xref: /linux/drivers/block/loop.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include "loop.h"
79 
80 #include <asm/uaccess.h>
81 
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 static struct workqueue_struct *loop_wq;
89 
90 /*
91  * Transfer functions
92  */
93 static int transfer_none(struct loop_device *lo, int cmd,
94 			 struct page *raw_page, unsigned raw_off,
95 			 struct page *loop_page, unsigned loop_off,
96 			 int size, sector_t real_block)
97 {
98 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
99 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
100 
101 	if (cmd == READ)
102 		memcpy(loop_buf, raw_buf, size);
103 	else
104 		memcpy(raw_buf, loop_buf, size);
105 
106 	kunmap_atomic(loop_buf);
107 	kunmap_atomic(raw_buf);
108 	cond_resched();
109 	return 0;
110 }
111 
112 static int transfer_xor(struct loop_device *lo, int cmd,
113 			struct page *raw_page, unsigned raw_off,
114 			struct page *loop_page, unsigned loop_off,
115 			int size, sector_t real_block)
116 {
117 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
118 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
119 	char *in, *out, *key;
120 	int i, keysize;
121 
122 	if (cmd == READ) {
123 		in = raw_buf;
124 		out = loop_buf;
125 	} else {
126 		in = loop_buf;
127 		out = raw_buf;
128 	}
129 
130 	key = lo->lo_encrypt_key;
131 	keysize = lo->lo_encrypt_key_size;
132 	for (i = 0; i < size; i++)
133 		*out++ = *in++ ^ key[(i & 511) % keysize];
134 
135 	kunmap_atomic(loop_buf);
136 	kunmap_atomic(raw_buf);
137 	cond_resched();
138 	return 0;
139 }
140 
141 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
142 {
143 	if (unlikely(info->lo_encrypt_key_size <= 0))
144 		return -EINVAL;
145 	return 0;
146 }
147 
148 static struct loop_func_table none_funcs = {
149 	.number = LO_CRYPT_NONE,
150 	.transfer = transfer_none,
151 };
152 
153 static struct loop_func_table xor_funcs = {
154 	.number = LO_CRYPT_XOR,
155 	.transfer = transfer_xor,
156 	.init = xor_init
157 };
158 
159 /* xfer_funcs[0] is special - its release function is never called */
160 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
161 	&none_funcs,
162 	&xor_funcs
163 };
164 
165 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
166 {
167 	loff_t loopsize;
168 
169 	/* Compute loopsize in bytes */
170 	loopsize = i_size_read(file->f_mapping->host);
171 	if (offset > 0)
172 		loopsize -= offset;
173 	/* offset is beyond i_size, weird but possible */
174 	if (loopsize < 0)
175 		return 0;
176 
177 	if (sizelimit > 0 && sizelimit < loopsize)
178 		loopsize = sizelimit;
179 	/*
180 	 * Unfortunately, if we want to do I/O on the device,
181 	 * the number of 512-byte sectors has to fit into a sector_t.
182 	 */
183 	return loopsize >> 9;
184 }
185 
186 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
187 {
188 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
189 }
190 
191 static int
192 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
193 {
194 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
195 	sector_t x = (sector_t)size;
196 	struct block_device *bdev = lo->lo_device;
197 
198 	if (unlikely((loff_t)x != size))
199 		return -EFBIG;
200 	if (lo->lo_offset != offset)
201 		lo->lo_offset = offset;
202 	if (lo->lo_sizelimit != sizelimit)
203 		lo->lo_sizelimit = sizelimit;
204 	set_capacity(lo->lo_disk, x);
205 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
206 	/* let user-space know about the new size */
207 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
208 	return 0;
209 }
210 
211 static inline int
212 lo_do_transfer(struct loop_device *lo, int cmd,
213 	       struct page *rpage, unsigned roffs,
214 	       struct page *lpage, unsigned loffs,
215 	       int size, sector_t rblock)
216 {
217 	if (unlikely(!lo->transfer))
218 		return 0;
219 
220 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
221 }
222 
223 /**
224  * __do_lo_send_write - helper for writing data to a loop device
225  *
226  * This helper just factors out common code between do_lo_send_direct_write()
227  * and do_lo_send_write().
228  */
229 static int __do_lo_send_write(struct file *file,
230 		u8 *buf, const int len, loff_t pos)
231 {
232 	ssize_t bw;
233 	mm_segment_t old_fs = get_fs();
234 
235 	file_start_write(file);
236 	set_fs(get_ds());
237 	bw = file->f_op->write(file, buf, len, &pos);
238 	set_fs(old_fs);
239 	file_end_write(file);
240 	if (likely(bw == len))
241 		return 0;
242 	printk_ratelimited(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
243 			(unsigned long long)pos, len);
244 	if (bw >= 0)
245 		bw = -EIO;
246 	return bw;
247 }
248 
249 /**
250  * do_lo_send_direct_write - helper for writing data to a loop device
251  *
252  * This is the fast, non-transforming version that does not need double
253  * buffering.
254  */
255 static int do_lo_send_direct_write(struct loop_device *lo,
256 		struct bio_vec *bvec, loff_t pos, struct page *page)
257 {
258 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
259 			kmap(bvec->bv_page) + bvec->bv_offset,
260 			bvec->bv_len, pos);
261 	kunmap(bvec->bv_page);
262 	cond_resched();
263 	return bw;
264 }
265 
266 /**
267  * do_lo_send_write - helper for writing data to a loop device
268  *
269  * This is the slow, transforming version that needs to double buffer the
270  * data as it cannot do the transformations in place without having direct
271  * access to the destination pages of the backing file.
