1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations prepare_write and/or commit_write are not available on the 44 * backing filesystem. 45 * Anton Altaparmakov, 16 Feb 2005 46 * 47 * Still To Fix: 48 * - Advisory locking is ignored here. 49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 50 * 51 */ 52 53 #include <linux/module.h> 54 #include <linux/moduleparam.h> 55 #include <linux/sched.h> 56 #include <linux/fs.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/smp_lock.h> 66 #include <linux/swap.h> 67 #include <linux/slab.h> 68 #include <linux/loop.h> 69 #include <linux/compat.h> 70 #include <linux/suspend.h> 71 #include <linux/freezer.h> 72 #include <linux/writeback.h> 73 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 74 #include <linux/completion.h> 75 #include <linux/highmem.h> 76 #include <linux/gfp.h> 77 #include <linux/kthread.h> 78 #include <linux/splice.h> 79 80 #include <asm/uaccess.h> 81 82 static LIST_HEAD(loop_devices); 83 static DEFINE_MUTEX(loop_devices_mutex); 84 85 static int max_part; 86 static int part_shift; 87 88 /* 89 * Transfer functions 90 */ 91 static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(raw_buf, KM_USER0); 105 kunmap_atomic(loop_buf, KM_USER1); 106 cond_resched(); 107 return 0; 108 } 109 110 static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114 { 115 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(raw_buf, KM_USER0); 134 kunmap_atomic(loop_buf, KM_USER1); 135 cond_resched(); 136 return 0; 137 } 138 139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140 { 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144 } 145 146 static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149 }; 150 151 static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155 }; 156 157 /* xfer_funcs[0] is special - its release function is never called */ 158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161 }; 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 loff_t size, offset, loopsize; 166 167 /* Compute loopsize in bytes */ 168 size = i_size_read(file->f_mapping->host); 169 offset = lo->lo_offset; 170 loopsize = size - offset; 171 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 172 loopsize = lo->lo_sizelimit; 173 174 /* 175 * Unfortunately, if we want to do I/O on the device, 176 * the number of 512-byte sectors has to fit into a sector_t. 177 */ 178 return loopsize >> 9; 179 } 180 181 static int 182 figure_loop_size(struct loop_device *lo) 183 { 184 loff_t size = get_loop_size(lo, lo->lo_backing_file); 185 sector_t x = (sector_t)size; 186 187 if (unlikely((loff_t)x != size)) 188 return -EFBIG; 189 190 set_capacity(lo->lo_disk, x); 191 return 0; 192 } 193 194 static inline int 195 lo_do_transfer(struct loop_device *lo, int cmd, 196 struct page *rpage, unsigned roffs, 197 struct page *lpage, unsigned loffs, 198 int size, sector_t rblock) 199 { 200 if (unlikely(!lo->transfer)) 201 return 0; 202 203 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 204 } 205 206 /** 207 * do_lo_send_aops - helper for writing data to a loop device 208 * 209 * This is the fast version for backing filesystems which implement the address 210 * space operations write_begin and write_end. 211 */ 212 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 213 loff_t pos, struct page *unused) 214 { 215 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 216 struct address_space *mapping = file->f_mapping; 217 pgoff_t index; 218 unsigned offset, bv_offs; 219 int len, ret; 220 221 mutex_lock(&mapping->host->i_mutex); 222 index = pos >> PAGE_CACHE_SHIFT; 223 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 224 bv_offs = bvec->bv_offset; 225 len = bvec->bv_len; 226 while (len > 0) { 227 sector_t IV; 228 unsigned size, copied; 229 int transfer_result; 230 struct page *page; 231 void *fsdata; 232 233 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 234 size = PAGE_CACHE_SIZE - offset; 235 if (size > len) 236 size = len; 237 238 ret = pagecache_write_begin(file, mapping, pos, size, 0, 239 &page, &fsdata); 240 if (ret) 241 goto fail; 242 243 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 244 bvec->bv_page, bv_offs, size, IV); 245 copied = size; 246 if (unlikely(transfer_result)) 247 copied = 0; 248 249 ret = pagecache_write_end(file, mapping, pos, size, copied, 250 page, fsdata); 251 if (ret < 0 || ret != copied) 252 goto fail; 253 254 if (unlikely(transfer_result)) 255 goto fail; 256 257 bv_offs += copied; 258 len -= copied; 259 offset = 0; 260 index++; 261 pos += copied; 262 } 263 ret = 0; 264 out: 265 mutex_unlock(&mapping->host->i_mutex); 266 return ret; 267 fail: 268 ret = -1; 269 goto out; 270 } 271 272 /** 273 * __do_lo_send_write - helper for writing data to a loop device 274 * 275 * This helper just factors out common code between do_lo_send_direct_write() 276 * and do_lo_send_write(). 