1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_func_table; 49 50 struct loop_device { 51 int lo_number; 52 loff_t lo_offset; 53 loff_t lo_sizelimit; 54 int lo_flags; 55 char lo_file_name[LO_NAME_SIZE]; 56 57 struct file * lo_backing_file; 58 struct block_device *lo_device; 59 60 gfp_t old_gfp_mask; 61 62 spinlock_t lo_lock; 63 int lo_state; 64 spinlock_t lo_work_lock; 65 struct workqueue_struct *workqueue; 66 struct work_struct rootcg_work; 67 struct list_head rootcg_cmd_list; 68 struct list_head idle_worker_list; 69 struct rb_root worker_tree; 70 struct timer_list timer; 71 bool use_dio; 72 bool sysfs_inited; 73 74 struct request_queue *lo_queue; 75 struct blk_mq_tag_set tag_set; 76 struct gendisk *lo_disk; 77 struct mutex lo_mutex; 78 bool idr_visible; 79 }; 80 81 struct loop_cmd { 82 struct list_head list_entry; 83 bool use_aio; /* use AIO interface to handle I/O */ 84 atomic_t ref; /* only for aio */ 85 long ret; 86 struct kiocb iocb; 87 struct bio_vec *bvec; 88 struct cgroup_subsys_state *blkcg_css; 89 struct cgroup_subsys_state *memcg_css; 90 }; 91 92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 93 #define LOOP_DEFAULT_HW_Q_DEPTH 128 94 95 static DEFINE_IDR(loop_index_idr); 96 static DEFINE_MUTEX(loop_ctl_mutex); 97 static DEFINE_MUTEX(loop_validate_mutex); 98 99 /** 100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 101 * 102 * @lo: struct loop_device 103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 104 * 105 * Returns 0 on success, -EINTR otherwise. 106 * 107 * Since loop_validate_file() traverses on other "struct loop_device" if 108 * is_loop_device() is true, we need a global lock for serializing concurrent 109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 110 */ 111 static int loop_global_lock_killable(struct loop_device *lo, bool global) 112 { 113 int err; 114 115 if (global) { 116 err = mutex_lock_killable(&loop_validate_mutex); 117 if (err) 118 return err; 119 } 120 err = mutex_lock_killable(&lo->lo_mutex); 121 if (err && global) 122 mutex_unlock(&loop_validate_mutex); 123 return err; 124 } 125 126 /** 127 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 128 * 129 * @lo: struct loop_device 130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 131 */ 132 static void loop_global_unlock(struct loop_device *lo, bool global) 133 { 134 mutex_unlock(&lo->lo_mutex); 135 if (global) 136 mutex_unlock(&loop_validate_mutex); 137 } 138 139 static int max_part; 140 static int part_shift; 141 142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 143 { 144 loff_t loopsize; 145 146 /* Compute loopsize in bytes */ 147 loopsize = i_size_read(file->f_mapping->host); 148 if (offset > 0) 149 loopsize -= offset; 150 /* offset is beyond i_size, weird but possible */ 151 if (loopsize < 0) 152 return 0; 153 154 if (sizelimit > 0 && sizelimit < loopsize) 155 loopsize = sizelimit; 156 /* 157 * Unfortunately, if we want to do I/O on the device, 158 * the number of 512-byte sectors has to fit into a sector_t. 159 */ 160 return loopsize >> 9; 161 } 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 166 } 167 168 /* 169 * We support direct I/O only if lo_offset is aligned with the logical I/O size 170 * of backing device, and the logical block size of loop is bigger than that of 171 * the backing device. 172 */ 173 static bool lo_bdev_can_use_dio(struct loop_device *lo, 174 struct block_device *backing_bdev) 175 { 176 unsigned short sb_bsize = bdev_logical_block_size(backing_bdev); 177 178 if (queue_logical_block_size(lo->lo_queue) < sb_bsize) 179 return false; 180 if (lo->lo_offset & (sb_bsize - 1)) 181 return false; 182 return true; 183 } 184 185 static void __loop_update_dio(struct loop_device *lo, bool dio) 186 { 187 struct file *file = lo->lo_backing_file; 188 struct inode *inode = file->f_mapping->host; 189 struct block_device *backing_bdev = NULL; 190 bool use_dio; 191 192 if (S_ISBLK(inode->i_mode)) 193 backing_bdev = I_BDEV(inode); 194 else if (inode->i_sb->s_bdev) 195 backing_bdev = inode->i_sb->s_bdev; 196 197 use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) && 198 (!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev)); 199 200 if (lo->use_dio == use_dio) 201 return; 202 203 /* flush dirty pages before changing direct IO */ 204 vfs_fsync(file, 0); 205 206 /* 207 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 208 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 209 * will get updated by ioctl(LOOP_GET_STATUS) 210 */ 211 if (lo->lo_state == Lo_bound) 212 blk_mq_freeze_queue(lo->lo_queue); 213 lo->use_dio = use_dio; 214 if (use_dio) { 215 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 216 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 217 } else { 218 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 220 } 221 if (lo->lo_state == Lo_bound) 222 blk_mq_unfreeze_queue(lo->lo_queue); 223 } 224 225 /** 226 * loop_set_size() - sets device size and notifies userspace 227 * @lo: struct loop_device to set the size for 228 * @size: new size of the loop device 229 * 230 * Callers must validate that the size passed into this function fits into 231 * a sector_t, eg using loop_validate_size() 232 */ 233 static void loop_set_size(struct loop_device *lo, loff_t size) 234 { 235 if (!set_capacity_and_notify(lo->lo_disk, size)) 236 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 237 } 238 239 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 240 { 241 struct iov_iter i; 242 ssize_t bw; 243 244 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len); 245 246 bw = vfs_iter_write(file, &i, ppos, 0); 247 248 if (likely(bw == bvec->bv_len)) 249 return 0; 250 251 printk_ratelimited(KERN_ERR 252 "loop: Write error at byte offset %llu, length %i.\n", 253 (unsigned long long)*ppos, bvec->bv_len); 254 if (bw >= 0) 255 bw = -EIO; 256 return bw; 257 } 258 259 static int lo_write_simple(struct loop_device *lo, struct request *rq, 260 loff_t pos) 261 { 262 struct bio_vec bvec; 263 struct req_iterator iter; 264 int ret = 0; 265 266 rq_for_each_segment(bvec, rq, iter) { 267 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 268 if (ret < 0) 269 break; 270 cond_resched(); 271 } 272 273 return ret; 274 } 275 276 static int lo_read_simple(struct loop_device *lo, struct request *rq, 277 loff_t pos) 278 { 279 struct bio_vec bvec; 280 struct req_iterator iter; 281 struct iov_iter i; 282 ssize_t len; 283 284 rq_for_each_segment(bvec, rq, iter) { 285 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len); 286 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 287 if (len < 0) 288 return len; 289 290 flush_dcache_page(bvec.bv_page); 291 292 if (len != bvec.bv_len) { 293 struct bio *bio; 294 295 __rq_for_each_bio(bio, rq) 296 zero_fill_bio(bio); 297 break; 298 } 299 cond_resched(); 300 } 301 302 return 0; 303 } 304 305 static void loop_clear_limits(struct loop_device *lo, int mode) 306 { 307 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 308 309 if (mode & FALLOC_FL_ZERO_RANGE) 310 lim.max_write_zeroes_sectors = 0; 311 312 if (mode & FALLOC_FL_PUNCH_HOLE) { 313 lim.max_hw_discard_sectors = 0; 314 lim.discard_granularity = 0; 315 } 316 317 queue_limits_commit_update(lo->lo_queue, &lim); 318 } 319 320 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 321 int mode) 322 { 323 /* 324 * We use fallocate to manipulate the space mappings used by the image 325 * a.k.a. discard/zerorange. 