1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_func_table; 49 50 struct loop_device { 51 int lo_number; 52 loff_t lo_offset; 53 loff_t lo_sizelimit; 54 int lo_flags; 55 char lo_file_name[LO_NAME_SIZE]; 56 57 struct file * lo_backing_file; 58 struct block_device *lo_device; 59 60 gfp_t old_gfp_mask; 61 62 spinlock_t lo_lock; 63 int lo_state; 64 spinlock_t lo_work_lock; 65 struct workqueue_struct *workqueue; 66 struct work_struct rootcg_work; 67 struct list_head rootcg_cmd_list; 68 struct list_head idle_worker_list; 69 struct rb_root worker_tree; 70 struct timer_list timer; 71 bool use_dio; 72 bool sysfs_inited; 73 74 struct request_queue *lo_queue; 75 struct blk_mq_tag_set tag_set; 76 struct gendisk *lo_disk; 77 struct mutex lo_mutex; 78 bool idr_visible; 79 }; 80 81 struct loop_cmd { 82 struct list_head list_entry; 83 bool use_aio; /* use AIO interface to handle I/O */ 84 atomic_t ref; /* only for aio */ 85 long ret; 86 struct kiocb iocb; 87 struct bio_vec *bvec; 88 struct cgroup_subsys_state *blkcg_css; 89 struct cgroup_subsys_state *memcg_css; 90 }; 91 92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 93 #define LOOP_DEFAULT_HW_Q_DEPTH 128 94 95 static DEFINE_IDR(loop_index_idr); 96 static DEFINE_MUTEX(loop_ctl_mutex); 97 static DEFINE_MUTEX(loop_validate_mutex); 98 99 /** 100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 101 * 102 * @lo: struct loop_device 103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 104 * 105 * Returns 0 on success, -EINTR otherwise. 106 * 107 * Since loop_validate_file() traverses on other "struct loop_device" if 108 * is_loop_device() is true, we need a global lock for serializing concurrent 109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 110 */ 111 static int loop_global_lock_killable(struct loop_device *lo, bool global) 112 { 113 int err; 114 115 if (global) { 116 err = mutex_lock_killable(&loop_validate_mutex); 117 if (err) 118 return err; 119 } 120 err = mutex_lock_killable(&lo->lo_mutex); 121 if (err && global) 122 mutex_unlock(&loop_validate_mutex); 123 return err; 124 } 125 126 /** 127 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 128 * 129 * @lo: struct loop_device 130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 131 */ 132 static void loop_global_unlock(struct loop_device *lo, bool global) 133 { 134 mutex_unlock(&lo->lo_mutex); 135 if (global) 136 mutex_unlock(&loop_validate_mutex); 137 } 138 139 static int max_part; 140 static int part_shift; 141 142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 143 { 144 loff_t loopsize; 145 146 /* Compute loopsize in bytes */ 147 loopsize = i_size_read(file->f_mapping->host); 148 if (offset > 0) 149 loopsize -= offset; 150 /* offset is beyond i_size, weird but possible */ 151 if (loopsize < 0) 152 return 0; 153 154 if (sizelimit > 0 && sizelimit < loopsize) 155 loopsize = sizelimit; 156 /* 157 * Unfortunately, if we want to do I/O on the device, 158 * the number of 512-byte sectors has to fit into a sector_t. 159 */ 160 return loopsize >> 9; 161 } 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 166 } 167 168 /* 169 * We support direct I/O only if lo_offset is aligned with the logical I/O size 170 * of backing device, and the logical block size of loop is bigger than that of 171 * the backing device. 172 */ 173 static bool lo_bdev_can_use_dio(struct loop_device *lo, 174 struct block_device *backing_bdev) 175 { 176 unsigned short sb_bsize = bdev_logical_block_size(backing_bdev); 177 178 if (queue_logical_block_size(lo->lo_queue) < sb_bsize) 179 return false; 180 if (lo->lo_offset & (sb_bsize - 1)) 181 return false; 182 return true; 183 } 184 185 static void __loop_update_dio(struct loop_device *lo, bool dio) 186 { 187 struct file *file = lo->lo_backing_file; 188 struct inode *inode = file->f_mapping->host; 189 struct block_device *backing_bdev = NULL; 190 bool use_dio; 191 192 if (S_ISBLK(inode->i_mode)) 193 backing_bdev = I_BDEV(inode); 194 else if (inode->i_sb->s_bdev) 195 backing_bdev = inode->i_sb->s_bdev; 196 197 use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) && 198 (!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev)); 199 200 if (lo->use_dio == use_dio) 201 return; 202 203 /* flush dirty pages before changing direct IO */ 204 vfs_fsync(file, 0); 205 206 /* 207 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 208 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 209 * will get updated by ioctl(LOOP_GET_STATUS) 210 */ 211 if (lo->lo_state == Lo_bound) 212 blk_mq_freeze_queue(lo->lo_queue); 213 lo->use_dio = use_dio; 214 if (use_dio) 215 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 216 else 217 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 218 if (lo->lo_state == Lo_bound) 219 blk_mq_unfreeze_queue(lo->lo_queue); 220 } 221 222 /** 223 * loop_set_size() - sets device size and notifies userspace 224 * @lo: struct loop_device to set the size for 225 * @size: new size of the loop device 226 * 227 * Callers must validate that the size passed into this function fits into 228 * a sector_t, eg using loop_validate_size() 229 */ 230 static void loop_set_size(struct loop_device *lo, loff_t size) 231 { 232 if (!set_capacity_and_notify(lo->lo_disk, size)) 233 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 234 } 235 236 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 237 { 238 struct iov_iter i; 239 ssize_t bw; 240 241 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len); 242 243 bw = vfs_iter_write(file, &i, ppos, 0); 244 245 if (likely(bw == bvec->bv_len)) 246 return 0; 247 248 printk_ratelimited(KERN_ERR 249 "loop: Write error at byte offset %llu, length %i.\n", 250 (unsigned long long)*ppos, bvec->bv_len); 251 if (bw >= 0) 252 bw = -EIO; 253 return bw; 254 } 255 256 static int lo_write_simple(struct loop_device *lo, struct request *rq, 257 loff_t pos) 258 { 259 struct bio_vec bvec; 260 struct req_iterator iter; 261 int ret = 0; 262 263 rq_for_each_segment(bvec, rq, iter) { 264 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 265 if (ret < 0) 266 break; 267 cond_resched(); 268 } 269 270 return ret; 271 } 272 273 static int lo_read_simple(struct loop_device *lo, struct request *rq, 274 loff_t pos) 275 { 276 struct bio_vec bvec; 277 struct req_iterator iter; 278 struct iov_iter i; 279 ssize_t len; 280 281 rq_for_each_segment(bvec, rq, iter) { 282 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len); 283 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 284 if (len < 0) 285 return len; 286 287 flush_dcache_page(bvec.bv_page); 288 289 if (len != bvec.bv_len) { 290 struct bio *bio; 291 292 __rq_for_each_bio(bio, rq) 293 zero_fill_bio(bio); 294 break; 295 } 296 cond_resched(); 297 } 298 299 return 0; 300 } 301 302 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 303 int mode) 304 { 305 /* 306 * We use fallocate to manipulate the space mappings used by the image 307 * a.k.a. discard/zerorange. 