1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 141 { 142 loff_t loopsize; 143 144 /* Compute loopsize in bytes */ 145 loopsize = i_size_read(file->f_mapping->host); 146 if (offset > 0) 147 loopsize -= offset; 148 /* offset is beyond i_size, weird but possible */ 149 if (loopsize < 0) 150 return 0; 151 152 if (sizelimit > 0 && sizelimit < loopsize) 153 loopsize = sizelimit; 154 /* 155 * Unfortunately, if we want to do I/O on the device, 156 * the number of 512-byte sectors has to fit into a sector_t. 157 */ 158 return loopsize >> 9; 159 } 160 161 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 162 { 163 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 164 } 165 166 /* 167 * We support direct I/O only if lo_offset is aligned with the logical I/O size 168 * of backing device, and the logical block size of loop is bigger than that of 169 * the backing device. 170 */ 171 static bool lo_can_use_dio(struct loop_device *lo) 172 { 173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 174 return false; 175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 176 return false; 177 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 178 return false; 179 return true; 180 } 181 182 /* 183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 185 * disabled when the device block size is too small or the offset is unaligned. 186 * 187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 188 * not the originally passed in one. 189 */ 190 static inline void loop_update_dio(struct loop_device *lo) 191 { 192 lockdep_assert_held(&lo->lo_mutex); 193 WARN_ON_ONCE(lo->lo_state == Lo_bound && 194 lo->lo_queue->mq_freeze_depth == 0); 195 196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 198 } 199 200 /** 201 * loop_set_size() - sets device size and notifies userspace 202 * @lo: struct loop_device to set the size for 203 * @size: new size of the loop device 204 * 205 * Callers must validate that the size passed into this function fits into 206 * a sector_t, eg using loop_validate_size() 207 */ 208 static void loop_set_size(struct loop_device *lo, loff_t size) 209 { 210 if (!set_capacity_and_notify(lo->lo_disk, size)) 211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 212 } 213 214 static void loop_clear_limits(struct loop_device *lo, int mode) 215 { 216 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 217 218 if (mode & FALLOC_FL_ZERO_RANGE) 219 lim.max_write_zeroes_sectors = 0; 220 221 if (mode & FALLOC_FL_PUNCH_HOLE) { 222 lim.max_hw_discard_sectors = 0; 223 lim.discard_granularity = 0; 224 } 225 226 /* 227 * XXX: this updates the queue limits without freezing the queue, which 228 * is against the locking protocol and dangerous. But we can't just 229 * freeze the queue as we're inside the ->queue_rq method here. So this 230 * should move out into a workqueue unless we get the file operations to 231 * advertise if they support specific fallocate operations. 232 */ 233 queue_limits_commit_update(lo->lo_queue, &lim); 234 } 235 236 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 237 int mode) 238 { 239 /* 240 * We use fallocate to manipulate the space mappings used by the image 241 * a.k.a. discard/zerorange. 242 */ 243 struct file *file = lo->lo_backing_file; 244 int ret; 245 246 mode |= FALLOC_FL_KEEP_SIZE; 247 248 if (!bdev_max_discard_sectors(lo->lo_device)) 249 return -EOPNOTSUPP; 250 251 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 252 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 253 return -EIO; 254 255 /* 256 * We initially configure the limits in a hope that fallocate is 257 * supported and clear them here if that turns out not to be true. 258 */ 259 if (unlikely(ret == -EOPNOTSUPP)) 260 loop_clear_limits(lo, mode); 261 262 return ret; 263 } 264 265 static int lo_req_flush(struct loop_device *lo, struct request *rq) 266 { 267 int ret = vfs_fsync(lo->lo_backing_file, 0); 268 if (unlikely(ret && ret != -EINVAL)) 269 ret = -EIO; 270 271 return ret; 272 } 273 274 static void lo_complete_rq(struct request *rq) 275 { 276 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 277 blk_status_t ret = BLK_STS_OK; 278 279 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 280 req_op(rq) != REQ_OP_READ) { 281 if (cmd->ret < 0) 282 ret = errno_to_blk_status(cmd->ret); 283 goto end_io; 284 } 285 286 /* 287 * Short READ - if we got some data, advance our request and 288 * retry it. If we got no data, end the rest with EIO. 289 */ 290 if (cmd->ret) { 291 blk_update_request(rq, BLK_STS_OK, cmd->ret); 292 cmd->ret = 0; 293 blk_mq_requeue_request(rq, true); 294 } else { 295 struct bio *bio = rq->bio; 296 297 while (bio) { 298 zero_fill_bio(bio); 299 bio = bio->bi_next; 300 } 301 302 ret = BLK_STS_IOERR; 303 end_io: 304 blk_mq_end_request(rq, ret); 305 } 306 } 307 308 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 309 { 310 struct request *rq = blk_mq_rq_from_pdu(cmd); 311 struct loop_device *lo = rq->q->queuedata; 312 313 if (!atomic_dec_and_test(&cmd->ref)) 314 return; 315 kfree(cmd->bvec); 316 cmd->bvec = NULL; 317 if (req_op(rq) == REQ_OP_WRITE) 318 file_end_write(lo->lo_backing_file); 319 if (likely(!blk_should_fake_timeout(rq->q))) 320 blk_mq_complete_request(rq); 321 } 322 323 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 324 { 325 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 326 327 cmd->ret = ret; 328 lo_rw_aio_do_completion(cmd); 329 } 330 331 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 332 loff_t pos, int rw) 333 { 334 struct iov_iter iter; 335 struct req_iterator rq_iter; 336 struct bio_vec *bvec; 337 struct request *rq = blk_mq_rq_from_pdu(cmd); 338 struct bio *bio = rq->bio; 339 struct file *file = lo->lo_backing_file; 340 struct bio_vec tmp; 341 unsigned int offset; 342 int nr_bvec = 0; 343 int ret; 344 345 rq_for_each_bvec(tmp, rq, rq_iter) 346 nr_bvec++; 347 348 if (rq->bio != rq->biotail) { 349 350 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 351 GFP_NOIO); 352 if (!bvec) 353 return -EIO; 354 cmd->bvec = bvec; 355 356 /* 357 * The bios of the request may be started from the middle of 358 * the 'bvec' because of bio splitting, so we can't directly 359 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 360 * API will take care of all details for us. 361 */ 362 rq_for_each_bvec(tmp, rq, rq_iter) { 363 *bvec = tmp; 364 bvec++; 365 } 366 bvec = cmd->bvec; 367 offset = 0; 368 } else { 369 /* 370 * Same here, this bio may be started from the middle of the 371 * 'bvec' because of bio splitting, so offset from the bvec 372 * must be passed to iov iterator 373 */ 374 offset = bio->bi_iter.bi_bvec_done; 375 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 376 } 377 atomic_set(&cmd->ref, 2); 378 379 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 380 iter.iov_offset = offset; 381 382 cmd->iocb.ki_pos = pos; 383 cmd->iocb.ki_filp = file; 384 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 385 if (cmd->use_aio) { 386 cmd->iocb.ki_complete = lo_rw_aio_complete; 387 cmd->iocb.ki_flags = IOCB_DIRECT; 388 } else { 389 cmd->iocb.ki_complete = NULL; 390 cmd->iocb.ki_flags = 0; 391 } 392 393 if (rw == ITER_SOURCE) { 394 file_start_write(lo->lo_backing_file); 395 ret = file->f_op->write_iter(&cmd->iocb, &iter); 396 } else 397 ret = file->f_op->read_iter(&cmd->iocb, &iter); 398 399 lo_rw_aio_do_completion(cmd); 400 401 if (ret != -EIOCBQUEUED) 402 lo_rw_aio_complete(&cmd->iocb, ret); 403 return -EIOCBQUEUED; 404 } 405 406 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 407 { 408 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 409 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 410 411 switch (req_op(rq)) { 412 case REQ_OP_FLUSH: 413 return lo_req_flush(lo, rq); 414 case REQ_OP_WRITE_ZEROES: 415 /* 416 * If the caller doesn't want deallocation, call zeroout to 417 * write zeroes the range. Otherwise, punch them out. 418 */ 419 return lo_fallocate(lo, rq, pos, 420 (rq->cmd_flags & REQ_NOUNMAP) ? 