326 */ 327 struct file *file = lo->lo_backing_file; 328 int ret; 329 330 mode |= FALLOC_FL_KEEP_SIZE; 331 332 if (!bdev_max_discard_sectors(lo->lo_device)) 333 return -EOPNOTSUPP; 334 335 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 336 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 337 return -EIO; 338 339 /* 340 * We initially configure the limits in a hope that fallocate is 341 * supported and clear them here if that turns out not to be true. 342 */ 343 if (unlikely(ret == -EOPNOTSUPP)) 344 loop_clear_limits(lo, mode); 345 346 return ret; 347 } 348 349 static int lo_req_flush(struct loop_device *lo, struct request *rq) 350 { 351 int ret = vfs_fsync(lo->lo_backing_file, 0); 352 if (unlikely(ret && ret != -EINVAL)) 353 ret = -EIO; 354 355 return ret; 356 } 357 358 static void lo_complete_rq(struct request *rq) 359 { 360 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 361 blk_status_t ret = BLK_STS_OK; 362 363 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 364 req_op(rq) != REQ_OP_READ) { 365 if (cmd->ret < 0) 366 ret = errno_to_blk_status(cmd->ret); 367 goto end_io; 368 } 369 370 /* 371 * Short READ - if we got some data, advance our request and 372 * retry it. If we got no data, end the rest with EIO. 373 */ 374 if (cmd->ret) { 375 blk_update_request(rq, BLK_STS_OK, cmd->ret); 376 cmd->ret = 0; 377 blk_mq_requeue_request(rq, true); 378 } else { 379 if (cmd->use_aio) { 380 struct bio *bio = rq->bio; 381 382 while (bio) { 383 zero_fill_bio(bio); 384 bio = bio->bi_next; 385 } 386 } 387 ret = BLK_STS_IOERR; 388 end_io: 389 blk_mq_end_request(rq, ret); 390 } 391 } 392 393 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 394 { 395 struct request *rq = blk_mq_rq_from_pdu(cmd); 396 397 if (!atomic_dec_and_test(&cmd->ref)) 398 return; 399 kfree(cmd->bvec); 400 cmd->bvec = NULL; 401 if (likely(!blk_should_fake_timeout(rq->q))) 402 blk_mq_complete_request(rq); 403 } 404 405 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 406 { 407 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 408 409 cmd->ret = ret; 410 lo_rw_aio_do_completion(cmd); 411 } 412 413 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 414 loff_t pos, int rw) 415 { 416 struct iov_iter iter; 417 struct req_iterator rq_iter; 418 struct bio_vec *bvec; 419 struct request *rq = blk_mq_rq_from_pdu(cmd); 420 struct bio *bio = rq->bio; 421 struct file *file = lo->lo_backing_file; 422 struct bio_vec tmp; 423 unsigned int offset; 424 int nr_bvec = 0; 425 int ret; 426 427 rq_for_each_bvec(tmp, rq, rq_iter) 428 nr_bvec++; 429 430 if (rq->bio != rq->biotail) { 431 432 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 433 GFP_NOIO); 434 if (!bvec) 435 return -EIO; 436 cmd->bvec = bvec; 437 438 /* 439 * The bios of the request may be started from the middle of 440 * the 'bvec' because of bio splitting, so we can't directly 441 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 442 * API will take care of all details for us. 443 */ 444 rq_for_each_bvec(tmp, rq, rq_iter) { 445 *bvec = tmp; 446 bvec++; 447 } 448 bvec = cmd->bvec; 449 offset = 0; 450 } else { 451 /* 452 * Same here, this bio may be started from the middle of the 453 * 'bvec' because of bio splitting, so offset from the bvec 454 * must be passed to iov iterator 455 */ 456 offset = bio->bi_iter.bi_bvec_done; 457 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 458 } 459 atomic_set(&cmd->ref, 2); 460 461 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 462 iter.iov_offset = offset; 463 464 cmd->iocb.ki_pos = pos; 465 cmd->iocb.ki_filp = file; 466 cmd->iocb.ki_complete = lo_rw_aio_complete; 467 cmd->iocb.ki_flags = IOCB_DIRECT; 468 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 469 470 if (rw == ITER_SOURCE) 471 ret = file->f_op->write_iter(&cmd->iocb, &iter); 472 else 473 ret = file->f_op->read_iter(&cmd->iocb, &iter); 474 475 lo_rw_aio_do_completion(cmd); 476 477 if (ret != -EIOCBQUEUED) 478 lo_rw_aio_complete(&cmd->iocb, ret); 479 return 0; 480 } 481 482 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 483 { 484 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 485 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 486 487 /* 488 * lo_write_simple and lo_read_simple should have been covered 489 * by io submit style function like lo_rw_aio(), one blocker 490 * is that lo_read_simple() need to call flush_dcache_page after 491 * the page is written from kernel, and it isn't easy to handle 492 * this in io submit style function which submits all segments 493 * of the req at one time. And direct read IO doesn't need to 494 * run flush_dcache_page(). 495 */ 496 switch (req_op(rq)) { 497 case REQ_OP_FLUSH: 498 return lo_req_flush(lo, rq); 499 case REQ_OP_WRITE_ZEROES: 500 /* 501 * If the caller doesn't want deallocation, call zeroout to 502 * write zeroes the range. Otherwise, punch them out. 503 */ 504 return lo_fallocate(lo, rq, pos, 505 (rq->cmd_flags & REQ_NOUNMAP) ? 506 FALLOC_FL_ZERO_RANGE : 507 FALLOC_FL_PUNCH_HOLE); 508 case REQ_OP_DISCARD: 509 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 510 case REQ_OP_WRITE: 511 if (cmd->use_aio) 512 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 513 else 514 return lo_write_simple(lo, rq, pos); 515 case REQ_OP_READ: 516 if (cmd->use_aio) 517 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 518 else 519 return lo_read_simple(lo, rq, pos); 520 default: 521 WARN_ON_ONCE(1); 522 return -EIO; 523 } 524 } 525 526 static inline void loop_update_dio(struct loop_device *lo) 527 { 528 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 529 lo->use_dio); 530 } 531 532 static void loop_reread_partitions(struct loop_device *lo) 533 { 534 int rc; 535 536 mutex_lock(&lo->lo_disk->open_mutex); 537 rc = bdev_disk_changed(lo->lo_disk, false); 538 mutex_unlock(&lo->lo_disk->open_mutex); 539 if (rc) 540 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 541 __func__, lo->lo_number, lo->lo_file_name, rc); 542 } 543 544 static inline int is_loop_device(struct file *file) 545 { 546 struct inode *i = file->f_mapping->host; 547 548 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 549 } 550 551 static int loop_validate_file(struct file *file, struct block_device *bdev) 552 { 553 struct inode *inode = file->f_mapping->host; 554 struct file *f = file; 555 556 /* Avoid recursion */ 557 while (is_loop_device(f)) { 558 struct loop_device *l; 559 560 lockdep_assert_held(&loop_validate_mutex); 561 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 562 return -EBADF; 563 564 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 565 if (l->lo_state != Lo_bound) 566 return -EINVAL; 567 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 568 rmb(); 569 f = l->lo_backing_file; 570 } 571 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 572 return -EINVAL; 573 return 0; 574 } 575 576 /* 577 * loop_change_fd switched the backing store of a loopback device to 578 * a new file. This is useful for operating system installers to free up 579 * the original file and in High Availability environments to switch to 580 * an alternative location for the content in case of server meltdown. 581 * This can only work if the loop device is used read-only, and if the 582 * new backing store is the same size and type as the old backing store. 583 */ 584 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 585 unsigned int arg) 586 { 587 struct file *file = fget(arg); 588 struct file *old_file; 589 int error; 590 bool partscan; 591 bool is_loop; 592 593 if (!file) 594 return -EBADF; 595 596 /* suppress uevents while reconfiguring the device */ 597 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 598 599 is_loop = is_loop_device(file); 600 error = loop_global_lock_killable(lo, is_loop); 601 if (error) 602 goto out_putf; 603 error = -ENXIO; 604 if (lo->lo_state != Lo_bound) 605 goto out_err; 606 607 /* the loop device has to be read-only */ 608 error = -EINVAL; 609 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 610 goto out_err; 611 612 error = loop_validate_file(file, bdev); 613 if (error) 614 goto out_err; 615 616 old_file = lo->lo_backing_file; 617 618 error = -EINVAL; 619 620 /* size of the new backing store needs to be the same */ 621 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 622 goto out_err; 623 624 /* and ... switch */ 625 disk_force_media_change(lo->lo_disk); 626 blk_mq_freeze_queue(lo->lo_queue); 627 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 628 lo->lo_backing_file = file; 629 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 630 mapping_set_gfp_mask(file->f_mapping, 631 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 632 loop_update_dio(lo); 633 blk_mq_unfreeze_queue(lo->lo_queue); 634 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 635 loop_global_unlock(lo, is_loop); 636 637 /* 638 * Flush loop_validate_file() before fput(), for l->lo_backing_file 639 * might be pointing at old_file which might be the last reference. 