1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_func_table; 49 50 struct loop_device { 51 int lo_number; 52 loff_t lo_offset; 53 loff_t lo_sizelimit; 54 int lo_flags; 55 char lo_file_name[LO_NAME_SIZE]; 56 57 struct file *lo_backing_file; 58 unsigned int lo_min_dio_size; 59 struct block_device *lo_device; 60 61 gfp_t old_gfp_mask; 62 63 spinlock_t lo_lock; 64 int lo_state; 65 spinlock_t lo_work_lock; 66 struct workqueue_struct *workqueue; 67 struct work_struct rootcg_work; 68 struct list_head rootcg_cmd_list; 69 struct list_head idle_worker_list; 70 struct rb_root worker_tree; 71 struct timer_list timer; 72 bool sysfs_inited; 73 74 struct request_queue *lo_queue; 75 struct blk_mq_tag_set tag_set; 76 struct gendisk *lo_disk; 77 struct mutex lo_mutex; 78 bool idr_visible; 79 }; 80 81 struct loop_cmd { 82 struct list_head list_entry; 83 bool use_aio; /* use AIO interface to handle I/O */ 84 atomic_t ref; /* only for aio */ 85 long ret; 86 struct kiocb iocb; 87 struct bio_vec *bvec; 88 struct cgroup_subsys_state *blkcg_css; 89 struct cgroup_subsys_state *memcg_css; 90 }; 91 92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 93 #define LOOP_DEFAULT_HW_Q_DEPTH 128 94 95 static DEFINE_IDR(loop_index_idr); 96 static DEFINE_MUTEX(loop_ctl_mutex); 97 static DEFINE_MUTEX(loop_validate_mutex); 98 99 /** 100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 101 * 102 * @lo: struct loop_device 103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 104 * 105 * Returns 0 on success, -EINTR otherwise. 106 * 107 * Since loop_validate_file() traverses on other "struct loop_device" if 108 * is_loop_device() is true, we need a global lock for serializing concurrent 109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 110 */ 111 static int loop_global_lock_killable(struct loop_device *lo, bool global) 112 { 113 int err; 114 115 if (global) { 116 err = mutex_lock_killable(&loop_validate_mutex); 117 if (err) 118 return err; 119 } 120 err = mutex_lock_killable(&lo->lo_mutex); 121 if (err && global) 122 mutex_unlock(&loop_validate_mutex); 123 return err; 124 } 125 126 /** 127 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 128 * 129 * @lo: struct loop_device 130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 131 */ 132 static void loop_global_unlock(struct loop_device *lo, bool global) 133 { 134 mutex_unlock(&lo->lo_mutex); 135 if (global) 136 mutex_unlock(&loop_validate_mutex); 137 } 138 139 static int max_part; 140 static int part_shift; 141 142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 143 { 144 loff_t loopsize; 145 146 /* Compute loopsize in bytes */ 147 loopsize = i_size_read(file->f_mapping->host); 148 if (offset > 0) 149 loopsize -= offset; 150 /* offset is beyond i_size, weird but possible */ 151 if (loopsize < 0) 152 return 0; 153 154 if (sizelimit > 0 && sizelimit < loopsize) 155 loopsize = sizelimit; 156 /* 157 * Unfortunately, if we want to do I/O on the device, 158 * the number of 512-byte sectors has to fit into a sector_t. 159 */ 160 return loopsize >> 9; 161 } 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 166 } 167 168 /* 169 * We support direct I/O only if lo_offset is aligned with the logical I/O size 170 * of backing device, and the logical block size of loop is bigger than that of 171 * the backing device. 172 */ 173 static bool lo_can_use_dio(struct loop_device *lo) 174 { 175 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 176 return false; 177 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 178 return false; 179 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 180 return false; 181 return true; 182 } 183 184 /* 185 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 186 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 187 * disabled when the device block size is too small or the offset is unaligned. 188 * 189 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 190 * not the originally passed in one. 191 */ 192 static inline void loop_update_dio(struct loop_device *lo) 193 { 194 bool dio_in_use = lo->lo_flags & LO_FLAGS_DIRECT_IO; 195 196 lockdep_assert_held(&lo->lo_mutex); 197 WARN_ON_ONCE(lo->lo_state == Lo_bound && 198 lo->lo_queue->mq_freeze_depth == 0); 199 200 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 201 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 202 203 /* flush dirty pages before starting to issue direct I/O */ 204 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !dio_in_use) 205 vfs_fsync(lo->lo_backing_file, 0); 206 } 207 208 /** 209 * loop_set_size() - sets device size and notifies userspace 210 * @lo: struct loop_device to set the size for 211 * @size: new size of the loop device 212 * 213 * Callers must validate that the size passed into this function fits into 214 * a sector_t, eg using loop_validate_size() 215 */ 216 static void loop_set_size(struct loop_device *lo, loff_t size) 217 { 218 if (!set_capacity_and_notify(lo->lo_disk, size)) 219 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 220 } 221 222 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 223 { 224 struct iov_iter i; 225 ssize_t bw; 226 227 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len); 228 229 bw = vfs_iter_write(file, &i, ppos, 0); 230 231 if (likely(bw == bvec->bv_len)) 232 return 0; 233 234 printk_ratelimited(KERN_ERR 235 "loop: Write error at byte offset %llu, length %i.\n", 236 (unsigned long long)*ppos, bvec->bv_len); 237 if (bw >= 0) 238 bw = -EIO; 239 return bw; 240 } 241 242 static int lo_write_simple(struct loop_device *lo, struct request *rq, 243 loff_t pos) 244 { 245 struct bio_vec bvec; 246 struct req_iterator iter; 247 int ret = 0; 248 249 rq_for_each_segment(bvec, rq, iter) { 250 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 251 if (ret < 0) 252 break; 253 cond_resched(); 254 } 255 256 return ret; 257 } 258 259 static int lo_read_simple(struct loop_device *lo, struct request *rq, 260 loff_t pos) 261 { 262 struct bio_vec bvec; 263 struct req_iterator iter; 264 struct iov_iter i; 265 ssize_t len; 266 267 rq_for_each_segment(bvec, rq, iter) { 268 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len); 269 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 270 if (len < 0) 271 return len; 272 273 flush_dcache_page(bvec.bv_page); 274 275 if (len != bvec.bv_len) { 276 struct bio *bio; 277 278 __rq_for_each_bio(bio, rq) 279 zero_fill_bio(bio); 280 break; 281 } 282 cond_resched(); 283 } 284 285 return 0; 286 } 287 288 static void loop_clear_limits(struct loop_device *lo, int mode) 289 { 290 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 291 292 if (mode & FALLOC_FL_ZERO_RANGE) 293 lim.max_write_zeroes_sectors = 0; 294 295 if (mode & FALLOC_FL_PUNCH_HOLE) { 296 lim.max_hw_discard_sectors = 0; 297 lim.discard_granularity = 0; 298 } 299 300 /* 301 * XXX: this updates the queue limits without freezing the queue, which 302 * is against the locking protocol and dangerous. But we can't just 303 * freeze the queue as we're inside the ->queue_rq method here. So this 304 * should move out into a workqueue unless we get the file operations to 305 * advertise if they support specific fallocate operations. 306 */ 307 queue_limits_commit_update(lo->lo_queue, &lim); 308 } 309 310 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 311 int mode) 312 { 313 /* 314 * We use fallocate to manipulate the space mappings used by the image 315 * a.k.a. discard/zerorange. 