308 */ 309 struct file *file = lo->lo_backing_file; 310 int ret; 311 312 mode |= FALLOC_FL_KEEP_SIZE; 313 314 if (!bdev_max_discard_sectors(lo->lo_device)) 315 return -EOPNOTSUPP; 316 317 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 318 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 319 return -EIO; 320 return ret; 321 } 322 323 static int lo_req_flush(struct loop_device *lo, struct request *rq) 324 { 325 int ret = vfs_fsync(lo->lo_backing_file, 0); 326 if (unlikely(ret && ret != -EINVAL)) 327 ret = -EIO; 328 329 return ret; 330 } 331 332 static void lo_complete_rq(struct request *rq) 333 { 334 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 335 blk_status_t ret = BLK_STS_OK; 336 337 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 338 req_op(rq) != REQ_OP_READ) { 339 if (cmd->ret < 0) 340 ret = errno_to_blk_status(cmd->ret); 341 goto end_io; 342 } 343 344 /* 345 * Short READ - if we got some data, advance our request and 346 * retry it. If we got no data, end the rest with EIO. 347 */ 348 if (cmd->ret) { 349 blk_update_request(rq, BLK_STS_OK, cmd->ret); 350 cmd->ret = 0; 351 blk_mq_requeue_request(rq, true); 352 } else { 353 if (cmd->use_aio) { 354 struct bio *bio = rq->bio; 355 356 while (bio) { 357 zero_fill_bio(bio); 358 bio = bio->bi_next; 359 } 360 } 361 ret = BLK_STS_IOERR; 362 end_io: 363 blk_mq_end_request(rq, ret); 364 } 365 } 366 367 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 368 { 369 struct request *rq = blk_mq_rq_from_pdu(cmd); 370 371 if (!atomic_dec_and_test(&cmd->ref)) 372 return; 373 kfree(cmd->bvec); 374 cmd->bvec = NULL; 375 if (likely(!blk_should_fake_timeout(rq->q))) 376 blk_mq_complete_request(rq); 377 } 378 379 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 380 { 381 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 382 383 cmd->ret = ret; 384 lo_rw_aio_do_completion(cmd); 385 } 386 387 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 388 loff_t pos, int rw) 389 { 390 struct iov_iter iter; 391 struct req_iterator rq_iter; 392 struct bio_vec *bvec; 393 struct request *rq = blk_mq_rq_from_pdu(cmd); 394 struct bio *bio = rq->bio; 395 struct file *file = lo->lo_backing_file; 396 struct bio_vec tmp; 397 unsigned int offset; 398 int nr_bvec = 0; 399 int ret; 400 401 rq_for_each_bvec(tmp, rq, rq_iter) 402 nr_bvec++; 403 404 if (rq->bio != rq->biotail) { 405 406 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 407 GFP_NOIO); 408 if (!bvec) 409 return -EIO; 410 cmd->bvec = bvec; 411 412 /* 413 * The bios of the request may be started from the middle of 414 * the 'bvec' because of bio splitting, so we can't directly 415 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 416 * API will take care of all details for us. 417 */ 418 rq_for_each_bvec(tmp, rq, rq_iter) { 419 *bvec = tmp; 420 bvec++; 421 } 422 bvec = cmd->bvec; 423 offset = 0; 424 } else { 425 /* 426 * Same here, this bio may be started from the middle of the 427 * 'bvec' because of bio splitting, so offset from the bvec 428 * must be passed to iov iterator 429 */ 430 offset = bio->bi_iter.bi_bvec_done; 431 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 432 } 433 atomic_set(&cmd->ref, 2); 434 435 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 436 iter.iov_offset = offset; 437 438 cmd->iocb.ki_pos = pos; 439 cmd->iocb.ki_filp = file; 440 cmd->iocb.ki_complete = lo_rw_aio_complete; 441 cmd->iocb.ki_flags = IOCB_DIRECT; 442 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 443 444 if (rw == ITER_SOURCE) 445 ret = file->f_op->write_iter(&cmd->iocb, &iter); 446 else 447 ret = file->f_op->read_iter(&cmd->iocb, &iter); 448 449 lo_rw_aio_do_completion(cmd); 450 451 if (ret != -EIOCBQUEUED) 452 lo_rw_aio_complete(&cmd->iocb, ret); 453 return 0; 454 } 455 456 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 457 { 458 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 459 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 460 461 /* 462 * lo_write_simple and lo_read_simple should have been covered 463 * by io submit style function like lo_rw_aio(), one blocker 464 * is that lo_read_simple() need to call flush_dcache_page after 465 * the page is written from kernel, and it isn't easy to handle 466 * this in io submit style function which submits all segments 467 * of the req at one time. And direct read IO doesn't need to 468 * run flush_dcache_page(). 469 */ 470 switch (req_op(rq)) { 471 case REQ_OP_FLUSH: 472 return lo_req_flush(lo, rq); 473 case REQ_OP_WRITE_ZEROES: 474 /* 475 * If the caller doesn't want deallocation, call zeroout to 476 * write zeroes the range. Otherwise, punch them out. 477 */ 478 return lo_fallocate(lo, rq, pos, 479 (rq->cmd_flags & REQ_NOUNMAP) ? 480 FALLOC_FL_ZERO_RANGE : 481 FALLOC_FL_PUNCH_HOLE); 482 case REQ_OP_DISCARD: 483 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 484 case REQ_OP_WRITE: 485 if (cmd->use_aio) 486 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 487 else 488 return lo_write_simple(lo, rq, pos); 489 case REQ_OP_READ: 490 if (cmd->use_aio) 491 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 492 else 493 return lo_read_simple(lo, rq, pos); 494 default: 495 WARN_ON_ONCE(1); 496 return -EIO; 497 } 498 } 499 500 static inline void loop_update_dio(struct loop_device *lo) 501 { 502 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 503 lo->use_dio); 504 } 505 506 static void loop_reread_partitions(struct loop_device *lo) 507 { 508 int rc; 509 510 mutex_lock(&lo->lo_disk->open_mutex); 511 rc = bdev_disk_changed(lo->lo_disk, false); 512 mutex_unlock(&lo->lo_disk->open_mutex); 513 if (rc) 514 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 515 __func__, lo->lo_number, lo->lo_file_name, rc); 516 } 517 518 static inline int is_loop_device(struct file *file) 519 { 520 struct inode *i = file->f_mapping->host; 521 522 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 523 } 524 525 static int loop_validate_file(struct file *file, struct block_device *bdev) 526 { 527 struct inode *inode = file->f_mapping->host; 528 struct file *f = file; 529 530 /* Avoid recursion */ 531 while (is_loop_device(f)) { 532 struct loop_device *l; 533 534 lockdep_assert_held(&loop_validate_mutex); 535 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 536 return -EBADF; 537 538 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 539 if (l->lo_state != Lo_bound) 540 return -EINVAL; 541 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 542 rmb(); 543 f = l->lo_backing_file; 544 } 545 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 546 return -EINVAL; 547 return 0; 548 } 549 550 /* 551 * loop_change_fd switched the backing store of a loopback device to 552 * a new file. This is useful for operating system installers to free up 553 * the original file and in High Availability environments to switch to 554 * an alternative location for the content in case of server meltdown. 555 * This can only work if the loop device is used read-only, and if the 556 * new backing store is the same size and type as the old backing store. 557 */ 558 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 559 unsigned int arg) 560 { 561 struct file *file = fget(arg); 562 struct file *old_file; 563 int error; 564 bool partscan; 565 bool is_loop; 566 567 if (!file) 568 return -EBADF; 569 570 /* suppress uevents while reconfiguring the device */ 571 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 572 573 is_loop = is_loop_device(file); 574 error = loop_global_lock_killable(lo, is_loop); 575 if (error) 576 goto out_putf; 577 error = -ENXIO; 578 if (lo->lo_state != Lo_bound) 579 goto out_err; 580 581 /* the loop device has to be read-only */ 582 error = -EINVAL; 583 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 584 goto out_err; 585 586 error = loop_validate_file(file, bdev); 587 if (error) 588 goto out_err; 589 590 old_file = lo->lo_backing_file; 591 592 error = -EINVAL; 593 594 /* size of the new backing store needs to be the same */ 595 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 596 goto out_err; 597 598 /* and ... switch */ 599 disk_force_media_change(lo->lo_disk); 600 blk_mq_freeze_queue(lo->lo_queue); 601 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 602 lo->lo_backing_file = file; 603 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 604 mapping_set_gfp_mask(file->f_mapping, 605 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 606 loop_update_dio(lo); 607 blk_mq_unfreeze_queue(lo->lo_queue); 608 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 609 loop_global_unlock(lo, is_loop); 610 611 /* 612 * Flush loop_validate_file() before fput(), for l->lo_backing_file 613 * might be pointing at old_file which might be the last reference. 614 */ 615 if (!is_loop) { 616 mutex_lock(&loop_validate_mutex); 617 mutex_unlock(&loop_validate_mutex); 618 } 619 /* 620 * We must drop file reference outside of lo_mutex as dropping 621 * the file ref can take open_mutex which creates circular locking 622 * dependency. 