272  */
273 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
274 		loff_t pos, struct page *page)
275 {
276 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
277 			bvec->bv_offset, bvec->bv_len, pos >> 9);
278 	if (likely(!ret))
279 		return __do_lo_send_write(lo->lo_backing_file,
280 				page_address(page), bvec->bv_len,
281 				pos);
282 	printk_ratelimited(KERN_ERR "loop: Transfer error at byte offset %llu, "
283 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
284 	if (ret > 0)
285 		ret = -EIO;
286 	return ret;
287 }
288 
289 static int lo_send(struct loop_device *lo, struct request *rq, loff_t pos)
290 {
291 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
292 			struct page *page);
293 	struct bio_vec bvec;
294 	struct req_iterator iter;
295 	struct page *page = NULL;
296 	int ret = 0;
297 
298 	if (lo->transfer != transfer_none) {
299 		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
300 		if (unlikely(!page))
301 			goto fail;
302 		kmap(page);
303 		do_lo_send = do_lo_send_write;
304 	} else {
305 		do_lo_send = do_lo_send_direct_write;
306 	}
307 
308 	rq_for_each_segment(bvec, rq, iter) {
309 		ret = do_lo_send(lo, &bvec, pos, page);
310 		if (ret < 0)
311 			break;
312 		pos += bvec.bv_len;
313 	}
314 	if (page) {
315 		kunmap(page);
316 		__free_page(page);
317 	}
318 out:
319 	return ret;
320 fail:
321 	printk_ratelimited(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
322 	ret = -ENOMEM;
323 	goto out;
324 }
325 
326 struct lo_read_data {
327 	struct loop_device *lo;
328 	struct page *page;
329 	unsigned offset;
330 	int bsize;
331 };
332 
333 static int
334 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
335 		struct splice_desc *sd)
336 {
337 	struct lo_read_data *p = sd->u.data;
338 	struct loop_device *lo = p->lo;
339 	struct page *page = buf->page;
340 	sector_t IV;
341 	int size;
342 
343 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
344 							(buf->offset >> 9);
345 	size = sd->len;
346 	if (size > p->bsize)
347 		size = p->bsize;
348 
349 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
350 		printk_ratelimited(KERN_ERR "loop: transfer error block %ld\n",
351 		       page->index);
352 		size = -EINVAL;
353 	}
354 
355 	flush_dcache_page(p->page);
356 
357 	if (size > 0)
358 		p->offset += size;
359 
360 	return size;
361 }
362 
363 static int
364 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
365 {
366 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
367 }
368 
369 static ssize_t
370 do_lo_receive(struct loop_device *lo,
371 	      struct bio_vec *bvec, int bsize, loff_t pos)
372 {
373 	struct lo_read_data cookie;
374 	struct splice_desc sd;
375 	struct file *file;
376 	ssize_t retval;
377 
378 	cookie.lo = lo;
379 	cookie.page = bvec->bv_page;
380 	cookie.offset = bvec->bv_offset;
381 	cookie.bsize = bsize;
382 
383 	sd.len = 0;
384 	sd.total_len = bvec->bv_len;
385 	sd.flags = 0;
386 	sd.pos = pos;
387 	sd.u.data = &cookie;
388 
389 	file = lo->lo_backing_file;
390 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
391 
392 	return retval;
393 }
394 
395 static int
396 lo_receive(struct loop_device *lo, struct request *rq, int bsize, loff_t pos)
397 {
398 	struct bio_vec bvec;
399 	struct req_iterator iter;
400 	ssize_t s;
401 
402 	rq_for_each_segment(bvec, rq, iter) {
403 		s = do_lo_receive(lo, &bvec, bsize, pos);
404 		if (s < 0)
405 			return s;
406 
407 		if (s != bvec.bv_len) {
408 			struct bio *bio;
409 
410 			__rq_for_each_bio(bio, rq)
411 				zero_fill_bio(bio);
412 			break;
413 		}
414 		pos += bvec.bv_len;
415 	}
416 	return 0;
417 }
418 
419 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
420 {
421 	/*
422 	 * We use punch hole to reclaim the free space used by the
423 	 * image a.k.a. discard. However we do not support discard if
424 	 * encryption is enabled, because it may give an attacker
425 	 * useful information.
426 	 */
427 	struct file *file = lo->lo_backing_file;
428 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
429 	int ret;
430 
431 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
432 		ret = -EOPNOTSUPP;
433 		goto out;
434 	}
435 
436 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
437 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
438 		ret = -EIO;
439  out:
440 	return ret;
441 }
442 
443 static int lo_req_flush(struct loop_device *lo, struct request *rq)
444 {
445 	struct file *file = lo->lo_backing_file;
446 	int ret = vfs_fsync(file, 0);
447 	if (unlikely(ret && ret != -EINVAL))
448 		ret = -EIO;
449 
450 	return ret;
451 }
452 
453 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
454 {
455 	loff_t pos;
456 	int ret;
457 
458 	pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
459 
460 	if (rq->cmd_flags & REQ_WRITE) {
461 		if (rq->cmd_flags & REQ_FLUSH)
462 			ret = lo_req_flush(lo, rq);
463 		else if (rq->cmd_flags & REQ_DISCARD)
464 			ret = lo_discard(lo, rq, pos);
465 		else
466 			ret = lo_send(lo, rq, pos);
467 	} else
468 		ret = lo_receive(lo, rq, lo->lo_blocksize, pos);
469 
470 	return ret;
471 }
472 
473 struct switch_request {
474 	struct file *file;
475 	struct completion wait;
476 };
477 
478 /*
479  * Do the actual switch; called from the BIO completion routine
480  */
481 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
482 {
483 	struct file *file = p->file;
484 	struct file *old_file = lo->lo_backing_file;
485 	struct address_space *mapping;
486 
487 	/* if no new file, only flush of queued bios requested */
488 	if (!file)
489 		return;
490 
491 	mapping = file->f_mapping;
492 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
493 	lo->lo_backing_file = file;
494 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
495 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
496 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
497 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
498 }
499 
500 /*
501  * loop_switch performs the hard work of switching a backing store.