316 */ 317 struct file *file = lo->lo_backing_file; 318 int ret; 319 320 mode |= FALLOC_FL_KEEP_SIZE; 321 322 if (!bdev_max_discard_sectors(lo->lo_device)) 323 return -EOPNOTSUPP; 324 325 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 326 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 327 return -EIO; 328 329 /* 330 * We initially configure the limits in a hope that fallocate is 331 * supported and clear them here if that turns out not to be true. 332 */ 333 if (unlikely(ret == -EOPNOTSUPP)) 334 loop_clear_limits(lo, mode); 335 336 return ret; 337 } 338 339 static int lo_req_flush(struct loop_device *lo, struct request *rq) 340 { 341 int ret = vfs_fsync(lo->lo_backing_file, 0); 342 if (unlikely(ret && ret != -EINVAL)) 343 ret = -EIO; 344 345 return ret; 346 } 347 348 static void lo_complete_rq(struct request *rq) 349 { 350 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 351 blk_status_t ret = BLK_STS_OK; 352 353 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 354 req_op(rq) != REQ_OP_READ) { 355 if (cmd->ret < 0) 356 ret = errno_to_blk_status(cmd->ret); 357 goto end_io; 358 } 359 360 /* 361 * Short READ - if we got some data, advance our request and 362 * retry it. If we got no data, end the rest with EIO. 363 */ 364 if (cmd->ret) { 365 blk_update_request(rq, BLK_STS_OK, cmd->ret); 366 cmd->ret = 0; 367 blk_mq_requeue_request(rq, true); 368 } else { 369 if (cmd->use_aio) { 370 struct bio *bio = rq->bio; 371 372 while (bio) { 373 zero_fill_bio(bio); 374 bio = bio->bi_next; 375 } 376 } 377 ret = BLK_STS_IOERR; 378 end_io: 379 blk_mq_end_request(rq, ret); 380 } 381 } 382 383 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 384 { 385 struct request *rq = blk_mq_rq_from_pdu(cmd); 386 387 if (!atomic_dec_and_test(&cmd->ref)) 388 return; 389 kfree(cmd->bvec); 390 cmd->bvec = NULL; 391 if (likely(!blk_should_fake_timeout(rq->q))) 392 blk_mq_complete_request(rq); 393 } 394 395 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 396 { 397 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 398 399 cmd->ret = ret; 400 lo_rw_aio_do_completion(cmd); 401 } 402 403 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 404 loff_t pos, int rw) 405 { 406 struct iov_iter iter; 407 struct req_iterator rq_iter; 408 struct bio_vec *bvec; 409 struct request *rq = blk_mq_rq_from_pdu(cmd); 410 struct bio *bio = rq->bio; 411 struct file *file = lo->lo_backing_file; 412 struct bio_vec tmp; 413 unsigned int offset; 414 int nr_bvec = 0; 415 int ret; 416 417 rq_for_each_bvec(tmp, rq, rq_iter) 418 nr_bvec++; 419 420 if (rq->bio != rq->biotail) { 421 422 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 423 GFP_NOIO); 424 if (!bvec) 425 return -EIO; 426 cmd->bvec = bvec; 427 428 /* 429 * The bios of the request may be started from the middle of 430 * the 'bvec' because of bio splitting, so we can't directly 431 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 432 * API will take care of all details for us. 433 */ 434 rq_for_each_bvec(tmp, rq, rq_iter) { 435 *bvec = tmp; 436 bvec++; 437 } 438 bvec = cmd->bvec; 439 offset = 0; 440 } else { 441 /* 442 * Same here, this bio may be started from the middle of the 443 * 'bvec' because of bio splitting, so offset from the bvec 444 * must be passed to iov iterator 445 */ 446 offset = bio->bi_iter.bi_bvec_done; 447 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 448 } 449 atomic_set(&cmd->ref, 2); 450 451 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 452 iter.iov_offset = offset; 453 454 cmd->iocb.ki_pos = pos; 455 cmd->iocb.ki_filp = file; 456 cmd->iocb.ki_complete = lo_rw_aio_complete; 457 cmd->iocb.ki_flags = IOCB_DIRECT; 458 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 459 460 if (rw == ITER_SOURCE) 461 ret = file->f_op->write_iter(&cmd->iocb, &iter); 462 else 463 ret = file->f_op->read_iter(&cmd->iocb, &iter); 464 465 lo_rw_aio_do_completion(cmd); 466 467 if (ret != -EIOCBQUEUED) 468 lo_rw_aio_complete(&cmd->iocb, ret); 469 return 0; 470 } 471 472 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 473 { 474 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 475 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 476 477 /* 478 * lo_write_simple and lo_read_simple should have been covered 479 * by io submit style function like lo_rw_aio(), one blocker 480 * is that lo_read_simple() need to call flush_dcache_page after 481 * the page is written from kernel, and it isn't easy to handle 482 * this in io submit style function which submits all segments 483 * of the req at one time. And direct read IO doesn't need to 484 * run flush_dcache_page(). 485 */ 486 switch (req_op(rq)) { 487 case REQ_OP_FLUSH: 488 return lo_req_flush(lo, rq); 489 case REQ_OP_WRITE_ZEROES: 490 /* 491 * If the caller doesn't want deallocation, call zeroout to 492 * write zeroes the range. Otherwise, punch them out. 493 */ 494 return lo_fallocate(lo, rq, pos, 495 (rq->cmd_flags & REQ_NOUNMAP) ? 496 FALLOC_FL_ZERO_RANGE : 497 FALLOC_FL_PUNCH_HOLE); 498 case REQ_OP_DISCARD: 499 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 500 case REQ_OP_WRITE: 501 if (cmd->use_aio) 502 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 503 else 504 return lo_write_simple(lo, rq, pos); 505 case REQ_OP_READ: 506 if (cmd->use_aio) 507 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 508 else 509 return lo_read_simple(lo, rq, pos); 510 default: 511 WARN_ON_ONCE(1); 512 return -EIO; 513 } 514 } 515 516 static void loop_reread_partitions(struct loop_device *lo) 517 { 518 int rc; 519 520 mutex_lock(&lo->lo_disk->open_mutex); 521 rc = bdev_disk_changed(lo->lo_disk, false); 522 mutex_unlock(&lo->lo_disk->open_mutex); 523 if (rc) 524 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 525 __func__, lo->lo_number, lo->lo_file_name, rc); 526 } 527 528 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 529 { 530 struct file *file = lo->lo_backing_file; 531 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 532 struct kstat st; 533 534 /* 535 * Use the minimal dio alignment of the file system if provided. 536 */ 537 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 538 (st.result_mask & STATX_DIOALIGN)) 539 return st.dio_offset_align; 540 541 /* 542 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 543 * a handful of file systems support the STATX_DIOALIGN flag. 544 */ 545 if (sb_bdev) 546 return bdev_logical_block_size(sb_bdev); 547 return SECTOR_SIZE; 548 } 549 550 static inline int is_loop_device(struct file *file) 551 { 552 struct inode *i = file->f_mapping->host; 553 554 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 555 } 556 557 static int loop_validate_file(struct file *file, struct block_device *bdev) 558 { 559 struct inode *inode = file->f_mapping->host; 560 struct file *f = file; 561 562 /* Avoid recursion */ 563 while (is_loop_device(f)) { 564 struct loop_device *l; 565 566 lockdep_assert_held(&loop_validate_mutex); 567 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 568 return -EBADF; 569 570 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 571 if (l->lo_state != Lo_bound) 572 return -EINVAL; 573 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 574 rmb(); 575 f = l->lo_backing_file; 576 } 577 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 578 return -EINVAL; 579 return 0; 580 } 581 582 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 583 { 584 lo->lo_backing_file = file; 585 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 586 mapping_set_gfp_mask(file->f_mapping, 587 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 588 if (lo->lo_backing_file->f_flags & O_DIRECT) 589 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 590 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 591 } 592 593 /* 594 * loop_change_fd switched the backing store of a loopback device to 595 * a new file. This is useful for operating system installers to free up 596 * the original file and in High Availability environments to switch to 597 * an alternative location for the content in case of server meltdown. 598 * This can only work if the loop device is used read-only, and if the 599 * new backing store is the same size and type as the old backing store. 