xref: /linux/drivers/block/loop.c (revision 3eeebf17f31c583f83e081b17b3076477cb96886)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations prepare_write and/or commit_write are not available on the
44  * backing filesystem.
45  * Anton Altaparmakov, 16 Feb 2005
46  *
47  * Still To Fix:
48  * - Advisory locking is ignored here.
49  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
50  *
51  */
52 
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
56 #include <linux/fs.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/compat.h>
70 #include <linux/suspend.h>
71 #include <linux/freezer.h>
72 #include <linux/writeback.h>
73 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
74 #include <linux/completion.h>
75 #include <linux/highmem.h>
76 #include <linux/gfp.h>
77 #include <linux/kthread.h>
78 #include <linux/splice.h>
79 
80 #include <asm/uaccess.h>
81 
82 static LIST_HEAD(loop_devices);
83 static DEFINE_MUTEX(loop_devices_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 			 struct page *raw_page, unsigned raw_off,
93 			 struct page *loop_page, unsigned loop_off,
94 			 int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
98 
99 	if (cmd == READ)
100 		memcpy(loop_buf, raw_buf, size);
101 	else
102 		memcpy(raw_buf, loop_buf, size);
103 
104 	kunmap_atomic(raw_buf, KM_USER0);
105 	kunmap_atomic(loop_buf, KM_USER1);
106 	cond_resched();
107 	return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 			struct page *raw_page, unsigned raw_off,
112 			struct page *loop_page, unsigned loop_off,
113 			int size, sector_t real_block)
114 {
115 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
116 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
117 	char *in, *out, *key;
118 	int i, keysize;
119 
120 	if (cmd == READ) {
121 		in = raw_buf;
122 		out = loop_buf;
123 	} else {
124 		in = loop_buf;
125 		out = raw_buf;
126 	}
127 
128 	key = lo->lo_encrypt_key;
129 	keysize = lo->lo_encrypt_key_size;
130 	for (i = 0; i < size; i++)
131 		*out++ = *in++ ^ key[(i & 511) % keysize];
132 
133 	kunmap_atomic(raw_buf, KM_USER0);
134 	kunmap_atomic(loop_buf, KM_USER1);
135 	cond_resched();
136 	return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 	if (unlikely(info->lo_encrypt_key_size <= 0))
142 		return -EINVAL;
143 	return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147 	.number = LO_CRYPT_NONE,
148 	.transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152 	.number = LO_CRYPT_XOR,
153 	.transfer = transfer_xor,
154 	.init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 	&none_funcs,
160 	&xor_funcs
161 };
162 
163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 	loff_t size, offset, loopsize;
166 
167 	/* Compute loopsize in bytes */
168 	size = i_size_read(file->f_mapping->host);
169 	offset = lo->lo_offset;
170 	loopsize = size - offset;
171 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
172 		loopsize = lo->lo_sizelimit;
173 
174 	/*
175 	 * Unfortunately, if we want to do I/O on the device,
176 	 * the number of 512-byte sectors has to fit into a sector_t.
177 	 */
178 	return loopsize >> 9;
179 }
180 
181 static int
182 figure_loop_size(struct loop_device *lo)
183 {
184 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
185 	sector_t x = (sector_t)size;
186 
187 	if (unlikely((loff_t)x != size))
188 		return -EFBIG;
189 
190 	set_capacity(lo->lo_disk, x);
191 	return 0;
192 }
193 
194 static inline int
195 lo_do_transfer(struct loop_device *lo, int cmd,
196 	       struct page *rpage, unsigned roffs,
197 	       struct page *lpage, unsigned loffs,
198 	       int size, sector_t rblock)
199 {
200 	if (unlikely(!lo->transfer))
201 		return 0;
202 
203 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
204 }
205 
206 /**
207  * do_lo_send_aops - helper for writing data to a loop device
208  *
209  * This is the fast version for backing filesystems which implement the address
210  * space operations write_begin and write_end.
211  */
212 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
213 		loff_t pos, struct page *unused)
214 {
215 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
216 	struct address_space *mapping = file->f_mapping;
217 	pgoff_t index;
218 	unsigned offset, bv_offs;
219 	int len, ret;
220 
221 	mutex_lock(&mapping->host->i_mutex);
222 	index = pos >> PAGE_CACHE_SHIFT;
223 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
224 	bv_offs = bvec->bv_offset;
225 	len = bvec->bv_len;
226 	while (len > 0) {
227 		sector_t IV;
228 		unsigned size, copied;
229 		int transfer_result;
230 		struct page *page;
231 		void *fsdata;
232 
233 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
234 		size = PAGE_CACHE_SIZE - offset;
235 		if (size > len)
236 			size = len;
237 
238 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
239 							&page, &fsdata);
240 		if (ret)
241 			goto fail;
242 
243 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
244 				bvec->bv_page, bv_offs, size, IV);
245 		copied = size;
246 		if (unlikely(transfer_result))
247 			copied = 0;
248 
249 		ret = pagecache_write_end(file, mapping, pos, size, copied,
250 							page, fsdata);
251 		if (ret < 0 || ret != copied)
252 			goto fail;
253 
254 		if (unlikely(transfer_result))
255 			goto fail;
256 
257 		bv_offs += copied;
258 		len -= copied;
259 		offset = 0;
260 		index++;
261 		pos += copied;
262 	}
263 	ret = 0;
264 out:
265 	mutex_unlock(&mapping->host->i_mutex);
266 	return ret;
267 fail:
268 	ret = -1;
269 	goto out;
270 }
271 
272 /**
273  * __do_lo_send_write - helper for writing data to a loop device
274  *
275  * This helper just factors out common code between do_lo_send_direct_write()
276  * and do_lo_send_write().