623 */ 624 fput(old_file); 625 if (partscan) 626 loop_reread_partitions(lo); 627 628 error = 0; 629 done: 630 /* enable and uncork uevent now that we are done */ 631 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 632 return error; 633 634 out_err: 635 loop_global_unlock(lo, is_loop); 636 out_putf: 637 fput(file); 638 goto done; 639 } 640 641 /* loop sysfs attributes */ 642 643 static ssize_t loop_attr_show(struct device *dev, char *page, 644 ssize_t (*callback)(struct loop_device *, char *)) 645 { 646 struct gendisk *disk = dev_to_disk(dev); 647 struct loop_device *lo = disk->private_data; 648 649 return callback(lo, page); 650 } 651 652 #define LOOP_ATTR_RO(_name) \ 653 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 654 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 655 struct device_attribute *attr, char *b) \ 656 { \ 657 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 658 } \ 659 static struct device_attribute loop_attr_##_name = \ 660 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 661 662 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 663 { 664 ssize_t ret; 665 char *p = NULL; 666 667 spin_lock_irq(&lo->lo_lock); 668 if (lo->lo_backing_file) 669 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 670 spin_unlock_irq(&lo->lo_lock); 671 672 if (IS_ERR_OR_NULL(p)) 673 ret = PTR_ERR(p); 674 else { 675 ret = strlen(p); 676 memmove(buf, p, ret); 677 buf[ret++] = '\n'; 678 buf[ret] = 0; 679 } 680 681 return ret; 682 } 683 684 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 685 { 686 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 687 } 688 689 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 690 { 691 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 692 } 693 694 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 695 { 696 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 697 698 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 699 } 700 701 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 702 { 703 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 704 705 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 706 } 707 708 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 709 { 710 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 711 712 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 713 } 714 715 LOOP_ATTR_RO(backing_file); 716 LOOP_ATTR_RO(offset); 717 LOOP_ATTR_RO(sizelimit); 718 LOOP_ATTR_RO(autoclear); 719 LOOP_ATTR_RO(partscan); 720 LOOP_ATTR_RO(dio); 721 722 static struct attribute *loop_attrs[] = { 723 &loop_attr_backing_file.attr, 724 &loop_attr_offset.attr, 725 &loop_attr_sizelimit.attr, 726 &loop_attr_autoclear.attr, 727 &loop_attr_partscan.attr, 728 &loop_attr_dio.attr, 729 NULL, 730 }; 731 732 static struct attribute_group loop_attribute_group = { 733 .name = "loop", 734 .attrs= loop_attrs, 735 }; 736 737 static void loop_sysfs_init(struct loop_device *lo) 738 { 739 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 740 &loop_attribute_group); 741 } 742 743 static void loop_sysfs_exit(struct loop_device *lo) 744 { 745 if (lo->sysfs_inited) 746 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 747 &loop_attribute_group); 748 } 749 750 static void loop_config_discard(struct loop_device *lo, 751 struct queue_limits *lim) 752 { 753 struct file *file = lo->lo_backing_file; 754 struct inode *inode = file->f_mapping->host; 755 u32 granularity = 0, max_discard_sectors = 0; 756 struct kstatfs sbuf; 757 758 /* 759 * If the backing device is a block device, mirror its zeroing 760 * capability. Set the discard sectors to the block device's zeroing 761 * capabilities because loop discards result in blkdev_issue_zeroout(), 762 * not blkdev_issue_discard(). This maintains consistent behavior with 763 * file-backed loop devices: discarded regions read back as zero. 764 */ 765 if (S_ISBLK(inode->i_mode)) { 766 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 767 768 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 769 granularity = bdev_discard_granularity(I_BDEV(inode)) ?: 770 queue_physical_block_size(backingq); 771 772 /* 773 * We use punch hole to reclaim the free space used by the 774 * image a.k.a. discard. 775 */ 776 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 777 max_discard_sectors = UINT_MAX >> 9; 778 granularity = sbuf.f_bsize; 779 } 780 781 lim->max_hw_discard_sectors = max_discard_sectors; 782 lim->max_write_zeroes_sectors = max_discard_sectors; 783 if (max_discard_sectors) 784 lim->discard_granularity = granularity; 785 else 786 lim->discard_granularity = 0; 787 } 788 789 struct loop_worker { 790 struct rb_node rb_node; 791 struct work_struct work; 792 struct list_head cmd_list; 793 struct list_head idle_list; 794 struct loop_device *lo; 795 struct cgroup_subsys_state *blkcg_css; 796 unsigned long last_ran_at; 797 }; 798 799 static void loop_workfn(struct work_struct *work); 800 801 #ifdef CONFIG_BLK_CGROUP 802 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 803 { 804 return !css || css == blkcg_root_css; 805 } 806 #else 807 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 808 { 809 return !css; 810 } 811 #endif 812 813 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 814 { 815 struct rb_node **node, *parent = NULL; 816 struct loop_worker *cur_worker, *worker = NULL; 817 struct work_struct *work; 818 struct list_head *cmd_list; 819 820 spin_lock_irq(&lo->lo_work_lock); 821 822 if (queue_on_root_worker(cmd->blkcg_css)) 823 goto queue_work; 824 825 node = &lo->worker_tree.rb_node; 826 827 while (*node) { 828 parent = *node; 829 cur_worker = container_of(*node, struct loop_worker, rb_node); 830 if (cur_worker->blkcg_css == cmd->blkcg_css) { 831 worker = cur_worker; 832 break; 833 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 834 node = &(*node)->rb_left; 835 } else { 836 node = &(*node)->rb_right; 837 } 838 } 839 if (worker) 840 goto queue_work; 841 842 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 843 /* 844 * In the event we cannot allocate a worker, just queue on the 845 * rootcg worker and issue the I/O as the rootcg 846 */ 847 if (!worker) { 848 cmd->blkcg_css = NULL; 849 if (cmd->memcg_css) 850 css_put(cmd->memcg_css); 851 cmd->memcg_css = NULL; 852 goto queue_work; 853 } 854 855 worker->blkcg_css = cmd->blkcg_css; 856 css_get(worker->blkcg_css); 857 INIT_WORK(&worker->work, loop_workfn); 858 INIT_LIST_HEAD(&worker->cmd_list); 859 INIT_LIST_HEAD(&worker->idle_list); 860 worker->lo = lo; 861 rb_link_node(&worker->rb_node, parent, node); 862 rb_insert_color(&worker->rb_node, &lo->worker_tree); 863 queue_work: 864 if (worker) { 865 /* 866 * We need to remove from the idle list here while 867 * holding the lock so that the idle timer doesn't 868 * free the worker 869 */ 870 if (!list_empty(&worker->idle_list)) 871 list_del_init(&worker->idle_list); 872 work = &worker->work; 873 cmd_list = &worker->cmd_list; 874 } else { 875 work = &lo->rootcg_work; 876 cmd_list = &lo->rootcg_cmd_list; 877 } 878 list_add_tail(&cmd->list_entry, cmd_list); 879 queue_work(lo->workqueue, work); 880 spin_unlock_irq(&lo->lo_work_lock); 881 } 882 883 static void loop_set_timer(struct loop_device *lo) 884 { 885 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 886 } 887 888 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 889 { 890 struct loop_worker *pos, *worker; 891 892 spin_lock_irq(&lo->lo_work_lock); 893 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 894 idle_list) { 895 if (!delete_all && 896 time_is_after_jiffies(worker->last_ran_at + 897 LOOP_IDLE_WORKER_TIMEOUT)) 898 break; 899 list_del(&worker->idle_list); 900 rb_erase(&worker->rb_node, &lo->worker_tree); 901 css_put(worker->blkcg_css); 902 kfree(worker); 903 } 904 if (!list_empty(&lo->idle_worker_list)) 905 loop_set_timer(lo); 906 spin_unlock_irq(&lo->lo_work_lock); 907 } 908 909 static void loop_free_idle_workers_timer(struct timer_list *timer) 910 { 911 struct loop_device *lo = container_of(timer, struct loop_device, timer); 912 913 return loop_free_idle_workers(lo, false); 914 } 915 916 /** 917 * loop_set_status_from_info - configure device from loop_info 918 * @lo: struct loop_device to configure 919 * @info: struct loop_info64 to configure the device with 920 * 921 * Configures the loop device parameters according to the passed 922 * in loop_info64 configuration. 