502  * First it needs to flush existing IO, it does this by sending a magic
503  * BIO down the pipe. The completion of this BIO does the actual switch.
504  */
505 static int loop_switch(struct loop_device *lo, struct file *file)
506 {
507 	struct switch_request w;
508 
509 	w.file = file;
510 
511 	/* freeze queue and wait for completion of scheduled requests */
512 	blk_mq_freeze_queue(lo->lo_queue);
513 
514 	/* do the switch action */
515 	do_loop_switch(lo, &w);
516 
517 	/* unfreeze */
518 	blk_mq_unfreeze_queue(lo->lo_queue);
519 
520 	return 0;
521 }
522 
523 /*
524  * Helper to flush the IOs in loop, but keeping loop thread running
525  */
526 static int loop_flush(struct loop_device *lo)
527 {
528 	return loop_switch(lo, NULL);
529 }
530 
531 /*
532  * loop_change_fd switched the backing store of a loopback device to
533  * a new file. This is useful for operating system installers to free up
534  * the original file and in High Availability environments to switch to
535  * an alternative location for the content in case of server meltdown.
536  * This can only work if the loop device is used read-only, and if the
537  * new backing store is the same size and type as the old backing store.
538  */
539 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
540 			  unsigned int arg)
541 {
542 	struct file	*file, *old_file;
543 	struct inode	*inode;
544 	int		error;
545 
546 	error = -ENXIO;
547 	if (lo->lo_state != Lo_bound)
548 		goto out;
549 
550 	/* the loop device has to be read-only */
551 	error = -EINVAL;
552 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
553 		goto out;
554 
555 	error = -EBADF;
556 	file = fget(arg);
557 	if (!file)
558 		goto out;
559 
560 	inode = file->f_mapping->host;
561 	old_file = lo->lo_backing_file;
562 
563 	error = -EINVAL;
564 
565 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
566 		goto out_putf;
567 
568 	/* size of the new backing store needs to be the same */
569 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
570 		goto out_putf;
571 
572 	/* and ... switch */
573 	error = loop_switch(lo, file);
574 	if (error)
575 		goto out_putf;
576 
577 	fput(old_file);
578 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
579 		ioctl_by_bdev(bdev, BLKRRPART, 0);
580 	return 0;
581 
582  out_putf:
583 	fput(file);
584  out:
585 	return error;
586 }
587 
588 static inline int is_loop_device(struct file *file)
589 {
590 	struct inode *i = file->f_mapping->host;
591 
592 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
593 }
594 
595 /* loop sysfs attributes */
596 
597 static ssize_t loop_attr_show(struct device *dev, char *page,
598 			      ssize_t (*callback)(struct loop_device *, char *))
599 {
600 	struct gendisk *disk = dev_to_disk(dev);
601 	struct loop_device *lo = disk->private_data;
602 
603 	return callback(lo, page);
604 }
605 
606 #define LOOP_ATTR_RO(_name)						\
607 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
608 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
609 				struct device_attribute *attr, char *b)	\
610 {									\
611 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
612 }									\
613 static struct device_attribute loop_attr_##_name =			\
614 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
615 
616 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
617 {
618 	ssize_t ret;
619 	char *p = NULL;
620 
621 	spin_lock_irq(&lo->lo_lock);
622 	if (lo->lo_backing_file)
623 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
624 	spin_unlock_irq(&lo->lo_lock);
625 
626 	if (IS_ERR_OR_NULL(p))
627 		ret = PTR_ERR(p);
628 	else {
629 		ret = strlen(p);
630 		memmove(buf, p, ret);
631 		buf[ret++] = '\n';
632 		buf[ret] = 0;
633 	}
634 
635 	return ret;
636 }
637 
638 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
639 {
640 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
641 }
642 
643 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
644 {
645 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
646 }
647 
648 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
649 {
650 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
651 
652 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
653 }
654 
655 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
656 {
657 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
658 
659 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
660 }
661 
662 LOOP_ATTR_RO(backing_file);
663 LOOP_ATTR_RO(offset);
664 LOOP_ATTR_RO(sizelimit);
665 LOOP_ATTR_RO(autoclear);
666 LOOP_ATTR_RO(partscan);
667 
668 static struct attribute *loop_attrs[] = {
669 	&loop_attr_backing_file.attr,
670 	&loop_attr_offset.attr,
671 	&loop_attr_sizelimit.attr,
672 	&loop_attr_autoclear.attr,
673 	&loop_attr_partscan.attr,
674 	NULL,
675 };
676 
677 static struct attribute_group loop_attribute_group = {
678 	.name = "loop",
679 	.attrs= loop_attrs,
680 };
681 
682 static int loop_sysfs_init(struct loop_device *lo)
683 {
684 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
685 				  &loop_attribute_group);
686 }
687 
688 static void loop_sysfs_exit(struct loop_device *lo)
689 {
690 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
691 			   &loop_attribute_group);
692 }
693 
694 static void loop_config_discard(struct loop_device *lo)
695 {
696 	struct file *file = lo->lo_backing_file;
697 	struct inode *inode = file->f_mapping->host;
698 	struct request_queue *q = lo->lo_queue;
699 
700 	/*
701 	 * We use punch hole to reclaim the free space used by the
702 	 * image a.k.a. discard. However we do not support discard if
703 	 * encryption is enabled, because it may give an attacker
704 	 * useful information.