640 */ 641 if (!is_loop) { 642 mutex_lock(&loop_validate_mutex); 643 mutex_unlock(&loop_validate_mutex); 644 } 645 /* 646 * We must drop file reference outside of lo_mutex as dropping 647 * the file ref can take open_mutex which creates circular locking 648 * dependency. 649 */ 650 fput(old_file); 651 if (partscan) 652 loop_reread_partitions(lo); 653 654 error = 0; 655 done: 656 /* enable and uncork uevent now that we are done */ 657 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 658 return error; 659 660 out_err: 661 loop_global_unlock(lo, is_loop); 662 out_putf: 663 fput(file); 664 goto done; 665 } 666 667 /* loop sysfs attributes */ 668 669 static ssize_t loop_attr_show(struct device *dev, char *page, 670 ssize_t (*callback)(struct loop_device *, char *)) 671 { 672 struct gendisk *disk = dev_to_disk(dev); 673 struct loop_device *lo = disk->private_data; 674 675 return callback(lo, page); 676 } 677 678 #define LOOP_ATTR_RO(_name) \ 679 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 680 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 681 struct device_attribute *attr, char *b) \ 682 { \ 683 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 684 } \ 685 static struct device_attribute loop_attr_##_name = \ 686 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 687 688 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 689 { 690 ssize_t ret; 691 char *p = NULL; 692 693 spin_lock_irq(&lo->lo_lock); 694 if (lo->lo_backing_file) 695 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 696 spin_unlock_irq(&lo->lo_lock); 697 698 if (IS_ERR_OR_NULL(p)) 699 ret = PTR_ERR(p); 700 else { 701 ret = strlen(p); 702 memmove(buf, p, ret); 703 buf[ret++] = '\n'; 704 buf[ret] = 0; 705 } 706 707 return ret; 708 } 709 710 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 711 { 712 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 713 } 714 715 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 716 { 717 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 718 } 719 720 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 721 { 722 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 723 724 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 725 } 726 727 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 728 { 729 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 730 731 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 732 } 733 734 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 735 { 736 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 737 738 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 739 } 740 741 LOOP_ATTR_RO(backing_file); 742 LOOP_ATTR_RO(offset); 743 LOOP_ATTR_RO(sizelimit); 744 LOOP_ATTR_RO(autoclear); 745 LOOP_ATTR_RO(partscan); 746 LOOP_ATTR_RO(dio); 747 748 static struct attribute *loop_attrs[] = { 749 &loop_attr_backing_file.attr, 750 &loop_attr_offset.attr, 751 &loop_attr_sizelimit.attr, 752 &loop_attr_autoclear.attr, 753 &loop_attr_partscan.attr, 754 &loop_attr_dio.attr, 755 NULL, 756 }; 757 758 static struct attribute_group loop_attribute_group = { 759 .name = "loop", 760 .attrs= loop_attrs, 761 }; 762 763 static void loop_sysfs_init(struct loop_device *lo) 764 { 765 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 766 &loop_attribute_group); 767 } 768 769 static void loop_sysfs_exit(struct loop_device *lo) 770 { 771 if (lo->sysfs_inited) 772 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 773 &loop_attribute_group); 774 } 775 776 static void loop_config_discard(struct loop_device *lo, 777 struct queue_limits *lim) 778 { 779 struct file *file = lo->lo_backing_file; 780 struct inode *inode = file->f_mapping->host; 781 u32 granularity = 0, max_discard_sectors = 0; 782 struct kstatfs sbuf; 783 784 /* 785 * If the backing device is a block device, mirror its zeroing 786 * capability. Set the discard sectors to the block device's zeroing 787 * capabilities because loop discards result in blkdev_issue_zeroout(), 788 * not blkdev_issue_discard(). This maintains consistent behavior with 789 * file-backed loop devices: discarded regions read back as zero. 790 */ 791 if (S_ISBLK(inode->i_mode)) { 792 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 793 794 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 795 granularity = bdev_discard_granularity(I_BDEV(inode)) ?: 796 queue_physical_block_size(backingq); 797 798 /* 799 * We use punch hole to reclaim the free space used by the 800 * image a.k.a. discard. 801 */ 802 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 803 max_discard_sectors = UINT_MAX >> 9; 804 granularity = sbuf.f_bsize; 805 } 806 807 lim->max_hw_discard_sectors = max_discard_sectors; 808 lim->max_write_zeroes_sectors = max_discard_sectors; 809 if (max_discard_sectors) 810 lim->discard_granularity = granularity; 811 else 812 lim->discard_granularity = 0; 813 } 814 815 struct loop_worker { 816 struct rb_node rb_node; 817 struct work_struct work; 818 struct list_head cmd_list; 819 struct list_head idle_list; 820 struct loop_device *lo; 821 struct cgroup_subsys_state *blkcg_css; 822 unsigned long last_ran_at; 823 }; 824 825 static void loop_workfn(struct work_struct *work); 826 827 #ifdef CONFIG_BLK_CGROUP 828 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 829 { 830 return !css || css == blkcg_root_css; 831 } 832 #else 833 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 834 { 835 return !css; 836 } 837 #endif 838 839 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 840 { 841 struct rb_node **node, *parent = NULL; 842 struct loop_worker *cur_worker, *worker = NULL; 843 struct work_struct *work; 844 struct list_head *cmd_list; 845 846 spin_lock_irq(&lo->lo_work_lock); 847 848 if (queue_on_root_worker(cmd->blkcg_css)) 849 goto queue_work; 850 851 node = &lo->worker_tree.rb_node; 852 853 while (*node) { 854 parent = *node; 855 cur_worker = container_of(*node, struct loop_worker, rb_node); 856 if (cur_worker->blkcg_css == cmd->blkcg_css) { 857 worker = cur_worker; 858 break; 859 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 860 node = &(*node)->rb_left; 861 } else { 862 node = &(*node)->rb_right; 863 } 864 } 865 if (worker) 866 goto queue_work; 867 868 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 869 /* 870 * In the event we cannot allocate a worker, just queue on the 871 * rootcg worker and issue the I/O as the rootcg 872 */ 873 if (!worker) { 874 cmd->blkcg_css = NULL; 875 if (cmd->memcg_css) 876 css_put(cmd->memcg_css); 877 cmd->memcg_css = NULL; 878 goto queue_work; 879 } 880 881 worker->blkcg_css = cmd->blkcg_css; 882 css_get(worker->blkcg_css); 883 INIT_WORK(&worker->work, loop_workfn); 884 INIT_LIST_HEAD(&worker->cmd_list); 885 INIT_LIST_HEAD(&worker->idle_list); 886 worker->lo = lo; 887 rb_link_node(&worker->rb_node, parent, node); 888 rb_insert_color(&worker->rb_node, &lo->worker_tree); 889 queue_work: 890 if (worker) { 891 /* 892 * We need to remove from the idle list here while 893 * holding the lock so that the idle timer doesn't 894 * free the worker 895 */ 896 if (!list_empty(&worker->idle_list)) 897 list_del_init(&worker->idle_list); 898 work = &worker->work; 899 cmd_list = &worker->cmd_list; 900 } else { 901 work = &lo->rootcg_work; 902 cmd_list = &lo->rootcg_cmd_list; 903 } 904 list_add_tail(&cmd->list_entry, cmd_list); 905 queue_work(lo->workqueue, work); 906 spin_unlock_irq(&lo->lo_work_lock); 907 } 908 909 static void loop_set_timer(struct loop_device *lo) 910 { 911 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 912 } 913 914 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 915 { 916 struct loop_worker *pos, *worker; 917 918 spin_lock_irq(&lo->lo_work_lock); 919 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 920 idle_list) { 921 if (!delete_all && 922 time_is_after_jiffies(worker->last_ran_at + 923 LOOP_IDLE_WORKER_TIMEOUT)) 924 break; 925 list_del(&worker->idle_list); 926 rb_erase(&worker->rb_node, &lo->worker_tree); 927 