923 */ 924 static int 925 loop_set_status_from_info(struct loop_device *lo, 926 const struct loop_info64 *info) 927 { 928 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 929 return -EINVAL; 930 931 switch (info->lo_encrypt_type) { 932 case LO_CRYPT_NONE: 933 break; 934 case LO_CRYPT_XOR: 935 pr_warn("support for the xor transformation has been removed.\n"); 936 return -EINVAL; 937 case LO_CRYPT_CRYPTOAPI: 938 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 939 return -EINVAL; 940 default: 941 return -EINVAL; 942 } 943 944 /* Avoid assigning overflow values */ 945 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 946 return -EOVERFLOW; 947 948 lo->lo_offset = info->lo_offset; 949 lo->lo_sizelimit = info->lo_sizelimit; 950 951 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 952 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 953 lo->lo_flags = info->lo_flags; 954 return 0; 955 } 956 957 static unsigned short loop_default_blocksize(struct loop_device *lo, 958 struct block_device *backing_bdev) 959 { 960 /* In case of direct I/O, match underlying block size */ 961 if ((lo->lo_backing_file->f_flags & O_DIRECT) && backing_bdev) 962 return bdev_logical_block_size(backing_bdev); 963 return SECTOR_SIZE; 964 } 965 966 static int loop_reconfigure_limits(struct loop_device *lo, unsigned short bsize) 967 { 968 struct file *file = lo->lo_backing_file; 969 struct inode *inode = file->f_mapping->host; 970 struct block_device *backing_bdev = NULL; 971 struct queue_limits lim; 972 973 if (S_ISBLK(inode->i_mode)) 974 backing_bdev = I_BDEV(inode); 975 else if (inode->i_sb->s_bdev) 976 backing_bdev = inode->i_sb->s_bdev; 977 978 if (!bsize) 979 bsize = loop_default_blocksize(lo, backing_bdev); 980 981 lim = queue_limits_start_update(lo->lo_queue); 982 lim.logical_block_size = bsize; 983 lim.physical_block_size = bsize; 984 lim.io_min = bsize; 985 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 986 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 987 lim.features |= BLK_FEAT_WRITE_CACHE; 988 if (backing_bdev && !bdev_nonrot(backing_bdev)) 989 lim.features |= BLK_FEAT_ROTATIONAL; 990 loop_config_discard(lo, &lim); 991 return queue_limits_commit_update(lo->lo_queue, &lim); 992 } 993 994 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 995 struct block_device *bdev, 996 const struct loop_config *config) 997 { 998 struct file *file = fget(config->fd); 999 struct inode *inode; 1000 struct address_space *mapping; 1001 int error; 1002 loff_t size; 1003 bool partscan; 1004 bool is_loop; 1005 1006 if (!file) 1007 return -EBADF; 1008 is_loop = is_loop_device(file); 1009 1010 /* This is safe, since we have a reference from open(). */ 1011 __module_get(THIS_MODULE); 1012 1013 /* 1014 * If we don't hold exclusive handle for the device, upgrade to it 1015 * here to avoid changing device under exclusive owner. 1016 */ 1017 if (!(mode & BLK_OPEN_EXCL)) { 1018 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1019 if (error) 1020 goto out_putf; 1021 } 1022 1023 error = loop_global_lock_killable(lo, is_loop); 1024 if (error) 1025 goto out_bdev; 1026 1027 error = -EBUSY; 1028 if (lo->lo_state != Lo_unbound) 1029 goto out_unlock; 1030 1031 error = loop_validate_file(file, bdev); 1032 if (error) 1033 goto out_unlock; 1034 1035 mapping = file->f_mapping; 1036 inode = mapping->host; 1037 1038 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1039 error = -EINVAL; 1040 goto out_unlock; 1041 } 1042 1043 if (config->block_size) { 1044 error = blk_validate_block_size(config->block_size); 1045 if (error) 1046 goto out_unlock; 1047 } 1048 1049 error = loop_set_status_from_info(lo, &config->info); 1050 if (error) 1051 goto out_unlock; 1052 1053 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1054 !file->f_op->write_iter) 1055 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1056 1057 if (!lo->workqueue) { 1058 lo->workqueue = alloc_workqueue("loop%d", 1059 WQ_UNBOUND | WQ_FREEZABLE, 1060 0, lo->lo_number); 1061 if (!lo->workqueue) { 1062 error = -ENOMEM; 1063 goto out_unlock; 1064 } 1065 } 1066 1067 /* suppress uevents while reconfiguring the device */ 1068 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1069 1070 disk_force_media_change(lo->lo_disk); 1071 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1072 1073 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1074 lo->lo_device = bdev; 1075 lo->lo_backing_file = file; 1076 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1077 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1078 1079 error = loop_reconfigure_limits(lo, config->block_size); 1080 if (WARN_ON_ONCE(error)) 1081 goto out_unlock; 1082 1083 loop_update_dio(lo); 1084 loop_sysfs_init(lo); 1085 1086 size = get_loop_size(lo, file); 1087 loop_set_size(lo, size); 1088 1089 /* Order wrt reading lo_state in loop_validate_file(). */ 1090 wmb(); 1091 1092 lo->lo_state = Lo_bound; 1093 if (part_shift) 1094 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1095 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1096 if (partscan) 1097 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1098 1099 /* enable and uncork uevent now that we are done */ 1100 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1101 1102 loop_global_unlock(lo, is_loop); 1103 if (partscan) 1104 loop_reread_partitions(lo); 1105 1106 if (!(mode & BLK_OPEN_EXCL)) 1107 bd_abort_claiming(bdev, loop_configure); 1108 1109 return 0; 1110 1111 out_unlock: 1112 loop_global_unlock(lo, is_loop); 1113 out_bdev: 1114 if (!(mode & BLK_OPEN_EXCL)) 1115 bd_abort_claiming(bdev, loop_configure); 1116 out_putf: 1117 fput(file); 1118 /* This is safe: open() is still holding a reference. */ 1119 module_put(THIS_MODULE); 1120 return error; 1121 } 1122 1123 static void __loop_clr_fd(struct loop_device *lo) 1124 { 1125 struct queue_limits lim; 1126 struct file *filp; 1127 gfp_t gfp = lo->old_gfp_mask; 1128 1129 spin_lock_irq(&lo->lo_lock); 1130 filp = lo->lo_backing_file; 1131 lo->lo_backing_file = NULL; 1132 spin_unlock_irq(&lo->lo_lock); 1133 1134 lo->lo_device = NULL; 1135 lo->lo_offset = 0; 1136 lo->lo_sizelimit = 0; 1137 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1138 1139 /* reset the block size to the default */ 1140 lim = queue_limits_start_update(lo->lo_queue); 1141 lim.logical_block_size = SECTOR_SIZE; 1142 lim.physical_block_size = SECTOR_SIZE; 1143 lim.io_min = SECTOR_SIZE; 1144 queue_limits_commit_update(lo->lo_queue, &lim); 1145 1146 invalidate_disk(lo->lo_disk); 1147 loop_sysfs_exit(lo); 1148 /* let user-space know about this change */ 1149 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1150 mapping_set_gfp_mask(filp->f_mapping, gfp); 1151 /* This is safe: open() is still holding a reference. */ 1152 module_put(THIS_MODULE); 1153 1154 disk_force_media_change(lo->lo_disk); 1155 1156 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1157 int err; 1158 1159 /* 1160 * open_mutex has been held already in release path, so don't 1161 * acquire it if this function is called in such case. 1162 * 1163 * If the reread partition isn't from release path, lo_refcnt 1164 * must be at least one and it can only become zero when the 1165 * current holder is released. 