421 FALLOC_FL_ZERO_RANGE : 422 FALLOC_FL_PUNCH_HOLE); 423 case REQ_OP_DISCARD: 424 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 425 case REQ_OP_WRITE: 426 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 427 case REQ_OP_READ: 428 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 429 default: 430 WARN_ON_ONCE(1); 431 return -EIO; 432 } 433 } 434 435 static void loop_reread_partitions(struct loop_device *lo) 436 { 437 int rc; 438 439 mutex_lock(&lo->lo_disk->open_mutex); 440 rc = bdev_disk_changed(lo->lo_disk, false); 441 mutex_unlock(&lo->lo_disk->open_mutex); 442 if (rc) 443 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 444 __func__, lo->lo_number, lo->lo_file_name, rc); 445 } 446 447 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 448 { 449 struct file *file = lo->lo_backing_file; 450 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 451 struct kstat st; 452 453 /* 454 * Use the minimal dio alignment of the file system if provided. 455 */ 456 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 457 (st.result_mask & STATX_DIOALIGN)) 458 return st.dio_offset_align; 459 460 /* 461 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 462 * a handful of file systems support the STATX_DIOALIGN flag. 463 */ 464 if (sb_bdev) 465 return bdev_logical_block_size(sb_bdev); 466 return SECTOR_SIZE; 467 } 468 469 static inline int is_loop_device(struct file *file) 470 { 471 struct inode *i = file->f_mapping->host; 472 473 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 474 } 475 476 static int loop_validate_file(struct file *file, struct block_device *bdev) 477 { 478 struct inode *inode = file->f_mapping->host; 479 struct file *f = file; 480 481 /* Avoid recursion */ 482 while (is_loop_device(f)) { 483 struct loop_device *l; 484 485 lockdep_assert_held(&loop_validate_mutex); 486 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 487 return -EBADF; 488 489 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 490 if (l->lo_state != Lo_bound) 491 return -EINVAL; 492 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 493 rmb(); 494 f = l->lo_backing_file; 495 } 496 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 497 return -EINVAL; 498 return 0; 499 } 500 501 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 502 { 503 lo->lo_backing_file = file; 504 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 505 mapping_set_gfp_mask(file->f_mapping, 506 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 507 if (lo->lo_backing_file->f_flags & O_DIRECT) 508 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 509 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 510 } 511 512 static int loop_check_backing_file(struct file *file) 513 { 514 if (!file->f_op->read_iter) 515 return -EINVAL; 516 517 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter) 518 return -EINVAL; 519 520 return 0; 521 } 522 523 /* 524 * loop_change_fd switched the backing store of a loopback device to 525 * a new file. This is useful for operating system installers to free up 526 * the original file and in High Availability environments to switch to 527 * an alternative location for the content in case of server meltdown. 528 * This can only work if the loop device is used read-only, and if the 529 * new backing store is the same size and type as the old backing store. 530 */ 531 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 532 unsigned int arg) 533 { 534 struct file *file = fget(arg); 535 struct file *old_file; 536 unsigned int memflags; 537 int error; 538 bool partscan; 539 bool is_loop; 540 541 if (!file) 542 return -EBADF; 543 544 error = loop_check_backing_file(file); 545 if (error) 546 return error; 547 548 /* suppress uevents while reconfiguring the device */ 549 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 550 551 is_loop = is_loop_device(file); 552 error = loop_global_lock_killable(lo, is_loop); 553 if (error) 554 goto out_putf; 555 error = -ENXIO; 556 if (lo->lo_state != Lo_bound) 557 goto out_err; 558 559 /* the loop device has to be read-only */ 560 error = -EINVAL; 561 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 562 goto out_err; 563 564 error = loop_validate_file(file, bdev); 565 if (error) 566 goto out_err; 567 568 old_file = lo->lo_backing_file; 569 570 error = -EINVAL; 571 572 /* size of the new backing store needs to be the same */ 573 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 574 goto out_err; 575 576 /* 577 * We might switch to direct I/O mode for the loop device, write back 578 * all dirty data the page cache now that so that the individual I/O 579 * operations don't have to do that. 580 */ 581 vfs_fsync(file, 0); 582 583 /* and ... switch */ 584 disk_force_media_change(lo->lo_disk); 585 memflags = blk_mq_freeze_queue(lo->lo_queue); 586 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 587 loop_assign_backing_file(lo, file); 588 loop_update_dio(lo); 589 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 590 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 591 loop_global_unlock(lo, is_loop); 592 593 /* 594 * Flush loop_validate_file() before fput(), for l->lo_backing_file 595 * might be pointing at old_file which might be the last reference. 596 */ 597 if (!is_loop) { 598 mutex_lock(&loop_validate_mutex); 599 mutex_unlock(&loop_validate_mutex); 600 } 601 /* 602 * We must drop file reference outside of lo_mutex as dropping 603 * the file ref can take open_mutex which creates circular locking 604 * dependency. 605 */ 606 fput(old_file); 607 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 608 if (partscan) 609 loop_reread_partitions(lo); 610 611 error = 0; 612 done: 613 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 614 return error; 615 616 out_err: 617 loop_global_unlock(lo, is_loop); 618 out_putf: 619 fput(file); 620 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 621 goto done; 622 } 623 624 /* loop sysfs attributes */ 625 626 static ssize_t loop_attr_show(struct device *dev, char *page, 627 ssize_t (*callback)(struct loop_device *, char *)) 628 { 629 struct gendisk *disk = dev_to_disk(dev); 630 struct loop_device *lo = disk->private_data; 631 632 return callback(lo, page); 633 } 634 635 #define LOOP_ATTR_RO(_name) \ 636 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 637 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 638 struct device_attribute *attr, char *b) \ 639 { \ 640 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 641 } \ 642 static struct device_attribute loop_attr_##_name = \ 643 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 644 645 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 646 { 647 ssize_t ret; 648 char *p = NULL; 649 650 spin_lock_irq(&lo->lo_lock); 651 if (lo->lo_backing_file) 652 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 653 spin_unlock_irq(&lo->lo_lock); 654 655 if (IS_ERR_OR_NULL(p)) 656 ret = PTR_ERR(p); 657 else { 658 ret = strlen(p); 659 memmove(buf, p, ret); 660 buf[ret++] = '\n'; 661 buf[ret] = 0; 662 } 663 664 return ret; 665 } 666 667 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 668 { 669 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 670 } 671 672 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 673 { 674 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 675 } 676 677 