277  */
278 static int __do_lo_send_write(struct file *file,
279 		u8 *buf, const int len, loff_t pos)
280 {
281 	ssize_t bw;
282 	mm_segment_t old_fs = get_fs();
283 
284 	set_fs(get_ds());
285 	bw = file->f_op->write(file, buf, len, &pos);
286 	set_fs(old_fs);
287 	if (likely(bw == len))
288 		return 0;
289 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
290 			(unsigned long long)pos, len);
291 	if (bw >= 0)
292 		bw = -EIO;
293 	return bw;
294 }
295 
296 /**
297  * do_lo_send_direct_write - helper for writing data to a loop device
298  *
299  * This is the fast, non-transforming version for backing filesystems which do
300  * not implement the address space operations write_begin and write_end.
301  * It uses the write file operation which should be present on all writeable
302  * filesystems.
303  */
304 static int do_lo_send_direct_write(struct loop_device *lo,
305 		struct bio_vec *bvec, loff_t pos, struct page *page)
306 {
307 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
308 			kmap(bvec->bv_page) + bvec->bv_offset,
309 			bvec->bv_len, pos);
310 	kunmap(bvec->bv_page);
311 	cond_resched();
312 	return bw;
313 }
314 
315 /**
316  * do_lo_send_write - helper for writing data to a loop device
317  *
318  * This is the slow, transforming version for filesystems which do not
319  * implement the address space operations write_begin and write_end.  It
320  * uses the write file operation which should be present on all writeable
321  * filesystems.
322  *
323  * Using fops->write is slower than using aops->{prepare,commit}_write in the
324  * transforming case because we need to double buffer the data as we cannot do
325  * the transformations in place as we do not have direct access to the
326  * destination pages of the backing file.
327  */
328 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
329 		loff_t pos, struct page *page)
330 {
331 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
332 			bvec->bv_offset, bvec->bv_len, pos >> 9);
333 	if (likely(!ret))
334 		return __do_lo_send_write(lo->lo_backing_file,
335 				page_address(page), bvec->bv_len,
336 				pos);
337 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
338 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
339 	if (ret > 0)
340 		ret = -EIO;
341 	return ret;
342 }
343 
344 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
345 {
346 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
347 			struct page *page);
348 	struct bio_vec *bvec;
349 	struct page *page = NULL;
350 	int i, ret = 0;
351 
352 	do_lo_send = do_lo_send_aops;
353 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
354 		do_lo_send = do_lo_send_direct_write;
355 		if (lo->transfer != transfer_none) {
356 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
357 			if (unlikely(!page))
358 				goto fail;
359 			kmap(page);
360 			do_lo_send = do_lo_send_write;
361 		}
362 	}
363 	bio_for_each_segment(bvec, bio, i) {
364 		ret = do_lo_send(lo, bvec, pos, page);
365 		if (ret < 0)
366 			break;
367 		pos += bvec->bv_len;
368 	}
369 	if (page) {
370 		kunmap(page);
371 		__free_page(page);
372 	}
373 out:
374 	return ret;
375 fail:
376 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
377 	ret = -ENOMEM;
378 	goto out;
379 }
380 
381 struct lo_read_data {
382 	struct loop_device *lo;
383 	struct page *page;
384 	unsigned offset;
385 	int bsize;
386 };
387 
388 static int
389 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
390 		struct splice_desc *sd)
391 {
392 	struct lo_read_data *p = sd->u.data;
393 	struct loop_device *lo = p->lo;
394 	struct page *page = buf->page;
395 	sector_t IV;
396 	size_t size;
397 	int ret;
398 
399 	ret = buf->ops->confirm(pipe, buf);
400 	if (unlikely(ret))
401 		return ret;
402 
403 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
404 							(buf->offset >> 9);
405 	size = sd->len;
406 	if (size > p->bsize)
407 		size = p->bsize;
408 
409 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
410 		printk(KERN_ERR "loop: transfer error block %ld\n",
411 		       page->index);
412 		size = -EINVAL;
413 	}
414 
415 	flush_dcache_page(p->page);
416 
417 	if (size > 0)
418 		p->offset += size;
419 
420 	return size;
421 }
422 
423 static int
424 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
425 {
426 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
427 }
428 
429 static int
430 do_lo_receive(struct loop_device *lo,
431 	      struct bio_vec *bvec, int bsize, loff_t pos)
432 {
433 	struct lo_read_data cookie;
434 	struct splice_desc sd;
435 	struct file *file;
436 	long retval;
437 
438 	cookie.lo = lo;
439 	cookie.page = bvec->bv_page;
440 	cookie.offset = bvec->bv_offset;
441 	cookie.bsize = bsize;
442 
443 	sd.len = 0;
444 	sd.total_len = bvec->bv_len;
445 	sd.flags = 0;
446 	sd.pos = pos;
447 	sd.u.data = &cookie;
448 
449 	file = lo->lo_backing_file;
450 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
451 
452 	if (retval < 0)
453 		return retval;
454 
455 	return 0;
456 }
457 
458 static int
459 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
460 {
461 	struct bio_vec *bvec;
462 	int i, ret = 0;
463 
464 	bio_for_each_segment(bvec, bio, i) {
465 		ret = do_lo_receive(lo, bvec, bsize, pos);
466 		if (ret < 0)
467 			break;