600 */ 601 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 602 unsigned int arg) 603 { 604 struct file *file = fget(arg); 605 struct file *old_file; 606 unsigned int memflags; 607 int error; 608 bool partscan; 609 bool is_loop; 610 611 if (!file) 612 return -EBADF; 613 614 /* suppress uevents while reconfiguring the device */ 615 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 616 617 is_loop = is_loop_device(file); 618 error = loop_global_lock_killable(lo, is_loop); 619 if (error) 620 goto out_putf; 621 error = -ENXIO; 622 if (lo->lo_state != Lo_bound) 623 goto out_err; 624 625 /* the loop device has to be read-only */ 626 error = -EINVAL; 627 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 628 goto out_err; 629 630 error = loop_validate_file(file, bdev); 631 if (error) 632 goto out_err; 633 634 old_file = lo->lo_backing_file; 635 636 error = -EINVAL; 637 638 /* size of the new backing store needs to be the same */ 639 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 640 goto out_err; 641 642 /* and ... switch */ 643 disk_force_media_change(lo->lo_disk); 644 memflags = blk_mq_freeze_queue(lo->lo_queue); 645 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 646 loop_assign_backing_file(lo, file); 647 loop_update_dio(lo); 648 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 649 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 650 loop_global_unlock(lo, is_loop); 651 652 /* 653 * Flush loop_validate_file() before fput(), for l->lo_backing_file 654 * might be pointing at old_file which might be the last reference. 655 */ 656 if (!is_loop) { 657 mutex_lock(&loop_validate_mutex); 658 mutex_unlock(&loop_validate_mutex); 659 } 660 /* 661 * We must drop file reference outside of lo_mutex as dropping 662 * the file ref can take open_mutex which creates circular locking 663 * dependency. 664 */ 665 fput(old_file); 666 if (partscan) 667 loop_reread_partitions(lo); 668 669 error = 0; 670 done: 671 /* enable and uncork uevent now that we are done */ 672 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 673 return error; 674 675 out_err: 676 loop_global_unlock(lo, is_loop); 677 out_putf: 678 fput(file); 679 goto done; 680 } 681 682 /* loop sysfs attributes */ 683 684 static ssize_t loop_attr_show(struct device *dev, char *page, 685 ssize_t (*callback)(struct loop_device *, char *)) 686 { 687 struct gendisk *disk = dev_to_disk(dev); 688 struct loop_device *lo = disk->private_data; 689 690 return callback(lo, page); 691 } 692 693 #define LOOP_ATTR_RO(_name) \ 694 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 695 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 696 struct device_attribute *attr, char *b) \ 697 { \ 698 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 699 } \ 700 static struct device_attribute loop_attr_##_name = \ 701 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 702 703 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 704 { 705 ssize_t ret; 706 char *p = NULL; 707 708 spin_lock_irq(&lo->lo_lock); 709 if (lo->lo_backing_file) 710 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 711 spin_unlock_irq(&lo->lo_lock); 712 713 if (IS_ERR_OR_NULL(p)) 714 ret = PTR_ERR(p); 715 else { 716 ret = strlen(p); 717 memmove(buf, p, ret); 718 buf[ret++] = '\n'; 719 buf[ret] = 0; 720 } 721 722 return ret; 723 } 724 725 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 726 { 727 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 728 } 729 730 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 731 { 732 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 733 } 734 735 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 736 { 737 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 738 739 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 740 } 741 742 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 743 { 744 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 745 746 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 747 } 748 749 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 750 { 751 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 752 753 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 754 } 755 756 LOOP_ATTR_RO(backing_file); 757 LOOP_ATTR_RO(offset); 758 LOOP_ATTR_RO(sizelimit); 759 LOOP_ATTR_RO(autoclear); 760 LOOP_ATTR_RO(partscan); 761 LOOP_ATTR_RO(dio); 762 763 static struct attribute *loop_attrs[] = { 764 &loop_attr_backing_file.attr, 765 &loop_attr_offset.attr, 766 &loop_attr_sizelimit.attr, 767 &loop_attr_autoclear.attr, 768 &loop_attr_partscan.attr, 769 &loop_attr_dio.attr, 770 NULL, 771 }; 772 773 static struct attribute_group loop_attribute_group = { 774 .name = "loop", 775 .attrs= loop_attrs, 776 }; 777 778 static void loop_sysfs_init(struct loop_device *lo) 779 { 780 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 781 &loop_attribute_group); 782 } 783 784 static void loop_sysfs_exit(struct loop_device *lo) 785 { 786 if (lo->sysfs_inited) 787 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 788 &loop_attribute_group); 789 } 790 791 static void loop_get_discard_config(struct loop_device *lo, 792 u32 *granularity, u32 *max_discard_sectors) 793 { 794 struct file *file = lo->lo_backing_file; 795 struct inode *inode = file->f_mapping->host; 796 struct kstatfs sbuf; 797 798 /* 799 * If the backing device is a block device, mirror its zeroing 800 * capability. Set the discard sectors to the block device's zeroing 801 * capabilities because loop discards result in blkdev_issue_zeroout(), 802 * not blkdev_issue_discard(). This maintains consistent behavior with 803 * file-backed loop devices: discarded regions read back as zero. 804 */ 805 if (S_ISBLK(inode->i_mode)) { 806 struct block_device *bdev = I_BDEV(inode); 807 808 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 809 *granularity = bdev_discard_granularity(bdev); 810 811 /* 812 * We use punch hole to reclaim the free space used by the 813 * image a.k.a. discard. 814 */ 815 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 816 *max_discard_sectors = UINT_MAX >> 9; 817 *granularity = sbuf.f_bsize; 818 } 819 } 820 821 struct loop_worker { 822 struct rb_node rb_node; 823 struct work_struct work; 824 struct list_head cmd_list; 825 struct list_head idle_list; 826 struct loop_device *lo; 827 struct cgroup_subsys_state *blkcg_css; 828 unsigned long last_ran_at; 829 }; 830 831 static void loop_workfn(struct work_struct *work); 832 833 #ifdef CONFIG_BLK_CGROUP 834 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 835 { 836 return !css || css == blkcg_root_css; 837 } 838 #else 839 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 840 { 841 return !css; 842 } 843 #endif 844 845 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 846 { 847 struct rb_node **node, *parent = NULL; 848 struct loop_worker *cur_worker, *worker = NULL; 849 struct work_struct *work; 850 struct list_head *cmd_list; 851 852 spin_lock_irq(&lo->lo_work_lock); 853 854 if (queue_on_root_worker(cmd->blkcg_css)) 855 goto queue_work; 856 857 node = &lo->worker_tree.rb_node; 858 859 while (*node) { 860 parent = *node; 861 cur_worker = container_of(*node, struct loop_worker, rb_node); 862 if (cur_worker->blkcg_css == cmd->blkcg_css) { 863 worker = cur_worker; 864 break; 865 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 866 node = &(*node)->rb_left; 867 } else { 868 node = &(*node)->rb_right; 869 } 870 } 871 if (worker) 872 goto queue_work; 873 874 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 875 /* 876 * In the event we cannot allocate a worker, just queue on the 877 * rootcg worker and issue the I/O as the rootcg 878 */ 879 if (!worker) { 880 cmd->blkcg_css = NULL; 881 if (cmd->memcg_css) 882 css_put(cmd->memcg_css); 883 cmd->memcg_css = NULL; 884 goto queue_work; 885 } 886 887 worker->blkcg_css = cmd->blkcg_css; 888 css_get(worker->blkcg_css); 889 INIT_WORK(&worker->work, loop_workfn); 890 INIT_LIST_HEAD(&worker->cmd_list); 891 INIT_LIST_HEAD(&worker->idle_list); 892 worker->lo = lo; 893 rb_link_node(&worker->rb_node, parent, node); 894 rb_insert_color(&worker->rb_node, &lo->worker_tree); 895 queue_work: 896 if (worker) { 897 /* 898 * We need to remove from the idle list here while 899 * holding the lock so that the idle timer doesn't 900 * free the worker 901 */ 902 if (!list_empty(&worker->idle_list)) 903 list_del_init(&worker->idle_list); 904 work = &worker->work; 905 cmd_list = &worker->cmd_list; 906 } else { 907 work = &lo->rootcg_work; 908 cmd_list = &lo->rootcg_cmd_list; 909 } 910 list_add_tail(&cmd->list_entry, cmd_list); 911 queue_work(lo->workqueue, work); 912 spin_unlock_irq(&lo->lo_work_lock); 913 } 914 915 static void loop_set_timer(struct loop_device *lo) 916 { 917 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 918 } 919 920 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 921 { 922 struct loop_worker *pos, *worker; 923 924 spin_lock_irq(&lo->lo_work_lock); 925 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 926 idle_list) { 927 if (!delete_all && 928 time_is_after_jiffies(worker->last_ran_at + 929 LOOP_IDLE_WORKER_TIMEOUT)) 930 break; 931 list_del(&worker->idle_list); 932 rb_erase(&worker->rb_node, &lo->worker_tree); 933 css_put(worker->blkcg_css); 934 kfree(worker); 935 } 936 if (!list_empty(&lo->idle_worker_list)) 937 loop_set_timer(lo); 938 spin_unlock_irq(&lo->lo_work_lock); 939 } 940 941 static void loop_free_idle_workers_timer(struct timer_list *timer) 942 { 943 struct loop_device *lo = container_of(timer, struct loop_device, timer); 944 945 return loop_free_idle_workers(lo, false); 946 } 947 948 /** 949 * loop_set_status_from_info - configure device from loop_info 950 * @lo: struct loop_device to configure 951 * @info: struct loop_info64 to configure the device with 952 * 953 * Configures the loop device parameters according to the passed 954 * in loop_info64 configuration. 