css_put(worker->blkcg_css); 928 kfree(worker); 929 } 930 if (!list_empty(&lo->idle_worker_list)) 931 loop_set_timer(lo); 932 spin_unlock_irq(&lo->lo_work_lock); 933 } 934 935 static void loop_free_idle_workers_timer(struct timer_list *timer) 936 { 937 struct loop_device *lo = container_of(timer, struct loop_device, timer); 938 939 return loop_free_idle_workers(lo, false); 940 } 941 942 static void loop_update_rotational(struct loop_device *lo) 943 { 944 struct file *file = lo->lo_backing_file; 945 struct inode *file_inode = file->f_mapping->host; 946 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 947 struct request_queue *q = lo->lo_queue; 948 bool nonrot = true; 949 950 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 951 if (file_bdev) 952 nonrot = bdev_nonrot(file_bdev); 953 954 if (nonrot) 955 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 956 else 957 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 958 } 959 960 /** 961 * loop_set_status_from_info - configure device from loop_info 962 * @lo: struct loop_device to configure 963 * @info: struct loop_info64 to configure the device with 964 * 965 * Configures the loop device parameters according to the passed 966 * in loop_info64 configuration. 967 */ 968 static int 969 loop_set_status_from_info(struct loop_device *lo, 970 const struct loop_info64 *info) 971 { 972 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 973 return -EINVAL; 974 975 switch (info->lo_encrypt_type) { 976 case LO_CRYPT_NONE: 977 break; 978 case LO_CRYPT_XOR: 979 pr_warn("support for the xor transformation has been removed.\n"); 980 return -EINVAL; 981 case LO_CRYPT_CRYPTOAPI: 982 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 983 return -EINVAL; 984 default: 985 return -EINVAL; 986 } 987 988 /* Avoid assigning overflow values */ 989 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 990 return -EOVERFLOW; 991 992 lo->lo_offset = info->lo_offset; 993 lo->lo_sizelimit = info->lo_sizelimit; 994 995 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 996 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 997 lo->lo_flags = info->lo_flags; 998 return 0; 999 } 1000 1001 static int loop_reconfigure_limits(struct loop_device *lo, unsigned short bsize, 1002 bool update_discard_settings) 1003 { 1004 struct queue_limits lim; 1005 1006 lim = queue_limits_start_update(lo->lo_queue); 1007 lim.logical_block_size = bsize; 1008 lim.physical_block_size = bsize; 1009 lim.io_min = bsize; 1010 if (update_discard_settings) 1011 loop_config_discard(lo, &lim); 1012 return queue_limits_commit_update(lo->lo_queue, &lim); 1013 } 1014 1015 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 1016 struct block_device *bdev, 1017 const struct loop_config *config) 1018 { 1019 struct file *file = fget(config->fd); 1020 struct inode *inode; 1021 struct address_space *mapping; 1022 int error; 1023 loff_t size; 1024 bool partscan; 1025 unsigned short bsize; 1026 bool is_loop; 1027 1028 if (!file) 1029 return -EBADF; 1030 is_loop = is_loop_device(file); 1031 1032 /* This is safe, since we have a reference from open(). */ 1033 __module_get(THIS_MODULE); 1034 1035 /* 1036 * If we don't hold exclusive handle for the device, upgrade to it 1037 * here to avoid changing device under exclusive owner. 1038 */ 1039 if (!(mode & BLK_OPEN_EXCL)) { 1040 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1041 if (error) 1042 goto out_putf; 1043 } 1044 1045 error = loop_global_lock_killable(lo, is_loop); 1046 if (error) 1047 goto out_bdev; 1048 1049 error = -EBUSY; 1050 if (lo->lo_state != Lo_unbound) 1051 goto out_unlock; 1052 1053 error = loop_validate_file(file, bdev); 1054 if (error) 1055 goto out_unlock; 1056 1057 mapping = file->f_mapping; 1058 inode = mapping->host; 1059 1060 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1061 error = -EINVAL; 1062 goto out_unlock; 1063 } 1064 1065 if (config->block_size) { 1066 error = blk_validate_block_size(config->block_size); 1067 if (error) 1068 goto out_unlock; 1069 } 1070 1071 error = loop_set_status_from_info(lo, &config->info); 1072 if (error) 1073 goto out_unlock; 1074 1075 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1076 !file->f_op->write_iter) 1077 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1078 1079 if (!lo->workqueue) { 1080 lo->workqueue = alloc_workqueue("loop%d", 1081 WQ_UNBOUND | WQ_FREEZABLE, 1082 0, lo->lo_number); 1083 if (!lo->workqueue) { 1084 error = -ENOMEM; 1085 goto out_unlock; 1086 } 1087 } 1088 1089 /* suppress uevents while reconfiguring the device */ 1090 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1091 1092 disk_force_media_change(lo->lo_disk); 1093 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1094 1095 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1096 lo->lo_device = bdev; 1097 lo->lo_backing_file = file; 1098 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1099 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1100 1101 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1102 blk_queue_write_cache(lo->lo_queue, true, false); 1103 1104 if (config->block_size) 1105 bsize = config->block_size; 1106 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1107 /* In case of direct I/O, match underlying block size */ 1108 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1109 else 1110 bsize = 512; 1111 1112 error = loop_reconfigure_limits(lo, bsize, true); 1113 if (WARN_ON_ONCE(error)) 1114 goto out_unlock; 1115 1116 loop_update_rotational(lo); 1117 loop_update_dio(lo); 1118 loop_sysfs_init(lo); 1119 1120 size = get_loop_size(lo, file); 1121 loop_set_size(lo, size); 1122 1123 /* Order wrt reading lo_state in loop_validate_file(). */ 1124 wmb(); 1125 1126 lo->lo_state = Lo_bound; 1127 if (part_shift) 1128 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1129 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1130 if (partscan) 1131 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1132 1133 /* enable and uncork uevent now that we are done */ 1134 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1135 1136 loop_global_unlock(lo, is_loop); 1137 if (partscan) 1138 loop_reread_partitions(lo); 1139 1140 if (!(mode & BLK_OPEN_EXCL)) 1141 bd_abort_claiming(bdev, loop_configure); 1142 1143 return 0; 1144 1145 out_unlock: 1146 loop_global_unlock(lo, is_loop); 1147 out_bdev: 1148 if (!(mode & BLK_OPEN_EXCL)) 1149 bd_abort_claiming(bdev, loop_configure); 1150 out_putf: 1151 fput(file); 1152 /* This is safe: open() is still holding a reference. */ 1153 module_put(THIS_MODULE); 1154 return error; 1155 } 1156 1157 static void __loop_clr_fd(struct loop_device *lo, bool release) 1158 { 1159 struct file *filp; 1160 gfp_t gfp = lo->old_gfp_mask; 1161 1162 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags)) 1163 blk_queue_write_cache(lo->lo_queue, false, false); 1164 1165 /* 1166 * Freeze the request queue when unbinding on a live file descriptor and 1167 * thus an open device. When called from ->release we are guaranteed 1168 * that there is no I/O in progress already. 1169 */ 1170 if (!release) 1171 blk_mq_freeze_queue(lo->lo_queue); 1172 1173 spin_lock_irq(&lo->lo_lock); 1174 filp = lo->lo_backing_file; 1175 lo->lo_backing_file = NULL; 1176 spin_unlock_irq(&lo->lo_lock); 1177 1178 lo->lo_device = NULL; 1179 lo->lo_offset = 0; 1180 lo->lo_sizelimit = 0; 1181 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1182 loop_reconfigure_limits(lo, 512, false); 1183 invalidate_disk(lo->lo_disk); 1184 loop_sysfs_exit(lo); 1185 /* let user-space know about this change */ 1186 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1187 mapping_set_gfp_mask(filp->f_mapping, gfp); 1188 /* This is safe: open() is still holding a reference. */ 1189 module_put(THIS_MODULE); 1190 if (!release) 1191 blk_mq_unfreeze_queue(lo->lo_queue); 1192 1193 disk_force_media_change(lo->lo_disk); 1194 1195 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1196 int err; 1197 1198 /* 1199 * open_mutex has been held already in release path, so don't 1200 * acquire it if this function is called in such case. 1201 * 1202 * If the reread partition isn't from release path, lo_refcnt 1203 * must be at least one and it can only become zero when the 1204 * current holder is released. 