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 678 { 679 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 680 681 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 682 } 683 684 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 685 { 686 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 687 688 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 689 } 690 691 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 692 { 693 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 694 695 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 696 } 697 698 LOOP_ATTR_RO(backing_file); 699 LOOP_ATTR_RO(offset); 700 LOOP_ATTR_RO(sizelimit); 701 LOOP_ATTR_RO(autoclear); 702 LOOP_ATTR_RO(partscan); 703 LOOP_ATTR_RO(dio); 704 705 static struct attribute *loop_attrs[] = { 706 &loop_attr_backing_file.attr, 707 &loop_attr_offset.attr, 708 &loop_attr_sizelimit.attr, 709 &loop_attr_autoclear.attr, 710 &loop_attr_partscan.attr, 711 &loop_attr_dio.attr, 712 NULL, 713 }; 714 715 static struct attribute_group loop_attribute_group = { 716 .name = "loop", 717 .attrs= loop_attrs, 718 }; 719 720 static void loop_sysfs_init(struct loop_device *lo) 721 { 722 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 723 &loop_attribute_group); 724 } 725 726 static void loop_sysfs_exit(struct loop_device *lo) 727 { 728 if (lo->sysfs_inited) 729 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 730 &loop_attribute_group); 731 } 732 733 static void loop_get_discard_config(struct loop_device *lo, 734 u32 *granularity, u32 *max_discard_sectors) 735 { 736 struct file *file = lo->lo_backing_file; 737 struct inode *inode = file->f_mapping->host; 738 struct kstatfs sbuf; 739 740 /* 741 * If the backing device is a block device, mirror its zeroing 742 * capability. Set the discard sectors to the block device's zeroing 743 * capabilities because loop discards result in blkdev_issue_zeroout(), 744 * not blkdev_issue_discard(). This maintains consistent behavior with 745 * file-backed loop devices: discarded regions read back as zero. 746 */ 747 if (S_ISBLK(inode->i_mode)) { 748 struct block_device *bdev = I_BDEV(inode); 749 750 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 751 *granularity = bdev_discard_granularity(bdev); 752 753 /* 754 * We use punch hole to reclaim the free space used by the 755 * image a.k.a. discard. 756 */ 757 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 758 *max_discard_sectors = UINT_MAX >> 9; 759 *granularity = sbuf.f_bsize; 760 } 761 } 762 763 struct loop_worker { 764 struct rb_node rb_node; 765 struct work_struct work; 766 struct list_head cmd_list; 767 struct list_head idle_list; 768 struct loop_device *lo; 769 struct cgroup_subsys_state *blkcg_css; 770 unsigned long last_ran_at; 771 }; 772 773 static void loop_workfn(struct work_struct *work); 774 775 #ifdef CONFIG_BLK_CGROUP 776 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 777 { 778 return !css || css == blkcg_root_css; 779 } 780 #else 781 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 782 { 783 return !css; 784 } 785 #endif 786 787 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 788 { 789 struct rb_node **node, *parent = NULL; 790 struct loop_worker *cur_worker, *worker = NULL; 791 struct work_struct *work; 792 struct list_head *cmd_list; 793 794 spin_lock_irq(&lo->lo_work_lock); 795 796 if (queue_on_root_worker(cmd->blkcg_css)) 797 goto queue_work; 798 799 node = &lo->worker_tree.rb_node; 800 801 while (*node) { 802 parent = *node; 803 cur_worker = container_of(*node, struct loop_worker, rb_node); 804 if (cur_worker->blkcg_css == cmd->blkcg_css) { 805 worker = cur_worker; 806 break; 807 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 808 node = &(*node)->rb_left; 809 } else { 810 node = &(*node)->rb_right; 811 } 812 } 813 if (worker) 814 goto queue_work; 815 816 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 817 /* 818 * In the event we cannot allocate a worker, just queue on the 819 * rootcg worker and issue the I/O as the rootcg 820 */ 821 if (!worker) { 822 cmd->blkcg_css = NULL; 823 if (cmd->memcg_css) 824 css_put(cmd->memcg_css); 825 cmd->memcg_css = NULL; 826 goto queue_work; 827 } 828 829 worker->blkcg_css = cmd->blkcg_css; 830 css_get(worker->blkcg_css); 831 INIT_WORK(&worker->work, loop_workfn); 832 INIT_LIST_HEAD(&worker->cmd_list); 833 INIT_LIST_HEAD(&worker->idle_list); 834 worker->lo = lo; 835 rb_link_node(&worker->rb_node, parent, node); 836 rb_insert_color(&worker->rb_node, &lo->worker_tree); 837 queue_work: 838 if (worker) { 839 /* 840 * We need to remove from the idle list here while 841 * holding the lock so that the idle timer doesn't 842 * free the worker 843 */ 844 if (!list_empty(&worker->idle_list)) 845 list_del_init(&worker->idle_list); 846 work = &worker->work; 847 cmd_list = &worker->cmd_list; 848 } else { 849 work = &lo->rootcg_work; 850 cmd_list = &lo->rootcg_cmd_list; 851 } 852 list_add_tail(&cmd->list_entry, cmd_list); 853 queue_work(lo->workqueue, work); 854 spin_unlock_irq(&lo->lo_work_lock); 855 } 856 857 static void loop_set_timer(struct loop_device *lo) 858 { 859 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 860 } 861 862 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 863 { 864 struct loop_worker *pos, *worker; 865 866 spin_lock_irq(&lo->lo_work_lock); 867 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 868 idle_list) { 869 if (!delete_all && 870 time_is_after_jiffies(worker->last_ran_at + 871 LOOP_IDLE_WORKER_TIMEOUT)) 872 break; 873 list_del(&worker->idle_list); 874 rb_erase(&worker->rb_node, &lo->worker_tree); 875 css_put(worker->blkcg_css); 876 kfree(worker); 877 } 878 if (!list_empty(&lo->idle_worker_list)) 879 loop_set_timer(lo); 880 spin_unlock_irq(&lo->lo_work_lock); 881 } 882 883 static void loop_free_idle_workers_timer(struct timer_list *timer) 884 { 885 struct loop_device *lo = container_of(timer, struct loop_device, timer); 886 887 return loop_free_idle_workers(lo, false); 888 } 889 890 /** 891 * loop_set_status_from_info - configure device from loop_info 892 * @lo: struct loop_device to configure 893 * @info: struct loop_info64 to configure the device with 894 * 895 * Configures the loop device parameters according to the passed 896 * in loop_info64 configuration. 897 */ 898 static int 899 loop_set_status_from_info(struct loop_device *lo, 900 const struct loop_info64 *info) 901 { 902 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 903 return -EINVAL; 904 905 switch (info->lo_encrypt_type) { 906 case LO_CRYPT_NONE: 907 break; 908 case LO_CRYPT_XOR: 909 pr_warn("support for the xor transformation has been removed.