468 		pos += bvec->bv_len;
469 	}
470 	return ret;
471 }
472 
473 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
474 {
475 	loff_t pos;
476 	int ret;
477 
478 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
479 	if (bio_rw(bio) == WRITE)
480 		ret = lo_send(lo, bio, pos);
481 	else
482 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
483 	return ret;
484 }
485 
486 /*
487  * Add bio to back of pending list
488  */
489 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
490 {
491 	if (lo->lo_biotail) {
492 		lo->lo_biotail->bi_next = bio;
493 		lo->lo_biotail = bio;
494 	} else
495 		lo->lo_bio = lo->lo_biotail = bio;
496 }
497 
498 /*
499  * Grab first pending buffer
500  */
501 static struct bio *loop_get_bio(struct loop_device *lo)
502 {
503 	struct bio *bio;
504 
505 	if ((bio = lo->lo_bio)) {
506 		if (bio == lo->lo_biotail)
507 			lo->lo_biotail = NULL;
508 		lo->lo_bio = bio->bi_next;
509 		bio->bi_next = NULL;
510 	}
511 
512 	return bio;
513 }
514 
515 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
516 {
517 	struct loop_device *lo = q->queuedata;
518 	int rw = bio_rw(old_bio);
519 
520 	if (rw == READA)
521 		rw = READ;
522 
523 	BUG_ON(!lo || (rw != READ && rw != WRITE));
524 
525 	spin_lock_irq(&lo->lo_lock);
526 	if (lo->lo_state != Lo_bound)
527 		goto out;
528 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
529 		goto out;
530 	loop_add_bio(lo, old_bio);
531 	wake_up(&lo->lo_event);
532 	spin_unlock_irq(&lo->lo_lock);
533 	return 0;
534 
535 out:
536 	spin_unlock_irq(&lo->lo_lock);
537 	bio_io_error(old_bio);
538 	return 0;
539 }
540 
541 /*
542  * kick off io on the underlying address space
543  */
544 static void loop_unplug(struct request_queue *q)
545 {
546 	struct loop_device *lo = q->queuedata;
547 
548 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
549 	blk_run_address_space(lo->lo_backing_file->f_mapping);
550 }
551 
552 struct switch_request {
553 	struct file *file;
554 	struct completion wait;
555 };
556 
557 static void do_loop_switch(struct loop_device *, struct switch_request *);
558 
559 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
560 {
561 	if (unlikely(!bio->bi_bdev)) {
562 		do_loop_switch(lo, bio->bi_private);
563 		bio_put(bio);
564 	} else {
565 		int ret = do_bio_filebacked(lo, bio);
566 		bio_endio(bio, ret);
567 	}
568 }
569 
570 /*
571  * worker thread that handles reads/writes to file backed loop devices,
572  * to avoid blocking in our make_request_fn. it also does loop decrypting
573  * on reads for block backed loop, as that is too heavy to do from
574  * b_end_io context where irqs may be disabled.
575  *
576  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
577  * calling kthread_stop().  Therefore once kthread_should_stop() is
578  * true, make_request will not place any more requests.  Therefore
579  * once kthread_should_stop() is true and lo_bio is NULL, we are
580  * done with the loop.
581  */
582 static int loop_thread(void *data)
583 {
584 	struct loop_device *lo = data;
585 	struct bio *bio;
586 
587 	set_user_nice(current, -20);
588 
589 	while (!kthread_should_stop() || lo->lo_bio) {
590 
591 		wait_event_interruptible(lo->lo_event,
592 				lo->lo_bio || kthread_should_stop());
593 
594 		if (!lo->lo_bio)
595 			continue;
596 		spin_lock_irq(&lo->lo_lock);
597 		bio = loop_get_bio(lo);
598 		spin_unlock_irq(&lo->lo_lock);
599 
600 		BUG_ON(!bio);
601 		loop_handle_bio(lo, bio);
602 	}
603 
604 	return 0;
605 }
606 
607 /*
608  * loop_switch performs the hard work of switching a backing store.
609  * First it needs to flush existing IO, it does this by sending a magic
610  * BIO down the pipe. The completion of this BIO does the actual switch.
611  */
612 static int loop_switch(struct loop_device *lo, struct file *file)
613 {
614 	struct switch_request w;
615 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
616 	if (!bio)
617 		return -ENOMEM;
618 	init_completion(&w.wait);
619 	w.file = file;
620 	bio->bi_private = &w;
621 	bio->bi_bdev = NULL;
622 	loop_make_request(lo->lo_queue, bio);
623 	wait_for_completion(&w.wait);
624 	return 0;
625 }
626 
627 /*
628  * Do the actual switch; called from the BIO completion routine
629  */
630 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
631 {
632 	struct file *file = p->file;
633 	struct file *old_file = lo->lo_backing_file;
634 	struct address_space *mapping = file->f_mapping;
635 
636 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
637 	lo->lo_backing_file = file;
638 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
639 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
640 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
641 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
642 	complete(&p->wait);
643 }
644 
645 
646 /*
647  * loop_change_fd switched the backing store of a loopback device to
648  * a new file. This is useful for operating system installers to free up
649  * the original file and in High Availability environments to switch to
650  * an alternative location for the content in case of server meltdown.
651  * This can only work if the loop device is used read-only, and if the
652  * new backing store is the same size and type as the old backing store.