955 */ 956 static int 957 loop_set_status_from_info(struct loop_device *lo, 958 const struct loop_info64 *info) 959 { 960 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 961 return -EINVAL; 962 963 switch (info->lo_encrypt_type) { 964 case LO_CRYPT_NONE: 965 break; 966 case LO_CRYPT_XOR: 967 pr_warn("support for the xor transformation has been removed.\n"); 968 return -EINVAL; 969 case LO_CRYPT_CRYPTOAPI: 970 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 971 return -EINVAL; 972 default: 973 return -EINVAL; 974 } 975 976 /* Avoid assigning overflow values */ 977 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 978 return -EOVERFLOW; 979 980 lo->lo_offset = info->lo_offset; 981 lo->lo_sizelimit = info->lo_sizelimit; 982 983 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 984 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 985 return 0; 986 } 987 988 static unsigned int loop_default_blocksize(struct loop_device *lo) 989 { 990 /* In case of direct I/O, match underlying minimum I/O size */ 991 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 992 return lo->lo_min_dio_size; 993 return SECTOR_SIZE; 994 } 995 996 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 997 unsigned int bsize) 998 { 999 struct file *file = lo->lo_backing_file; 1000 struct inode *inode = file->f_mapping->host; 1001 struct block_device *backing_bdev = NULL; 1002 u32 granularity = 0, max_discard_sectors = 0; 1003 1004 if (S_ISBLK(inode->i_mode)) 1005 backing_bdev = I_BDEV(inode); 1006 else if (inode->i_sb->s_bdev) 1007 backing_bdev = inode->i_sb->s_bdev; 1008 1009 if (!bsize) 1010 bsize = loop_default_blocksize(lo); 1011 1012 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 1013 1014 lim->logical_block_size = bsize; 1015 lim->physical_block_size = bsize; 1016 lim->io_min = bsize; 1017 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 1018 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 1019 lim->features |= BLK_FEAT_WRITE_CACHE; 1020 if (backing_bdev && !bdev_nonrot(backing_bdev)) 1021 lim->features |= BLK_FEAT_ROTATIONAL; 1022 lim->max_hw_discard_sectors = max_discard_sectors; 1023 lim->max_write_zeroes_sectors = max_discard_sectors; 1024 if (max_discard_sectors) 1025 lim->discard_granularity = granularity; 1026 else 1027 lim->discard_granularity = 0; 1028 } 1029 1030 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 1031 struct block_device *bdev, 1032 const struct loop_config *config) 1033 { 1034 struct file *file = fget(config->fd); 1035 struct queue_limits lim; 1036 int error; 1037 loff_t size; 1038 bool partscan; 1039 bool is_loop; 1040 1041 if (!file) 1042 return -EBADF; 1043 is_loop = is_loop_device(file); 1044 1045 /* This is safe, since we have a reference from open(). */ 1046 __module_get(THIS_MODULE); 1047 1048 /* 1049 * If we don't hold exclusive handle for the device, upgrade to it 1050 * here to avoid changing device under exclusive owner. 1051 */ 1052 if (!(mode & BLK_OPEN_EXCL)) { 1053 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1054 if (error) 1055 goto out_putf; 1056 } 1057 1058 error = loop_global_lock_killable(lo, is_loop); 1059 if (error) 1060 goto out_bdev; 1061 1062 error = -EBUSY; 1063 if (lo->lo_state != Lo_unbound) 1064 goto out_unlock; 1065 1066 error = loop_validate_file(file, bdev); 1067 if (error) 1068 goto out_unlock; 1069 1070 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1071 error = -EINVAL; 1072 goto out_unlock; 1073 } 1074 1075 error = loop_set_status_from_info(lo, &config->info); 1076 if (error) 1077 goto out_unlock; 1078 lo->lo_flags = config->info.lo_flags; 1079 1080 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1081 !file->f_op->write_iter) 1082 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1083 1084 if (!lo->workqueue) { 1085 lo->workqueue = alloc_workqueue("loop%d", 1086 WQ_UNBOUND | WQ_FREEZABLE, 1087 0, lo->lo_number); 1088 if (!lo->workqueue) { 1089 error = -ENOMEM; 1090 goto out_unlock; 1091 } 1092 } 1093 1094 /* suppress uevents while reconfiguring the device */ 1095 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1096 1097 disk_force_media_change(lo->lo_disk); 1098 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1099 1100 lo->lo_device = bdev; 1101 loop_assign_backing_file(lo, file); 1102 1103 lim = queue_limits_start_update(lo->lo_queue); 1104 loop_update_limits(lo, &lim, config->block_size); 1105 /* No need to freeze the queue as the device isn't bound yet. */ 1106 error = queue_limits_commit_update(lo->lo_queue, &lim); 1107 if (error) 1108 goto out_unlock; 1109 1110 loop_update_dio(lo); 1111 loop_sysfs_init(lo); 1112 1113 size = get_loop_size(lo, file); 1114 loop_set_size(lo, size); 1115 1116 /* Order wrt reading lo_state in loop_validate_file(). */ 1117 wmb(); 1118 1119 lo->lo_state = Lo_bound; 1120 if (part_shift) 1121 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1122 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1123 if (partscan) 1124 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1125 1126 /* enable and uncork uevent now that we are done */ 1127 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1128 1129 loop_global_unlock(lo, is_loop); 1130 if (partscan) 1131 loop_reread_partitions(lo); 1132 1133 if (!(mode & BLK_OPEN_EXCL)) 1134 bd_abort_claiming(bdev, loop_configure); 1135 1136 return 0; 1137 1138 out_unlock: 1139 loop_global_unlock(lo, is_loop); 1140 out_bdev: 1141 if (!(mode & BLK_OPEN_EXCL)) 1142 bd_abort_claiming(bdev, loop_configure); 1143 out_putf: 1144 fput(file); 1145 /* This is safe: open() is still holding a reference. */ 1146 module_put(THIS_MODULE); 1147 return error; 1148 } 1149 1150 static void __loop_clr_fd(struct loop_device *lo) 1151 { 1152 struct queue_limits lim; 1153 struct file *filp; 1154 gfp_t gfp = lo->old_gfp_mask; 1155 1156 spin_lock_irq(&lo->lo_lock); 1157 filp = lo->lo_backing_file; 1158 lo->lo_backing_file = NULL; 1159 spin_unlock_irq(&lo->lo_lock); 1160 1161 lo->lo_device = NULL; 1162 lo->lo_offset = 0; 1163 lo->lo_sizelimit = 0; 1164 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1165 1166 /* 1167 * Reset the block size to the default. 1168 * 1169 * No queue freezing needed because this is called from the final 1170 * ->release call only, so there can't be any outstanding I/O. 1171 */ 1172 lim = queue_limits_start_update(lo->lo_queue); 1173 lim.logical_block_size = SECTOR_SIZE; 1174 lim.physical_block_size = SECTOR_SIZE; 1175 lim.io_min = SECTOR_SIZE; 1176 queue_limits_commit_update(lo->lo_queue, &lim); 1177 1178 invalidate_disk(lo->lo_disk); 1179 loop_sysfs_exit(lo); 1180 /* let user-space know about this change */ 1181 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1182 mapping_set_gfp_mask(filp->f_mapping, gfp); 1183 /* This is safe: open() is still holding a reference. */ 1184 module_put(THIS_MODULE); 1185 1186 disk_force_media_change(lo->lo_disk); 1187 1188 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1189 int err; 1190 1191 /* 1192 * open_mutex has been held already in release path, so don't 1193 * acquire it if this function is called in such case. 1194 * 1195 * If the reread partition isn't from release path, lo_refcnt 1196 * must be at least one and it can only become zero when the 1197 * current holder is released. 