\n"); 910 return -EINVAL; 911 case LO_CRYPT_CRYPTOAPI: 912 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 913 return -EINVAL; 914 default: 915 return -EINVAL; 916 } 917 918 /* Avoid assigning overflow values */ 919 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 920 return -EOVERFLOW; 921 922 lo->lo_offset = info->lo_offset; 923 lo->lo_sizelimit = info->lo_sizelimit; 924 925 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 926 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 927 return 0; 928 } 929 930 static unsigned int loop_default_blocksize(struct loop_device *lo) 931 { 932 /* In case of direct I/O, match underlying minimum I/O size */ 933 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 934 return lo->lo_min_dio_size; 935 return SECTOR_SIZE; 936 } 937 938 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 939 unsigned int bsize) 940 { 941 struct file *file = lo->lo_backing_file; 942 struct inode *inode = file->f_mapping->host; 943 struct block_device *backing_bdev = NULL; 944 u32 granularity = 0, max_discard_sectors = 0; 945 946 if (S_ISBLK(inode->i_mode)) 947 backing_bdev = I_BDEV(inode); 948 else if (inode->i_sb->s_bdev) 949 backing_bdev = inode->i_sb->s_bdev; 950 951 if (!bsize) 952 bsize = loop_default_blocksize(lo); 953 954 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 955 956 lim->logical_block_size = bsize; 957 lim->physical_block_size = bsize; 958 lim->io_min = bsize; 959 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 960 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 961 lim->features |= BLK_FEAT_WRITE_CACHE; 962 if (backing_bdev && !bdev_nonrot(backing_bdev)) 963 lim->features |= BLK_FEAT_ROTATIONAL; 964 lim->max_hw_discard_sectors = max_discard_sectors; 965 lim->max_write_zeroes_sectors = max_discard_sectors; 966 if (max_discard_sectors) 967 lim->discard_granularity = granularity; 968 else 969 lim->discard_granularity = 0; 970 } 971 972 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 973 struct block_device *bdev, 974 const struct loop_config *config) 975 { 976 struct file *file = fget(config->fd); 977 struct queue_limits lim; 978 int error; 979 loff_t size; 980 bool partscan; 981 bool is_loop; 982 983 if (!file) 984 return -EBADF; 985 986 error = loop_check_backing_file(file); 987 if (error) 988 return error; 989 990 is_loop = is_loop_device(file); 991 992 /* This is safe, since we have a reference from open(). */ 993 __module_get(THIS_MODULE); 994 995 /* 996 * If we don't hold exclusive handle for the device, upgrade to it 997 * here to avoid changing device under exclusive owner. 998 */ 999 if (!(mode & BLK_OPEN_EXCL)) { 1000 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1001 if (error) 1002 goto out_putf; 1003 } 1004 1005 error = loop_global_lock_killable(lo, is_loop); 1006 if (error) 1007 goto out_bdev; 1008 1009 error = -EBUSY; 1010 if (lo->lo_state != Lo_unbound) 1011 goto out_unlock; 1012 1013 error = loop_validate_file(file, bdev); 1014 if (error) 1015 goto out_unlock; 1016 1017 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1018 error = -EINVAL; 1019 goto out_unlock; 1020 } 1021 1022 error = loop_set_status_from_info(lo, &config->info); 1023 if (error) 1024 goto out_unlock; 1025 lo->lo_flags = config->info.lo_flags; 1026 1027 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1028 !file->f_op->write_iter) 1029 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1030 1031 if (!lo->workqueue) { 1032 lo->workqueue = alloc_workqueue("loop%d", 1033 WQ_UNBOUND | WQ_FREEZABLE, 1034 0, lo->lo_number); 1035 if (!lo->workqueue) { 1036 error = -ENOMEM; 1037 goto out_unlock; 1038 } 1039 } 1040 1041 /* suppress uevents while reconfiguring the device */ 1042 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1043 1044 disk_force_media_change(lo->lo_disk); 1045 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1046 1047 lo->lo_device = bdev; 1048 loop_assign_backing_file(lo, file); 1049 1050 lim = queue_limits_start_update(lo->lo_queue); 1051 loop_update_limits(lo, &lim, config->block_size); 1052 /* No need to freeze the queue as the device isn't bound yet. */ 1053 error = queue_limits_commit_update(lo->lo_queue, &lim); 1054 if (error) 1055 goto out_unlock; 1056 1057 /* 1058 * We might switch to direct I/O mode for the loop device, write back 1059 * all dirty data the page cache now that so that the individual I/O 1060 * operations don't have to do that. 1061 */ 1062 vfs_fsync(file, 0); 1063 1064 loop_update_dio(lo); 1065 loop_sysfs_init(lo); 1066 1067 size = get_loop_size(lo, file); 1068 loop_set_size(lo, size); 1069 1070 /* Order wrt reading lo_state in loop_validate_file(). */ 1071 wmb(); 1072 1073 lo->lo_state = Lo_bound; 1074 if (part_shift) 1075 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1076 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1077 if (partscan) 1078 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1079 1080 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1081 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1082 1083 loop_global_unlock(lo, is_loop); 1084 if (partscan) 1085 loop_reread_partitions(lo); 1086 1087 if (!(mode & BLK_OPEN_EXCL)) 1088 bd_abort_claiming(bdev, loop_configure); 1089 1090 return 0; 1091 1092 out_unlock: 1093 loop_global_unlock(lo, is_loop); 1094 out_bdev: 1095 if (!(mode & BLK_OPEN_EXCL)) 1096 bd_abort_claiming(bdev, loop_configure); 1097 out_putf: 1098 fput(file); 1099 /* This is safe: open() is still holding a reference. */ 1100 module_put(THIS_MODULE); 1101 return error; 1102 } 1103 1104 static void __loop_clr_fd(struct loop_device *lo) 1105 { 1106 struct queue_limits lim; 1107 struct file *filp; 1108 gfp_t gfp = lo->old_gfp_mask; 1109 1110 spin_lock_irq(&lo->lo_lock); 1111 filp = lo->lo_backing_file; 1112 lo->lo_backing_file = NULL; 1113 spin_unlock_irq(&lo->lo_lock); 1114 1115 lo->lo_device = NULL; 1116 lo->lo_offset = 0; 1117 lo->lo_sizelimit = 0; 1118 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1119 1120 /* 1121 * Reset the block size to the default. 1122 * 1123 * No queue freezing needed because this is called from the final 1124 * ->release call only, so there can't be any outstanding I/O. 1125 */ 1126 lim = queue_limits_start_update(lo->lo_queue); 1127 lim.logical_block_size = SECTOR_SIZE; 1128 lim.physical_block_size = SECTOR_SIZE; 1129 lim.io_min = SECTOR_SIZE; 1130 queue_limits_commit_update(lo->lo_queue, &lim); 1131 1132 invalidate_disk(lo->lo_disk); 1133 loop_sysfs_exit(lo); 1134 /* let user-space know about this change */ 1135 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1136 mapping_set_gfp_mask(filp->f_mapping, gfp); 1137 /* This is safe: open() is still holding a reference. */ 1138 module_put(THIS_MODULE); 1139 1140 disk_force_media_change(lo->lo_disk); 1141 1142 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1143 int err; 1144 1145 /* 1146 * open_mutex has been held already in release path, so don't 1147 * acquire it if this function is called in such case. 1148 * 1149 * If the reread partition isn't from release path, lo_refcnt 1150 * must be at least one and it can only become zero when the 1151 * current holder is released. 1152 */ 1153 err = bdev_disk_changed(lo->lo_disk, false); 1154 if (err) 1155 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1156 __func__, lo->lo_number, err); 1157 /* Device is gone, no point in returning error */ 1158 } 1159 1160 /* 1161 * lo->lo_state is set to Lo_unbound here after above partscan has 1162 * finished. There cannot be anybody else entering __loop_clr_fd() as 1163 * Lo_rundown state protects us from all the other places trying to 1164 * change the 'lo' device. 1165 */ 1166 lo->lo_flags = 0; 1167 if (!part_shift) 1168 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1169 mutex_lock(&lo->lo_mutex); 1170 lo->lo_state = Lo_unbound; 1171 mutex_unlock(&lo->lo_mutex); 1172 1173 /* 1174 * Need not hold lo_mutex to fput backing file. Calling fput holding 1175 * lo_mutex triggers a circular lock dependency possibility warning as 1176 * fput can take open_mutex which is usually taken before lo_mutex. 1177 */ 1178 fput(filp); 1179 } 1180 1181 static int loop_clr_fd(struct loop_device *lo) 1182 { 1183 int err; 1184 1185 /* 1186 * Since lo_ioctl() is called without locks held, it is possible that 1187 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1188 * 1189 * Therefore, use global lock when setting Lo_rundown state in order to 1190 * make sure that loop_validate_file() will fail if the "struct file" 1191 * which loop_configure()/loop_change_fd() found via fget() was this 1192 * loop device. 