705 	 */
706 	if ((!file->f_op->fallocate) ||
707 	    lo->lo_encrypt_key_size) {
708 		q->limits.discard_granularity = 0;
709 		q->limits.discard_alignment = 0;
710 		q->limits.max_discard_sectors = 0;
711 		q->limits.discard_zeroes_data = 0;
712 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
713 		return;
714 	}
715 
716 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
717 	q->limits.discard_alignment = 0;
718 	q->limits.max_discard_sectors = UINT_MAX >> 9;
719 	q->limits.discard_zeroes_data = 1;
720 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
721 }
722 
723 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
724 		       struct block_device *bdev, unsigned int arg)
725 {
726 	struct file	*file, *f;
727 	struct inode	*inode;
728 	struct address_space *mapping;
729 	unsigned lo_blocksize;
730 	int		lo_flags = 0;
731 	int		error;
732 	loff_t		size;
733 
734 	/* This is safe, since we have a reference from open(). */
735 	__module_get(THIS_MODULE);
736 
737 	error = -EBADF;
738 	file = fget(arg);
739 	if (!file)
740 		goto out;
741 
742 	error = -EBUSY;
743 	if (lo->lo_state != Lo_unbound)
744 		goto out_putf;
745 
746 	/* Avoid recursion */
747 	f = file;
748 	while (is_loop_device(f)) {
749 		struct loop_device *l;
750 
751 		if (f->f_mapping->host->i_bdev == bdev)
752 			goto out_putf;
753 
754 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
755 		if (l->lo_state == Lo_unbound) {
756 			error = -EINVAL;
757 			goto out_putf;
758 		}
759 		f = l->lo_backing_file;
760 	}
761 
762 	mapping = file->f_mapping;
763 	inode = mapping->host;
764 
765 	error = -EINVAL;
766 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
767 		goto out_putf;
768 
769 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
770 	    !file->f_op->write)
771 		lo_flags |= LO_FLAGS_READ_ONLY;
772 
773 	lo_blocksize = S_ISBLK(inode->i_mode) ?
774 		inode->i_bdev->bd_block_size : PAGE_SIZE;
775 
776 	error = -EFBIG;
777 	size = get_loop_size(lo, file);
778 	if ((loff_t)(sector_t)size != size)
779 		goto out_putf;
780 
781 	error = 0;
782 
783 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
784 
785 	lo->lo_blocksize = lo_blocksize;
786 	lo->lo_device = bdev;
787 	lo->lo_flags = lo_flags;
788 	lo->lo_backing_file = file;
789 	lo->transfer = transfer_none;
790 	lo->ioctl = NULL;
791 	lo->lo_sizelimit = 0;
792 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
793 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
794 
795 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
796 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
797 
798 	set_capacity(lo->lo_disk, size);
799 	bd_set_size(bdev, size << 9);
800 	loop_sysfs_init(lo);
801 	/* let user-space know about the new size */
802 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
803 
804 	set_blocksize(bdev, lo_blocksize);
805 
806 	lo->lo_state = Lo_bound;
807 	if (part_shift)
808 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
809 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
810 		ioctl_by_bdev(bdev, BLKRRPART, 0);
811 
812 	/* Grab the block_device to prevent its destruction after we
813 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
814 	 */
815 	bdgrab(bdev);
816 	return 0;
817 
818  out_putf:
819 	fput(file);
820  out:
821 	/* This is safe: open() is still holding a reference. */
822 	module_put(THIS_MODULE);
823 	return error;
824 }
825 
826 static int
827 loop_release_xfer(struct loop_device *lo)
828 {
829 	int err = 0;
830 	struct loop_func_table *xfer = lo->lo_encryption;
831 
832 	if (xfer) {
833 		if (xfer->release)
834 			err = xfer->release(lo);
835 		lo->transfer = NULL;
836 		lo->lo_encryption = NULL;
837 		module_put(xfer->owner);
838 	}
839 	return err;
840 }
841 
842 static int
843 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
844 	       const struct loop_info64 *i)
845 {
846 	int err = 0;
847 
848 	if (xfer) {
849 		struct module *owner = xfer->owner;
850 
851 		if (!try_module_get(owner))
852 			return -EINVAL;
853 		if (xfer->init)
854 			err = xfer->init(lo, i);
855 		if (err)
856 			module_put(owner);
857 		else
858 			lo->lo_encryption = xfer;
859 	}
860 	return err;
861 }
862 
863 static int loop_clr_fd(struct loop_device *lo)
864 {
865 	struct file *filp = lo->lo_backing_file;
866 	gfp_t gfp = lo->old_gfp_mask;
867 	struct block_device *bdev = lo->lo_device;
868 
869 	if (lo->lo_state != Lo_bound)
870 		return -ENXIO;
871 
872 	/*
873 	 * If we've explicitly asked to tear down the loop device,
874 	 * and it has an elevated reference count, set it for auto-teardown when
875 	 * the last reference goes away. This stops $!~#$@ udev from
876 	 * preventing teardown because it decided that it needs to run blkid on
877 	 * the loopback device whenever they appear. xfstests is notorious for
878 	 * failing tests because blkid via udev races with a losetup
879 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
880 	 * command to fail with EBUSY.