1166 */ 1167 err = bdev_disk_changed(lo->lo_disk, false); 1168 if (err) 1169 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1170 __func__, lo->lo_number, err); 1171 /* Device is gone, no point in returning error */ 1172 } 1173 1174 /* 1175 * lo->lo_state is set to Lo_unbound here after above partscan has 1176 * finished. There cannot be anybody else entering __loop_clr_fd() as 1177 * Lo_rundown state protects us from all the other places trying to 1178 * change the 'lo' device. 1179 */ 1180 lo->lo_flags = 0; 1181 if (!part_shift) 1182 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1183 mutex_lock(&lo->lo_mutex); 1184 lo->lo_state = Lo_unbound; 1185 mutex_unlock(&lo->lo_mutex); 1186 1187 /* 1188 * Need not hold lo_mutex to fput backing file. Calling fput holding 1189 * lo_mutex triggers a circular lock dependency possibility warning as 1190 * fput can take open_mutex which is usually taken before lo_mutex. 1191 */ 1192 fput(filp); 1193 } 1194 1195 static int loop_clr_fd(struct loop_device *lo) 1196 { 1197 int err; 1198 1199 /* 1200 * Since lo_ioctl() is called without locks held, it is possible that 1201 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1202 * 1203 * Therefore, use global lock when setting Lo_rundown state in order to 1204 * make sure that loop_validate_file() will fail if the "struct file" 1205 * which loop_configure()/loop_change_fd() found via fget() was this 1206 * loop device. 1207 */ 1208 err = loop_global_lock_killable(lo, true); 1209 if (err) 1210 return err; 1211 if (lo->lo_state != Lo_bound) { 1212 loop_global_unlock(lo, true); 1213 return -ENXIO; 1214 } 1215 /* 1216 * Mark the device for removing the backing device on last close. 1217 * If we are the only opener, also switch the state to roundown here to 1218 * prevent new openers from coming in. 1219 */ 1220 1221 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1222 if (disk_openers(lo->lo_disk) == 1) 1223 lo->lo_state = Lo_rundown; 1224 loop_global_unlock(lo, true); 1225 1226 return 0; 1227 } 1228 1229 static int 1230 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1231 { 1232 int err; 1233 int prev_lo_flags; 1234 bool partscan = false; 1235 bool size_changed = false; 1236 1237 err = mutex_lock_killable(&lo->lo_mutex); 1238 if (err) 1239 return err; 1240 if (lo->lo_state != Lo_bound) { 1241 err = -ENXIO; 1242 goto out_unlock; 1243 } 1244 1245 if (lo->lo_offset != info->lo_offset || 1246 lo->lo_sizelimit != info->lo_sizelimit) { 1247 size_changed = true; 1248 sync_blockdev(lo->lo_device); 1249 invalidate_bdev(lo->lo_device); 1250 } 1251 1252 /* I/O need to be drained during transfer transition */ 1253 blk_mq_freeze_queue(lo->lo_queue); 1254 1255 prev_lo_flags = lo->lo_flags; 1256 1257 err = loop_set_status_from_info(lo, info); 1258 if (err) 1259 goto out_unfreeze; 1260 1261 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1262 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1263 /* For those flags, use the previous values instead */ 1264 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1265 /* For flags that can't be cleared, use previous values too */ 1266 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1267 1268 if (size_changed) { 1269 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1270 lo->lo_backing_file); 1271 loop_set_size(lo, new_size); 1272 } 1273 1274 /* update dio if lo_offset or transfer is changed */ 1275 __loop_update_dio(lo, lo->use_dio); 1276 1277 out_unfreeze: 1278 blk_mq_unfreeze_queue(lo->lo_queue); 1279 1280 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1281 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1282 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1283 partscan = true; 1284 } 1285 out_unlock: 1286 mutex_unlock(&lo->lo_mutex); 1287 if (partscan) 1288 loop_reread_partitions(lo); 1289 1290 return err; 1291 } 1292 1293 static int 1294 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1295 { 1296 struct path path; 1297 struct kstat stat; 1298 int ret; 1299 1300 ret = mutex_lock_killable(&lo->lo_mutex); 1301 if (ret) 1302 return ret; 1303 if (lo->lo_state != Lo_bound) { 1304 mutex_unlock(&lo->lo_mutex); 1305 return -ENXIO; 1306 } 1307 1308 memset(info, 0, sizeof(*info)); 1309 info->lo_number = lo->lo_number; 1310 info->lo_offset = lo->lo_offset; 1311 info->lo_sizelimit = lo->lo_sizelimit; 1312 info->lo_flags = lo->lo_flags; 1313 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1314 1315 /* Drop lo_mutex while we call into the filesystem. */ 1316 path = lo->lo_backing_file->f_path; 1317 path_get(&path); 1318 mutex_unlock(&lo->lo_mutex); 1319 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1320 if (!ret) { 1321 info->lo_device = huge_encode_dev(stat.dev); 1322 info->lo_inode = stat.ino; 1323 info->lo_rdevice = huge_encode_dev(stat.rdev); 1324 } 1325 path_put(&path); 1326 return ret; 1327 } 1328 1329 static void 1330 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1331 { 1332 memset(info64, 0, sizeof(*info64)); 1333 info64->lo_number = info->lo_number; 1334 info64->lo_device = info->lo_device; 1335 info64->lo_inode = info->lo_inode; 1336 info64->lo_rdevice = info->lo_rdevice; 1337 info64->lo_offset = info->lo_offset; 1338 info64->lo_sizelimit = 0; 1339 info64->lo_flags = info->lo_flags; 1340 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1341 } 1342 1343 static int 1344 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1345 { 1346 memset(info, 0, sizeof(*info)); 1347 info->lo_number = info64->lo_number; 1348 info->lo_device = info64->lo_device; 1349 info->lo_inode = info64->lo_inode; 1350 info->lo_rdevice = info64->lo_rdevice; 1351 info->lo_offset = info64->lo_offset; 1352 info->lo_flags = info64->lo_flags; 1353 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1354 1355 /* error in case values were truncated */ 1356 if (info->lo_device != info64->lo_device || 1357 info->lo_rdevice != info64->lo_rdevice || 1358 info->lo_inode != info64->lo_inode || 1359 info->lo_offset != info64->lo_offset) 1360 return -EOVERFLOW; 1361 1362 return 0; 1363 } 1364 1365 static int 1366 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1367 { 1368 struct loop_info info; 1369 struct loop_info64 info64; 1370 1371 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1372 return -EFAULT; 1373 loop_info64_from_old(&info, &info64); 1374 return loop_set_status(lo, &info64); 1375 } 1376 1377 static int 1378 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1379 { 1380 struct loop_info64 info64; 1381 1382 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1383 return -EFAULT; 1384 return loop_set_status(lo, &info64); 1385 } 1386 1387 static int 1388 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1389 struct loop_info info; 1390 struct loop_info64 info64; 1391 int err; 1392 1393 if (!arg) 1394 return -EINVAL; 1395 err = loop_get_status(lo, &info64); 1396 if (!err) 1397 err = loop_info64_to_old(&info64, &info); 1398 if (!err && copy_to_user(arg, &info, sizeof(info))) 1399 err = -EFAULT; 1400 1401 return err; 1402 } 1403 1404 static int 1405 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1406 struct loop_info64 info64; 1407 int err; 1408 1409 if (!arg) 1410 return -EINVAL; 1411 err = loop_get_status(lo, &info64); 1412 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1413 err = -EFAULT; 1414 1415 return err; 1416 } 1417 1418 static int loop_set_capacity(struct loop_device *lo) 1419 { 1420 loff_t size; 1421 1422 if (unlikely(lo->lo_state != Lo_bound)) 1423 return -ENXIO; 1424 1425 size = get_loop_size(lo, lo->lo_backing_file); 1426 loop_set_size(lo, size); 1427 1428 return 0; 1429 } 1430 1431 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1432 { 1433 int error = -ENXIO; 1434 if (lo->lo_state != Lo_bound) 1435 goto out; 1436 1437 __loop_update_dio(lo, !!arg); 1438 if (lo->use_dio == !!arg) 1439 return 0; 1440 error = -EINVAL; 1441 out: 1442 return error; 1443 } 1444 1445 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1446 { 1447 int err = 0; 1448 1449 if (lo->lo_state != Lo_bound) 1450 return -ENXIO; 1451 1452 err = blk_validate_block_size(arg); 