1205 */ 1206 if (!release) 1207 mutex_lock(&lo->lo_disk->open_mutex); 1208 err = bdev_disk_changed(lo->lo_disk, false); 1209 if (!release) 1210 mutex_unlock(&lo->lo_disk->open_mutex); 1211 if (err) 1212 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1213 __func__, lo->lo_number, err); 1214 /* Device is gone, no point in returning error */ 1215 } 1216 1217 /* 1218 * lo->lo_state is set to Lo_unbound here after above partscan has 1219 * finished. There cannot be anybody else entering __loop_clr_fd() as 1220 * Lo_rundown state protects us from all the other places trying to 1221 * change the 'lo' device. 1222 */ 1223 lo->lo_flags = 0; 1224 if (!part_shift) 1225 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1226 mutex_lock(&lo->lo_mutex); 1227 lo->lo_state = Lo_unbound; 1228 mutex_unlock(&lo->lo_mutex); 1229 1230 /* 1231 * Need not hold lo_mutex to fput backing file. Calling fput holding 1232 * lo_mutex triggers a circular lock dependency possibility warning as 1233 * fput can take open_mutex which is usually taken before lo_mutex. 1234 */ 1235 fput(filp); 1236 } 1237 1238 static int loop_clr_fd(struct loop_device *lo) 1239 { 1240 int err; 1241 1242 /* 1243 * Since lo_ioctl() is called without locks held, it is possible that 1244 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1245 * 1246 * Therefore, use global lock when setting Lo_rundown state in order to 1247 * make sure that loop_validate_file() will fail if the "struct file" 1248 * which loop_configure()/loop_change_fd() found via fget() was this 1249 * loop device. 1250 */ 1251 err = loop_global_lock_killable(lo, true); 1252 if (err) 1253 return err; 1254 if (lo->lo_state != Lo_bound) { 1255 loop_global_unlock(lo, true); 1256 return -ENXIO; 1257 } 1258 /* 1259 * If we've explicitly asked to tear down the loop device, 1260 * and it has an elevated reference count, set it for auto-teardown when 1261 * the last reference goes away. This stops $!~#$@ udev from 1262 * preventing teardown because it decided that it needs to run blkid on 1263 * the loopback device whenever they appear. xfstests is notorious for 1264 * failing tests because blkid via udev races with a losetup 1265 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1266 * command to fail with EBUSY. 1267 */ 1268 if (disk_openers(lo->lo_disk) > 1) { 1269 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1270 loop_global_unlock(lo, true); 1271 return 0; 1272 } 1273 lo->lo_state = Lo_rundown; 1274 loop_global_unlock(lo, true); 1275 1276 __loop_clr_fd(lo, false); 1277 return 0; 1278 } 1279 1280 static int 1281 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1282 { 1283 int err; 1284 int prev_lo_flags; 1285 bool partscan = false; 1286 bool size_changed = false; 1287 1288 err = mutex_lock_killable(&lo->lo_mutex); 1289 if (err) 1290 return err; 1291 if (lo->lo_state != Lo_bound) { 1292 err = -ENXIO; 1293 goto out_unlock; 1294 } 1295 1296 if (lo->lo_offset != info->lo_offset || 1297 lo->lo_sizelimit != info->lo_sizelimit) { 1298 size_changed = true; 1299 sync_blockdev(lo->lo_device); 1300 invalidate_bdev(lo->lo_device); 1301 } 1302 1303 /* I/O need to be drained during transfer transition */ 1304 blk_mq_freeze_queue(lo->lo_queue); 1305 1306 prev_lo_flags = lo->lo_flags; 1307 1308 err = loop_set_status_from_info(lo, info); 1309 if (err) 1310 goto out_unfreeze; 1311 1312 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1313 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1314 /* For those flags, use the previous values instead */ 1315 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1316 /* For flags that can't be cleared, use previous values too */ 1317 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1318 1319 if (size_changed) { 1320 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1321 lo->lo_backing_file); 1322 loop_set_size(lo, new_size); 1323 } 1324 1325 /* update dio if lo_offset or transfer is changed */ 1326 __loop_update_dio(lo, lo->use_dio); 1327 1328 out_unfreeze: 1329 blk_mq_unfreeze_queue(lo->lo_queue); 1330 1331 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1332 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1333 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1334 partscan = true; 1335 } 1336 out_unlock: 1337 mutex_unlock(&lo->lo_mutex); 1338 if (partscan) 1339 loop_reread_partitions(lo); 1340 1341 return err; 1342 } 1343 1344 static int 1345 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1346 { 1347 struct path path; 1348 struct kstat stat; 1349 int ret; 1350 1351 ret = mutex_lock_killable(&lo->lo_mutex); 1352 if (ret) 1353 return ret; 1354 if (lo->lo_state != Lo_bound) { 1355 mutex_unlock(&lo->lo_mutex); 1356 return -ENXIO; 1357 } 1358 1359 memset(info, 0, sizeof(*info)); 1360 info->lo_number = lo->lo_number; 1361 info->lo_offset = lo->lo_offset; 1362 info->lo_sizelimit = lo->lo_sizelimit; 1363 info->lo_flags = lo->lo_flags; 1364 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1365 1366 /* Drop lo_mutex while we call into the filesystem. */ 1367 path = lo->lo_backing_file->f_path; 1368 path_get(&path); 1369 mutex_unlock(&lo->lo_mutex); 1370 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1371 if (!ret) { 1372 info->lo_device = huge_encode_dev(stat.dev); 1373 info->lo_inode = stat.ino; 1374 info->lo_rdevice = huge_encode_dev(stat.rdev); 1375 } 1376 path_put(&path); 1377 return ret; 1378 } 1379 1380 static void 1381 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1382 { 1383 memset(info64, 0, sizeof(*info64)); 1384 info64->lo_number = info->lo_number; 1385 info64->lo_device = info->lo_device; 1386 info64->lo_inode = info->lo_inode; 1387 info64->lo_rdevice = info->lo_rdevice; 1388 info64->lo_offset = info->lo_offset; 1389 info64->lo_sizelimit = 0; 1390 info64->lo_flags = info->lo_flags; 1391 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1392 } 1393 1394 static int 1395 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1396 { 1397 memset(info, 0, sizeof(*info)); 1398 info->lo_number = info64->lo_number; 1399 info->lo_device = info64->lo_device; 1400 info->lo_inode = info64->lo_inode; 1401 info->lo_rdevice = info64->lo_rdevice; 1402 info->lo_offset = info64->lo_offset; 1403 info->lo_flags = info64->lo_flags; 1404 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1405 1406 /* error in case values were truncated */ 1407 if (info->lo_device != info64->lo_device || 1408 info->lo_rdevice != info64->lo_rdevice || 1409 info->lo_inode != info64->lo_inode || 1410 info->lo_offset != info64->lo_offset) 1411 return -EOVERFLOW; 1412 1413 return 0; 1414 } 1415 1416 static int 1417 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1418 { 1419 struct loop_info info; 1420 struct loop_info64 info64; 1421 1422 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1423 return -EFAULT; 1424 loop_info64_from_old(&info, &info64); 1425 return loop_set_status(lo, &info64); 1426 } 1427 1428 static int 1429 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1430 { 1431 struct loop_info64 info64; 1432 1433 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1434 return -EFAULT; 1435 return loop_set_status(lo, &info64); 1436 } 1437 1438 static int 1439 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1440 struct loop_info info; 1441 struct loop_info64 info64; 1442 int err; 1443 1444 if (!arg) 1445 return -EINVAL; 1446 err = loop_get_status(lo, &info64); 1447 if (!err) 1448 err = loop_info64_to_old(&info64, &info); 1449 if (!err && copy_to_user(arg, &info, sizeof(info))) 1450 err = -EFAULT; 1451 1452 return err; 1453 } 1454 1455 static int 1456 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1457 struct loop_info64 info64; 1458 int err; 1459 1460 if (!arg) 1461 return -EINVAL; 1462 err = loop_get_status(lo, &info64); 1463 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1464 err = -EFAULT; 1465 1466 return err; 1467 } 1468 1469 static int loop_set_capacity(struct loop_device *lo) 1470 { 1471 loff_t size; 1472 