881 	 */
882 	if (lo->lo_refcnt > 1) {
883 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
884 		mutex_unlock(&lo->lo_ctl_mutex);
885 		return 0;
886 	}
887 
888 	if (filp == NULL)
889 		return -EINVAL;
890 
891 	spin_lock_irq(&lo->lo_lock);
892 	lo->lo_state = Lo_rundown;
893 	lo->lo_backing_file = NULL;
894 	spin_unlock_irq(&lo->lo_lock);
895 
896 	loop_release_xfer(lo);
897 	lo->transfer = NULL;
898 	lo->ioctl = NULL;
899 	lo->lo_device = NULL;
900 	lo->lo_encryption = NULL;
901 	lo->lo_offset = 0;
902 	lo->lo_sizelimit = 0;
903 	lo->lo_encrypt_key_size = 0;
904 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
905 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
906 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
907 	if (bdev) {
908 		bdput(bdev);
909 		invalidate_bdev(bdev);
910 	}
911 	set_capacity(lo->lo_disk, 0);
912 	loop_sysfs_exit(lo);
913 	if (bdev) {
914 		bd_set_size(bdev, 0);
915 		/* let user-space know about this change */
916 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
917 	}
918 	mapping_set_gfp_mask(filp->f_mapping, gfp);
919 	lo->lo_state = Lo_unbound;
920 	/* This is safe: open() is still holding a reference. */
921 	module_put(THIS_MODULE);
922 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
923 		ioctl_by_bdev(bdev, BLKRRPART, 0);
924 	lo->lo_flags = 0;
925 	if (!part_shift)
926 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
927 	mutex_unlock(&lo->lo_ctl_mutex);
928 	/*
929 	 * Need not hold lo_ctl_mutex to fput backing file.
930 	 * Calling fput holding lo_ctl_mutex triggers a circular
931 	 * lock dependency possibility warning as fput can take
932 	 * bd_mutex which is usually taken before lo_ctl_mutex.
933 	 */
934 	fput(filp);
935 	return 0;
936 }
937 
938 static int
939 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
940 {
941 	int err;
942 	struct loop_func_table *xfer;
943 	kuid_t uid = current_uid();
944 
945 	if (lo->lo_encrypt_key_size &&
946 	    !uid_eq(lo->lo_key_owner, uid) &&
947 	    !capable(CAP_SYS_ADMIN))
948 		return -EPERM;
949 	if (lo->lo_state != Lo_bound)
950 		return -ENXIO;
951 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
952 		return -EINVAL;
953 
954 	err = loop_release_xfer(lo);
955 	if (err)
956 		return err;
957 
958 	if (info->lo_encrypt_type) {
959 		unsigned int type = info->lo_encrypt_type;
960 
961 		if (type >= MAX_LO_CRYPT)
962 			return -EINVAL;
963 		xfer = xfer_funcs[type];
964 		if (xfer == NULL)
965 			return -EINVAL;
966 	} else
967 		xfer = NULL;
968 
969 	err = loop_init_xfer(lo, xfer, info);
970 	if (err)
971 		return err;
972 
973 	if (lo->lo_offset != info->lo_offset ||
974 	    lo->lo_sizelimit != info->lo_sizelimit)
975 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
976 			return -EFBIG;
977 
978 	loop_config_discard(lo);
979 
980 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
981 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
982 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
983 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
984 
985 	if (!xfer)
986 		xfer = &none_funcs;
987 	lo->transfer = xfer->transfer;
988 	lo->ioctl = xfer->ioctl;
989 
990 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
991 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
992 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
993 
994 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
995 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
996 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
997 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
998 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
999 	}
1000 
1001 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1002 	lo->lo_init[0] = info->lo_init[0];
1003 	lo->lo_init[1] = info->lo_init[1];
1004 	if (info->lo_encrypt_key_size) {
1005 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1006 		       info->lo_encrypt_key_size);
1007 		lo->lo_key_owner = uid;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 static int
1014 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1015 {
1016 	struct file *file = lo->lo_backing_file;
1017 	struct kstat stat;
1018 	int error;
1019 
1020 	if (lo->lo_state != Lo_bound)
1021 		return -ENXIO;
1022 	error = vfs_getattr(&file->f_path, &stat);
1023 	if (error)
1024 		return error;
1025 	memset(info, 0, sizeof(*info));
1026 	info->lo_number = lo->lo_number;
1027 	info->lo_device = huge_encode_dev(stat.dev);
1028 	info->lo_inode = stat.ino;
1029 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1030 	info->lo_offset = lo->lo_offset;
1031 	info->lo_sizelimit = lo->lo_sizelimit;
1032 	info->lo_flags = lo->lo_flags;
1033 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1034 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1035 	info->lo_encrypt_type =
1036 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1037 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1038 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1039 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1040 		       lo->lo_encrypt_key_size);
1041 	}
1042 	return 0;
1043 }
1044 
1045 static void
1046 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1047 {
1048 	memset(info64, 0, sizeof(*info64));
1049 	info64->lo_number = info->lo_number;
1050 	info64->lo_device = info->lo_device;
1051 	info64->lo_inode = info->lo_inode;
1052 	info64->lo_rdevice = info->lo_rdevice;