653  */
654 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
655 			  unsigned int arg)
656 {
657 	struct file	*file, *old_file;
658 	struct inode	*inode;
659 	int		error;
660 
661 	error = -ENXIO;
662 	if (lo->lo_state != Lo_bound)
663 		goto out;
664 
665 	/* the loop device has to be read-only */
666 	error = -EINVAL;
667 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
668 		goto out;
669 
670 	error = -EBADF;
671 	file = fget(arg);
672 	if (!file)
673 		goto out;
674 
675 	inode = file->f_mapping->host;
676 	old_file = lo->lo_backing_file;
677 
678 	error = -EINVAL;
679 
680 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
681 		goto out_putf;
682 
683 	/* new backing store needs to support loop (eg splice_read) */
684 	if (!inode->i_fop->splice_read)
685 		goto out_putf;
686 
687 	/* size of the new backing store needs to be the same */
688 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
689 		goto out_putf;
690 
691 	/* and ... switch */
692 	error = loop_switch(lo, file);
693 	if (error)
694 		goto out_putf;
695 
696 	fput(old_file);
697 	if (max_part > 0)
698 		ioctl_by_bdev(bdev, BLKRRPART, 0);
699 	return 0;
700 
701  out_putf:
702 	fput(file);
703  out:
704 	return error;
705 }
706 
707 static inline int is_loop_device(struct file *file)
708 {
709 	struct inode *i = file->f_mapping->host;
710 
711 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
712 }
713 
714 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
715 		       struct block_device *bdev, unsigned int arg)
716 {
717 	struct file	*file, *f;
718 	struct inode	*inode;
719 	struct address_space *mapping;
720 	unsigned lo_blocksize;
721 	int		lo_flags = 0;
722 	int		error;
723 	loff_t		size;
724 
725 	/* This is safe, since we have a reference from open(). */
726 	__module_get(THIS_MODULE);
727 
728 	error = -EBADF;
729 	file = fget(arg);
730 	if (!file)
731 		goto out;
732 
733 	error = -EBUSY;
734 	if (lo->lo_state != Lo_unbound)
735 		goto out_putf;
736 
737 	/* Avoid recursion */
738 	f = file;
739 	while (is_loop_device(f)) {
740 		struct loop_device *l;
741 
742 		if (f->f_mapping->host->i_bdev == bdev)
743 			goto out_putf;
744 
745 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
746 		if (l->lo_state == Lo_unbound) {
747 			error = -EINVAL;
748 			goto out_putf;
749 		}
750 		f = l->lo_backing_file;
751 	}
752 
753 	mapping = file->f_mapping;
754 	inode = mapping->host;
755 
756 	if (!(file->f_mode & FMODE_WRITE))
757 		lo_flags |= LO_FLAGS_READ_ONLY;
758 
759 	error = -EINVAL;
760 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
761 		const struct address_space_operations *aops = mapping->a_ops;
762 		/*
763 		 * If we can't read - sorry. If we only can't write - well,
764 		 * it's going to be read-only.
765 		 */
766 		if (!file->f_op->splice_read)
767 			goto out_putf;
768 		if (aops->prepare_write || aops->write_begin)
769 			lo_flags |= LO_FLAGS_USE_AOPS;
770 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
771 			lo_flags |= LO_FLAGS_READ_ONLY;
772 
773 		lo_blocksize = S_ISBLK(inode->i_mode) ?
774 			inode->i_bdev->bd_block_size : PAGE_SIZE;
775 
776 		error = 0;
777 	} else {
778 		goto out_putf;
779 	}
780 
781 	size = get_loop_size(lo, file);
782 
783 	if ((loff_t)(sector_t)size != size) {
784 		error = -EFBIG;
785 		goto out_putf;
786 	}
787 
788 	if (!(mode & FMODE_WRITE))
789 		lo_flags |= LO_FLAGS_READ_ONLY;
790 
791 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
792 
793 	lo->lo_blocksize = lo_blocksize;
794 	lo->lo_device = bdev;
795 	lo->lo_flags = lo_flags;
796 	lo->lo_backing_file = file;
797 	lo->transfer = transfer_none;
798 	lo->ioctl = NULL;
799 	lo->lo_sizelimit = 0;
800 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
801 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
802 
803 	lo->lo_bio = lo->lo_biotail = NULL;
804 
805 	/*
806 	 * set queue make_request_fn, and add limits based on lower level
807 	 * device
808 	 */
809 	blk_queue_make_request(lo->lo_queue, loop_make_request);
810 	lo->lo_queue->queuedata = lo;
811 	lo->lo_queue->unplug_fn = loop_unplug;
812 
813 	set_capacity(lo->lo_disk, size);
814 	bd_set_size(bdev, size << 9);
815 
816 	set_blocksize(bdev, lo_blocksize);
817 
818 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
819 						lo->lo_number);
820 	if (IS_ERR(lo->lo_thread)) {
821 		error = PTR_ERR(lo->lo_thread);
822 		goto out_clr;
823 	}
824 	lo->lo_state = Lo_bound;
825 	wake_up_process(lo->lo_thread);
826 	if (max_part > 0)
827 		ioctl_by_bdev(bdev, BLKRRPART, 0);
828 	return 0;
829 
830 out_clr:
831 	lo->lo_thread = NULL;
832 	lo->lo_device = NULL;
833 	lo->lo_backing_file = NULL;
834 	lo->lo_flags = 0;
835 	set_capacity(lo->lo_disk, 0);
836 	invalidate_bdev(bdev);
837 	bd_set_size(bdev, 0);
838 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
839 	lo->lo_state = Lo_unbound;
840  out_putf:
841 	fput(file);
842  out:
843 	/* This is safe: open() is still holding a reference. */
844 	module_put(THIS_MODULE);
845 	return error;
846 }
847 
848 static int
849 loop_release_xfer(struct loop_device *lo)
850 {
851 	int err = 0;
852 	struct loop_func_table *xfer = lo->lo_encryption;