1193 */ 1194 err = loop_global_lock_killable(lo, true); 1195 if (err) 1196 return err; 1197 if (lo->lo_state != Lo_bound) { 1198 loop_global_unlock(lo, true); 1199 return -ENXIO; 1200 } 1201 /* 1202 * Mark the device for removing the backing device on last close. 1203 * If we are the only opener, also switch the state to roundown here to 1204 * prevent new openers from coming in. 1205 */ 1206 1207 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1208 if (disk_openers(lo->lo_disk) == 1) 1209 lo->lo_state = Lo_rundown; 1210 loop_global_unlock(lo, true); 1211 1212 return 0; 1213 } 1214 1215 static int 1216 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1217 { 1218 int err; 1219 bool partscan = false; 1220 bool size_changed = false; 1221 unsigned int memflags; 1222 1223 err = mutex_lock_killable(&lo->lo_mutex); 1224 if (err) 1225 return err; 1226 if (lo->lo_state != Lo_bound) { 1227 err = -ENXIO; 1228 goto out_unlock; 1229 } 1230 1231 if (lo->lo_offset != info->lo_offset || 1232 lo->lo_sizelimit != info->lo_sizelimit) { 1233 size_changed = true; 1234 sync_blockdev(lo->lo_device); 1235 invalidate_bdev(lo->lo_device); 1236 } 1237 1238 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1239 memflags = blk_mq_freeze_queue(lo->lo_queue); 1240 1241 err = loop_set_status_from_info(lo, info); 1242 if (err) 1243 goto out_unfreeze; 1244 1245 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1246 (info->lo_flags & LO_FLAGS_PARTSCAN); 1247 1248 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1249 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1250 1251 if (size_changed) { 1252 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1253 lo->lo_backing_file); 1254 loop_set_size(lo, new_size); 1255 } 1256 1257 /* update the direct I/O flag if lo_offset changed */ 1258 loop_update_dio(lo); 1259 1260 out_unfreeze: 1261 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1262 if (partscan) 1263 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1264 out_unlock: 1265 mutex_unlock(&lo->lo_mutex); 1266 if (partscan) 1267 loop_reread_partitions(lo); 1268 1269 return err; 1270 } 1271 1272 static int 1273 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1274 { 1275 struct path path; 1276 struct kstat stat; 1277 int ret; 1278 1279 ret = mutex_lock_killable(&lo->lo_mutex); 1280 if (ret) 1281 return ret; 1282 if (lo->lo_state != Lo_bound) { 1283 mutex_unlock(&lo->lo_mutex); 1284 return -ENXIO; 1285 } 1286 1287 memset(info, 0, sizeof(*info)); 1288 info->lo_number = lo->lo_number; 1289 info->lo_offset = lo->lo_offset; 1290 info->lo_sizelimit = lo->lo_sizelimit; 1291 info->lo_flags = lo->lo_flags; 1292 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1293 1294 /* Drop lo_mutex while we call into the filesystem. */ 1295 path = lo->lo_backing_file->f_path; 1296 path_get(&path); 1297 mutex_unlock(&lo->lo_mutex); 1298 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1299 if (!ret) { 1300 info->lo_device = huge_encode_dev(stat.dev); 1301 info->lo_inode = stat.ino; 1302 info->lo_rdevice = huge_encode_dev(stat.rdev); 1303 } 1304 path_put(&path); 1305 return ret; 1306 } 1307 1308 static void 1309 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1310 { 1311 memset(info64, 0, sizeof(*info64)); 1312 info64->lo_number = info->lo_number; 1313 info64->lo_device = info->lo_device; 1314 info64->lo_inode = info->lo_inode; 1315 info64->lo_rdevice = info->lo_rdevice; 1316 info64->lo_offset = info->lo_offset; 1317 info64->lo_sizelimit = 0; 1318 info64->lo_flags = info->lo_flags; 1319 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1320 } 1321 1322 static int 1323 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1324 { 1325 memset(info, 0, sizeof(*info)); 1326 info->lo_number = info64->lo_number; 1327 info->lo_device = info64->lo_device; 1328 info->lo_inode = info64->lo_inode; 1329 info->lo_rdevice = info64->lo_rdevice; 1330 info->lo_offset = info64->lo_offset; 1331 info->lo_flags = info64->lo_flags; 1332 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1333 1334 /* error in case values were truncated */ 1335 if (info->lo_device != info64->lo_device || 1336 info->lo_rdevice != info64->lo_rdevice || 1337 info->lo_inode != info64->lo_inode || 1338 info->lo_offset != info64->lo_offset) 1339 return -EOVERFLOW; 1340 1341 return 0; 1342 } 1343 1344 static int 1345 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1346 { 1347 struct loop_info info; 1348 struct loop_info64 info64; 1349 1350 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1351 return -EFAULT; 1352 loop_info64_from_old(&info, &info64); 1353 return loop_set_status(lo, &info64); 1354 } 1355 1356 static int 1357 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1358 { 1359 struct loop_info64 info64; 1360 1361 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1362 return -EFAULT; 1363 return loop_set_status(lo, &info64); 1364 } 1365 1366 static int 1367 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1368 struct loop_info info; 1369 struct loop_info64 info64; 1370 int err; 1371 1372 if (!arg) 1373 return -EINVAL; 1374 err = loop_get_status(lo, &info64); 1375 if (!err) 1376 err = loop_info64_to_old(&info64, &info); 1377 if (!err && copy_to_user(arg, &info, sizeof(info))) 1378 err = -EFAULT; 1379 1380 return err; 1381 } 1382 1383 static int 1384 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1385 struct loop_info64 info64; 1386 int err; 1387 1388 if (!arg) 1389 return -EINVAL; 1390 err = loop_get_status(lo, &info64); 1391 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1392 err = -EFAULT; 1393 1394 return err; 1395 } 1396 1397 static int loop_set_capacity(struct loop_device *lo) 1398 { 1399 loff_t size; 1400 1401 if (unlikely(lo->lo_state != Lo_bound)) 1402 return -ENXIO; 1403 1404 size = get_loop_size(lo, lo->lo_backing_file); 1405 loop_set_size(lo, size); 1406 1407 return 0; 1408 } 1409 1410 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1411 { 1412 bool use_dio = !!arg; 1413 unsigned int memflags; 1414 1415 if (lo->lo_state != Lo_bound) 1416 return -ENXIO; 1417 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1418 return 0; 1419 1420 if (use_dio) { 1421 if (!lo_can_use_dio(lo)) 1422 return -EINVAL; 1423 /* flush dirty pages before starting to use direct I/O */ 1424 vfs_fsync(lo->lo_backing_file, 0); 1425 } 1426 1427 memflags = blk_mq_freeze_queue(lo->lo_queue); 1428 if (use_dio) 1429 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1430 else 1431 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1432 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1433 return 0; 1434 } 1435 1436 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1437 { 1438 struct queue_limits lim; 1439 unsigned int memflags; 1440 int err = 0; 1441 1442 if (lo->lo_state != Lo_bound) 1443 return -ENXIO; 1444 1445 if (lo->lo_queue->limits.logical_block_size == arg) 1446 return 0; 1447 1448 sync_blockdev(lo->lo_device); 1449 invalidate_bdev(lo->lo_device); 1450 1451 lim = queue_limits_start_update(lo->lo_queue); 1452 loop_update_limits(lo, &lim, arg); 1453 1454 memflags = blk_mq_freeze_queue(lo->lo_queue); 1455 err = queue_limits_commit_update(lo->lo_queue, &lim); 1456 loop_update_dio(lo); 1457 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1458 1459 return err; 1460 } 1461 1462 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1463 unsigned long arg) 1464 { 1465 int err; 1466 1467 err = mutex_lock_killable(&lo->lo_mutex); 1468 if (err) 1469 return err; 1470 switch (cmd) { 1471 case LOOP_SET_CAPACITY: 1472 err = loop_set_capacity(lo); 1473 break; 1474 case LOOP_SET_DIRECT_IO: 1475 err = loop_set_dio(lo, arg); 1476 break; 1477 case LOOP_SET_BLOCK_SIZE: 1478 err = loop_set_block_size(lo, arg); 1479 break; 1480 default: 1481 err = -EINVAL; 1482 } 1483 mutex_unlock(&lo->lo_mutex); 1484 return err; 1485 } 1486 1487 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1488 unsigned int cmd, unsigned long arg) 1489 { 1490 struct loop_device *lo = bdev->bd_disk->private_data; 1491 void __user *argp = (void __user *) arg; 1492 int err; 1493 1494 switch (cmd) { 1495 case LOOP_SET_FD: { 1496 /* 1497 * Legacy case - pass in a zeroed out struct loop_config with 1498 * only the file descriptor set , which corresponds with the 1499 * default parameters we'd have used otherwise. 