1473 if (unlikely(lo->lo_state != Lo_bound)) 1474 return -ENXIO; 1475 1476 size = get_loop_size(lo, lo->lo_backing_file); 1477 loop_set_size(lo, size); 1478 1479 return 0; 1480 } 1481 1482 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1483 { 1484 int error = -ENXIO; 1485 if (lo->lo_state != Lo_bound) 1486 goto out; 1487 1488 __loop_update_dio(lo, !!arg); 1489 if (lo->use_dio == !!arg) 1490 return 0; 1491 error = -EINVAL; 1492 out: 1493 return error; 1494 } 1495 1496 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1497 { 1498 int err = 0; 1499 1500 if (lo->lo_state != Lo_bound) 1501 return -ENXIO; 1502 1503 err = blk_validate_block_size(arg); 1504 if (err) 1505 return err; 1506 1507 if (lo->lo_queue->limits.logical_block_size == arg) 1508 return 0; 1509 1510 sync_blockdev(lo->lo_device); 1511 invalidate_bdev(lo->lo_device); 1512 1513 blk_mq_freeze_queue(lo->lo_queue); 1514 err = loop_reconfigure_limits(lo, arg, false); 1515 loop_update_dio(lo); 1516 blk_mq_unfreeze_queue(lo->lo_queue); 1517 1518 return err; 1519 } 1520 1521 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1522 unsigned long arg) 1523 { 1524 int err; 1525 1526 err = mutex_lock_killable(&lo->lo_mutex); 1527 if (err) 1528 return err; 1529 switch (cmd) { 1530 case LOOP_SET_CAPACITY: 1531 err = loop_set_capacity(lo); 1532 break; 1533 case LOOP_SET_DIRECT_IO: 1534 err = loop_set_dio(lo, arg); 1535 break; 1536 case LOOP_SET_BLOCK_SIZE: 1537 err = loop_set_block_size(lo, arg); 1538 break; 1539 default: 1540 err = -EINVAL; 1541 } 1542 mutex_unlock(&lo->lo_mutex); 1543 return err; 1544 } 1545 1546 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1547 unsigned int cmd, unsigned long arg) 1548 { 1549 struct loop_device *lo = bdev->bd_disk->private_data; 1550 void __user *argp = (void __user *) arg; 1551 int err; 1552 1553 switch (cmd) { 1554 case LOOP_SET_FD: { 1555 /* 1556 * Legacy case - pass in a zeroed out struct loop_config with 1557 * only the file descriptor set , which corresponds with the 1558 * default parameters we'd have used otherwise. 1559 */ 1560 struct loop_config config; 1561 1562 memset(&config, 0, sizeof(config)); 1563 config.fd = arg; 1564 1565 return loop_configure(lo, mode, bdev, &config); 1566 } 1567 case LOOP_CONFIGURE: { 1568 struct loop_config config; 1569 1570 if (copy_from_user(&config, argp, sizeof(config))) 1571 return -EFAULT; 1572 1573 return loop_configure(lo, mode, bdev, &config); 1574 } 1575 case LOOP_CHANGE_FD: 1576 return loop_change_fd(lo, bdev, arg); 1577 case LOOP_CLR_FD: 1578 return loop_clr_fd(lo); 1579 case LOOP_SET_STATUS: 1580 err = -EPERM; 1581 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1582 err = loop_set_status_old(lo, argp); 1583 break; 1584 case LOOP_GET_STATUS: 1585 return loop_get_status_old(lo, argp); 1586 case LOOP_SET_STATUS64: 1587 err = -EPERM; 1588 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1589 err = loop_set_status64(lo, argp); 1590 break; 1591 case LOOP_GET_STATUS64: 1592 return loop_get_status64(lo, argp); 1593 case LOOP_SET_CAPACITY: 1594 case LOOP_SET_DIRECT_IO: 1595 case LOOP_SET_BLOCK_SIZE: 1596 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1597 return -EPERM; 1598 fallthrough; 1599 default: 1600 err = lo_simple_ioctl(lo, cmd, arg); 1601 break; 1602 } 1603 1604 return err; 1605 } 1606 1607 #ifdef CONFIG_COMPAT 1608 struct compat_loop_info { 1609 compat_int_t lo_number; /* ioctl r/o */ 1610 compat_dev_t lo_device; /* ioctl r/o */ 1611 compat_ulong_t lo_inode; /* ioctl r/o */ 1612 compat_dev_t lo_rdevice; /* ioctl r/o */ 1613 compat_int_t lo_offset; 1614 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1615 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1616 compat_int_t lo_flags; /* ioctl r/o */ 1617 char lo_name[LO_NAME_SIZE]; 1618 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1619 compat_ulong_t lo_init[2]; 1620 char reserved[4]; 1621 }; 1622 1623 /* 1624 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1625 * - noinlined to reduce stack space usage in main part of driver 1626 */ 1627 static noinline int 1628 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1629 struct loop_info64 *info64) 1630 { 1631 struct compat_loop_info info; 1632 1633 if (copy_from_user(&info, arg, sizeof(info))) 1634 return -EFAULT; 1635 1636 memset(info64, 0, sizeof(*info64)); 1637 info64->lo_number = info.lo_number; 1638 info64->lo_device = info.lo_device; 1639 info64->lo_inode = info.lo_inode; 1640 info64->lo_rdevice = info.lo_rdevice; 1641 info64->lo_offset = info.lo_offset; 1642 info64->lo_sizelimit = 0; 1643 info64->lo_flags = info.lo_flags; 1644 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1645 return 0; 1646 } 1647 1648 /* 1649 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1650 * - noinlined to reduce stack space usage in main part of driver 1651 */ 1652 static noinline int 1653 loop_info64_to_compat(const struct loop_info64 *info64, 1654 struct compat_loop_info __user *arg) 1655 { 1656 struct compat_loop_info info; 1657 1658 memset(&info, 0, sizeof(info)); 1659 info.lo_number = info64->lo_number; 1660 info.lo_device = info64->lo_device; 1661 info.lo_inode = info64->lo_inode; 1662 info.lo_rdevice = info64->lo_rdevice; 1663 info.lo_offset = info64->lo_offset; 1664 info.lo_flags = info64->lo_flags; 1665 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1666 1667 /* error in case values were truncated */ 1668 if (info.lo_device != info64->lo_device || 1669 info.lo_rdevice != info64->lo_rdevice || 1670 info.lo_inode != info64->lo_inode || 1671 info.lo_offset != info64->lo_offset) 1672 return -EOVERFLOW; 1673 1674 if (copy_to_user(arg, &info, sizeof(info))) 1675 return -EFAULT; 1676 return 0; 1677 } 1678 1679 static int 1680 loop_set_status_compat(struct loop_device *lo, 1681 const struct compat_loop_info __user *arg) 1682 { 1683 struct loop_info64 info64; 1684 int ret; 1685 1686 ret = loop_info64_from_compat(arg, &info64); 1687 if (ret < 0) 1688 return ret; 1689 return loop_set_status(lo, &info64); 1690 } 1691 1692 static int 1693 loop_get_status_compat(struct loop_device *lo, 1694 struct compat_loop_info __user *arg) 1695 { 1696 struct loop_info64 info64; 1697 int err; 1698 1699 if (!arg) 1700 return -EINVAL; 1701 err = loop_get_status(lo, &info64); 1702 if (!err) 1703 err = loop_info64_to_compat(&info64, arg); 1704 return err; 1705 } 1706 1707 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1708 unsigned int cmd, unsigned long arg) 1709 { 1710 struct loop_device *lo = bdev->bd_disk->private_data; 1711 int err; 1712 1713 switch(cmd) { 1714 case LOOP_SET_STATUS: 1715 err = loop_set_status_compat(lo, 1716 (const struct compat_loop_info __user *)arg); 1717 break; 1718 case LOOP_GET_STATUS: 1719 err = loop_get_status_compat(lo, 1720 (struct compat_loop_info __user *)arg); 1721 break; 1722 case LOOP_SET_CAPACITY: 1723 case LOOP_CLR_FD: 1724 case LOOP_GET_STATUS64: 1725 case LOOP_SET_STATUS64: 1726 case LOOP_CONFIGURE: 1727 arg = (unsigned long) compat_ptr(arg); 1728 fallthrough; 1729 case LOOP_SET_FD: 1730 case LOOP_CHANGE_FD: 1731 case LOOP_SET_BLOCK_SIZE: 1732 case LOOP_SET_DIRECT_IO: 1733 err = lo_ioctl(bdev, mode, cmd, arg); 1734 break; 1735 default: 1736 err = -ENOIOCTLCMD; 1737 break; 1738 } 1739 return err; 1740 } 1741 #endif 1742 1743 static void lo_release(struct gendisk *disk) 1744 { 1745 struct loop_device *lo = disk->private_data; 1746 1747 if (disk_openers(disk) > 0) 1748 return; 1749 1750 mutex_lock(&lo->lo_mutex); 1751 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) { 1752 lo->lo_state = Lo_rundown; 1753 mutex_unlock(&lo->lo_mutex); 1754 /* 1755 * In autoclear mode, stop the loop thread 1756 * and remove configuration after last close. 1757 */ 1758 __loop_clr_fd(lo, true); 1759 return; 1760 } 1761 mutex_unlock(&lo->lo_mutex); 1762 } 1763 1764 static void lo_free_disk(struct gendisk *disk) 1765 { 1766 struct loop_device *lo = disk->private_data; 1767 1768 if (lo->workqueue) 1769 destroy_workqueue(lo->workqueue); 1770 loop_free_idle_workers(lo, true); 1771 timer_shutdown_sync(&lo->timer); 1772 mutex_destroy(&lo->lo_mutex); 1773 kfree(lo); 1774 } 1775 1776 static const struct block_device_operations lo_fops = { 1777 .owner = THIS_MODULE, 1778 .release = lo_release, 1779 .ioctl = lo_ioctl, 1780 #ifdef CONFIG_COMPAT 1781 .compat_ioctl = lo_compat_ioctl, 1782 #endif 1783 .free_disk = lo_free_disk, 1784 }; 1785 1786 /* 1787 * And now the modules code and kernel interface. 