277 */ 278 static int __do_lo_send_write(struct file *file, 279 u8 *buf, const int len, loff_t pos) 280 { 281 ssize_t bw; 282 mm_segment_t old_fs = get_fs(); 283 284 set_fs(get_ds()); 285 bw = file->f_op->write(file, buf, len, &pos); 286 set_fs(old_fs); 287 if (likely(bw == len)) 288 return 0; 289 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 290 (unsigned long long)pos, len); 291 if (bw >= 0) 292 bw = -EIO; 293 return bw; 294 } 295 296 /** 297 * do_lo_send_direct_write - helper for writing data to a loop device 298 * 299 * This is the fast, non-transforming version for backing filesystems which do 300 * not implement the address space operations write_begin and write_end. 301 * It uses the write file operation which should be present on all writeable 302 * filesystems. 303 */ 304 static int do_lo_send_direct_write(struct loop_device *lo, 305 struct bio_vec *bvec, loff_t pos, struct page *page) 306 { 307 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 308 kmap(bvec->bv_page) + bvec->bv_offset, 309 bvec->bv_len, pos); 310 kunmap(bvec->bv_page); 311 cond_resched(); 312 return bw; 313 } 314 315 /** 316 * do_lo_send_write - helper for writing data to a loop device 317 * 318 * This is the slow, transforming version for filesystems which do not 319 * implement the address space operations write_begin and write_end. It 320 * uses the write file operation which should be present on all writeable 321 * filesystems. 322 * 323 * Using fops->write is slower than using aops->{prepare,commit}_write in the 324 * transforming case because we need to double buffer the data as we cannot do 325 * the transformations in place as we do not have direct access to the 326 * destination pages of the backing file. 327 */ 328 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 329 loff_t pos, struct page *page) 330 { 331 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 332 bvec->bv_offset, bvec->bv_len, pos >> 9); 333 if (likely(!ret)) 334 return __do_lo_send_write(lo->lo_backing_file, 335 page_address(page), bvec->bv_len, 336 pos); 337 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 338 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 339 if (ret > 0) 340 ret = -EIO; 341 return ret; 342 } 343 344 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 345 { 346 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 347 struct page *page); 348 struct bio_vec *bvec; 349 struct page *page = NULL; 350 int i, ret = 0; 351 352 do_lo_send = do_lo_send_aops; 353 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 354 do_lo_send = do_lo_send_direct_write; 355 if (lo->transfer != transfer_none) { 356 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 357 if (unlikely(!page)) 358 goto fail; 359 kmap(page); 360 do_lo_send = do_lo_send_write; 361 } 362 } 363 bio_for_each_segment(bvec, bio, i) { 364 ret = do_lo_send(lo, bvec, pos, page); 365 if (ret < 0) 366 break; 367 pos += bvec->bv_len; 368 } 369 if (page) { 370 kunmap(page); 371 __free_page(page); 372 } 373 out: 374 return ret; 375 fail: 376 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 377 ret = -ENOMEM; 378 goto out; 379 } 380 381 struct lo_read_data { 382 struct loop_device *lo; 383 struct page *page; 384 unsigned offset; 385 int bsize; 386 }; 387 388 static int 389 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 390 struct splice_desc *sd) 391 { 392 struct lo_read_data *p = sd->u.data; 393 struct loop_device *lo = p->lo; 394 struct page *page = buf->page; 395 sector_t IV; 396 size_t size; 397 int ret; 398 399 ret = buf->ops->confirm(pipe, buf); 400 if (unlikely(ret)) 401 return ret; 402 403 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 404 (buf->offset >> 9); 405 size = sd->len; 406 if (size > p->bsize) 407 size = p->bsize; 408 409 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 410 printk(KERN_ERR "loop: transfer error block %ld\n", 411 page->index); 412 size = -EINVAL; 413 } 414 415 flush_dcache_page(p->page); 416 417 if (size > 0) 418 p->offset += size; 419 420 return size; 421 } 422 423 static int 424 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 425 { 426 return __splice_from_pipe(pipe, sd, lo_splice_actor); 427 } 428 429 static int 430 do_lo_receive(struct loop_device *lo, 431 struct bio_vec *bvec, int bsize, loff_t pos) 432 { 433 struct lo_read_data cookie; 434 struct splice_desc sd; 435 struct file *file; 436 long retval; 437 438 cookie.lo = lo; 439 cookie.page = bvec->bv_page; 440 cookie.offset = bvec->bv_offset; 441 cookie.bsize = bsize; 442 443 sd.len = 0; 444 sd.total_len = bvec->bv_len; 445 sd.flags = 0; 446 sd.pos = pos; 447 sd.u.data = &cookie; 448 449 file = lo->lo_backing_file; 450 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 451 452 if (retval < 0) 453 return retval; 454 455 return 0; 456 } 457 458 static int 459 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 460 { 461 struct bio_vec *bvec; 462 int i, ret = 0; 463 464 bio_for_each_segment(bvec, bio, i) { 465 ret = do_lo_receive(lo, bvec, bsize, pos); 466 if (ret < 0) 467 break; 468 pos += bvec->bv_len; 469 } 470 return ret; 471 } 472 473 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 474 { 475 loff_t pos; 476 int ret; 477 478 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 