853 
854 	if (xfer) {
855 		if (xfer->release)
856 			err = xfer->release(lo);
857 		lo->transfer = NULL;
858 		lo->lo_encryption = NULL;
859 		module_put(xfer->owner);
860 	}
861 	return err;
862 }
863 
864 static int
865 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
866 	       const struct loop_info64 *i)
867 {
868 	int err = 0;
869 
870 	if (xfer) {
871 		struct module *owner = xfer->owner;
872 
873 		if (!try_module_get(owner))
874 			return -EINVAL;
875 		if (xfer->init)
876 			err = xfer->init(lo, i);
877 		if (err)
878 			module_put(owner);
879 		else
880 			lo->lo_encryption = xfer;
881 	}
882 	return err;
883 }
884 
885 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
886 {
887 	struct file *filp = lo->lo_backing_file;
888 	gfp_t gfp = lo->old_gfp_mask;
889 
890 	if (lo->lo_state != Lo_bound)
891 		return -ENXIO;
892 
893 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
894 		return -EBUSY;
895 
896 	if (filp == NULL)
897 		return -EINVAL;
898 
899 	spin_lock_irq(&lo->lo_lock);
900 	lo->lo_state = Lo_rundown;
901 	spin_unlock_irq(&lo->lo_lock);
902 
903 	kthread_stop(lo->lo_thread);
904 
905 	lo->lo_backing_file = NULL;
906 
907 	loop_release_xfer(lo);
908 	lo->transfer = NULL;
909 	lo->ioctl = NULL;
910 	lo->lo_device = NULL;
911 	lo->lo_encryption = NULL;
912 	lo->lo_offset = 0;
913 	lo->lo_sizelimit = 0;
914 	lo->lo_encrypt_key_size = 0;
915 	lo->lo_flags = 0;
916 	lo->lo_thread = NULL;
917 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
918 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
919 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
920 	if (bdev)
921 		invalidate_bdev(bdev);
922 	set_capacity(lo->lo_disk, 0);
923 	if (bdev)
924 		bd_set_size(bdev, 0);
925 	mapping_set_gfp_mask(filp->f_mapping, gfp);
926 	lo->lo_state = Lo_unbound;
927 	fput(filp);
928 	/* This is safe: open() is still holding a reference. */
929 	module_put(THIS_MODULE);
930 	if (max_part > 0)
931 		ioctl_by_bdev(bdev, BLKRRPART, 0);
932 	return 0;
933 }
934 
935 static int
936 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
937 {
938 	int err;
939 	struct loop_func_table *xfer;
940 
941 	if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
942 	    !capable(CAP_SYS_ADMIN))
943 		return -EPERM;
944 	if (lo->lo_state != Lo_bound)
945 		return -ENXIO;
946 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
947 		return -EINVAL;
948 
949 	err = loop_release_xfer(lo);
950 	if (err)
951 		return err;
952 
953 	if (info->lo_encrypt_type) {
954 		unsigned int type = info->lo_encrypt_type;
955 
956 		if (type >= MAX_LO_CRYPT)
957 			return -EINVAL;
958 		xfer = xfer_funcs[type];
959 		if (xfer == NULL)
960 			return -EINVAL;
961 	} else
962 		xfer = NULL;
963 
964 	err = loop_init_xfer(lo, xfer, info);
965 	if (err)
966 		return err;
967 
968 	if (lo->lo_offset != info->lo_offset ||
969 	    lo->lo_sizelimit != info->lo_sizelimit) {
970 		lo->lo_offset = info->lo_offset;
971 		lo->lo_sizelimit = info->lo_sizelimit;
972 		if (figure_loop_size(lo))
973 			return -EFBIG;
974 	}
975 
976 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
977 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
978 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
979 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
980 
981 	if (!xfer)
982 		xfer = &none_funcs;
983 	lo->transfer = xfer->transfer;
984 	lo->ioctl = xfer->ioctl;
985 
986 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
987 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
988 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
989 
990 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
991 	lo->lo_init[0] = info->lo_init[0];
992 	lo->lo_init[1] = info->lo_init[1];
993 	if (info->lo_encrypt_key_size) {
994 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
995 		       info->lo_encrypt_key_size);
996 		lo->lo_key_owner = current->uid;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 static int
1003 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1004 {
1005 	struct file *file = lo->lo_backing_file;
1006 	struct kstat stat;
1007 	int error;
1008 
1009 	if (lo->lo_state != Lo_bound)
1010 		return -ENXIO;
1011 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1012 	if (error)
1013 		return error;
1014 	memset(info, 0, sizeof(*info));
1015 	info->lo_number = lo->lo_number;
1016 	info->lo_device = huge_encode_dev(stat.dev);
1017 	info->lo_inode = stat.ino;
1018 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1019 	info->lo_offset = lo->lo_offset;
1020 	info->lo_sizelimit = lo->lo_sizelimit;
1021 	info->lo_flags = lo->lo_flags;
1022 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1023 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1024 	info->lo_encrypt_type =
1025 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1026 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1027 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1028 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1029 		       lo->lo_encrypt_key_size);
1030 	}
1031 	return 0;
1032 }
1033 
1034 static void
1035 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1036 {