1198 */ 1199 err = bdev_disk_changed(lo->lo_disk, false); 1200 if (err) 1201 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1202 __func__, lo->lo_number, err); 1203 /* Device is gone, no point in returning error */ 1204 } 1205 1206 /* 1207 * lo->lo_state is set to Lo_unbound here after above partscan has 1208 * finished. There cannot be anybody else entering __loop_clr_fd() as 1209 * Lo_rundown state protects us from all the other places trying to 1210 * change the 'lo' device. 1211 */ 1212 lo->lo_flags = 0; 1213 if (!part_shift) 1214 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1215 mutex_lock(&lo->lo_mutex); 1216 lo->lo_state = Lo_unbound; 1217 mutex_unlock(&lo->lo_mutex); 1218 1219 /* 1220 * Need not hold lo_mutex to fput backing file. Calling fput holding 1221 * lo_mutex triggers a circular lock dependency possibility warning as 1222 * fput can take open_mutex which is usually taken before lo_mutex. 1223 */ 1224 fput(filp); 1225 } 1226 1227 static int loop_clr_fd(struct loop_device *lo) 1228 { 1229 int err; 1230 1231 /* 1232 * Since lo_ioctl() is called without locks held, it is possible that 1233 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1234 * 1235 * Therefore, use global lock when setting Lo_rundown state in order to 1236 * make sure that loop_validate_file() will fail if the "struct file" 1237 * which loop_configure()/loop_change_fd() found via fget() was this 1238 * loop device. 1239 */ 1240 err = loop_global_lock_killable(lo, true); 1241 if (err) 1242 return err; 1243 if (lo->lo_state != Lo_bound) { 1244 loop_global_unlock(lo, true); 1245 return -ENXIO; 1246 } 1247 /* 1248 * Mark the device for removing the backing device on last close. 1249 * If we are the only opener, also switch the state to roundown here to 1250 * prevent new openers from coming in. 1251 */ 1252 1253 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1254 if (disk_openers(lo->lo_disk) == 1) 1255 lo->lo_state = Lo_rundown; 1256 loop_global_unlock(lo, true); 1257 1258 return 0; 1259 } 1260 1261 static int 1262 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1263 { 1264 int err; 1265 bool partscan = false; 1266 bool size_changed = false; 1267 unsigned int memflags; 1268 1269 err = mutex_lock_killable(&lo->lo_mutex); 1270 if (err) 1271 return err; 1272 if (lo->lo_state != Lo_bound) { 1273 err = -ENXIO; 1274 goto out_unlock; 1275 } 1276 1277 if (lo->lo_offset != info->lo_offset || 1278 lo->lo_sizelimit != info->lo_sizelimit) { 1279 size_changed = true; 1280 sync_blockdev(lo->lo_device); 1281 invalidate_bdev(lo->lo_device); 1282 } 1283 1284 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1285 memflags = blk_mq_freeze_queue(lo->lo_queue); 1286 1287 err = loop_set_status_from_info(lo, info); 1288 if (err) 1289 goto out_unfreeze; 1290 1291 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1292 (info->lo_flags & LO_FLAGS_PARTSCAN); 1293 1294 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1295 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1296 1297 if (size_changed) { 1298 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1299 lo->lo_backing_file); 1300 loop_set_size(lo, new_size); 1301 } 1302 1303 /* update the direct I/O flag if lo_offset changed */ 1304 loop_update_dio(lo); 1305 1306 out_unfreeze: 1307 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1308 if (partscan) 1309 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1310 out_unlock: 1311 mutex_unlock(&lo->lo_mutex); 1312 if (partscan) 1313 loop_reread_partitions(lo); 1314 1315 return err; 1316 } 1317 1318 static int 1319 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1320 { 1321 struct path path; 1322 struct kstat stat; 1323 int ret; 1324 1325 ret = mutex_lock_killable(&lo->lo_mutex); 1326 if (ret) 1327 return ret; 1328 if (lo->lo_state != Lo_bound) { 1329 mutex_unlock(&lo->lo_mutex); 1330 return -ENXIO; 1331 } 1332 1333 memset(info, 0, sizeof(*info)); 1334 info->lo_number = lo->lo_number; 1335 info->lo_offset = lo->lo_offset; 1336 info->lo_sizelimit = lo->lo_sizelimit; 1337 info->lo_flags = lo->lo_flags; 1338 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1339 1340 /* Drop lo_mutex while we call into the filesystem. */ 1341 path = lo->lo_backing_file->f_path; 1342 path_get(&path); 1343 mutex_unlock(&lo->lo_mutex); 1344 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1345 if (!ret) { 1346 info->lo_device = huge_encode_dev(stat.dev); 1347 info->lo_inode = stat.ino; 1348 info->lo_rdevice = huge_encode_dev(stat.rdev); 1349 } 1350 path_put(&path); 1351 return ret; 1352 } 1353 1354 static void 1355 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1356 { 1357 memset(info64, 0, sizeof(*info64)); 1358 info64->lo_number = info->lo_number; 1359 info64->lo_device = info->lo_device; 1360 info64->lo_inode = info->lo_inode; 1361 info64->lo_rdevice = info->lo_rdevice; 1362 info64->lo_offset = info->lo_offset; 1363 info64->lo_sizelimit = 0; 1364 info64->lo_flags = info->lo_flags; 1365 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1366 } 1367 1368 static int 1369 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1370 { 1371 memset(info, 0, sizeof(*info)); 1372 info->lo_number = info64->lo_number; 1373 info->lo_device = info64->lo_device; 1374 info->lo_inode = info64->lo_inode; 1375 info->lo_rdevice = info64->lo_rdevice; 1376 info->lo_offset = info64->lo_offset; 1377 info->lo_flags = info64->lo_flags; 1378 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1379 1380 /* error in case values were truncated */ 1381 if (info->lo_device != info64->lo_device || 1382 info->lo_rdevice != info64->lo_rdevice || 1383 info->lo_inode != info64->lo_inode || 1384 info->lo_offset != info64->lo_offset) 1385 return -EOVERFLOW; 1386 1387 return 0; 1388 } 1389 1390 static int 1391 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1392 { 1393 struct loop_info info; 1394 struct loop_info64 info64; 1395 1396 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1397 return -EFAULT; 1398 loop_info64_from_old(&info, &info64); 1399 return loop_set_status(lo, &info64); 1400 } 1401 1402 static int 1403 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1404 { 1405 struct loop_info64 info64; 1406 1407 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1408 return -EFAULT; 1409 return loop_set_status(lo, &info64); 1410 } 1411 1412 static int 1413 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1414 struct loop_info info; 1415 struct loop_info64 info64; 1416 int err; 1417 1418 if (!arg) 1419 return -EINVAL; 1420 err = loop_get_status(lo, &info64); 1421 if (!err) 1422 err = loop_info64_to_old(&info64, &info); 1423 if (!err && copy_to_user(arg, &info, sizeof(info))) 1424 err = -EFAULT; 1425 1426 return err; 1427 } 1428 1429 static int 1430 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1431 struct loop_info64 info64; 1432 int err; 1433 1434 if (!arg) 1435 return -EINVAL; 1436 err = loop_get_status(lo, &info64); 1437 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1438 err = -EFAULT; 1439 1440 return err; 1441 } 1442 1443 static int loop_set_capacity(struct loop_device *lo) 1444 { 1445 loff_t size; 1446 1447 if (unlikely(lo->lo_state != Lo_bound)) 1448 return -ENXIO; 1449 1450 size = get_loop_size(lo, lo->lo_backing_file); 1451 loop_set_size(lo, size); 1452 1453 return 0; 1454 } 1455 1456 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1457 { 1458 bool use_dio = !!arg; 1459 unsigned int memflags; 1460 1461 if (lo->lo_state != Lo_bound) 1462 return -ENXIO; 1463 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1464 return 0; 1465 1466 if (use_dio) { 1467 if (!lo_can_use_dio(lo)) 1468 return -EINVAL; 1469 /* flush dirty pages before starting to use direct I/O */ 1470 vfs_fsync(lo->lo_backing_file, 0); 1471 } 1472 1473 memflags = blk_mq_freeze_queue(lo->lo_queue); 1474 if (use_dio) 1475 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1476 else 1477 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1478 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1479 return 0; 1480 } 1481 1482 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1483 { 1484 struct queue_limits lim; 1485 unsigned int memflags; 1486 int err = 0; 1487 1488 if (lo->lo_state != Lo_bound) 1489 return -ENXIO; 1490 1491 if (lo->lo_queue->limits.logical_block_size == arg) 1492 return 0; 1493 1494 sync_blockdev(lo->lo_device); 1495 invalidate_bdev(lo->lo_device); 1496 1497 lim = queue_limits_start_update(lo->lo_queue); 1498 loop_update_limits(lo, &lim, arg); 1499 1500 memflags = blk_mq_freeze_queue(lo->lo_queue); 1501 err = queue_limits_commit_update(lo->lo_queue, &lim); 1502 loop_update_dio(lo); 1503 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1504 1505 return err; 1506 } 1507 1508 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1509 unsigned long arg) 1510 { 1511 int err; 1512 1513 err = mutex_lock_killable(&lo->lo_mutex); 1514 if (err) 1515 return err; 1516 switch (cmd) { 1517 case LOOP_SET_CAPACITY: 1518 err = loop_set_capacity(lo); 1519 break; 1520 case LOOP_SET_DIRECT_IO: 1521 err = loop_set_dio(lo, arg); 1522 break; 1523 case LOOP_SET_BLOCK_SIZE: 1524 err = loop_set_block_size(lo, arg); 1525 break; 1526 default: 1527 err = -EINVAL; 1528 } 1529 mutex_unlock(&lo->lo_mutex); 1530 return err; 1531 } 1532 1533 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1534 unsigned int cmd, unsigned long arg) 1535 { 1536 struct loop_device *lo = bdev->bd_disk->private_data; 1537 void __user *argp = (void __user *) arg; 1538 int err; 1539 1540 switch (cmd) { 1541 case LOOP_SET_FD: { 1542 /* 1543 * Legacy case - pass in a zeroed out struct loop_config with 1544 * only the file descriptor set , which corresponds with the 1545 * default parameters we'd have used otherwise. 1546 */ 1547 struct loop_config config; 1548 1549 memset(&config, 0, sizeof(config)); 1550 config.fd = arg; 1551 1552 return loop_configure(lo, mode, bdev, &config); 1553 } 1554 case LOOP_CONFIGURE: { 1555 struct loop_config config; 1556 1557 if (copy_from_user(&config, argp, sizeof(config))) 1558 return -EFAULT; 1559 1560 return loop_configure(lo, mode, bdev, &config); 1561 } 1562 case LOOP_CHANGE_FD: 1563 return loop_change_fd(lo, bdev, arg); 1564 case LOOP_CLR_FD: 1565 return loop_clr_fd(lo); 1566 case LOOP_SET_STATUS: 1567 err = -EPERM; 1568 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1569 err = loop_set_status_old(lo, argp); 1570 break; 1571 case LOOP_GET_STATUS: 1572 return loop_get_status_old(lo, argp); 1573 case LOOP_SET_STATUS64: 1574 err = -EPERM; 1575 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1576 err = loop_set_status64(lo, argp); 1577 break; 1578 case LOOP_GET_STATUS64: 1579 return loop_get_status64(lo, argp); 1580 case LOOP_SET_CAPACITY: 1581 case LOOP_SET_DIRECT_IO: 1582 case LOOP_SET_BLOCK_SIZE: 1583 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1584 return -EPERM; 1585 fallthrough; 1586 default: 1587 err = lo_simple_ioctl(lo, cmd, arg); 1588 break; 1589 } 1590 1591 return err; 1592 } 1593 1594 #ifdef CONFIG_COMPAT 1595 struct compat_loop_info { 1596 compat_int_t lo_number; /* ioctl r/o */ 1597 compat_dev_t lo_device; /* ioctl r/o */ 1598 compat_ulong_t lo_inode; /* ioctl r/o */ 1599 compat_dev_t lo_rdevice; /* ioctl r/o */ 1600 compat_int_t lo_offset; 1601 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1602 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1603 compat_int_t lo_flags; /* ioctl r/o */ 1604 char lo_name[LO_NAME_SIZE]; 1605 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1606 compat_ulong_t lo_init[2]; 1607 char reserved[4]; 1608 }; 1609 1610 /* 1611 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1612 * - noinlined to reduce stack space usage in main part of driver 1613 */ 1614 static noinline int 1615 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1616 struct loop_info64 *info64) 1617 { 1618 struct compat_loop_info info; 1619 1620 if (copy_from_user(&info, arg, sizeof(info))) 1621 return -EFAULT; 1622 1623 memset(info64, 0, sizeof(*info64)); 1624 info64->lo_number = info.lo_number; 1625 info64->lo_device = info.lo_device; 1626 info64->lo_inode = info.lo_inode; 1627 info64->lo_rdevice = info.lo_rdevice; 1628 info64->lo_offset = info.lo_offset; 1629 info64->lo_sizelimit = 0; 1630 info64->lo_flags = info.lo_flags; 1631 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1632 return 0; 1633 } 1634 1635 /* 1636 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1637 * - noinlined to reduce stack space usage in main part of driver 1638 */ 1639 static noinline int 1640 loop_info64_to_compat(const struct loop_info64 *info64, 1641 struct compat_loop_info __user *arg) 1642 { 1643 struct compat_loop_info info; 1644 1645 memset(&info, 0, sizeof(info)); 1646 info.lo_number = info64->lo_number; 1647 info.lo_device = info64->lo_device; 1648 info.lo_inode = info64->lo_inode; 1649 info.lo_rdevice = info64->lo_rdevice; 1650 info.lo_offset = info64->lo_offset; 1651 info.lo_flags = info64->lo_flags; 1652 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1653 1654 /* error in case values were truncated */ 1655 if (info.lo_device != info64->lo_device || 1656 info.lo_rdevice != info64->lo_rdevice || 1657 info.lo_inode != info64->lo_inode || 1658 info.lo_offset != info64->lo_offset) 1659 return -EOVERFLOW; 1660 1661 if (copy_to_user(arg, &info, sizeof(info))) 1662 return -EFAULT; 1663 return 0; 1664 } 1665 1666 static int 1667 loop_set_status_compat(struct loop_device *lo, 1668 const struct compat_loop_info __user *arg) 1669 { 1670 struct loop_info64 info64; 1671 int ret; 1672 1673 ret = loop_info64_from_compat(arg, &info64); 1674 if (ret < 0) 1675 return ret; 1676 return loop_set_status(lo, &info64); 1677 } 1678 1679 static int 1680 loop_get_status_compat(struct loop_device *lo, 1681 struct compat_loop_info __user *arg) 1682 { 1683 struct loop_info64 info64; 1684 int err; 1685 1686 if (!arg) 1687 return -EINVAL; 1688 err = loop_get_status(lo, &info64); 1689 if (!err) 1690 err = loop_info64_to_compat(&info64, arg); 1691 return err; 1692 } 1693 1694 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1695 unsigned int cmd, unsigned long arg) 1696 { 1697 struct loop_device *lo = bdev->bd_disk->private_data; 1698 int err; 1699 1700 switch(cmd) { 1701 case LOOP_SET_STATUS: 1702 err = loop_set_status_compat(lo, 1703 (const struct compat_loop_info __user *)arg); 1704 break; 1705 case LOOP_GET_STATUS: 1706 err = loop_get_status_compat(lo, 1707 (struct compat_loop_info __user *)arg); 1708 break; 1709 case LOOP_SET_CAPACITY: 1710 case LOOP_CLR_FD: 1711 case LOOP_GET_STATUS64: 1712 case LOOP_SET_STATUS64: 1713 case LOOP_CONFIGURE: 1714 arg = (unsigned long) compat_ptr(arg); 1715 fallthrough; 1716 case LOOP_SET_FD: 1717 case LOOP_CHANGE_FD: 1718 case LOOP_SET_BLOCK_SIZE: 1719 case LOOP_SET_DIRECT_IO: 1720 err = lo_ioctl(bdev, mode, cmd, arg); 1721 break; 1722 default: 1723 err = -ENOIOCTLCMD; 1724 break; 1725 } 1726 return err; 1727 } 1728 #endif 1729 1730 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1731 { 1732 struct loop_device *lo = disk->private_data; 1733 int err; 1734 1735 err = mutex_lock_killable(&lo->lo_mutex); 1736 if (err) 1737 return err; 1738 1739 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1740 err = -ENXIO; 1741 mutex_unlock(&lo->lo_mutex); 1742 return err; 1743 } 1744 1745 static void lo_release(struct gendisk *disk) 1746 { 1747 struct loop_device *lo = disk->private_data; 1748 bool need_clear = false; 1749 1750 if (disk_openers(disk) > 0) 1751 return; 1752 /* 1753 * Clear the backing device information if this is the last close of 1754 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1755 * has been called. 