1053 	info64->lo_offset = info->lo_offset;
1054 	info64->lo_sizelimit = 0;
1055 	info64->lo_encrypt_type = info->lo_encrypt_type;
1056 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1057 	info64->lo_flags = info->lo_flags;
1058 	info64->lo_init[0] = info->lo_init[0];
1059 	info64->lo_init[1] = info->lo_init[1];
1060 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1061 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1062 	else
1063 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1064 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1065 }
1066 
1067 static int
1068 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1069 {
1070 	memset(info, 0, sizeof(*info));
1071 	info->lo_number = info64->lo_number;
1072 	info->lo_device = info64->lo_device;
1073 	info->lo_inode = info64->lo_inode;
1074 	info->lo_rdevice = info64->lo_rdevice;
1075 	info->lo_offset = info64->lo_offset;
1076 	info->lo_encrypt_type = info64->lo_encrypt_type;
1077 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1078 	info->lo_flags = info64->lo_flags;
1079 	info->lo_init[0] = info64->lo_init[0];
1080 	info->lo_init[1] = info64->lo_init[1];
1081 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1082 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1083 	else
1084 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1085 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1086 
1087 	/* error in case values were truncated */
1088 	if (info->lo_device != info64->lo_device ||
1089 	    info->lo_rdevice != info64->lo_rdevice ||
1090 	    info->lo_inode != info64->lo_inode ||
1091 	    info->lo_offset != info64->lo_offset)
1092 		return -EOVERFLOW;
1093 
1094 	return 0;
1095 }
1096 
1097 static int
1098 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1099 {
1100 	struct loop_info info;
1101 	struct loop_info64 info64;
1102 
1103 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1104 		return -EFAULT;
1105 	loop_info64_from_old(&info, &info64);
1106 	return loop_set_status(lo, &info64);
1107 }
1108 
1109 static int
1110 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1111 {
1112 	struct loop_info64 info64;
1113 
1114 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1115 		return -EFAULT;
1116 	return loop_set_status(lo, &info64);
1117 }
1118 
1119 static int
1120 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1121 	struct loop_info info;
1122 	struct loop_info64 info64;
1123 	int err = 0;
1124 
1125 	if (!arg)
1126 		err = -EINVAL;
1127 	if (!err)
1128 		err = loop_get_status(lo, &info64);
1129 	if (!err)
1130 		err = loop_info64_to_old(&info64, &info);
1131 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1132 		err = -EFAULT;
1133 
1134 	return err;
1135 }
1136 
1137 static int
1138 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1139 	struct loop_info64 info64;
1140 	int err = 0;
1141 
1142 	if (!arg)
1143 		err = -EINVAL;
1144 	if (!err)
1145 		err = loop_get_status(lo, &info64);
1146 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1147 		err = -EFAULT;
1148 
1149 	return err;
1150 }
1151 
1152 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1153 {
1154 	if (unlikely(lo->lo_state != Lo_bound))
1155 		return -ENXIO;
1156 
1157 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1158 }
1159 
1160 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1161 	unsigned int cmd, unsigned long arg)
1162 {
1163 	struct loop_device *lo = bdev->bd_disk->private_data;
1164 	int err;
1165 
1166 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1167 	switch (cmd) {
1168 	case LOOP_SET_FD:
1169 		err = loop_set_fd(lo, mode, bdev, arg);
1170 		break;
1171 	case LOOP_CHANGE_FD:
1172 		err = loop_change_fd(lo, bdev, arg);
1173 		break;
1174 	case LOOP_CLR_FD:
1175 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1176 		err = loop_clr_fd(lo);
1177 		if (!err)
1178 			goto out_unlocked;
1179 		break;
1180 	case LOOP_SET_STATUS:
1181 		err = -EPERM;
1182 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1183 			err = loop_set_status_old(lo,
1184 					(struct loop_info __user *)arg);
1185 		break;
1186 	case LOOP_GET_STATUS:
1187 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1188 		break;
1189 	case LOOP_SET_STATUS64:
1190 		err = -EPERM;
1191 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1192 			err = loop_set_status64(lo,
1193 					(struct loop_info64 __user *) arg);
1194 		break;
1195 	case LOOP_GET_STATUS64:
1196 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1197 		break;
1198 	case LOOP_SET_CAPACITY:
1199 		err = -EPERM;
1200 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1201 			err = loop_set_capacity(lo, bdev);
1202 		break;
1203 	default:
1204 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1205 	}
1206 	mutex_unlock(&lo->lo_ctl_mutex);
1207 
1208 out_unlocked:
1209 	return err;
1210 }
1211 
1212 #ifdef CONFIG_COMPAT
1213 struct compat_loop_info {
1214 	compat_int_t	lo_number;      /* ioctl r/o */
1215 	compat_dev_t	lo_device;      /* ioctl r/o */
1216 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1217 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1218 	compat_int_t	lo_offset;
1219 	compat_int_t	lo_encrypt_type;
1220 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1221 	compat_int_t	lo_flags;       /* ioctl r/o */
1222 	char		lo_name[LO_NAME_SIZE];
1223 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1224 	compat_ulong_t	lo_init[2];