479 if (bio_rw(bio) == WRITE) 480 ret = lo_send(lo, bio, pos); 481 else 482 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 483 return ret; 484 } 485 486 /* 487 * Add bio to back of pending list 488 */ 489 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 490 { 491 if (lo->lo_biotail) { 492 lo->lo_biotail->bi_next = bio; 493 lo->lo_biotail = bio; 494 } else 495 lo->lo_bio = lo->lo_biotail = bio; 496 } 497 498 /* 499 * Grab first pending buffer 500 */ 501 static struct bio *loop_get_bio(struct loop_device *lo) 502 { 503 struct bio *bio; 504 505 if ((bio = lo->lo_bio)) { 506 if (bio == lo->lo_biotail) 507 lo->lo_biotail = NULL; 508 lo->lo_bio = bio->bi_next; 509 bio->bi_next = NULL; 510 } 511 512 return bio; 513 } 514 515 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 516 { 517 struct loop_device *lo = q->queuedata; 518 int rw = bio_rw(old_bio); 519 520 if (rw == READA) 521 rw = READ; 522 523 BUG_ON(!lo || (rw != READ && rw != WRITE)); 524 525 spin_lock_irq(&lo->lo_lock); 526 if (lo->lo_state != Lo_bound) 527 goto out; 528 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 529 goto out; 530 loop_add_bio(lo, old_bio); 531 wake_up(&lo->lo_event); 532 spin_unlock_irq(&lo->lo_lock); 533 return 0; 534 535 out: 536 spin_unlock_irq(&lo->lo_lock); 537 bio_io_error(old_bio); 538 return 0; 539 } 540 541 /* 542 * kick off io on the underlying address space 543 */ 544 static void loop_unplug(struct request_queue *q) 545 { 546 struct loop_device *lo = q->queuedata; 547 548 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 549 blk_run_address_space(lo->lo_backing_file->f_mapping); 550 } 551 552 struct switch_request { 553 struct file *file; 554 struct completion wait; 555 }; 556 557 static void do_loop_switch(struct loop_device *, struct switch_request *); 558 559 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 560 { 561 if (unlikely(!bio->bi_bdev)) { 562 do_loop_switch(lo, bio->bi_private); 563 bio_put(bio); 564 } else { 565 int ret = do_bio_filebacked(lo, bio); 566 bio_endio(bio, ret); 567 } 568 } 569 570 /* 571 * worker thread that handles reads/writes to file backed loop devices, 572 * to avoid blocking in our make_request_fn. it also does loop decrypting 573 * on reads for block backed loop, as that is too heavy to do from 574 * b_end_io context where irqs may be disabled. 575 * 576 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 577 * calling kthread_stop(). Therefore once kthread_should_stop() is 578 * true, make_request will not place any more requests. Therefore 579 * once kthread_should_stop() is true and lo_bio is NULL, we are 580 * done with the loop. 581 */ 582 static int loop_thread(void *data) 583 { 584 struct loop_device *lo = data; 585 struct bio *bio; 586 587 set_user_nice(current, -20); 588 589 while (!kthread_should_stop() || lo->lo_bio) { 590 591 wait_event_interruptible(lo->lo_event, 592 lo->lo_bio || kthread_should_stop()); 593 594 if (!lo->lo_bio) 595 continue; 596 spin_lock_irq(&lo->lo_lock); 597 bio = loop_get_bio(lo); 598 spin_unlock_irq(&lo->lo_lock); 599 600 BUG_ON(!bio); 601 loop_handle_bio(lo, bio); 602 } 603 604 return 0; 605 } 606 607 /* 608 * loop_switch performs the hard work of switching a backing store. 609 * First it needs to flush existing IO, it does this by sending a magic 610 * BIO down the pipe. The completion of this BIO does the actual switch. 611 */ 612 static int loop_switch(struct loop_device *lo, struct file *file) 613 { 614 struct switch_request w; 615 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 616 if (!bio) 617 return -ENOMEM; 618 init_completion(&w.wait); 619 w.file = file; 620 bio->bi_private = &w; 621 bio->bi_bdev = NULL; 622 loop_make_request(lo->lo_queue, bio); 623 wait_for_completion(&w.wait); 624 return 0; 625 } 626 627 /* 628 * Do the actual switch; called from the BIO completion routine 629 */ 630 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 631 { 632 struct file *file = p->file; 633 struct file *old_file = lo->lo_backing_file; 634 struct address_space *mapping = file->f_mapping; 635 636 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 637 lo->lo_backing_file = file; 638 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 639 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 640 lo->old_gfp_mask = mapping_gfp_mask(mapping); 641 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 642 complete(&p->wait); 643 } 644 645 646 /* 647 * loop_change_fd switched the backing store of a loopback device to 648 * a new file. This is useful for operating system installers to free up 649 * the original file and in High Availability environments to switch to 650 * an alternative location for the content in case of server meltdown. 651 * This can only work if the loop device is used read-only, and if the 652 * new backing store is the same size and type as the old backing store. 