1453 if (err) 1454 return err; 1455 1456 if (lo->lo_queue->limits.logical_block_size == arg) 1457 return 0; 1458 1459 sync_blockdev(lo->lo_device); 1460 invalidate_bdev(lo->lo_device); 1461 1462 blk_mq_freeze_queue(lo->lo_queue); 1463 err = loop_reconfigure_limits(lo, arg); 1464 loop_update_dio(lo); 1465 blk_mq_unfreeze_queue(lo->lo_queue); 1466 1467 return err; 1468 } 1469 1470 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1471 unsigned long arg) 1472 { 1473 int err; 1474 1475 err = mutex_lock_killable(&lo->lo_mutex); 1476 if (err) 1477 return err; 1478 switch (cmd) { 1479 case LOOP_SET_CAPACITY: 1480 err = loop_set_capacity(lo); 1481 break; 1482 case LOOP_SET_DIRECT_IO: 1483 err = loop_set_dio(lo, arg); 1484 break; 1485 case LOOP_SET_BLOCK_SIZE: 1486 err = loop_set_block_size(lo, arg); 1487 break; 1488 default: 1489 err = -EINVAL; 1490 } 1491 mutex_unlock(&lo->lo_mutex); 1492 return err; 1493 } 1494 1495 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1496 unsigned int cmd, unsigned long arg) 1497 { 1498 struct loop_device *lo = bdev->bd_disk->private_data; 1499 void __user *argp = (void __user *) arg; 1500 int err; 1501 1502 switch (cmd) { 1503 case LOOP_SET_FD: { 1504 /* 1505 * Legacy case - pass in a zeroed out struct loop_config with 1506 * only the file descriptor set , which corresponds with the 1507 * default parameters we'd have used otherwise. 1508 */ 1509 struct loop_config config; 1510 1511 memset(&config, 0, sizeof(config)); 1512 config.fd = arg; 1513 1514 return loop_configure(lo, mode, bdev, &config); 1515 } 1516 case LOOP_CONFIGURE: { 1517 struct loop_config config; 1518 1519 if (copy_from_user(&config, argp, sizeof(config))) 1520 return -EFAULT; 1521 1522 return loop_configure(lo, mode, bdev, &config); 1523 } 1524 case LOOP_CHANGE_FD: 1525 return loop_change_fd(lo, bdev, arg); 1526 case LOOP_CLR_FD: 1527 return loop_clr_fd(lo); 1528 case LOOP_SET_STATUS: 1529 err = -EPERM; 1530 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1531 err = loop_set_status_old(lo, argp); 1532 break; 1533 case LOOP_GET_STATUS: 1534 return loop_get_status_old(lo, argp); 1535 case LOOP_SET_STATUS64: 1536 err = -EPERM; 1537 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1538 err = loop_set_status64(lo, argp); 1539 break; 1540 case LOOP_GET_STATUS64: 1541 return loop_get_status64(lo, argp); 1542 case LOOP_SET_CAPACITY: 1543 case LOOP_SET_DIRECT_IO: 1544 case LOOP_SET_BLOCK_SIZE: 1545 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1546 return -EPERM; 1547 fallthrough; 1548 default: 1549 err = lo_simple_ioctl(lo, cmd, arg); 1550 break; 1551 } 1552 1553 return err; 1554 } 1555 1556 #ifdef CONFIG_COMPAT 1557 struct compat_loop_info { 1558 compat_int_t lo_number; /* ioctl r/o */ 1559 compat_dev_t lo_device; /* ioctl r/o */ 1560 compat_ulong_t lo_inode; /* ioctl r/o */ 1561 compat_dev_t lo_rdevice; /* ioctl r/o */ 1562 compat_int_t lo_offset; 1563 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1564 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1565 compat_int_t lo_flags; /* ioctl r/o */ 1566 char lo_name[LO_NAME_SIZE]; 1567 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1568 compat_ulong_t lo_init[2]; 1569 char reserved[4]; 1570 }; 1571 1572 /* 1573 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1574 * - noinlined to reduce stack space usage in main part of driver 1575 */ 1576 static noinline int 1577 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1578 struct loop_info64 *info64) 1579 { 1580 struct compat_loop_info info; 1581 1582 if (copy_from_user(&info, arg, sizeof(info))) 1583 return -EFAULT; 1584 1585 memset(info64, 0, sizeof(*info64)); 1586 info64->lo_number = info.lo_number; 1587 info64->lo_device = info.lo_device; 1588 info64->lo_inode = info.lo_inode; 1589 info64->lo_rdevice = info.lo_rdevice; 1590 info64->lo_offset = info.lo_offset; 1591 info64->lo_sizelimit = 0; 1592 info64->lo_flags = info.lo_flags; 1593 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1594 return 0; 1595 } 1596 1597 /* 1598 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1599 * - noinlined to reduce stack space usage in main part of driver 1600 */ 1601 static noinline int 1602 loop_info64_to_compat(const struct loop_info64 *info64, 1603 struct compat_loop_info __user *arg) 1604 { 1605 struct compat_loop_info info; 1606 1607 memset(&info, 0, sizeof(info)); 1608 info.lo_number = info64->lo_number; 1609 info.lo_device = info64->lo_device; 1610 info.lo_inode = info64->lo_inode; 1611 info.lo_rdevice = info64->lo_rdevice; 1612 info.lo_offset = info64->lo_offset; 1613 info.lo_flags = info64->lo_flags; 1614 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1615 1616 /* error in case values were truncated */ 1617 if (info.lo_device != info64->lo_device || 1618 info.lo_rdevice != info64->lo_rdevice || 1619 info.lo_inode != info64->lo_inode || 1620 info.lo_offset != info64->lo_offset) 1621 return -EOVERFLOW; 1622 1623 if (copy_to_user(arg, &info, sizeof(info))) 1624 return -EFAULT; 1625 return 0; 1626 } 1627 1628 static int 1629 loop_set_status_compat(struct loop_device *lo, 1630 const struct compat_loop_info __user *arg) 1631 { 1632 struct loop_info64 info64; 1633 int ret; 1634 1635 ret = loop_info64_from_compat(arg, &info64); 1636 if (ret < 0) 1637 return ret; 1638 return loop_set_status(lo, &info64); 1639 } 1640 1641 static int 1642 loop_get_status_compat(struct loop_device *lo, 1643 struct compat_loop_info __user *arg) 1644 { 1645 struct loop_info64 info64; 1646 int err; 1647 1648 if (!arg) 1649 return -EINVAL; 1650 err = loop_get_status(lo, &info64); 1651 if (!err) 1652 err = loop_info64_to_compat(&info64, arg); 1653 return err; 1654 } 1655 1656 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1657 unsigned int cmd, unsigned long arg) 1658 { 1659 struct loop_device *lo = bdev->bd_disk->private_data; 1660 int err; 1661 1662 switch(cmd) { 1663 case LOOP_SET_STATUS: 1664 err = loop_set_status_compat(lo, 1665 (const struct compat_loop_info __user *)arg); 1666 break; 1667 case LOOP_GET_STATUS: 1668 err = loop_get_status_compat(lo, 1669 (struct compat_loop_info __user *)arg); 1670 break; 1671 case LOOP_SET_CAPACITY: 1672 case LOOP_CLR_FD: 1673 case LOOP_GET_STATUS64: 1674 case LOOP_SET_STATUS64: 1675 case LOOP_CONFIGURE: 1676 arg = (unsigned long) compat_ptr(arg); 1677 fallthrough; 1678 case LOOP_SET_FD: 1679 case LOOP_CHANGE_FD: 1680 case LOOP_SET_BLOCK_SIZE: 1681 case LOOP_SET_DIRECT_IO: 1682 err = lo_ioctl(bdev, mode, cmd, arg); 1683 break; 1684 default: 1685 err = -ENOIOCTLCMD; 1686 break; 1687 } 1688 return err; 1689 } 1690 #endif 1691 1692 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1693 { 1694 struct loop_device *lo = disk->private_data; 1695 int err; 1696 1697 err = mutex_lock_killable(&lo->lo_mutex); 1698 if (err) 1699 return err; 1700 1701 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1702 err = -ENXIO; 1703 mutex_unlock(&lo->lo_mutex); 1704 return err; 1705 } 1706 1707 static void lo_release(struct gendisk *disk) 1708 { 1709 struct loop_device *lo = disk->private_data; 1710 bool need_clear = false; 1711 1712 if (disk_openers(disk) > 0) 1713 return; 1714 /* 1715 * Clear the backing device information if this is the last close of 1716 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1717 * has been called. 1718 */ 1719 1720 mutex_lock(&lo->lo_mutex); 1721 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1722 lo->lo_state = Lo_rundown; 1723 1724 need_clear = (lo->lo_state == Lo_rundown); 1725 mutex_unlock(&lo->lo_mutex); 1726 1727 if (need_clear) 1728 __loop_clr_fd(lo); 1729 } 1730 1731 static void lo_free_disk(struct gendisk *disk) 1732 { 1733 struct loop_device *lo = disk->private_data; 1734 1735 if (lo->workqueue) 1736 destroy_workqueue(lo->workqueue); 1737 loop_free_idle_workers(lo, true); 1738 timer_shutdown_sync(&lo->timer); 1739 mutex_destroy(&lo->lo_mutex); 1740 kfree(lo); 1741 } 1742 1743 static const struct block_device_operations lo_fops = { 1744 .owner = THIS_MODULE, 1745 .open = lo_open, 1746 .release = lo_release, 1747 .ioctl = lo_ioctl, 1748 #ifdef CONFIG_COMPAT 1749 .compat_ioctl = lo_compat_ioctl, 1750 #endif 1751 .free_disk = lo_free_disk, 1752 }; 1753 1754 /* 1755 * And now the modules code and kernel interface. 