1225 	char		reserved[4];
1226 };
1227 
1228 /*
1229  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1230  * - noinlined to reduce stack space usage in main part of driver
1231  */
1232 static noinline int
1233 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1234 			struct loop_info64 *info64)
1235 {
1236 	struct compat_loop_info info;
1237 
1238 	if (copy_from_user(&info, arg, sizeof(info)))
1239 		return -EFAULT;
1240 
1241 	memset(info64, 0, sizeof(*info64));
1242 	info64->lo_number = info.lo_number;
1243 	info64->lo_device = info.lo_device;
1244 	info64->lo_inode = info.lo_inode;
1245 	info64->lo_rdevice = info.lo_rdevice;
1246 	info64->lo_offset = info.lo_offset;
1247 	info64->lo_sizelimit = 0;
1248 	info64->lo_encrypt_type = info.lo_encrypt_type;
1249 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1250 	info64->lo_flags = info.lo_flags;
1251 	info64->lo_init[0] = info.lo_init[0];
1252 	info64->lo_init[1] = info.lo_init[1];
1253 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1254 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1255 	else
1256 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1257 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1258 	return 0;
1259 }
1260 
1261 /*
1262  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1263  * - noinlined to reduce stack space usage in main part of driver
1264  */
1265 static noinline int
1266 loop_info64_to_compat(const struct loop_info64 *info64,
1267 		      struct compat_loop_info __user *arg)
1268 {
1269 	struct compat_loop_info info;
1270 
1271 	memset(&info, 0, sizeof(info));
1272 	info.lo_number = info64->lo_number;
1273 	info.lo_device = info64->lo_device;
1274 	info.lo_inode = info64->lo_inode;
1275 	info.lo_rdevice = info64->lo_rdevice;
1276 	info.lo_offset = info64->lo_offset;
1277 	info.lo_encrypt_type = info64->lo_encrypt_type;
1278 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1279 	info.lo_flags = info64->lo_flags;
1280 	info.lo_init[0] = info64->lo_init[0];
1281 	info.lo_init[1] = info64->lo_init[1];
1282 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1283 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1284 	else
1285 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1286 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1287 
1288 	/* error in case values were truncated */
1289 	if (info.lo_device != info64->lo_device ||
1290 	    info.lo_rdevice != info64->lo_rdevice ||
1291 	    info.lo_inode != info64->lo_inode ||
1292 	    info.lo_offset != info64->lo_offset ||
1293 	    info.lo_init[0] != info64->lo_init[0] ||
1294 	    info.lo_init[1] != info64->lo_init[1])
1295 		return -EOVERFLOW;
1296 
1297 	if (copy_to_user(arg, &info, sizeof(info)))
1298 		return -EFAULT;
1299 	return 0;
1300 }
1301 
1302 static int
1303 loop_set_status_compat(struct loop_device *lo,
1304 		       const struct compat_loop_info __user *arg)
1305 {
1306 	struct loop_info64 info64;
1307 	int ret;
1308 
1309 	ret = loop_info64_from_compat(arg, &info64);
1310 	if (ret < 0)
1311 		return ret;
1312 	return loop_set_status(lo, &info64);
1313 }
1314 
1315 static int
1316 loop_get_status_compat(struct loop_device *lo,
1317 		       struct compat_loop_info __user *arg)
1318 {
1319 	struct loop_info64 info64;
1320 	int err = 0;
1321 
1322 	if (!arg)
1323 		err = -EINVAL;
1324 	if (!err)
1325 		err = loop_get_status(lo, &info64);
1326 	if (!err)
1327 		err = loop_info64_to_compat(&info64, arg);
1328 	return err;
1329 }
1330 
1331 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1332 			   unsigned int cmd, unsigned long arg)
1333 {
1334 	struct loop_device *lo = bdev->bd_disk->private_data;
1335 	int err;
1336 
1337 	switch(cmd) {
1338 	case LOOP_SET_STATUS:
1339 		mutex_lock(&lo->lo_ctl_mutex);
1340 		err = loop_set_status_compat(
1341 			lo, (const struct compat_loop_info __user *) arg);
1342 		mutex_unlock(&lo->lo_ctl_mutex);
1343 		break;
1344 	case LOOP_GET_STATUS:
1345 		mutex_lock(&lo->lo_ctl_mutex);
1346 		err = loop_get_status_compat(
1347 			lo, (struct compat_loop_info __user *) arg);
1348 		mutex_unlock(&lo->lo_ctl_mutex);
1349 		break;
1350 	case LOOP_SET_CAPACITY:
1351 	case LOOP_CLR_FD:
1352 	case LOOP_GET_STATUS64:
1353 	case LOOP_SET_STATUS64:
1354 		arg = (unsigned long) compat_ptr(arg);
1355 	case LOOP_SET_FD:
1356 	case LOOP_CHANGE_FD:
1357 		err = lo_ioctl(bdev, mode, cmd, arg);
1358 		break;
1359 	default:
1360 		err = -ENOIOCTLCMD;
1361 		break;
1362 	}
1363 	return err;
1364 }
1365 #endif
1366 
1367 static int lo_open(struct block_device *bdev, fmode_t mode)
1368 {
1369 	struct loop_device *lo;
1370 	int err = 0;
1371 
1372 	mutex_lock(&loop_index_mutex);
1373 	lo = bdev->bd_disk->private_data;
1374 	if (!lo) {
1375 		err = -ENXIO;
1376 		goto out;
1377 	}
1378 
1379 	mutex_lock(&lo->lo_ctl_mutex);
1380 	lo->lo_refcnt++;
1381 	mutex_unlock(&lo->lo_ctl_mutex);
1382 out:
1383 	mutex_unlock(&loop_index_mutex);
1384 	return err;
1385 }
1386 
1387 static void lo_release(struct gendisk *disk, fmode_t mode)
1388 {
1389 	struct loop_device *lo = disk->private_data;
1390 	int err;
1391 
1392 	mutex_lock(&lo->lo_ctl_mutex);
1393 
1394 	if (--lo->lo_refcnt)
1395 		goto out;
1396 
1397 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1398 		/*
1399 		 * In autoclear mode, stop the loop thread
1400 		 * and remove configuration after last close.