1756 */ 1757 1758 mutex_lock(&lo->lo_mutex); 1759 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1760 lo->lo_state = Lo_rundown; 1761 1762 need_clear = (lo->lo_state == Lo_rundown); 1763 mutex_unlock(&lo->lo_mutex); 1764 1765 if (need_clear) 1766 __loop_clr_fd(lo); 1767 } 1768 1769 static void lo_free_disk(struct gendisk *disk) 1770 { 1771 struct loop_device *lo = disk->private_data; 1772 1773 if (lo->workqueue) 1774 destroy_workqueue(lo->workqueue); 1775 loop_free_idle_workers(lo, true); 1776 timer_shutdown_sync(&lo->timer); 1777 mutex_destroy(&lo->lo_mutex); 1778 kfree(lo); 1779 } 1780 1781 static const struct block_device_operations lo_fops = { 1782 .owner = THIS_MODULE, 1783 .open = lo_open, 1784 .release = lo_release, 1785 .ioctl = lo_ioctl, 1786 #ifdef CONFIG_COMPAT 1787 .compat_ioctl = lo_compat_ioctl, 1788 #endif 1789 .free_disk = lo_free_disk, 1790 }; 1791 1792 /* 1793 * And now the modules code and kernel interface. 1794 */ 1795 1796 /* 1797 * If max_loop is specified, create that many devices upfront. 1798 * This also becomes a hard limit. If max_loop is not specified, 1799 * the default isn't a hard limit (as before commit 85c50197716c 1800 * changed the default value from 0 for max_loop=0 reasons), just 1801 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1802 * init time. Loop devices can be requested on-demand with the 1803 * /dev/loop-control interface, or be instantiated by accessing 1804 * a 'dead' device node. 1805 */ 1806 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1807 1808 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1809 static bool max_loop_specified; 1810 1811 static int max_loop_param_set_int(const char *val, 1812 const struct kernel_param *kp) 1813 { 1814 int ret; 1815 1816 ret = param_set_int(val, kp); 1817 if (ret < 0) 1818 return ret; 1819 1820 max_loop_specified = true; 1821 return 0; 1822 } 1823 1824 static const struct kernel_param_ops max_loop_param_ops = { 1825 .set = max_loop_param_set_int, 1826 .get = param_get_int, 1827 }; 1828 1829 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1830 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1831 #else 1832 module_param(max_loop, int, 0444); 1833 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1834 #endif 1835 1836 module_param(max_part, int, 0444); 1837 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1838 1839 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1840 1841 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1842 { 1843 int qd, ret; 1844 1845 ret = kstrtoint(s, 0, &qd); 1846 if (ret < 0) 1847 return ret; 1848 if (qd < 1) 1849 return -EINVAL; 1850 hw_queue_depth = qd; 1851 return 0; 1852 } 1853 1854 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1855 .set = loop_set_hw_queue_depth, 1856 .get = param_get_int, 1857 }; 1858 1859 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1860 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1861 1862 MODULE_DESCRIPTION("Loopback device support"); 1863 MODULE_LICENSE("GPL"); 1864 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1865 1866 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1867 const struct blk_mq_queue_data *bd) 1868 { 1869 struct request *rq = bd->rq; 1870 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1871 struct loop_device *lo = rq->q->queuedata; 1872 1873 blk_mq_start_request(rq); 1874 1875 if (lo->lo_state != Lo_bound) 1876 return BLK_STS_IOERR; 1877 1878 switch (req_op(rq)) { 1879 case REQ_OP_FLUSH: 1880 case REQ_OP_DISCARD: 1881 case REQ_OP_WRITE_ZEROES: 1882 cmd->use_aio = false; 1883 break; 1884 default: 1885 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1886 break; 1887 } 1888 1889 /* always use the first bio's css */ 1890 cmd->blkcg_css = NULL; 1891 cmd->memcg_css = NULL; 1892 #ifdef CONFIG_BLK_CGROUP 1893 if (rq->bio) { 1894 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1895 #ifdef CONFIG_MEMCG 1896 if (cmd->blkcg_css) { 1897 cmd->memcg_css = 1898 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1899 &memory_cgrp_subsys); 1900 } 1901 #endif 1902 } 1903 #endif 1904 loop_queue_work(lo, cmd); 1905 1906 return BLK_STS_OK; 1907 } 1908 1909 static void loop_handle_cmd(struct loop_cmd *cmd) 1910 { 1911 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1912 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1913 struct request *rq = blk_mq_rq_from_pdu(cmd); 1914 const bool write = op_is_write(req_op(rq)); 1915 struct loop_device *lo = rq->q->queuedata; 1916 int ret = 0; 1917 struct mem_cgroup *old_memcg = NULL; 1918 const bool use_aio = cmd->use_aio; 1919 1920 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1921 ret = -EIO; 1922 goto failed; 1923 } 1924 1925 if (cmd_blkcg_css) 1926 kthread_associate_blkcg(cmd_blkcg_css); 1927 if (cmd_memcg_css) 1928 old_memcg = set_active_memcg( 1929 mem_cgroup_from_css(cmd_memcg_css)); 1930 1931 /* 1932 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1933 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1934 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1935 * not yet been completed. 1936 */ 1937 ret = do_req_filebacked(lo, rq); 1938 1939 if (cmd_blkcg_css) 1940 kthread_associate_blkcg(NULL); 1941 1942 if (cmd_memcg_css) { 1943 set_active_memcg(old_memcg); 1944 css_put(cmd_memcg_css); 1945 } 1946 failed: 1947 /* complete non-aio request */ 1948 if (!use_aio || ret) { 1949 if (ret == -EOPNOTSUPP) 1950 cmd->ret = ret; 1951 else 1952 cmd->ret = ret ? -EIO : 0; 1953 if (likely(!blk_should_fake_timeout(rq->q))) 1954 blk_mq_complete_request(rq); 1955 } 1956 } 1957 1958 static void loop_process_work(struct loop_worker *worker, 1959 struct list_head *cmd_list, struct loop_device *lo) 1960 { 1961 int orig_flags = current->flags; 1962 struct loop_cmd *cmd; 1963 1964 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1965 spin_lock_irq(&lo->lo_work_lock); 1966 while (!list_empty(cmd_list)) { 1967 cmd = container_of( 1968 cmd_list->next, struct loop_cmd, list_entry); 1969 list_del(cmd_list->next); 1970 spin_unlock_irq(&lo->lo_work_lock); 1971 1972 loop_handle_cmd(cmd); 1973 cond_resched(); 1974 1975 spin_lock_irq(&lo->lo_work_lock); 1976 } 1977 1978 /* 1979 * We only add to the idle list if there are no pending cmds 1980 * *and* the worker will not run again which ensures that it 1981 * is safe to free any worker on the idle list 1982 */ 1983 if (worker && !work_pending(&worker->work)) { 1984 worker->last_ran_at = jiffies; 1985 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1986 loop_set_timer(lo); 1987 } 1988 spin_unlock_irq(&lo->lo_work_lock); 1989 current->flags = orig_flags; 1990 } 1991 1992 static void loop_workfn(struct work_struct *work) 1993 { 1994 struct loop_worker *worker = 1995 container_of(work, struct loop_worker, work); 1996 loop_process_work(worker, &worker->cmd_list, worker->lo); 1997 } 1998 1999 static void loop_rootcg_workfn(struct work_struct *work) 2000 { 2001 struct loop_device *lo = 2002 container_of(work, struct loop_device, rootcg_work); 2003 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 2004 } 2005 2006 static const struct blk_mq_ops loop_mq_ops = { 2007 .queue_rq = loop_queue_rq, 2008 .complete = lo_complete_rq, 2009 }; 2010 2011 static int loop_add(int i) 2012 { 2013 struct queue_limits lim = { 2014 /* 2015 * Random number picked from the historic block max_sectors cap. 2016 */ 2017 .max_hw_sectors = 2560u, 2018 }; 2019 struct loop_device *lo; 2020 struct gendisk *disk; 2021 int err; 2022 2023 err = -ENOMEM; 2024 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2025 if (!lo) 2026 goto out; 2027 lo->worker_tree = RB_ROOT; 2028 INIT_LIST_HEAD(&lo->idle_worker_list); 2029 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2030 lo->lo_state = Lo_unbound; 2031 2032 err = mutex_lock_killable(&loop_ctl_mutex); 2033 if (err) 2034 goto out_free_dev; 2035 2036 /* allocate id, if @id >= 0, we're requesting that specific id */ 2037 if (i >= 0) { 2038 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2039 if (err == -ENOSPC) 2040 err = -EEXIST; 2041 } else { 2042 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2043 } 2044 mutex_unlock(&loop_ctl_mutex); 2045 if (err < 0) 2046 goto out_free_dev; 2047 i = err; 2048 2049 lo->tag_set.ops = &loop_mq_ops; 2050 lo->tag_set.nr_hw_queues = 1; 2051 lo->tag_set.queue_depth = hw_queue_depth; 2052 lo->tag_set.numa_node = NUMA_NO_NODE; 2053 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2054 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2055 lo->tag_set.driver_data = lo; 2056 2057 err = blk_mq_alloc_tag_set(&lo->tag_set); 2058 if (err) 2059 goto out_free_idr; 2060 2061 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2062 if (IS_ERR(disk)) { 2063 err = PTR_ERR(disk); 2064 goto out_cleanup_tags; 2065 } 2066 lo->lo_queue = lo->lo_disk->queue; 2067 2068 /* 2069 * Disable partition scanning by default. The in-kernel partition 2070 * scanning can be requested individually per-device during its 2071 * setup. Userspace can always add and remove partitions from all 2072 * devices. The needed partition minors are allocated from the 2073 * extended minor space, the main loop device numbers will continue 2074 * to match the loop minors, regardless of the number of partitions 2075 * used. 2076 * 2077 * If max_part is given, partition scanning is globally enabled for 2078 * all loop devices. The minors for the main loop devices will be 2079 * multiples of max_part. 2080 * 2081 * Note: Global-for-all-devices, set-only-at-init, read-only module 2082 * parameteters like 'max_loop' and 'max_part' make things needlessly 2083 * complicated, are too static, inflexible and may surprise 2084 * userspace tools. Parameters like this in general should be avoided. 2085 */ 2086 if (!part_shift) 2087 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2088 mutex_init(&lo->lo_mutex); 2089 lo->lo_number = i; 2090 spin_lock_init(&lo->lo_lock); 2091 spin_lock_init(&lo->lo_work_lock); 2092 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2093 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2094 disk->major = LOOP_MAJOR; 2095 disk->first_minor = i << part_shift; 2096 disk->minors = 1 << part_shift; 2097 disk->fops = &lo_fops; 2098 disk->private_data = lo; 2099 disk->queue = lo->lo_queue; 2100 disk->events = DISK_EVENT_MEDIA_CHANGE; 2101 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2102 sprintf(disk->disk_name, "loop%d", i); 2103 /* Make this loop device reachable from pathname. */ 2104 err = add_disk(disk); 2105 if (err) 2106 goto out_cleanup_disk; 2107 2108 /* Show this loop device. */ 2109 mutex_lock(&loop_ctl_mutex); 2110 lo->idr_visible = true; 2111 mutex_unlock(&loop_ctl_mutex); 2112 2113 return i; 2114 2115 out_cleanup_disk: 2116 put_disk(disk); 2117 out_cleanup_tags: 2118 blk_mq_free_tag_set(&lo->tag_set); 2119 out_free_idr: 2120 mutex_lock(&loop_ctl_mutex); 2121 idr_remove(&loop_index_idr, i); 2122 mutex_unlock(&loop_ctl_mutex); 2123 out_free_dev: 2124 kfree(lo); 2125 out: 2126 return err; 2127 } 2128 2129 static void loop_remove(struct loop_device *lo) 2130 { 2131 /* Make this loop device unreachable from pathname. */ 2132 del_gendisk(lo->lo_disk); 2133 blk_mq_free_tag_set(&lo->tag_set); 2134 2135 mutex_lock(&loop_ctl_mutex); 2136 idr_remove(&loop_index_idr, lo->lo_number); 2137 mutex_unlock(&loop_ctl_mutex); 2138 2139 put_disk(lo->lo_disk); 2140 } 2141 2142 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2143 static void loop_probe(dev_t dev) 2144 { 2145 int idx = MINOR(dev) >> part_shift; 2146 2147 if (max_loop_specified && max_loop && idx >= max_loop) 2148 return; 2149 loop_add(idx); 2150 } 2151 #else 2152 #define loop_probe NULL 2153 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2154 2155 static int loop_control_remove(int idx) 2156 { 2157 struct loop_device *lo; 2158 int ret; 2159 2160 if (idx < 0) { 2161 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2162 return -EINVAL; 2163 } 2164 2165 /* Hide this loop device for serialization. */ 2166 ret = mutex_lock_killable(&loop_ctl_mutex); 2167 if (ret) 2168 return ret; 2169 lo = idr_find(&loop_index_idr, idx); 2170 if (!lo || !lo->idr_visible) 2171 ret = -ENODEV; 2172 else 2173 lo->idr_visible = false; 2174 mutex_unlock(&loop_ctl_mutex); 2175 if (ret) 2176 return ret; 2177 2178 /* Check whether this loop device can be removed. */ 2179 ret = mutex_lock_killable(&lo->lo_mutex); 2180 if (ret) 2181 goto mark_visible; 2182 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2183 mutex_unlock(&lo->lo_mutex); 2184 ret = -EBUSY; 2185 goto mark_visible; 2186 } 2187 /* Mark this loop device as no more bound, but not quite unbound yet */ 2188 lo->lo_state = Lo_deleting; 2189 mutex_unlock(&lo->lo_mutex); 2190 2191 loop_remove(lo); 2192 return 0; 2193 2194 mark_visible: 2195 /* Show this loop device again. */ 2196 mutex_lock(&loop_ctl_mutex); 2197 lo->idr_visible = true; 2198 mutex_unlock(&loop_ctl_mutex); 2199 return ret; 2200 } 2201 2202 static int loop_control_get_free(int idx) 2203 { 2204 struct loop_device *lo; 2205 int id, ret; 2206 2207 ret = mutex_lock_killable(&loop_ctl_mutex); 2208 if (ret) 2209 return ret; 2210 idr_for_each_entry(&loop_index_idr, lo, id) { 2211 /* Hitting a race results in creating a new loop device which is harmless. */ 2212 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2213 goto found; 2214 } 2215 mutex_unlock(&loop_ctl_mutex); 2216 return loop_add(-1); 2217 found: 2218 mutex_unlock(&loop_ctl_mutex); 2219 return id; 2220 } 2221 2222 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2223 unsigned long parm) 2224 { 2225 switch (cmd) { 2226 case LOOP_CTL_ADD: 2227 return loop_add(parm); 2228 case LOOP_CTL_REMOVE: 2229 return loop_control_remove(parm); 2230 case LOOP_CTL_GET_FREE: 2231 return loop_control_get_free(parm); 2232 default: 2233 return -ENOSYS; 2234 } 2235 } 2236 2237 static const struct file_operations loop_ctl_fops = { 2238 .open = nonseekable_open, 2239 .unlocked_ioctl = loop_control_ioctl, 2240 .compat_ioctl = loop_control_ioctl, 2241 .owner = THIS_MODULE, 2242 .llseek = noop_llseek, 2243 }; 2244 2245 static struct miscdevice loop_misc = { 2246 .minor = LOOP_CTRL_MINOR, 2247 .name = "loop-control", 2248 .fops = &loop_ctl_fops, 2249 }; 2250 2251 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2252 MODULE_ALIAS("devname:loop-control"); 2253 2254 static int __init loop_init(void) 2255 { 2256 int i; 2257 int err; 2258 2259 part_shift = 0; 2260 if (max_part > 0) { 2261 part_shift = fls(max_part); 2262 2263 /* 2264 * Adjust max_part according to part_shift as it is exported 2265 * to user space so that user can decide correct minor number 2266 * if [s]he want to create more devices. 2267 * 2268 * Note that -1 is required because partition 0 is reserved 2269 * for the whole disk. 2270 */ 2271 max_part = (1UL << part_shift) - 1; 2272 } 2273 2274 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2275 err = -EINVAL; 2276 goto err_out; 2277 } 2278 2279 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2280 err = -EINVAL; 2281 goto err_out; 2282 } 2283 2284 err = misc_register(&loop_misc); 2285 if (err < 0) 2286 goto err_out; 2287 2288 2289 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2290 err = -EIO; 2291 goto misc_out; 2292 } 2293 2294 /* pre-create number of devices given by config or max_loop */ 2295 for (i = 0; i < max_loop; i++) 2296 loop_add(i); 2297 2298 printk(KERN_INFO "loop: module loaded\n"); 2299 return 0; 2300 2301 misc_out: 2302 misc_deregister(&loop_misc); 2303 err_out: 2304 return err; 2305 } 2306 2307 static void __exit loop_exit(void) 2308 { 2309 struct loop_device *lo; 2310 int id; 2311 2312 unregister_blkdev(LOOP_MAJOR, "loop"); 2313 misc_deregister(&loop_misc); 2314 2315 /* 2316 * There is no need to use loop_ctl_mutex here, for nobody else can 2317 * access loop_index_idr when this module is unloading (unless forced 2318 * module unloading is requested). If this is not a clean unloading, 2319 * we have no means to avoid kernel crash. 2320 */ 2321 idr_for_each_entry(&loop_index_idr, lo, id) 2322 loop_remove(lo); 2323 2324 idr_destroy(&loop_index_idr); 2325 } 2326 2327 module_init(loop_init); 2328 module_exit(loop_exit); 2329 2330 #ifndef MODULE 2331 static int __init max_loop_setup(char *str) 2332 { 2333 max_loop = simple_strtol(str, NULL, 0); 2334 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2335 max_loop_specified = true; 2336 #endif 2337 return 1; 2338 } 2339 2340 __setup("max_loop=", max_loop_setup); 2341 #endif 2342