1756 */ 1757 1758 /* 1759 * If max_loop is specified, create that many devices upfront. 1760 * This also becomes a hard limit. If max_loop is not specified, 1761 * the default isn't a hard limit (as before commit 85c50197716c 1762 * changed the default value from 0 for max_loop=0 reasons), just 1763 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1764 * init time. Loop devices can be requested on-demand with the 1765 * /dev/loop-control interface, or be instantiated by accessing 1766 * a 'dead' device node. 1767 */ 1768 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1769 1770 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1771 static bool max_loop_specified; 1772 1773 static int max_loop_param_set_int(const char *val, 1774 const struct kernel_param *kp) 1775 { 1776 int ret; 1777 1778 ret = param_set_int(val, kp); 1779 if (ret < 0) 1780 return ret; 1781 1782 max_loop_specified = true; 1783 return 0; 1784 } 1785 1786 static const struct kernel_param_ops max_loop_param_ops = { 1787 .set = max_loop_param_set_int, 1788 .get = param_get_int, 1789 }; 1790 1791 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1792 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1793 #else 1794 module_param(max_loop, int, 0444); 1795 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1796 #endif 1797 1798 module_param(max_part, int, 0444); 1799 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1800 1801 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1802 1803 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1804 { 1805 int qd, ret; 1806 1807 ret = kstrtoint(s, 0, &qd); 1808 if (ret < 0) 1809 return ret; 1810 if (qd < 1) 1811 return -EINVAL; 1812 hw_queue_depth = qd; 1813 return 0; 1814 } 1815 1816 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1817 .set = loop_set_hw_queue_depth, 1818 .get = param_get_int, 1819 }; 1820 1821 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1822 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1823 1824 MODULE_LICENSE("GPL"); 1825 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1826 1827 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1828 const struct blk_mq_queue_data *bd) 1829 { 1830 struct request *rq = bd->rq; 1831 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1832 struct loop_device *lo = rq->q->queuedata; 1833 1834 blk_mq_start_request(rq); 1835 1836 if (lo->lo_state != Lo_bound) 1837 return BLK_STS_IOERR; 1838 1839 switch (req_op(rq)) { 1840 case REQ_OP_FLUSH: 1841 case REQ_OP_DISCARD: 1842 case REQ_OP_WRITE_ZEROES: 1843 cmd->use_aio = false; 1844 break; 1845 default: 1846 cmd->use_aio = lo->use_dio; 1847 break; 1848 } 1849 1850 /* always use the first bio's css */ 1851 cmd->blkcg_css = NULL; 1852 cmd->memcg_css = NULL; 1853 #ifdef CONFIG_BLK_CGROUP 1854 if (rq->bio) { 1855 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1856 #ifdef CONFIG_MEMCG 1857 if (cmd->blkcg_css) { 1858 cmd->memcg_css = 1859 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1860 &memory_cgrp_subsys); 1861 } 1862 #endif 1863 } 1864 #endif 1865 loop_queue_work(lo, cmd); 1866 1867 return BLK_STS_OK; 1868 } 1869 1870 static void loop_handle_cmd(struct loop_cmd *cmd) 1871 { 1872 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1873 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1874 struct request *rq = blk_mq_rq_from_pdu(cmd); 1875 const bool write = op_is_write(req_op(rq)); 1876 struct loop_device *lo = rq->q->queuedata; 1877 int ret = 0; 1878 struct mem_cgroup *old_memcg = NULL; 1879 const bool use_aio = cmd->use_aio; 1880 1881 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1882 ret = -EIO; 1883 goto failed; 1884 } 1885 1886 if (cmd_blkcg_css) 1887 kthread_associate_blkcg(cmd_blkcg_css); 1888 if (cmd_memcg_css) 1889 old_memcg = set_active_memcg( 1890 mem_cgroup_from_css(cmd_memcg_css)); 1891 1892 /* 1893 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1894 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1895 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1896 * not yet been completed. 1897 */ 1898 ret = do_req_filebacked(lo, rq); 1899 1900 if (cmd_blkcg_css) 1901 kthread_associate_blkcg(NULL); 1902 1903 if (cmd_memcg_css) { 1904 set_active_memcg(old_memcg); 1905 css_put(cmd_memcg_css); 1906 } 1907 failed: 1908 /* complete non-aio request */ 1909 if (!use_aio || ret) { 1910 if (ret == -EOPNOTSUPP) 1911 cmd->ret = ret; 1912 else 1913 cmd->ret = ret ? -EIO : 0; 1914 if (likely(!blk_should_fake_timeout(rq->q))) 1915 blk_mq_complete_request(rq); 1916 } 1917 } 1918 1919 static void loop_process_work(struct loop_worker *worker, 1920 struct list_head *cmd_list, struct loop_device *lo) 1921 { 1922 int orig_flags = current->flags; 1923 struct loop_cmd *cmd; 1924 1925 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1926 spin_lock_irq(&lo->lo_work_lock); 1927 while (!list_empty(cmd_list)) { 1928 cmd = container_of( 1929 cmd_list->next, struct loop_cmd, list_entry); 1930 list_del(cmd_list->next); 1931 spin_unlock_irq(&lo->lo_work_lock); 1932 1933 loop_handle_cmd(cmd); 1934 cond_resched(); 1935 1936 spin_lock_irq(&lo->lo_work_lock); 1937 } 1938 1939 /* 1940 * We only add to the idle list if there are no pending cmds 1941 * *and* the worker will not run again which ensures that it 1942 * is safe to free any worker on the idle list 1943 */ 1944 if (worker && !work_pending(&worker->work)) { 1945 worker->last_ran_at = jiffies; 1946 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1947 loop_set_timer(lo); 1948 } 1949 spin_unlock_irq(&lo->lo_work_lock); 1950 current->flags = orig_flags; 1951 } 1952 1953 static void loop_workfn(struct work_struct *work) 1954 { 1955 struct loop_worker *worker = 1956 container_of(work, struct loop_worker, work); 1957 loop_process_work(worker, &worker->cmd_list, worker->lo); 1958 } 1959 1960 static void loop_rootcg_workfn(struct work_struct *work) 1961 { 1962 struct loop_device *lo = 1963 container_of(work, struct loop_device, rootcg_work); 1964 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1965 } 1966 1967 static const struct blk_mq_ops loop_mq_ops = { 1968 .queue_rq = loop_queue_rq, 1969 .complete = lo_complete_rq, 1970 }; 1971 1972 static int loop_add(int i) 1973 { 1974 struct queue_limits lim = { 1975 /* 1976 * Random number picked from the historic block max_sectors cap. 1977 */ 1978 .max_hw_sectors = 2560u, 1979 }; 1980 struct loop_device *lo; 1981 struct gendisk *disk; 1982 int err; 1983 1984 err = -ENOMEM; 1985 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1986 if (!lo) 1987 goto out; 1988 lo->worker_tree = RB_ROOT; 1989 INIT_LIST_HEAD(&lo->idle_worker_list); 1990 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 1991 lo->lo_state = Lo_unbound; 1992 1993 err = mutex_lock_killable(&loop_ctl_mutex); 1994 if (err) 1995 goto out_free_dev; 1996 1997 /* allocate id, if @id >= 0, we're requesting that specific id */ 1998 if (i >= 0) { 1999 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2000 if (err == -ENOSPC) 2001 err = -EEXIST; 2002 } else { 2003 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2004 } 2005 mutex_unlock(&loop_ctl_mutex); 2006 if (err < 0) 2007 goto out_free_dev; 2008 i = err; 2009 2010 lo->tag_set.ops = &loop_mq_ops; 2011 lo->tag_set.nr_hw_queues = 1; 2012 lo->tag_set.queue_depth = hw_queue_depth; 2013 lo->tag_set.numa_node = NUMA_NO_NODE; 2014 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2015 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 2016 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2017 lo->tag_set.driver_data = lo; 2018 2019 err = blk_mq_alloc_tag_set(&lo->tag_set); 2020 if (err) 2021 goto out_free_idr; 2022 2023 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2024 if (IS_ERR(disk)) { 2025 err = PTR_ERR(disk); 2026 goto out_cleanup_tags; 2027 } 2028 lo->lo_queue = lo->lo_disk->queue; 2029 2030 /* 2031 * Disable partition scanning by default. The in-kernel partition 2032 * scanning can be requested individually per-device during its 2033 * setup. Userspace can always add and remove partitions from all 2034 * devices. The needed partition minors are allocated from the 2035 * extended minor space, the main loop device numbers will continue 2036 * to match the loop minors, regardless of the number of partitions 2037 * used. 2038 * 2039 * If max_part is given, partition scanning is globally enabled for 2040 * all loop devices. The minors for the main loop devices will be 2041 * multiples of max_part. 2042 * 2043 * Note: Global-for-all-devices, set-only-at-init, read-only module 2044 * parameteters like 'max_loop' and 'max_part' make things needlessly 2045 * complicated, are too static, inflexible and may surprise 2046 * userspace tools. Parameters like this in general should be avoided. 