_out:
2266 	return err;
2267 }
2268 
2269 static void __exit loop_exit(void)
2270 {
2271 	struct loop_device *lo;
2272 	int id;
2273 
2274 	unregister_blkdev(LOOP_MAJOR, "loop");
2275 	misc_deregister(&loop_misc);
2276 
2277 	/*
2278 	 * There is no need to use loop_ctl_mutex here, for nobody else can
2279 	 * access loop_index_idr when this module is unloading (unless forced
2280 	 * module unloading is requested). If this is not a clean unloading,
2281 	 * we have no means to avoid kernel crash.
2282 	 */
2283 	idr_for_each_entry(&loop_index_idr, lo, id)
2284 		loop_remove(lo);
2285 
2286 	idr_destroy(&loop_index_idr);
2287 }
2288 
2289 module_init(loop_init);
2290 module_exit(loop_exit);
2291 
2292 #ifndef MODULE
2293 static int __init max_loop_setup(char *str)
2294 {
2295 	max_loop = simple_strtol(str, NULL, 0);
2296 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2297 	max_loop_specified = true;
2298 #endif
2299 	return 1;
2300 }
2301 
2302 __setup("max_loop=", max_loop_setup);
2303 #endif
2304