1788 */ 1789 1790 /* 1791 * If max_loop is specified, create that many devices upfront. 1792 * This also becomes a hard limit. If max_loop is not specified, 1793 * the default isn't a hard limit (as before commit 85c50197716c 1794 * changed the default value from 0 for max_loop=0 reasons), just 1795 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1796 * init time. Loop devices can be requested on-demand with the 1797 * /dev/loop-control interface, or be instantiated by accessing 1798 * a 'dead' device node. 1799 */ 1800 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1801 1802 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1803 static bool max_loop_specified; 1804 1805 static int max_loop_param_set_int(const char *val, 1806 const struct kernel_param *kp) 1807 { 1808 int ret; 1809 1810 ret = param_set_int(val, kp); 1811 if (ret < 0) 1812 return ret; 1813 1814 max_loop_specified = true; 1815 return 0; 1816 } 1817 1818 static const struct kernel_param_ops max_loop_param_ops = { 1819 .set = max_loop_param_set_int, 1820 .get = param_get_int, 1821 }; 1822 1823 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1824 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1825 #else 1826 module_param(max_loop, int, 0444); 1827 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1828 #endif 1829 1830 module_param(max_part, int, 0444); 1831 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1832 1833 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1834 1835 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1836 { 1837 int qd, ret; 1838 1839 ret = kstrtoint(s, 0, &qd); 1840 if (ret < 0) 1841 return ret; 1842 if (qd < 1) 1843 return -EINVAL; 1844 hw_queue_depth = qd; 1845 return 0; 1846 } 1847 1848 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1849 .set = loop_set_hw_queue_depth, 1850 .get = param_get_int, 1851 }; 1852 1853 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1854 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1855 1856 MODULE_LICENSE("GPL"); 1857 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1858 1859 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1860 const struct blk_mq_queue_data *bd) 1861 { 1862 struct request *rq = bd->rq; 1863 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1864 struct loop_device *lo = rq->q->queuedata; 1865 1866 blk_mq_start_request(rq); 1867 1868 if (lo->lo_state != Lo_bound) 1869 return BLK_STS_IOERR; 1870 1871 switch (req_op(rq)) { 1872 case REQ_OP_FLUSH: 1873 case REQ_OP_DISCARD: 1874 case REQ_OP_WRITE_ZEROES: 1875 cmd->use_aio = false; 1876 break; 1877 default: 1878 cmd->use_aio = lo->use_dio; 1879 break; 1880 } 1881 1882 /* always use the first bio's css */ 1883 cmd->blkcg_css = NULL; 1884 cmd->memcg_css = NULL; 1885 #ifdef CONFIG_BLK_CGROUP 1886 if (rq->bio) { 1887 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1888 #ifdef CONFIG_MEMCG 1889 if (cmd->blkcg_css) { 1890 cmd->memcg_css = 1891 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1892 &memory_cgrp_subsys); 1893 } 1894 #endif 1895 } 1896 #endif 1897 loop_queue_work(lo, cmd); 1898 1899 return BLK_STS_OK; 1900 } 1901 1902 static void loop_handle_cmd(struct loop_cmd *cmd) 1903 { 1904 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1905 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1906 struct request *rq = blk_mq_rq_from_pdu(cmd); 1907 const bool write = op_is_write(req_op(rq)); 1908 struct loop_device *lo = rq->q->queuedata; 1909 int ret = 0; 1910 struct mem_cgroup *old_memcg = NULL; 1911 const bool use_aio = cmd->use_aio; 1912 1913 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1914 ret = -EIO; 1915 goto failed; 1916 } 1917 1918 if (cmd_blkcg_css) 1919 kthread_associate_blkcg(cmd_blkcg_css); 1920 if (cmd_memcg_css) 1921 old_memcg = set_active_memcg( 1922 mem_cgroup_from_css(cmd_memcg_css)); 1923 1924 /* 1925 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1926 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1927 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1928 * not yet been completed. 1929 */ 1930 ret = do_req_filebacked(lo, rq); 1931 1932 if (cmd_blkcg_css) 1933 kthread_associate_blkcg(NULL); 1934 1935 if (cmd_memcg_css) { 1936 set_active_memcg(old_memcg); 1937 css_put(cmd_memcg_css); 1938 } 1939 failed: 1940 /* complete non-aio request */ 1941 if (!use_aio || ret) { 1942 if (ret == -EOPNOTSUPP) 1943 cmd->ret = ret; 1944 else 1945 cmd->ret = ret ? -EIO : 0; 1946 if (likely(!blk_should_fake_timeout(rq->q))) 1947 blk_mq_complete_request(rq); 1948 } 1949 } 1950 1951 static void loop_process_work(struct loop_worker *worker, 1952 struct list_head *cmd_list, struct loop_device *lo) 1953 { 1954 int orig_flags = current->flags; 1955 struct loop_cmd *cmd; 1956 1957 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1958 spin_lock_irq(&lo->lo_work_lock); 1959 while (!list_empty(cmd_list)) { 1960 cmd = container_of( 1961 cmd_list->next, struct loop_cmd, list_entry); 1962 list_del(cmd_list->next); 1963 spin_unlock_irq(&lo->lo_work_lock); 1964 1965 loop_handle_cmd(cmd); 1966 cond_resched(); 1967 1968 spin_lock_irq(&lo->lo_work_lock); 1969 } 1970 1971 /* 1972 * We only add to the idle list if there are no pending cmds 1973 * *and* the worker will not run again which ensures that it 1974 * is safe to free any worker on the idle list 1975 */ 1976 if (worker && !work_pending(&worker->work)) { 1977 worker->last_ran_at = jiffies; 1978 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1979 loop_set_timer(lo); 1980 } 1981 spin_unlock_irq(&lo->lo_work_lock); 1982 current->flags = orig_flags; 1983 } 1984 1985 static void loop_workfn(struct work_struct *work) 1986 { 1987 struct loop_worker *worker = 1988 container_of(work, struct loop_worker, work); 1989 loop_process_work(worker, &worker->cmd_list, worker->lo); 1990 } 1991 1992 static void loop_rootcg_workfn(struct work_struct *work) 1993 { 1994 struct loop_device *lo = 1995 container_of(work, struct loop_device, rootcg_work); 1996 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1997 } 1998 1999 static const struct blk_mq_ops loop_mq_ops = { 2000 .queue_rq = loop_queue_rq, 2001 .complete = lo_complete_rq, 2002 }; 2003 2004 static int loop_add(int i) 2005 { 2006 struct queue_limits lim = { 2007 /* 2008 * Random number picked from the historic block max_sectors cap. 2009 */ 2010 .max_hw_sectors = 2560u, 2011 }; 2012 struct loop_device *lo; 2013 struct gendisk *disk; 2014 int err; 2015 2016 err = -ENOMEM; 2017 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2018 if (!lo) 2019 goto out; 2020 lo->worker_tree = RB_ROOT; 2021 INIT_LIST_HEAD(&lo->idle_worker_list); 2022 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2023 lo->lo_state = Lo_unbound; 2024 2025 err = mutex_lock_killable(&loop_ctl_mutex); 2026 if (err) 2027 goto out_free_dev; 2028 2029 /* allocate id, if @id >= 0, we're requesting that specific id */ 2030 if (i >= 0) { 2031 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2032 if (err == -ENOSPC) 2033 err = -EEXIST; 2034 } else { 2035 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2036 } 2037 mutex_unlock(&loop_ctl_mutex); 2038 if (err < 0) 2039 goto out_free_dev; 2040 i = err; 2041 2042 lo->tag_set.ops = &loop_mq_ops; 2043 lo->tag_set.nr_hw_queues = 1; 2044 lo->tag_set.queue_depth = hw_queue_depth; 2045 lo->tag_set.numa_node = NUMA_NO_NODE; 2046 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2047 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 2048 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2049 lo->tag_set.driver_data = lo; 2050 2051 err = blk_mq_alloc_tag_set(&lo->tag_set); 2052 if (err) 2053 goto out_free_idr; 2054 2055 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2056 if (IS_ERR(disk)) { 2057 err = PTR_ERR(disk); 2058 goto out_cleanup_tags; 2059 } 2060 lo->lo_queue = lo->lo_disk->queue; 2061 2062 /* 2063 * By default, we do buffer IO, so it doesn't make sense to enable 2064 * merge because the I/O submitted to backing file is handled page by 2065 * page. For directio mode, merge does help to dispatch bigger request 2066 * to underlayer disk. We will enable merge once directio is enabled. 