653 */ 654 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 655 unsigned int arg) 656 { 657 struct file *file, *old_file; 658 struct inode *inode; 659 int error; 660 661 error = -ENXIO; 662 if (lo->lo_state != Lo_bound) 663 goto out; 664 665 /* the loop device has to be read-only */ 666 error = -EINVAL; 667 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 668 goto out; 669 670 error = -EBADF; 671 file = fget(arg); 672 if (!file) 673 goto out; 674 675 inode = file->f_mapping->host; 676 old_file = lo->lo_backing_file; 677 678 error = -EINVAL; 679 680 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 681 goto out_putf; 682 683 /* new backing store needs to support loop (eg splice_read) */ 684 if (!inode->i_fop->splice_read) 685 goto out_putf; 686 687 /* size of the new backing store needs to be the same */ 688 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 689 goto out_putf; 690 691 /* and ... switch */ 692 error = loop_switch(lo, file); 693 if (error) 694 goto out_putf; 695 696 fput(old_file); 697 if (max_part > 0) 698 ioctl_by_bdev(bdev, BLKRRPART, 0); 699 return 0; 700 701 out_putf: 702 fput(file); 703 out: 704 return error; 705 } 706 707 static inline int is_loop_device(struct file *file) 708 { 709 struct inode *i = file->f_mapping->host; 710 711 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 712 } 713 714 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 715 struct block_device *bdev, unsigned int arg) 716 { 717 struct file *file, *f; 718 struct inode *inode; 719 struct address_space *mapping; 720 unsigned lo_blocksize; 721 int lo_flags = 0; 722 int error; 723 loff_t size; 724 725 /* This is safe, since we have a reference from open(). */ 726 __module_get(THIS_MODULE); 727 728 error = -EBADF; 729 file = fget(arg); 730 if (!file) 731 goto out; 732 733 error = -EBUSY; 734 if (lo->lo_state != Lo_unbound) 735 goto out_putf; 736 737 /* Avoid recursion */ 738 f = file; 739 while (is_loop_device(f)) { 740 struct loop_device *l; 741 742 if (f->f_mapping->host->i_bdev == bdev) 743 goto out_putf; 744 745 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 746 if (l->lo_state == Lo_unbound) { 747 error = -EINVAL; 748 goto out_putf; 749 } 750 f = l->lo_backing_file; 751 } 752 753 mapping = file->f_mapping; 754 inode = mapping->host; 755 756 if (!(file->f_mode & FMODE_WRITE)) 757 lo_flags |= LO_FLAGS_READ_ONLY; 758 759 error = -EINVAL; 760 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 761 const struct address_space_operations *aops = mapping->a_ops; 762 /* 763 * If we can't read - sorry. If we only can't write - well, 764 * it's going to be read-only. 765 */ 766 if (!file->f_op->splice_read) 767 goto out_putf; 768 if (aops->prepare_write || aops->write_begin) 769 lo_flags |= LO_FLAGS_USE_AOPS; 770 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 771 lo_flags |= LO_FLAGS_READ_ONLY; 772 773 lo_blocksize = S_ISBLK(inode->i_mode) ? 774 inode->i_bdev->bd_block_size : PAGE_SIZE; 775 776 error = 0; 777 } else { 778 goto out_putf; 779 } 780 781 size = get_loop_size(lo, file); 782 783 if ((loff_t)(sector_t)size != size) { 784 error = -EFBIG; 785 goto out_putf; 786 } 787 788 if (!(mode & FMODE_WRITE)) 789 lo_flags |= LO_FLAGS_READ_ONLY; 790 791 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 792 793 lo->lo_blocksize = lo_blocksize; 794 lo->lo_device = bdev; 795 lo->lo_flags = lo_flags; 796 lo->lo_backing_file = file; 797 lo->transfer = transfer_none; 798 lo->ioctl = NULL; 799 lo->lo_sizelimit = 0; 800 lo->old_gfp_mask = mapping_gfp_mask(mapping); 801 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 802 803 lo->lo_bio = lo->lo_biotail = NULL; 804 805 /* 806 * set queue make_request_fn, and add limits based on lower level 807 * device 808 */ 809 blk_queue_make_request(lo->lo_queue, loop_make_request); 810 lo->lo_queue->queuedata = lo; 811 lo->lo_queue->unplug_fn = loop_unplug; 812 813 set_capacity(lo->lo_disk, size); 814 bd_set_size(bdev, size << 9); 815 816 set_blocksize(bdev, lo_blocksize); 817 818 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 819 lo->lo_number); 820 if (IS_ERR(lo->lo_thread)) { 821 error = PTR_ERR(lo->lo_thread); 822 goto out_clr; 823 } 824 lo->lo_state = Lo_bound; 825 wake_up_process(lo->lo_thread); 826 if (max_part > 0) 827 ioctl_by_bdev(bdev, BLKRRPART, 0); 828 return 0; 829 830 out_clr: 831 lo->lo_thread = NULL; 832 lo->lo_device = NULL; 833 lo->lo_backing_file = NULL; 834 lo->lo_flags = 0; 835 set_capacity(lo->lo_disk, 0); 836 invalidate_bdev(bdev); 837 bd_set_size(bdev, 0); 838 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 839 lo->lo_state = Lo_unbound; 840 out_putf: 841 fput(file); 842 out: 843 /* This is safe: open() is still holding a reference. */ 844 module_put(THIS_MODULE); 845 return error; 846 } 847 848 static int 849 loop_release_xfer(struct loop_device *lo) 850 { 851 int err = 0; 852 struct loop_func_table *xfer = lo->lo_encryption; 853 854 if (xfer) { 855 if (xfer->release) 856 err = xfer->release(lo); 857 lo->transfer = NULL; 858 lo->lo_encryption = NULL; 859 module_put(xfer->owner); 860 } 861 return err; 862 } 863 864 static int 865 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 866 const struct loop_info64 *i) 867 { 868 int err = 0; 869 870 if (xfer) { 871 struct module *owner = xfer->owner; 872 873 if (!try_module_get(owner)) 874 return -EINVAL; 875 if (xfer->init) 876 err = xfer->init(lo, i); 877 if (err) 878 module_put(owner); 879 else 880 lo->lo_encryption = xfer; 881 } 882 return err; 883 } 884 885 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 886 { 887 struct file *filp = lo->lo_backing_file; 888 gfp_t gfp = lo->old_gfp_mask; 889 890 if (lo->lo_state != Lo_bound) 891 return -ENXIO; 892 893 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 894 return -EBUSY; 895 896 if (filp == NULL) 897 return -EINVAL; 898 899 spin_lock_irq(&lo->lo_lock); 900 lo->lo_state = Lo_rundown; 901 spin_unlock_irq(&lo->lo_lock); 902 903 kthread_stop(lo->lo_thread); 904 905 lo->lo_backing_file = NULL; 906 907 loop_release_xfer(lo); 908 lo->transfer = NULL; 909 lo->ioctl = NULL; 910 lo->lo_device = NULL; 911 lo->lo_encryption = NULL; 912 lo->lo_offset = 0; 913 lo->lo_sizelimit = 0; 914 lo->lo_encrypt_key_size = 0; 915 lo->lo_flags = 0; 916 lo->lo_thread = NULL; 917 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 918 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 919 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 920 if (bdev) 921 invalidate_bdev(bdev); 922 set_capacity(lo->lo_disk, 0); 923 if (bdev) 924 bd_set_size(bdev, 0); 925 mapping_set_gfp_mask(filp->f_mapping, gfp); 926 lo->lo_state = Lo_unbound; 927 fput(filp); 928 /* This is safe: open() is still holding a reference. */ 929 module_put(THIS_MODULE); 930 if (max_part > 0) 931 ioctl_by_bdev(bdev, BLKRRPART, 0); 932 return 0; 933 } 934 935 static int 936 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 937 { 938 int err; 939 struct loop_func_table *xfer; 940 941 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid && 942 !capable(CAP_SYS_ADMIN)) 943 return -EPERM; 944 if (lo->lo_state != Lo_bound) 945 return -ENXIO; 946 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 947 return -EINVAL; 948 949 err = loop_release_xfer(lo); 950 if (err) 951 return err; 952 953 if (info->lo_encrypt_type) { 954 unsigned int type = info->lo_encrypt_type; 955 956 if (type >= MAX_LO_CRYPT) 957 return -EINVAL; 958 xfer = xfer_funcs[type]; 959 if (xfer == NULL) 960 return -EINVAL; 961 } else 962 xfer = NULL; 963 964 err = loop_init_xfer(lo, xfer, info); 965 if (err) 966 return err; 967 968 if (lo->lo_offset != info->lo_offset || 969 lo->lo_sizelimit != info->lo_sizelimit) { 970 lo->lo_offset = info->lo_offset; 971 lo->lo_sizelimit = info->lo_sizelimit; 972 if (figure_loop_size(lo)) 973 return -EFBIG; 974 } 975 976 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 977 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 978 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 979 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 980 981 if (!xfer) 982 xfer = &none_funcs; 983 lo->transfer = xfer->transfer; 984 lo->ioctl = xfer->ioctl; 985 986 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 987 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 988 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 989 990 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 991 lo->lo_init[0] = info->lo_init[0]; 992 lo->lo_init[1] = info->lo_init[1]; 993 if (info->lo_encrypt_key_size) { 994 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 995 info->lo_encrypt_key_size); 996 lo->lo_key_owner = current->uid; 997 } 998 999 return 0; 1000 } 1001 1002 static int 1003 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1004 { 1005 struct file *file = lo->lo_backing_file; 1006 struct kstat stat; 1007 int error; 1008 1009 if (lo->lo_state != Lo_bound) 1010 return -ENXIO; 1011 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1012 if (error) 1013 return error; 1014 memset(info, 0, sizeof(*info)); 1015 info->lo_number = lo->lo_number; 1016 info->lo_device = huge_encode_dev(stat.dev); 1017 info->lo_inode = stat.ino; 1018 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1019 info->lo_offset = lo->lo_offset; 1020 info->lo_sizelimit = lo->lo_sizelimit; 1021 info->lo_flags = lo->lo_flags; 1022 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1023 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1024 info->lo_encrypt_type = 1025 lo->lo_encryption ? lo->lo_encryption->number : 0; 1026 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1027 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1028 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1029 lo->lo_encrypt_key_size); 1030 } 1031 return 0; 1032 } 1033 1034 static void 1035 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1036 { 1037 memset(info64, 0, sizeof(*info64)); 1038 info64->lo_number = info->lo_number; 1039 info64->lo_device = info->lo_device; 1040 info64->lo_inode = info->lo_inode; 1041 info64->lo_rdevice = info->lo_rdevice; 1042 info64->lo_offset = info->lo_offset; 1043 info64->lo_sizelimit = 0; 1044 info64->lo_encrypt_type = info->lo_encrypt_type; 1045 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1046 info64->lo_flags = info->lo_flags; 1047 