1500 */ 1501 struct loop_config config; 1502 1503 memset(&config, 0, sizeof(config)); 1504 config.fd = arg; 1505 1506 return loop_configure(lo, mode, bdev, &config); 1507 } 1508 case LOOP_CONFIGURE: { 1509 struct loop_config config; 1510 1511 if (copy_from_user(&config, argp, sizeof(config))) 1512 return -EFAULT; 1513 1514 return loop_configure(lo, mode, bdev, &config); 1515 } 1516 case LOOP_CHANGE_FD: 1517 return loop_change_fd(lo, bdev, arg); 1518 case LOOP_CLR_FD: 1519 return loop_clr_fd(lo); 1520 case LOOP_SET_STATUS: 1521 err = -EPERM; 1522 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1523 err = loop_set_status_old(lo, argp); 1524 break; 1525 case LOOP_GET_STATUS: 1526 return loop_get_status_old(lo, argp); 1527 case LOOP_SET_STATUS64: 1528 err = -EPERM; 1529 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1530 err = loop_set_status64(lo, argp); 1531 break; 1532 case LOOP_GET_STATUS64: 1533 return loop_get_status64(lo, argp); 1534 case LOOP_SET_CAPACITY: 1535 case LOOP_SET_DIRECT_IO: 1536 case LOOP_SET_BLOCK_SIZE: 1537 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1538 return -EPERM; 1539 fallthrough; 1540 default: 1541 err = lo_simple_ioctl(lo, cmd, arg); 1542 break; 1543 } 1544 1545 return err; 1546 } 1547 1548 #ifdef CONFIG_COMPAT 1549 struct compat_loop_info { 1550 compat_int_t lo_number; /* ioctl r/o */ 1551 compat_dev_t lo_device; /* ioctl r/o */ 1552 compat_ulong_t lo_inode; /* ioctl r/o */ 1553 compat_dev_t lo_rdevice; /* ioctl r/o */ 1554 compat_int_t lo_offset; 1555 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1556 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1557 compat_int_t lo_flags; /* ioctl r/o */ 1558 char lo_name[LO_NAME_SIZE]; 1559 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1560 compat_ulong_t lo_init[2]; 1561 char reserved[4]; 1562 }; 1563 1564 /* 1565 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1566 * - noinlined to reduce stack space usage in main part of driver 1567 */ 1568 static noinline int 1569 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1570 struct loop_info64 *info64) 1571 { 1572 struct compat_loop_info info; 1573 1574 if (copy_from_user(&info, arg, sizeof(info))) 1575 return -EFAULT; 1576 1577 memset(info64, 0, sizeof(*info64)); 1578 info64->lo_number = info.lo_number; 1579 info64->lo_device = info.lo_device; 1580 info64->lo_inode = info.lo_inode; 1581 info64->lo_rdevice = info.lo_rdevice; 1582 info64->lo_offset = info.lo_offset; 1583 info64->lo_sizelimit = 0; 1584 info64->lo_flags = info.lo_flags; 1585 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1586 return 0; 1587 } 1588 1589 /* 1590 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1591 * - noinlined to reduce stack space usage in main part of driver 1592 */ 1593 static noinline int 1594 loop_info64_to_compat(const struct loop_info64 *info64, 1595 struct compat_loop_info __user *arg) 1596 { 1597 struct compat_loop_info info; 1598 1599 memset(&info, 0, sizeof(info)); 1600 info.lo_number = info64->lo_number; 1601 info.lo_device = info64->lo_device; 1602 info.lo_inode = info64->lo_inode; 1603 info.lo_rdevice = info64->lo_rdevice; 1604 info.lo_offset = info64->lo_offset; 1605 info.lo_flags = info64->lo_flags; 1606 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1607 1608 /* error in case values were truncated */ 1609 if (info.lo_device != info64->lo_device || 1610 info.lo_rdevice != info64->lo_rdevice || 1611 info.lo_inode != info64->lo_inode || 1612 info.lo_offset != info64->lo_offset) 1613 return -EOVERFLOW; 1614 1615 if (copy_to_user(arg, &info, sizeof(info))) 1616 return -EFAULT; 1617 return 0; 1618 } 1619 1620 static int 1621 loop_set_status_compat(struct loop_device *lo, 1622 const struct compat_loop_info __user *arg) 1623 { 1624 struct loop_info64 info64; 1625 int ret; 1626 1627 ret = loop_info64_from_compat(arg, &info64); 1628 if (ret < 0) 1629 return ret; 1630 return loop_set_status(lo, &info64); 1631 } 1632 1633 static int 1634 loop_get_status_compat(struct loop_device *lo, 1635 struct compat_loop_info __user *arg) 1636 { 1637 struct loop_info64 info64; 1638 int err; 1639 1640 if (!arg) 1641 return -EINVAL; 1642 err = loop_get_status(lo, &info64); 1643 if (!err) 1644 err = loop_info64_to_compat(&info64, arg); 1645 return err; 1646 } 1647 1648 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1649 unsigned int cmd, unsigned long arg) 1650 { 1651 struct loop_device *lo = bdev->bd_disk->private_data; 1652 int err; 1653 1654 switch(cmd) { 1655 case LOOP_SET_STATUS: 1656 err = loop_set_status_compat(lo, 1657 (const struct compat_loop_info __user *)arg); 1658 break; 1659 case LOOP_GET_STATUS: 1660 err = loop_get_status_compat(lo, 1661 (struct compat_loop_info __user *)arg); 1662 break; 1663 case LOOP_SET_CAPACITY: 1664 case LOOP_CLR_FD: 1665 case LOOP_GET_STATUS64: 1666 case LOOP_SET_STATUS64: 1667 case LOOP_CONFIGURE: 1668 arg = (unsigned long) compat_ptr(arg); 1669 fallthrough; 1670 case LOOP_SET_FD: 1671 case LOOP_CHANGE_FD: 1672 case LOOP_SET_BLOCK_SIZE: 1673 case LOOP_SET_DIRECT_IO: 1674 err = lo_ioctl(bdev, mode, cmd, arg); 1675 break; 1676 default: 1677 err = -ENOIOCTLCMD; 1678 break; 1679 } 1680 return err; 1681 } 1682 #endif 1683 1684 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1685 { 1686 struct loop_device *lo = disk->private_data; 1687 int err; 1688 1689 err = mutex_lock_killable(&lo->lo_mutex); 1690 if (err) 1691 return err; 1692 1693 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1694 err = -ENXIO; 1695 mutex_unlock(&lo->lo_mutex); 1696 return err; 1697 } 1698 1699 static void lo_release(struct gendisk *disk) 1700 { 1701 struct loop_device *lo = disk->private_data; 1702 bool need_clear = false; 1703 1704 if (disk_openers(disk) > 0) 1705 return; 1706 /* 1707 * Clear the backing device information if this is the last close of 1708 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1709 * has been called. 1710 */ 1711 1712 mutex_lock(&lo->lo_mutex); 1713 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1714 lo->lo_state = Lo_rundown; 1715 1716 need_clear = (lo->lo_state == Lo_rundown); 1717 mutex_unlock(&lo->lo_mutex); 1718 1719 if (need_clear) 1720 __loop_clr_fd(lo); 1721 } 1722 1723 static void lo_free_disk(struct gendisk *disk) 1724 { 1725 struct loop_device *lo = disk->private_data; 1726 1727 if (lo->workqueue) 1728 destroy_workqueue(lo->workqueue); 1729 loop_free_idle_workers(lo, true); 1730 timer_shutdown_sync(&lo->timer); 1731 mutex_destroy(&lo->lo_mutex); 1732 kfree(lo); 1733 } 1734 1735 static const struct block_device_operations lo_fops = { 1736 .owner = THIS_MODULE, 1737 .open = lo_open, 1738 .release = lo_release, 1739 .ioctl = lo_ioctl, 1740 #ifdef CONFIG_COMPAT 1741 .compat_ioctl = lo_compat_ioctl, 1742 #endif 1743 .free_disk = lo_free_disk, 1744 }; 1745 1746 /* 1747 * And now the modules code and kernel interface. 1748 */ 1749 1750 /* 1751 * If max_loop is specified, create that many devices upfront. 