2067 */ 2068 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2069 2070 /* 2071 * Disable partition scanning by default. The in-kernel partition 2072 * scanning can be requested individually per-device during its 2073 * setup. Userspace can always add and remove partitions from all 2074 * devices. The needed partition minors are allocated from the 2075 * extended minor space, the main loop device numbers will continue 2076 * to match the loop minors, regardless of the number of partitions 2077 * used. 2078 * 2079 * If max_part is given, partition scanning is globally enabled for 2080 * all loop devices. The minors for the main loop devices will be 2081 * multiples of max_part. 2082 * 2083 * Note: Global-for-all-devices, set-only-at-init, read-only module 2084 * parameteters like 'max_loop' and 'max_part' make things needlessly 2085 * complicated, are too static, inflexible and may surprise 2086 * userspace tools. Parameters like this in general should be avoided. 2087 */ 2088 if (!part_shift) 2089 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2090 mutex_init(&lo->lo_mutex); 2091 lo->lo_number = i; 2092 spin_lock_init(&lo->lo_lock); 2093 spin_lock_init(&lo->lo_work_lock); 2094 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2095 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2096 disk->major = LOOP_MAJOR; 2097 disk->first_minor = i << part_shift; 2098 disk->minors = 1 << part_shift; 2099 disk->fops = &lo_fops; 2100 disk->private_data = lo; 2101 disk->queue = lo->lo_queue; 2102 disk->events = DISK_EVENT_MEDIA_CHANGE; 2103 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2104 sprintf(disk->disk_name, "loop%d", i); 2105 /* Make this loop device reachable from pathname. */ 2106 err = add_disk(disk); 2107 if (err) 2108 goto out_cleanup_disk; 2109 2110 /* Show this loop device. */ 2111 mutex_lock(&loop_ctl_mutex); 2112 lo->idr_visible = true; 2113 mutex_unlock(&loop_ctl_mutex); 2114 2115 return i; 2116 2117 out_cleanup_disk: 2118 put_disk(disk); 2119 out_cleanup_tags: 2120 blk_mq_free_tag_set(&lo->tag_set); 2121 out_free_idr: 2122 mutex_lock(&loop_ctl_mutex); 2123 idr_remove(&loop_index_idr, i); 2124 mutex_unlock(&loop_ctl_mutex); 2125 out_free_dev: 2126 kfree(lo); 2127 out: 2128 return err; 2129 } 2130 2131 static void loop_remove(struct loop_device *lo) 2132 { 2133 /* Make this loop device unreachable from pathname. */ 2134 del_gendisk(lo->lo_disk); 2135 blk_mq_free_tag_set(&lo->tag_set); 2136 2137 mutex_lock(&loop_ctl_mutex); 2138 idr_remove(&loop_index_idr, lo->lo_number); 2139 mutex_unlock(&loop_ctl_mutex); 2140 2141 put_disk(lo->lo_disk); 2142 } 2143 2144 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2145 static void loop_probe(dev_t dev) 2146 { 2147 int idx = MINOR(dev) >> part_shift; 2148 2149 if (max_loop_specified && max_loop && idx >= max_loop) 2150 return; 2151 loop_add(idx); 2152 } 2153 #else 2154 #define loop_probe NULL 2155 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2156 2157 static int loop_control_remove(int idx) 2158 { 2159 struct loop_device *lo; 2160 int ret; 2161 2162 if (idx < 0) { 2163 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2164 return -EINVAL; 2165 } 2166 2167 /* Hide this loop device for serialization. */ 2168 ret = mutex_lock_killable(&loop_ctl_mutex); 2169 if (ret) 2170 return ret; 2171 lo = idr_find(&loop_index_idr, idx); 2172 if (!lo || !lo->idr_visible) 2173 ret = -ENODEV; 2174 else 2175 lo->idr_visible = false; 2176 mutex_unlock(&loop_ctl_mutex); 2177 if (ret) 2178 return ret; 2179 2180 /* Check whether this loop device can be removed. */ 2181 ret = mutex_lock_killable(&lo->lo_mutex); 2182 if (ret) 2183 goto mark_visible; 2184 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2185 mutex_unlock(&lo->lo_mutex); 2186 ret = -EBUSY; 2187 goto mark_visible; 2188 } 2189 /* Mark this loop device as no more bound, but not quite unbound yet */ 2190 lo->lo_state = Lo_deleting; 2191 mutex_unlock(&lo->lo_mutex); 2192 2193 loop_remove(lo); 2194 return 0; 2195 2196 mark_visible: 2197 /* Show this loop device again. */ 2198 mutex_lock(&loop_ctl_mutex); 2199 lo->idr_visible = true; 2200 mutex_unlock(&loop_ctl_mutex); 2201 return ret; 2202 } 2203 2204 static int loop_control_get_free(int idx) 2205 { 2206 struct loop_device *lo; 2207 int id, ret; 2208 2209 ret = mutex_lock_killable(&loop_ctl_mutex); 2210 if (ret) 2211 return ret; 2212 idr_for_each_entry(&loop_index_idr, lo, id) { 2213 /* Hitting a race results in creating a new loop device which is harmless. */ 2214 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2215 goto found; 2216 } 2217 mutex_unlock(&loop_ctl_mutex); 2218 return loop_add(-1); 2219 found: 2220 mutex_unlock(&loop_ctl_mutex); 2221 return id; 2222 } 2223 2224 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2225 unsigned long parm) 2226 { 2227 switch (cmd) { 2228 case LOOP_CTL_ADD: 2229 return loop_add(parm); 2230 case LOOP_CTL_REMOVE: 2231 return loop_control_remove(parm); 2232 case LOOP_CTL_GET_FREE: 2233 return loop_control_get_free(parm); 2234 default: 2235 return -ENOSYS; 2236 } 2237 } 2238 2239 static const struct file_operations loop_ctl_fops = { 2240 .open = nonseekable_open, 2241 .unlocked_ioctl = loop_control_ioctl, 2242 .compat_ioctl = loop_control_ioctl, 2243 .owner = THIS_MODULE, 2244 .llseek = noop_llseek, 2245 }; 2246 2247 static struct miscdevice loop_misc = { 2248 .minor = LOOP_CTRL_MINOR, 2249 .name = "loop-control", 2250 .fops = &loop_ctl_fops, 2251 }; 2252 2253 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2254 MODULE_ALIAS("devname:loop-control"); 2255 2256 static int __init loop_init(void) 2257 { 2258 int i; 2259 int err; 2260 2261 part_shift = 0; 2262 if (max_part > 0) { 2263 part_shift = fls(max_part); 2264 2265 /* 2266 * Adjust max_part according to part_shift as it is exported 2267 * to user space so that user can decide correct minor number 2268 * if [s]he want to create more devices. 2269 * 2270 * Note that -1 is required because partition 0 is reserved 2271 * for the whole disk. 2272 */ 2273 max_part = (1UL << part_shift) - 1; 2274 } 2275 2276 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2277 err = -EINVAL; 2278 goto err_out; 2279 } 2280 2281 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2282 err = -EINVAL; 2283 goto err_out; 2284 } 2285 2286 err = misc_register(&loop_misc); 2287 if (err < 0) 2288 goto err_out; 2289 2290 2291 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2292 err = -EIO; 2293 goto misc_out; 2294 } 2295 2296 /* pre-create number of devices given by config or max_loop */ 2297 for (i = 0; i < max_loop; i++) 2298 loop_add(i); 2299 2300 printk(KERN_INFO "loop: module loaded\n"); 2301 return 0; 2302 2303 misc_out: 2304 misc_deregister(&loop_misc); 2305 err_out: 2306 return err; 2307 } 2308 2309 static void __exit loop_exit(void) 2310 { 2311 struct loop_device *lo; 2312 int id; 2313 2314 unregister_blkdev(LOOP_MAJOR, "loop"); 2315 misc_deregister(&loop_misc); 2316 2317 /* 2318 * There is no need to use loop_ctl_mutex here, for nobody else can 2319 * access loop_index_idr when this module is unloading (unless forced 2320 * module unloading is requested). If this is not a clean unloading, 2321 * we have no means to avoid kernel crash. 2322 */ 2323 idr_for_each_entry(&loop_index_idr, lo, id) 2324 loop_remove(lo); 2325 2326 idr_destroy(&loop_index_idr); 2327 } 2328 2329 module_init(loop_init); 2330 module_exit(loop_exit); 2331 2332 #ifndef MODULE 2333 static int __init max_loop_setup(char *str) 2334 { 2335 max_loop = simple_strtol(str, NULL, 0); 2336 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2337 max_loop_specified = true; 2338 #endif 2339 return 1; 2340 } 2341 2342 __setup("max_loop=", max_loop_setup); 2343 #endif 2344