info64->lo_init[0] = info->lo_init[0]; 1048 info64->lo_init[1] = info->lo_init[1]; 1049 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1050 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1051 else 1052 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1053 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1054 } 1055 1056 static int 1057 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1058 { 1059 memset(info, 0, sizeof(*info)); 1060 info->lo_number = info64->lo_number; 1061 info->lo_device = info64->lo_device; 1062 info->lo_inode = info64->lo_inode; 1063 info->lo_rdevice = info64->lo_rdevice; 1064 info->lo_offset = info64->lo_offset; 1065 info->lo_encrypt_type = info64->lo_encrypt_type; 1066 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1067 info->lo_flags = info64->lo_flags; 1068 info->lo_init[0] = info64->lo_init[0]; 1069 info->lo_init[1] = info64->lo_init[1]; 1070 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1071 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1072 else 1073 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1074 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1075 1076 /* error in case values were truncated */ 1077 if (info->lo_device != info64->lo_device || 1078 info->lo_rdevice != info64->lo_rdevice || 1079 info->lo_inode != info64->lo_inode || 1080 info->lo_offset != info64->lo_offset) 1081 return -EOVERFLOW; 1082 1083 return 0; 1084 } 1085 1086 static int 1087 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1088 { 1089 struct loop_info info; 1090 struct loop_info64 info64; 1091 1092 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1093 return -EFAULT; 1094 loop_info64_from_old(&info, &info64); 1095 return loop_set_status(lo, &info64); 1096 } 1097 1098 static int 1099 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1100 { 1101 struct loop_info64 info64; 1102 1103 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1104 return -EFAULT; 1105 return loop_set_status(lo, &info64); 1106 } 1107 1108 static int 1109 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1110 struct loop_info info; 1111 struct loop_info64 info64; 1112 int err = 0; 1113 1114 if (!arg) 1115 err = -EINVAL; 1116 if (!err) 1117 err = loop_get_status(lo, &info64); 1118 if (!err) 1119 err = loop_info64_to_old(&info64, &info); 1120 if (!err && copy_to_user(arg, &info, sizeof(info))) 1121 err = -EFAULT; 1122 1123 return err; 1124 } 1125 1126 static int 1127 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1128 struct loop_info64 info64; 1129 int err = 0; 1130 1131 if (!arg) 1132 err = -EINVAL; 1133 if (!err) 1134 err = loop_get_status(lo, &info64); 1135 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1136 err = -EFAULT; 1137 1138 return err; 1139 } 1140 1141 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1142 unsigned int cmd, unsigned long arg) 1143 { 1144 struct loop_device *lo = bdev->bd_disk->private_data; 1145 int err; 1146 1147 mutex_lock(&lo->lo_ctl_mutex); 1148 switch (cmd) { 1149 case LOOP_SET_FD: 1150 err = loop_set_fd(lo, mode, bdev, arg); 1151 break; 1152 case LOOP_CHANGE_FD: 1153 err = loop_change_fd(lo, bdev, arg); 1154 break; 1155 case LOOP_CLR_FD: 1156 err = loop_clr_fd(lo, bdev); 1157 break; 1158 case LOOP_SET_STATUS: 1159 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1160 break; 1161 case LOOP_GET_STATUS: 1162 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1163 break; 1164 case LOOP_SET_STATUS64: 1165 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1166 break; 1167 case LOOP_GET_STATUS64: 1168 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1169 break; 1170 default: 1171 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1172 } 1173 mutex_unlock(&lo->lo_ctl_mutex); 1174 return err; 1175 } 1176 1177 #ifdef CONFIG_COMPAT 1178 struct compat_loop_info { 1179 compat_int_t lo_number; /* ioctl r/o */ 1180 compat_dev_t lo_device; /* ioctl r/o */ 1181 compat_ulong_t lo_inode; /* ioctl r/o */ 1182 compat_dev_t lo_rdevice; /* ioctl r/o */ 1183 compat_int_t lo_offset; 1184 compat_int_t lo_encrypt_type; 1185 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1186 compat_int_t lo_flags; /* ioctl r/o */ 1187 char lo_name[LO_NAME_SIZE]; 1188 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1189 compat_ulong_t lo_init[2]; 1190 char reserved[4]; 1191 }; 1192 1193 /* 1194 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1195 * - noinlined to reduce stack space usage in main part of driver 1196 */ 1197 static noinline int 1198 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1199 struct loop_info64 *info64) 1200 { 1201 struct compat_loop_info info; 1202 1203 if (copy_from_user(&info, arg, sizeof(info))) 1204 return -EFAULT; 1205 1206 memset(info64, 0, sizeof(*info64)); 1207 info64->lo_number = info.lo_number; 1208 info64->lo_device = info.lo_device; 1209 info64->lo_inode = info.lo_inode; 1210 info64->lo_rdevice = info.lo_rdevice; 1211 info64->lo_offset = info.lo_offset; 1212 info64->lo_sizelimit = 0; 1213 info64->lo_encrypt_type = info.lo_encrypt_type; 1214 