1752 * This also becomes a hard limit. If max_loop is not specified, 1753 * the default isn't a hard limit (as before commit 85c50197716c 1754 * changed the default value from 0 for max_loop=0 reasons), just 1755 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1756 * init time. Loop devices can be requested on-demand with the 1757 * /dev/loop-control interface, or be instantiated by accessing 1758 * a 'dead' device node. 1759 */ 1760 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1761 1762 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1763 static bool max_loop_specified; 1764 1765 static int max_loop_param_set_int(const char *val, 1766 const struct kernel_param *kp) 1767 { 1768 int ret; 1769 1770 ret = param_set_int(val, kp); 1771 if (ret < 0) 1772 return ret; 1773 1774 max_loop_specified = true; 1775 return 0; 1776 } 1777 1778 static const struct kernel_param_ops max_loop_param_ops = { 1779 .set = max_loop_param_set_int, 1780 .get = param_get_int, 1781 }; 1782 1783 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1784 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1785 #else 1786 module_param(max_loop, int, 0444); 1787 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1788 #endif 1789 1790 module_param(max_part, int, 0444); 1791 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1792 1793 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1794 1795 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1796 { 1797 int qd, ret; 1798 1799 ret = kstrtoint(s, 0, &qd); 1800 if (ret < 0) 1801 return ret; 1802 if (qd < 1) 1803 return -EINVAL; 1804 hw_queue_depth = qd; 1805 return 0; 1806 } 1807 1808 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1809 .set = loop_set_hw_queue_depth, 1810 .get = param_get_int, 1811 }; 1812 1813 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1814 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1815 1816 MODULE_DESCRIPTION("Loopback device support"); 1817 MODULE_LICENSE("GPL"); 1818 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1819 1820 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1821 const struct blk_mq_queue_data *bd) 1822 { 1823 struct request *rq = bd->rq; 1824 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1825 struct loop_device *lo = rq->q->queuedata; 1826 1827 blk_mq_start_request(rq); 1828 1829 if (lo->lo_state != Lo_bound) 1830 return BLK_STS_IOERR; 1831 1832 switch (req_op(rq)) { 1833 case REQ_OP_FLUSH: 1834 case REQ_OP_DISCARD: 1835 case REQ_OP_WRITE_ZEROES: 1836 cmd->use_aio = false; 1837 break; 1838 default: 1839 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1840 break; 1841 } 1842 1843 /* always use the first bio's css */ 1844 cmd->blkcg_css = NULL; 1845 cmd->memcg_css = NULL; 1846 #ifdef CONFIG_BLK_CGROUP 1847 if (rq->bio) { 1848 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1849 #ifdef CONFIG_MEMCG 1850 if (cmd->blkcg_css) { 1851 cmd->memcg_css = 1852 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1853 &memory_cgrp_subsys); 1854 } 1855 #endif 1856 } 1857 #endif 1858 loop_queue_work(lo, cmd); 1859 1860 return BLK_STS_OK; 1861 } 1862 1863 static void loop_handle_cmd(struct loop_cmd *cmd) 1864 { 1865 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1866 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1867 struct request *rq = blk_mq_rq_from_pdu(cmd); 1868 const bool write = op_is_write(req_op(rq)); 1869 struct loop_device *lo = rq->q->queuedata; 1870 int ret = 0; 1871 struct mem_cgroup *old_memcg = NULL; 1872 1873 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1874 ret = -EIO; 1875 goto failed; 1876 } 1877 1878 if (cmd_blkcg_css) 1879 kthread_associate_blkcg(cmd_blkcg_css); 1880 if (cmd_memcg_css) 1881 old_memcg = set_active_memcg( 1882 mem_cgroup_from_css(cmd_memcg_css)); 1883 1884 /* 1885 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1886 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1887 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1888 * not yet been completed. 1889 */ 1890 ret = do_req_filebacked(lo, rq); 1891 1892 if (cmd_blkcg_css) 1893 kthread_associate_blkcg(NULL); 1894 1895 if (cmd_memcg_css) { 1896 set_active_memcg(old_memcg); 1897 css_put(cmd_memcg_css); 1898 } 1899 failed: 1900 /* complete non-aio request */ 1901 if (ret != -EIOCBQUEUED) { 1902 if (ret == -EOPNOTSUPP) 1903 cmd->ret = ret; 1904 else 1905 cmd->ret = ret ? -EIO : 0; 1906 if (likely(!blk_should_fake_timeout(rq->q))) 1907 blk_mq_complete_request(rq); 1908 } 1909 } 1910 1911 static void loop_process_work(struct loop_worker *worker, 1912 struct list_head *cmd_list, struct loop_device *lo) 1913 { 1914 int orig_flags = current->flags; 1915 struct loop_cmd *cmd; 1916 1917 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1918 spin_lock_irq(&lo->lo_work_lock); 1919 while (!list_empty(cmd_list)) { 1920 cmd = container_of( 1921 cmd_list->next, struct loop_cmd, list_entry); 1922 list_del(cmd_list->next); 1923 spin_unlock_irq(&lo->lo_work_lock); 1924 1925 loop_handle_cmd(cmd); 1926 cond_resched(); 1927 1928 spin_lock_irq(&lo->lo_work_lock); 1929 } 1930 1931 /* 1932 * We only add to the idle list if there are no pending cmds 1933 * *and* the worker will not run again which ensures that it 1934 * is safe to free any worker on the idle list 1935 */ 1936 if (worker && !work_pending(&worker->work)) { 1937 worker->last_ran_at = jiffies; 1938 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1939 loop_set_timer(lo); 1940 } 1941 spin_unlock_irq(&lo->lo_work_lock); 1942 current->flags = orig_flags; 1943 } 1944 1945 static void loop_workfn(struct work_struct *work) 1946 { 1947 struct loop_worker *worker = 1948 container_of(work, struct loop_worker, work); 1949 loop_process_work(worker, &worker->cmd_list, worker->lo); 1950 } 1951 1952 static void loop_rootcg_workfn(struct work_struct *work) 1953 { 1954 struct loop_device *lo = 1955 container_of(work, struct loop_device, rootcg_work); 1956 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1957 } 1958 1959 static const struct blk_mq_ops loop_mq_ops = { 1960 .queue_rq = loop_queue_rq, 1961 .complete = lo_complete_rq, 1962 }; 1963 1964 static int loop_add(int i) 1965 { 1966 struct queue_limits lim = { 1967 /* 1968 * Random number picked from the historic block max_sectors cap. 1969 */ 1970 .max_hw_sectors = 2560u, 1971 }; 1972 struct loop_device *lo; 1973 struct gendisk *disk; 1974 int err; 1975 1976 err = -ENOMEM; 1977 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1978 if (!lo) 1979 goto out; 1980 lo->worker_tree = RB_ROOT; 1981 INIT_LIST_HEAD(&lo->idle_worker_list); 1982 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 1983 lo->lo_state = Lo_unbound; 1984 1985 err = mutex_lock_killable(&loop_ctl_mutex); 1986 if (err) 1987 goto out_free_dev; 1988 1989 /* allocate id, if @id >= 0, we're requesting that specific id */ 1990 if (i >= 0) { 1991 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1992 if (err == -ENOSPC) 1993 err = -EEXIST; 1994 } else { 1995 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1996 } 1997 mutex_unlock(&loop_ctl_mutex); 1998 if (err < 0) 1999 goto out_free_dev; 2000 i = err; 2001 2002 lo->tag_set.ops = &loop_mq_ops; 2003 lo->tag_set.nr_hw_queues = 1; 2004 lo->tag_set.queue_depth = hw_queue_depth; 2005 lo->tag_set.numa_node = NUMA_NO_NODE; 2006 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2007 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2008 lo->tag_set.driver_data = lo; 2009 2010 err = blk_mq_alloc_tag_set(&lo->tag_set); 2011 if (err) 2012 goto out_free_idr; 2013 2014 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2015 if (IS_ERR(disk)) { 2016 err = PTR_ERR(disk); 2017 goto out_cleanup_tags; 2018 } 2019 lo->lo_queue = lo->lo_disk->queue; 2020 2021 /* 2022 * Disable partition scanning by default. The in-kernel partition 2023 * scanning can be requested individually per-device during its 2024 * setup. Userspace can always add and remove partitions from all 2025 * devices. The needed partition minors are allocated from the 2026 * extended minor space, the main loop device numbers will continue 2027 * to match the loop minors, regardless of the number of partitions 2028 * used. 2029 * 2030 * If max_part is given, partition scanning is globally enabled for 2031 * all loop devices. The minors for the main loop devices will be 2032 * multiples of max_part. 2033 * 2034 * Note: Global-for-all-devices, set-only-at-init, read-only module 2035 * parameteters like 'max_loop' and 'max_part' make things needlessly 2036 * complicated, are too static, inflexible and may surprise 2037 * userspace tools. Parameters like this in general should be avoided. 