1037 	memset(info64, 0, sizeof(*info64));
1038 	info64->lo_number = info->lo_number;
1039 	info64->lo_device = info->lo_device;
1040 	info64->lo_inode = info->lo_inode;
1041 	info64->lo_rdevice = info->lo_rdevice;
1042 	info64->lo_offset = info->lo_offset;
1043 	info64->lo_sizelimit = 0;
1044 	info64->lo_encrypt_type = info->lo_encrypt_type;
1045 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1046 	info64->lo_flags = info->lo_flags;
1047 	info64->lo_init[0] = info->lo_init[0];
1048 	info64->lo_init[1] = info->lo_init[1];
1049 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1050 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1051 	else
1052 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1053 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1054 }
1055 
1056 static int
1057 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1058 {
1059 	memset(info, 0, sizeof(*info));
1060 	info->lo_number = info64->lo_number;
1061 	info->lo_device = info64->lo_device;
1062 	info->lo_inode = info64->lo_inode;
1063 	info->lo_rdevice = info64->lo_rdevice;
1064 	info->lo_offset = info64->lo_offset;
1065 	info->lo_encrypt_type = info64->lo_encrypt_type;
1066 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1067 	info->lo_flags = info64->lo_flags;
1068 	info->lo_init[0] = info64->lo_init[0];
1069 	info->lo_init[1] = info64->lo_init[1];
1070 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1071 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1072 	else
1073 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1074 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1075 
1076 	/* error in case values were truncated */
1077 	if (info->lo_device != info64->lo_device ||
1078 	    info->lo_rdevice != info64->lo_rdevice ||
1079 	    info->lo_inode != info64->lo_inode ||
1080 	    info->lo_offset != info64->lo_offset)
1081 		return -EOVERFLOW;
1082 
1083 	return 0;
1084 }
1085 
1086 static int
1087 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1088 {
1089 	struct loop_info info;
1090 	struct loop_info64 info64;
1091 
1092 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1093 		return -EFAULT;
1094 	loop_info64_from_old(&info, &info64);
1095 	return loop_set_status(lo, &info64);
1096 }
1097 
1098 static int
1099 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1100 {
1101 	struct loop_info64 info64;
1102 
1103 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1104 		return -EFAULT;
1105 	return loop_set_status(lo, &info64);
1106 }
1107 
1108 static int
1109 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1110 	struct loop_info info;
1111 	struct loop_info64 info64;
1112 	int err = 0;
1113 
1114 	if (!arg)
1115 		err = -EINVAL;
1116 	if (!err)
1117 		err = loop_get_status(lo, &info64);
1118 	if (!err)
1119 		err = loop_info64_to_old(&info64, &info);
1120 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1121 		err = -EFAULT;
1122 
1123 	return err;
1124 }
1125 
1126 static int
1127 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1128 	struct loop_info64 info64;
1129 	int err = 0;
1130 
1131 	if (!arg)
1132 		err = -EINVAL;
1133 	if (!err)
1134 		err = loop_get_status(lo, &info64);
1135 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1136 		err = -EFAULT;
1137 
1138 	return err;
1139 }
1140 
1141 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1142 	unsigned int cmd, unsigned long arg)
1143 {
1144 	struct loop_device *lo = bdev->bd_disk->private_data;
1145 	int err;
1146 
1147 	mutex_lock(&lo->lo_ctl_mutex);
1148 	switch (cmd) {
1149 	case LOOP_SET_FD:
1150 		err = loop_set_fd(lo, mode, bdev, arg);
1151 		break;
1152 	case LOOP_CHANGE_FD:
1153 		err = loop_change_fd(lo, bdev, arg);
1154 		break;
1155 	case LOOP_CLR_FD:
1156 		err = loop_clr_fd(lo, bdev);
1157 		break;
1158 	case LOOP_SET_STATUS:
1159 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1160 		break;
1161 	case LOOP_GET_STATUS:
1162 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1163 		break;
1164 	case LOOP_SET_STATUS64:
1165 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1166 		break;
1167 	case LOOP_GET_STATUS64:
1168 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1169 		break;
1170 	default:
1171 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1172 	}
1173 	mutex_unlock(&lo->lo_ctl_mutex);
1174 	return err;
1175 }
1176 
1177 #ifdef CONFIG_COMPAT
1178 struct compat_loop_info {
1179 	compat_int_t	lo_number;      /* ioctl r/o */
1180 	compat_dev_t	lo_device;      /* ioctl r/o */
1181 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1182 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1183 	compat_int_t	lo_offset;
1184 	compat_int_t	lo_encrypt_type;
1185 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1186 	compat_int_t	lo_flags;       /* ioctl r/o */
1187 	char		lo_name[LO_NAME_SIZE];
1188 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1189 	compat_ulong_t	lo_init[2];
1190 	char		reserved[4];
1191 };
1192 
1193 /*
1194  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1195  * - noinlined to reduce stack space usage in main part of driver
1196  */
1197 static noinline int