2047 */ 2048 if (!part_shift) 2049 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2050 mutex_init(&lo->lo_mutex); 2051 lo->lo_number = i; 2052 spin_lock_init(&lo->lo_lock); 2053 spin_lock_init(&lo->lo_work_lock); 2054 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2055 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2056 disk->major = LOOP_MAJOR; 2057 disk->first_minor = i << part_shift; 2058 disk->minors = 1 << part_shift; 2059 disk->fops = &lo_fops; 2060 disk->private_data = lo; 2061 disk->queue = lo->lo_queue; 2062 disk->events = DISK_EVENT_MEDIA_CHANGE; 2063 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2064 sprintf(disk->disk_name, "loop%d", i); 2065 /* Make this loop device reachable from pathname. */ 2066 err = add_disk(disk); 2067 if (err) 2068 goto out_cleanup_disk; 2069 2070 /* Show this loop device. */ 2071 mutex_lock(&loop_ctl_mutex); 2072 lo->idr_visible = true; 2073 mutex_unlock(&loop_ctl_mutex); 2074 2075 return i; 2076 2077 out_cleanup_disk: 2078 put_disk(disk); 2079 out_cleanup_tags: 2080 blk_mq_free_tag_set(&lo->tag_set); 2081 out_free_idr: 2082 mutex_lock(&loop_ctl_mutex); 2083 idr_remove(&loop_index_idr, i); 2084 mutex_unlock(&loop_ctl_mutex); 2085 out_free_dev: 2086 kfree(lo); 2087 out: 2088 return err; 2089 } 2090 2091 static void loop_remove(struct loop_device *lo) 2092 { 2093 /* Make this loop device unreachable from pathname. */ 2094 del_gendisk(lo->lo_disk); 2095 blk_mq_free_tag_set(&lo->tag_set); 2096 2097 mutex_lock(&loop_ctl_mutex); 2098 idr_remove(&loop_index_idr, lo->lo_number); 2099 mutex_unlock(&loop_ctl_mutex); 2100 2101 put_disk(lo->lo_disk); 2102 } 2103 2104 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2105 static void loop_probe(dev_t dev) 2106 { 2107 int idx = MINOR(dev) >> part_shift; 2108 2109 if (max_loop_specified && max_loop && idx >= max_loop) 2110 return; 2111 loop_add(idx); 2112 } 2113 #else 2114 #define loop_probe NULL 2115 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2116 2117 static int loop_control_remove(int idx) 2118 { 2119 struct loop_device *lo; 2120 int ret; 2121 2122 if (idx < 0) { 2123 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2124 return -EINVAL; 2125 } 2126 2127 /* Hide this loop device for serialization. */ 2128 ret = mutex_lock_killable(&loop_ctl_mutex); 2129 if (ret) 2130 return ret; 2131 lo = idr_find(&loop_index_idr, idx); 2132 if (!lo || !lo->idr_visible) 2133 ret = -ENODEV; 2134 else 2135 lo->idr_visible = false; 2136 mutex_unlock(&loop_ctl_mutex); 2137 if (ret) 2138 return ret; 2139 2140 /* Check whether this loop device can be removed. */ 2141 ret = mutex_lock_killable(&lo->lo_mutex); 2142 if (ret) 2143 goto mark_visible; 2144 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2145 mutex_unlock(&lo->lo_mutex); 2146 ret = -EBUSY; 2147 goto mark_visible; 2148 } 2149 /* Mark this loop device as no more bound, but not quite unbound yet */ 2150 lo->lo_state = Lo_deleting; 2151 mutex_unlock(&lo->lo_mutex); 2152 2153 loop_remove(lo); 2154 return 0; 2155 2156 mark_visible: 2157 /* Show this loop device again. */ 2158 mutex_lock(&loop_ctl_mutex); 2159 lo->idr_visible = true; 2160 mutex_unlock(&loop_ctl_mutex); 2161 return ret; 2162 } 2163 2164 static int loop_control_get_free(int idx) 2165 { 2166 struct loop_device *lo; 2167 int id, ret; 2168 2169 ret = mutex_lock_killable(&loop_ctl_mutex); 2170 if (ret) 2171 return ret; 2172 idr_for_each_entry(&loop_index_idr, lo, id) { 2173 /* Hitting a race results in creating a new loop device which is harmless. */ 2174 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2175 goto found; 2176 } 2177 mutex_unlock(&loop_ctl_mutex); 2178 return loop_add(-1); 2179 found: 2180 mutex_unlock(&loop_ctl_mutex); 2181 return id; 2182 } 2183 2184 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2185 unsigned long parm) 2186 { 2187 switch (cmd) { 2188 case LOOP_CTL_ADD: 2189 return loop_add(parm); 2190 case LOOP_CTL_REMOVE: 2191 return loop_control_remove(parm); 2192 case LOOP_CTL_GET_FREE: 2193 return loop_control_get_free(parm); 2194 default: 2195 return -ENOSYS; 2196 } 2197 } 2198 2199 static const struct file_operations loop_ctl_fops = { 2200 .open = nonseekable_open, 2201 .unlocked_ioctl = loop_control_ioctl, 2202 .compat_ioctl = loop_control_ioctl, 2203 .owner = THIS_MODULE, 2204 .llseek = noop_llseek, 2205 }; 2206 2207 static struct miscdevice loop_misc = { 2208 .minor = LOOP_CTRL_MINOR, 2209 .name = "loop-control", 2210 .fops = &loop_ctl_fops, 2211 }; 2212 2213 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2214 MODULE_ALIAS("devname:loop-control"); 2215 2216 static int __init loop_init(void) 2217 { 2218 int i; 2219 int err; 2220 2221 part_shift = 0; 2222 if (max_part > 0) { 2223 part_shift = fls(max_part); 2224 2225 /* 2226 * Adjust max_part according to part_shift as it is exported 2227 * to user space so that user can decide correct minor number 2228 * if [s]he want to create more devices. 2229 * 2230 * Note that -1 is required because partition 0 is reserved 2231 * for the whole disk. 2232 */ 2233 max_part = (1UL << part_shift) - 1; 2234 } 2235 2236 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2237 err = -EINVAL; 2238 goto err_out; 2239 } 2240 2241 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2242 err = -EINVAL; 2243 goto err_out; 2244 } 2245 2246 err = misc_register(&loop_misc); 2247 if (err < 0) 2248 goto err_out; 2249 2250 2251 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2252 err = -EIO; 2253 goto misc_out; 2254 } 2255 2256 /* pre-create number of devices given by config or max_loop */ 2257 for (i = 0; i < max_loop; i++) 2258 loop_add(i); 2259 2260 printk(KERN_INFO "loop: module loaded\n"); 2261 return 0; 2262 2263 misc_out: 2264 misc_deregister(&loop_misc); 2265 err_out: 2266 return err; 2267 } 2268 2269 static void __exit loop_exit(void) 2270 { 2271 struct loop_device *lo; 2272 int id; 2273 2274 unregister_blkdev(LOOP_MAJOR, "loop"); 2275 misc_deregister(&loop_misc); 2276 2277 /* 2278 * There is no need to use loop_ctl_mutex here, for nobody else can 2279 * access loop_index_idr when this module is unloading (unless forced 2280 * module unloading is requested). If this is not a clean unloading, 2281 * we have no means to avoid kernel crash. 2282 */ 2283 idr_for_each_entry(&loop_index_idr, lo, id) 2284 loop_remove(lo); 2285 2286 idr_destroy(&loop_index_idr); 2287 } 2288 2289 module_init(loop_init); 2290 module_exit(loop_exit); 2291 2292 #ifndef MODULE 2293 static int __init max_loop_setup(char *str) 2294 { 2295 max_loop = simple_strtol(str, NULL, 0); 2296 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2297 max_loop_specified = true; 2298 #endif 2299 return 1; 2300 } 2301 2302 __setup("max_loop=", max_loop_setup); 2303 #endif 2304