2038 */ 2039 if (!part_shift) 2040 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2041 mutex_init(&lo->lo_mutex); 2042 lo->lo_number = i; 2043 spin_lock_init(&lo->lo_lock); 2044 spin_lock_init(&lo->lo_work_lock); 2045 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2046 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2047 disk->major = LOOP_MAJOR; 2048 disk->first_minor = i << part_shift; 2049 disk->minors = 1 << part_shift; 2050 disk->fops = &lo_fops; 2051 disk->private_data = lo; 2052 disk->queue = lo->lo_queue; 2053 disk->events = DISK_EVENT_MEDIA_CHANGE; 2054 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2055 sprintf(disk->disk_name, "loop%d", i); 2056 /* Make this loop device reachable from pathname. */ 2057 err = add_disk(disk); 2058 if (err) 2059 goto out_cleanup_disk; 2060 2061 /* Show this loop device. */ 2062 mutex_lock(&loop_ctl_mutex); 2063 lo->idr_visible = true; 2064 mutex_unlock(&loop_ctl_mutex); 2065 2066 return i; 2067 2068 out_cleanup_disk: 2069 put_disk(disk); 2070 out_cleanup_tags: 2071 blk_mq_free_tag_set(&lo->tag_set); 2072 out_free_idr: 2073 mutex_lock(&loop_ctl_mutex); 2074 idr_remove(&loop_index_idr, i); 2075 mutex_unlock(&loop_ctl_mutex); 2076 out_free_dev: 2077 kfree(lo); 2078 out: 2079 return err; 2080 } 2081 2082 static void loop_remove(struct loop_device *lo) 2083 { 2084 /* Make this loop device unreachable from pathname. */ 2085 del_gendisk(lo->lo_disk); 2086 blk_mq_free_tag_set(&lo->tag_set); 2087 2088 mutex_lock(&loop_ctl_mutex); 2089 idr_remove(&loop_index_idr, lo->lo_number); 2090 mutex_unlock(&loop_ctl_mutex); 2091 2092 put_disk(lo->lo_disk); 2093 } 2094 2095 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2096 static void loop_probe(dev_t dev) 2097 { 2098 int idx = MINOR(dev) >> part_shift; 2099 2100 if (max_loop_specified && max_loop && idx >= max_loop) 2101 return; 2102 loop_add(idx); 2103 } 2104 #else 2105 #define loop_probe NULL 2106 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2107 2108 static int loop_control_remove(int idx) 2109 { 2110 struct loop_device *lo; 2111 int ret; 2112 2113 if (idx < 0) { 2114 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2115 return -EINVAL; 2116 } 2117 2118 /* Hide this loop device for serialization. */ 2119 ret = mutex_lock_killable(&loop_ctl_mutex); 2120 if (ret) 2121 return ret; 2122 lo = idr_find(&loop_index_idr, idx); 2123 if (!lo || !lo->idr_visible) 2124 ret = -ENODEV; 2125 else 2126 lo->idr_visible = false; 2127 mutex_unlock(&loop_ctl_mutex); 2128 if (ret) 2129 return ret; 2130 2131 /* Check whether this loop device can be removed. */ 2132 ret = mutex_lock_killable(&lo->lo_mutex); 2133 if (ret) 2134 goto mark_visible; 2135 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2136 mutex_unlock(&lo->lo_mutex); 2137 ret = -EBUSY; 2138 goto mark_visible; 2139 } 2140 /* Mark this loop device as no more bound, but not quite unbound yet */ 2141 lo->lo_state = Lo_deleting; 2142 mutex_unlock(&lo->lo_mutex); 2143 2144 loop_remove(lo); 2145 return 0; 2146 2147 mark_visible: 2148 /* Show this loop device again. */ 2149 mutex_lock(&loop_ctl_mutex); 2150 lo->idr_visible = true; 2151 mutex_unlock(&loop_ctl_mutex); 2152 return ret; 2153 } 2154 2155 static int loop_control_get_free(int idx) 2156 { 2157 struct loop_device *lo; 2158 int id, ret; 2159 2160 ret = mutex_lock_killable(&loop_ctl_mutex); 2161 if (ret) 2162 return ret; 2163 idr_for_each_entry(&loop_index_idr, lo, id) { 2164 /* Hitting a race results in creating a new loop device which is harmless. */ 2165 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2166 goto found; 2167 } 2168 mutex_unlock(&loop_ctl_mutex); 2169 return loop_add(-1); 2170 found: 2171 mutex_unlock(&loop_ctl_mutex); 2172 return id; 2173 } 2174 2175 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2176 unsigned long parm) 2177 { 2178 switch (cmd) { 2179 case LOOP_CTL_ADD: 2180 return loop_add(parm); 2181 case LOOP_CTL_REMOVE: 2182 return loop_control_remove(parm); 2183 case LOOP_CTL_GET_FREE: 2184 return loop_control_get_free(parm); 2185 default: 2186 return -ENOSYS; 2187 } 2188 } 2189 2190 static const struct file_operations loop_ctl_fops = { 2191 .open = nonseekable_open, 2192 .unlocked_ioctl = loop_control_ioctl, 2193 .compat_ioctl = loop_control_ioctl, 2194 .owner = THIS_MODULE, 2195 .llseek = noop_llseek, 2196 }; 2197 2198 static struct miscdevice loop_misc = { 2199 .minor = LOOP_CTRL_MINOR, 2200 .name = "loop-control", 2201 .fops = &loop_ctl_fops, 2202 }; 2203 2204 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2205 MODULE_ALIAS("devname:loop-control"); 2206 2207 static int __init loop_init(void) 2208 { 2209 int i; 2210 int err; 2211 2212 part_shift = 0; 2213 if (max_part > 0) { 2214 part_shift = fls(max_part); 2215 2216 /* 2217 * Adjust max_part according to part_shift as it is exported 2218 * to user space so that user can decide correct minor number 2219 * if [s]he want to create more devices. 2220 * 2221 * Note that -1 is required because partition 0 is reserved 2222 * for the whole disk. 2223 */ 2224 max_part = (1UL << part_shift) - 1; 2225 } 2226 2227 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2228 err = -EINVAL; 2229 goto err_out; 2230 } 2231 2232 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2233 err = -EINVAL; 2234 goto err_out; 2235 } 2236 2237 err = misc_register(&loop_misc); 2238 if (err < 0) 2239 goto err_out; 2240 2241 2242 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2243 err = -EIO; 2244 goto misc_out; 2245 } 2246 2247 /* pre-create number of devices given by config or max_loop */ 2248 for (i = 0; i < max_loop; i++) 2249 loop_add(i); 2250 2251 printk(KERN_INFO "loop: module loaded\n"); 2252 return 0; 2253 2254 misc_out: 2255 misc_deregister(&loop_misc); 2256 err_out: 2257 return err; 2258 } 2259 2260 static void __exit loop_exit(void) 2261 { 2262 struct loop_device *lo; 2263 int id; 2264 2265 unregister_blkdev(LOOP_MAJOR, "loop"); 2266 misc_deregister(&loop_misc); 2267 2268 /* 2269 * There is no need to use loop_ctl_mutex here, for nobody else can 2270 * access loop_index_idr when this module is unloading (unless forced 2271 * module unloading is requested). If this is not a clean unloading, 2272 * we have no means to avoid kernel crash. 2273 */ 2274 idr_for_each_entry(&loop_index_idr, lo, id) 2275 loop_remove(lo); 2276 2277 idr_destroy(&loop_index_idr); 2278 } 2279 2280 module_init(loop_init); 2281 module_exit(loop_exit); 2282 2283 #ifndef MODULE 2284 static int __init max_loop_setup(char *str) 2285 { 2286 max_loop = simple_strtol(str, NULL, 0); 2287 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2288 max_loop_specified = true; 2289 #endif 2290 return 1; 2291 } 2292 2293 __setup("max_loop=", max_loop_setup); 2294 #endif 2295