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1215 info64->lo_flags = info.lo_flags; 1216 info64->lo_init[0] = info.lo_init[0]; 1217 info64->lo_init[1] = info.lo_init[1]; 1218 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1219 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1220 else 1221 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1222 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1223 return 0; 1224 } 1225 1226 /* 1227 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1228 * - noinlined to reduce stack space usage in main part of driver 1229 */ 1230 static noinline int 1231 loop_info64_to_compat(const struct loop_info64 *info64, 1232 struct compat_loop_info __user *arg) 1233 { 1234 struct compat_loop_info info; 1235 1236 memset(&info, 0, sizeof(info)); 1237 info.lo_number = info64->lo_number; 1238 info.lo_device = info64->lo_device; 1239 info.lo_inode = info64->lo_inode; 1240 info.lo_rdevice = info64->lo_rdevice; 1241 info.lo_offset = info64->lo_offset; 1242 info.lo_encrypt_type = info64->lo_encrypt_type; 1243 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1244 info.lo_flags = info64->lo_flags; 1245 info.lo_init[0] = info64->lo_init[0]; 1246 info.lo_init[1] = info64->lo_init[1]; 1247 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1248 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1249 else 1250 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1251 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1252 1253 /* error in case values were truncated */ 1254 if (info.lo_device != info64->lo_device || 1255 info.lo_rdevice != info64->lo_rdevice || 1256 info.lo_inode != info64->lo_inode || 1257 info.lo_offset != info64->lo_offset || 1258 info.lo_init[0] != info64->lo_init[0] || 1259 info.lo_init[1] != info64->lo_init[1]) 1260 return -EOVERFLOW; 1261 1262 if (copy_to_user(arg, &info, sizeof(info))) 1263 return -EFAULT; 1264 return 0; 1265 } 1266 1267 static int 1268 loop_set_status_compat(struct loop_device *lo, 1269 const struct compat_loop_info __user *arg) 1270 { 1271 struct loop_info64 info64; 1272 int ret; 1273 1274 ret = loop_info64_from_compat(arg, &info64); 1275 if (ret < 0) 1276 return ret; 1277 return loop_set_status(lo, &info64); 1278 } 1279 1280 static int 1281 loop_get_status_compat(struct loop_device *lo, 1282 struct compat_loop_info __user *arg) 1283 { 1284 struct loop_info64 info64; 1285 int err = 0; 1286 1287 if (!arg) 1288 err = -EINVAL; 1289 if (!err) 1290 err = loop_get_status(lo, &info64); 1291 if (!err) 1292 err = loop_info64_to_compat(&info64, arg); 1293 return err; 1294 } 1295 1296 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1297 unsigned int cmd, unsigned long arg) 1298 { 1299 struct loop_device *lo = bdev->bd_disk->private_data; 1300 int err; 1301 1302 switch(cmd) { 1303 case LOOP_SET_STATUS: 1304 mutex_lock(&lo->lo_ctl_mutex); 1305 err = loop_set_status_compat( 1306 lo, (const struct compat_loop_info __user *) arg); 1307 mutex_unlock(&lo->lo_ctl_mutex); 1308 break; 1309 case LOOP_GET_STATUS: 1310 mutex_lock(&lo->lo_ctl_mutex); 1311 err = loop_get_status_compat( 1312 lo, (struct compat_loop_info __user *) arg); 1313 mutex_unlock(&lo->lo_ctl_mutex); 1314 break; 1315 case LOOP_CLR_FD: 1316 case LOOP_GET_STATUS64: 1317 case LOOP_SET_STATUS64: 1318 arg = (unsigned long) compat_ptr(arg); 1319 case LOOP_SET_FD: 1320 case LOOP_CHANGE_FD: 1321 err = lo_ioctl(bdev, mode, cmd, arg); 1322 break; 1323 default: 1324 err = -ENOIOCTLCMD; 1325 break; 1326 } 1327 return err; 1328 } 1329 #endif 1330 1331 static int lo_open(struct block_device *bdev, fmode_t mode) 1332 { 1333 struct loop_device *lo = bdev->bd_disk->private_data; 1334 1335 mutex_lock(&lo->lo_ctl_mutex); 1336 lo->lo_refcnt++; 1337 mutex_unlock(&lo->lo_ctl_mutex); 1338 1339 return 0; 1340 } 1341 1342 static int lo_release(struct gendisk *disk, fmode_t mode) 1343 { 1344 struct loop_device *lo = disk->private_data; 1345 1346 mutex_lock(&lo->lo_ctl_mutex); 1347 --lo->lo_refcnt; 1348 1349 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) && !lo->lo_refcnt) 1350 loop_clr_fd(lo, NULL); 1351 1352 mutex_unlock(&lo->lo_ctl_mutex); 1353 1354 return 0; 1355 } 1356 1357 static struct block_device_operations lo_fops = { 1358 .owner = THIS_MODULE, 1359 .open = lo_open, 1360 .release = lo_release, 1361 .ioctl = lo_ioctl, 1362 #ifdef CONFIG_COMPAT 1363 .compat_ioctl = lo_compat_ioctl, 1364 #endif 1365 }; 1366 1367 /* 1368 * And now the modules code and kernel interface. 