1198 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1199 			struct loop_info64 *info64)
1200 {
1201 	struct compat_loop_info info;
1202 
1203 	if (copy_from_user(&info, arg, sizeof(info)))
1204 		return -EFAULT;
1205 
1206 	memset(info64, 0, sizeof(*info64));
1207 	info64->lo_number = info.lo_number;
1208 	info64->lo_device = info.lo_device;
1209 	info64->lo_inode = info.lo_inode;
1210 	info64->lo_rdevice = info.lo_rdevice;
1211 	info64->lo_offset = info.lo_offset;
1212 	info64->lo_sizelimit = 0;
1213 	info64->lo_encrypt_type = info.lo_encrypt_type;
1214 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1215 	info64->lo_flags = info.lo_flags;
1216 	info64->lo_init[0] = info.lo_init[0];
1217 	info64->lo_init[1] = info.lo_init[1];
1218 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1219 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1220 	else
1221 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1222 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1228  * - noinlined to reduce stack space usage in main part of driver
1229  */
1230 static noinline int
1231 loop_info64_to_compat(const struct loop_info64 *info64,
1232 		      struct compat_loop_info __user *arg)
1233 {
1234 	struct compat_loop_info info;
1235 
1236 	memset(&info, 0, sizeof(info));
1237 	info.lo_number = info64->lo_number;
1238 	info.lo_device = info64->lo_device;
1239 	info.lo_inode = info64->lo_inode;
1240 	info.lo_rdevice = info64->lo_rdevice;
1241 	info.lo_offset = info64->lo_offset;
1242 	info.lo_encrypt_type = info64->lo_encrypt_type;
1243 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1244 	info.lo_flags = info64->lo_flags;
1245 	info.lo_init[0] = info64->lo_init[0];
1246 	info.lo_init[1] = info64->lo_init[1];
1247 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1248 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1249 	else
1250 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1251 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1252 
1253 	/* error in case values were truncated */
1254 	if (info.lo_device != info64->lo_device ||
1255 	    info.lo_rdevice != info64->lo_rdevice ||
1256 	    info.lo_inode != info64->lo_inode ||
1257 	    info.lo_offset != info64->lo_offset ||
1258 	    info.lo_init[0] != info64->lo_init[0] ||
1259 	    info.lo_init[1] != info64->lo_init[1])
1260 		return -EOVERFLOW;
1261 
1262 	if (copy_to_user(arg, &info, sizeof(info)))
1263 		return -EFAULT;
1264 	return 0;
1265 }
1266 
1267 static int
1268 loop_set_status_compat(struct loop_device *lo,
1269 		       const struct compat_loop_info __user *arg)
1270 {
1271 	struct loop_info64 info64;
1272 	int ret;
1273 
1274 	ret = loop_info64_from_compat(arg, &info64);
1275 	if (ret < 0)
1276 		return ret;
1277 	return loop_set_status(lo, &info64);
1278 }
1279 
1280 static int
1281 loop_get_status_compat(struct loop_device *lo,
1282 		       struct compat_loop_info __user *arg)
1283 {
1284 	struct loop_info64 info64;
1285 	int err = 0;
1286 
1287 	if (!arg)
1288 		err = -EINVAL;
1289 	if (!err)
1290 		err = loop_get_status(lo, &info64);
1291 	if (!err)
1292 		err = loop_info64_to_compat(&info64, arg);
1293 	return err;
1294 }
1295 
1296 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1297 			   unsigned int cmd, unsigned long arg)
1298 {
1299 	struct loop_device *lo = bdev->bd_disk->private_data;
1300 	int err;
1301 
1302 	switch(cmd) {
1303 	case LOOP_SET_STATUS:
1304 		mutex_lock(&lo->lo_ctl_mutex);
1305 		err = loop_set_status_compat(
1306 			lo, (const struct compat_loop_info __user *) arg);
1307 		mutex_unlock(&lo->lo_ctl_mutex);
1308 		break;
1309 	case LOOP_GET_STATUS:
1310 		mutex_lock(&lo->lo_ctl_mutex);
1311 		err = loop_get_status_compat(
1312 			lo, (struct compat_loop_info __user *) arg);
1313 		mutex_unlock(&lo->lo_ctl_mutex);
1314 		break;
1315 	case LOOP_CLR_FD:
1316 	case LOOP_GET_STATUS64:
1317 	case LOOP_SET_STATUS64:
1318 		arg = (unsigned long) compat_ptr(arg);
1319 	case LOOP_SET_FD:
1320 	case LOOP_CHANGE_FD:
1321 		err = lo_ioctl(bdev, mode, cmd, arg);
1322 		break;
1323 	default:
1324 		err = -ENOIOCTLCMD;
1325 		break;
1326 	}
1327 	return err;
1328 }
1329 #endif
1330 
1331 static int lo_open(struct block_device *bdev, fmode_t mode)
1332 {
1333 	struct loop_device *lo = bdev->bd_disk->private_data;
1334 
1335 	mutex_lock(&lo->lo_ctl_mutex);
1336 	lo->lo_refcnt++;
1337 	mutex_unlock(&lo->lo_ctl_mutex);
1338 
1339 	return 0;
1340 }
1341 
1342 static int lo_release(struct gendisk *disk, fmode_t mode)
1343 {
1344 	struct loop_device *lo = disk->private_data;
1345 
1346 	mutex_lock(&lo->lo_ctl_mutex);
1347 	--lo->lo_refcnt;
1348 
1349 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) && !lo->lo_refcnt)
1350 		loop_clr_fd(lo, NULL);
1351 
1352 	mutex_unlock(&lo->lo_ctl_mutex);
1353 
1354 	return 0;
1355 }
1356 
1357 static struct block_device_operations lo_fops = {
1358 	.owner =	THIS_MODULE,
1359 	.open =		lo_open,
1360 	.release =	lo_release,
1361 	.ioctl =	lo_ioctl,
1362 #ifdef CONFIG_COMPAT
1363 	.compat_ioctl =	lo_compat_ioctl,
1364 #endif
1365 };
1366 
1367 /*
1368  * And now the modules code and kernel interface.
1369  */
1370 static int max_loop;
1371 module_param(max_loop, int, 0);
1372 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1373 module_param(max_part, int, 0);
1374 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1375 MODULE_LICENSE("GPL");
1376 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1377 
1378 int loop_register_transfer(struct loop_func_table *funcs)
1379 {
1380 	unsigned int n = funcs->number;
1381 
1382 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1383 		return -EINVAL;
1384 	xfer_funcs[n] = funcs;
1385 	return 0;
1386 }
1387 
1388 int loop_unregister_transfer(int number)
1389 {
1390 	unsigned int n = number;
1391 	struct loop_device *lo;
1392 	struct loop_func_table *xfer;
1393 
1394 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1395 		return -EINVAL;
1396 
1397 	xfer_funcs[n] = NULL;
1398 
1399 	list_for_each_entry(lo, &loop_devices, lo_list) {
1400 		mutex_lock(&lo->lo_ctl_mutex);
1401 
1402 		if (lo->lo_encryption == xfer)
1403 			loop_release_xfer(lo);
1404 
1405 		mutex_unlock(&lo->lo_ctl_mutex);
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 EXPORT_SYMBOL(loop_register_transfer);
1412 EXPORT_SYMBOL(loop_unregister_transfer);
1413 
1414 static struct loop_device *loop_alloc(int i)
1415 {
1416 	struct loop_device *lo;
1417 	struct gendisk *disk;
1418 
1419 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1420 	if (!lo)
1421 		goto out;
1422 
1423 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1424 	if (!lo->lo_queue)
1425 		goto out_free_dev;
1426 
1427 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1428 	if (!disk)
1429 		goto out_free_queue;
1430 
1431 	mutex_init(&lo->lo_ctl_mutex);
1432 	lo->lo_number		= i;
1433 	lo->lo_thread		= NULL;
1434 	init_waitqueue_head(&lo->lo_event);
1435 	spin_lock_init(&lo->lo_lock);
1436 	disk->major		= LOOP_MAJOR;
1437 	disk->first_minor	= i << part_shift;
1438 	disk->fops		= &lo_fops;
1439 	disk->private_data	= lo;
1440 	disk->queue		= lo->lo_queue;
1441 	sprintf(disk->disk_name, "loop%d", i);
1442 	return lo;
1443 
1444 out_free_queue:
1445 	blk_cleanup_queue(lo->lo_queue);
1446 out_free_dev:
1447 	kfree(lo);
1448 out:
1449 	return NULL;
1450 }
1451 
1452 static void loop_free(struct loop_device *lo)
1453 {
1454 	blk_cleanup_queue(lo->lo_queue);
1455 	put_disk(lo->lo_disk);
1456 	list_del(&lo->lo_list);
1457 	kfree(lo);
1458 }
1459 
1460 static struct loop_device *loop_init_one(int i)
1461 {
1462 	struct loop_device *lo;
1463 
1464 	list_for_each_entry(lo, &loop_devices, lo_list) {
1465 		if (lo->lo_number == i)
1466 			return lo;
1467 	}
1468 
1469 	lo = loop_alloc(i);
1470 	if (lo) {
1471 		add_disk(lo->lo_disk);
1472 		list_add_tail(&lo->lo_list, &loop_devices);
1473 	}
1474 	return lo;
1475 }
1476 
1477 static void loop_del_one(struct loop_device *lo)
1478 {
1479 	del_gendisk(lo->lo_disk);
1480 	loop_free(lo);
1481 }
1482 
1483 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1484 {
1485 	struct loop_device *lo;
1486 	struct kobject *kobj;
1487 
1488 	mutex_lock(&loop_devices_mutex);
1489 	lo = loop_init_one(dev & MINORMASK);
1490 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1491 	mutex_unlock(&loop_devices_mutex);
1492 
1493 	*part = 0;
1494 	return kobj;
1495 }
1496 
1497 static int __init loop_init(void)
1498 {
1499 	int i, nr;
1500 	unsigned long range;
1501 	struct loop_device *lo, *next;
1502 
1503 	/*
1504 	 * loop module now has a feature to instantiate underlying device
1505 	 * structure on-demand, provided that there is an access dev node.
1506 	 * However, this will not work well with user space tool that doesn't
1507 	 * know about such "feature".  In order to not break any existing
1508 	 * tool, we do the following:
1509 	 *
1510 	 * (1) if max_loop is specified, create that many upfront, and this
1511 	 *     also becomes a hard limit.
1512 	 * (2) if max_loop is not specified, create 8 loop device on module
1513 	 *     load, user can further extend loop device by create dev node
1514 	 *     themselves and have kernel automatically instantiate actual
1515 	 *     device on-demand.
1516 	 */
1517 
1518 	part_shift = 0;
1519 	if (max_part > 0)
1520 		part_shift = fls(max_part);
1521 
1522 	if (max_loop > 1UL << (MINORBITS - part_shift))
1523 		return -EINVAL;
1524 
1525 	if (max_loop) {
1526 		nr = max_loop;
1527 		range = max_loop;
1528 	} else {
1529 		nr = 8;
1530 		range = 1UL << (MINORBITS - part_shift);
1531 	}
1532 
1533 	if (register_blkdev(LOOP_MAJOR, "loop"))
1534 		return -EIO;
1535 
1536 	for (i = 0; i < nr; i++) {
1537 		lo = loop_alloc(i);
1538 		if (!lo)
1539 			goto Enomem;
1540 		list_add_tail(&lo->lo_list, &loop_devices);
1541 	}
1542 
1543 	/* point of no return */
1544 
1545 	list_for_each_entry(lo, &loop_devices, lo_list)
1546 		add_disk(lo->lo_disk);
1547 
1548 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1549 				  THIS_MODULE, loop_probe, NULL, NULL);
1550 
1551 	printk(KERN_INFO "loop: module loaded\n");
1552 	return 0;
1553 
1554 Enomem:
1555 	printk(KERN_INFO "loop: out of memory\n");
1556 
1557 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1558 		loop_free(lo);
1559 
1560 	unregister_blkdev(LOOP_MAJOR, "loop");
1561 	return -ENOMEM;
1562 }
1563 
1564 static void __exit loop_exit(void)
1565 {
1566 	unsigned long range;
1567 	struct loop_device *lo, *next;
1568 
1569 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1570 
1571 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1572 		loop_del_one(lo);
1573 
1574 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1575 	unregister_blkdev(LOOP_MAJOR, "loop");
1576 }
1577 
1578 module_init(loop_init);
1579 module_exit(loop_exit);
1580 
1581 #ifndef MODULE
1582 static int __init max_loop_setup(char *str)
1583 {
1584 	max_loop = simple_strtol(str, NULL, 0);
1585 	return 1;
1586 }
1587 
1588 __setup("max_loop=", max_loop_setup);
1589 #endif
1590