1369 */ 1370 static int max_loop; 1371 module_param(max_loop, int, 0); 1372 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1373 module_param(max_part, int, 0); 1374 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1375 MODULE_LICENSE("GPL"); 1376 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1377 1378 int loop_register_transfer(struct loop_func_table *funcs) 1379 { 1380 unsigned int n = funcs->number; 1381 1382 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1383 return -EINVAL; 1384 xfer_funcs[n] = funcs; 1385 return 0; 1386 } 1387 1388 int loop_unregister_transfer(int number) 1389 { 1390 unsigned int n = number; 1391 struct loop_device *lo; 1392 struct loop_func_table *xfer; 1393 1394 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1395 return -EINVAL; 1396 1397 xfer_funcs[n] = NULL; 1398 1399 list_for_each_entry(lo, &loop_devices, lo_list) { 1400 mutex_lock(&lo->lo_ctl_mutex); 1401 1402 if (lo->lo_encryption == xfer) 1403 loop_release_xfer(lo); 1404 1405 mutex_unlock(&lo->lo_ctl_mutex); 1406 } 1407 1408 return 0; 1409 } 1410 1411 EXPORT_SYMBOL(loop_register_transfer); 1412 EXPORT_SYMBOL(loop_unregister_transfer); 1413 1414 static struct loop_device *loop_alloc(int i) 1415 { 1416 struct loop_device *lo; 1417 struct gendisk *disk; 1418 1419 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1420 if (!lo) 1421 goto out; 1422 1423 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1424 if (!lo->lo_queue) 1425 goto out_free_dev; 1426 1427 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1428 if (!disk) 1429 goto out_free_queue; 1430 1431 mutex_init(&lo->lo_ctl_mutex); 1432 lo->lo_number = i; 1433 lo->lo_thread = NULL; 1434 init_waitqueue_head(&lo->lo_event); 1435 spin_lock_init(&lo->lo_lock); 1436 disk->major = LOOP_MAJOR; 1437 disk->first_minor = i << part_shift; 1438 disk->fops = &lo_fops; 1439 disk->private_data = lo; 1440 disk->queue = lo->lo_queue; 1441 sprintf(disk->disk_name, "loop%d", i); 1442 return lo; 1443 1444 out_free_queue: 1445 blk_cleanup_queue(lo->lo_queue); 1446 out_free_dev: 1447 kfree(lo); 1448 out: 1449 return NULL; 1450 } 1451 1452 static void loop_free(struct loop_device *lo) 1453 { 1454 blk_cleanup_queue(lo->lo_queue); 1455 put_disk(lo->lo_disk); 1456 list_del(&lo->lo_list); 1457 kfree(lo); 1458 } 1459 1460 static struct loop_device *loop_init_one(int i) 1461 { 1462 struct loop_device *lo; 1463 1464 list_for_each_entry(lo, &loop_devices, lo_list) { 1465 if (lo->lo_number == i) 1466 return lo; 1467 } 1468 1469 lo = loop_alloc(i); 1470 if (lo) { 1471 add_disk(lo->lo_disk); 1472 list_add_tail(&lo->lo_list, &loop_devices); 1473 } 1474 return lo; 1475 } 1476 1477 static void loop_del_one(struct loop_device *lo) 1478 { 1479 del_gendisk(lo->lo_disk); 1480 loop_free(lo); 1481 } 1482 1483 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1484 { 1485 struct loop_device *lo; 1486 struct kobject *kobj; 1487 1488 mutex_lock(&loop_devices_mutex); 1489 lo = loop_init_one(dev & MINORMASK); 1490 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1491 mutex_unlock(&loop_devices_mutex); 1492 1493 *part = 0; 1494 return kobj; 1495 } 1496 1497 static int __init loop_init(void) 1498 { 1499 int i, nr; 1500 unsigned long range; 1501 struct loop_device *lo, *next; 1502 1503 /* 1504 * loop module now has a feature to instantiate underlying device 1505 * structure on-demand, provided that there is an access dev node. 1506 * However, this will not work well with user space tool that doesn't 1507 * know about such "feature". In order to not break any existing 1508 * tool, we do the following: 1509 * 1510 * (1) if max_loop is specified, create that many upfront, and this 1511 * also becomes a hard limit. 1512 * (2) if max_loop is not specified, create 8 loop device on module 1513 * load, user can further extend loop device by create dev node 1514 * themselves and have kernel automatically instantiate actual 1515 * device on-demand. 1516 */ 1517 1518 part_shift = 0; 1519 if (max_part > 0) 1520 part_shift = fls(max_part); 1521 1522 if (max_loop > 1UL << (MINORBITS - part_shift)) 1523 return -EINVAL; 1524 1525 if (max_loop) { 1526 nr = max_loop; 1527 range = max_loop; 1528 } else { 1529 nr = 8; 1530 range = 1UL << (MINORBITS - part_shift); 1531 } 1532 1533 if (register_blkdev(LOOP_MAJOR, "loop")) 1534 return -EIO; 1535 1536 for (i = 0; i < nr; i++) { 1537 lo = loop_alloc(i); 1538 if (!lo) 1539 goto Enomem; 1540 list_add_tail(&lo->lo_list, &loop_devices); 1541 } 1542 1543 /* point of no return */ 1544 1545 list_for_each_entry(lo, &loop_devices, lo_list) 1546 add_disk(lo->lo_disk); 1547 1548 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1549 THIS_MODULE, loop_probe, NULL, NULL); 1550 1551 printk(KERN_INFO "loop: module loaded\n"); 1552 return 0; 1553 1554 Enomem: 1555 printk(KERN_INFO "loop: out of memory\n"); 1556 1557 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1558 loop_free(lo); 1559 1560 unregister_blkdev(LOOP_MAJOR, "loop"); 1561 return -ENOMEM; 1562 } 1563 1564 static void __exit loop_exit(void) 1565 { 1566 unsigned long range; 1567 struct loop_device *lo, *next; 1568 1569 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1570 1571 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1572 loop_del_one(lo); 1573 1574 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1575 unregister_blkdev(LOOP_MAJOR, "loop"); 1576 } 1577 1578 module_init(loop_init); 1579 module_exit(loop_exit); 1580 1581 #ifndef MODULE 1582 static int __init max_loop_setup(char *str) 1583 { 1584 max_loop = simple_strtol(str, NULL, 0); 1585 return 1; 1586 } 1587 1588 __setup("max_loop=", max_loop_setup); 1589 #endif 1590