1401 		 */
1402 		err = loop_clr_fd(lo);
1403 		if (!err)
1404 			return;
1405 	} else {
1406 		/*
1407 		 * Otherwise keep thread (if running) and config,
1408 		 * but flush possible ongoing bios in thread.
1409 		 */
1410 		loop_flush(lo);
1411 	}
1412 
1413 out:
1414 	mutex_unlock(&lo->lo_ctl_mutex);
1415 }
1416 
1417 static const struct block_device_operations lo_fops = {
1418 	.owner =	THIS_MODULE,
1419 	.open =		lo_open,
1420 	.release =	lo_release,
1421 	.ioctl =	lo_ioctl,
1422 #ifdef CONFIG_COMPAT
1423 	.compat_ioctl =	lo_compat_ioctl,
1424 #endif
1425 };
1426 
1427 /*
1428  * And now the modules code and kernel interface.
1429  */
1430 static int max_loop;
1431 module_param(max_loop, int, S_IRUGO);
1432 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1433 module_param(max_part, int, S_IRUGO);
1434 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1435 MODULE_LICENSE("GPL");
1436 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1437 
1438 int loop_register_transfer(struct loop_func_table *funcs)
1439 {
1440 	unsigned int n = funcs->number;
1441 
1442 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1443 		return -EINVAL;
1444 	xfer_funcs[n] = funcs;
1445 	return 0;
1446 }
1447 
1448 static int unregister_transfer_cb(int id, void *ptr, void *data)
1449 {
1450 	struct loop_device *lo = ptr;
1451 	struct loop_func_table *xfer = data;
1452 
1453 	mutex_lock(&lo->lo_ctl_mutex);
1454 	if (lo->lo_encryption == xfer)
1455 		loop_release_xfer(lo);
1456 	mutex_unlock(&lo->lo_ctl_mutex);
1457 	return 0;
1458 }
1459 
1460 int loop_unregister_transfer(int number)
1461 {
1462 	unsigned int n = number;
1463 	struct loop_func_table *xfer;
1464 
1465 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1466 		return -EINVAL;
1467 
1468 	xfer_funcs[n] = NULL;
1469 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1470 	return 0;
1471 }
1472 
1473 EXPORT_SYMBOL(loop_register_transfer);
1474 EXPORT_SYMBOL(loop_unregister_transfer);
1475 
1476 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1477 		const struct blk_mq_queue_data *bd)
1478 {
1479 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1480 
1481 	blk_mq_start_request(bd->rq);
1482 
1483 	if (cmd->rq->cmd_flags & REQ_WRITE) {
1484 		struct loop_device *lo = cmd->rq->q->queuedata;
1485 		bool need_sched = true;
1486 
1487 		spin_lock_irq(&lo->lo_lock);
1488 		if (lo->write_started)
1489 			need_sched = false;
1490 		else
1491 			lo->write_started = true;
1492 		list_add_tail(&cmd->list, &lo->write_cmd_head);
1493 		spin_unlock_irq(&lo->lo_lock);
1494 
1495 		if (need_sched)
1496 			queue_work(loop_wq, &lo->write_work);
1497 	} else {
1498 		queue_work(loop_wq, &cmd->read_work);
1499 	}
1500 
1501 	return BLK_MQ_RQ_QUEUE_OK;
1502 }
1503 
1504 static void loop_handle_cmd(struct loop_cmd *cmd)
1505 {
1506 	const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1507 	struct loop_device *lo = cmd->rq->q->queuedata;
1508 	int ret = -EIO;
1509 
1510 	if (lo->lo_state != Lo_bound)
1511 		goto failed;
1512 
1513 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1514 		goto failed;
1515 
1516 	ret = do_req_filebacked(lo, cmd->rq);
1517 
1518  failed:
1519 	if (ret)
1520 		cmd->rq->errors = -EIO;
1521 	blk_mq_complete_request(cmd->rq);
1522 }
1523 
1524 static void loop_queue_write_work(struct work_struct *work)
1525 {
1526 	struct loop_device *lo =
1527 		container_of(work, struct loop_device, write_work);
1528 	LIST_HEAD(cmd_list);
1529 
1530 	spin_lock_irq(&lo->lo_lock);
1531  repeat:
1532 	list_splice_init(&lo->write_cmd_head, &cmd_list);
1533 	spin_unlock_irq(&lo->lo_lock);
1534 
1535 	while (!list_empty(&cmd_list)) {
1536 		struct loop_cmd *cmd = list_first_entry(&cmd_list,
1537 				struct loop_cmd, list);
1538 		list_del_init(&cmd->list);
1539 		loop_handle_cmd(cmd);
1540 	}
1541 
1542 	spin_lock_irq(&lo->lo_lock);
1543 	if (!list_empty(&lo->write_cmd_head))
1544 		goto repeat;
1545 	lo->write_started = false;
1546 	spin_unlock_irq(&lo->lo_lock);
1547 }
1548 
1549 static void loop_queue_read_work(struct work_struct *work)
1550 {
1551 	struct loop_cmd *cmd =
1552 		container_of(work, struct loop_cmd, read_work);
1553 
1554 	loop_handle_cmd(cmd);
1555 }
1556 
1557 static int loop_init_request(void *data, struct request *rq,
1558 		unsigned int hctx_idx, unsigned int request_idx,
1559 		unsigned int numa_node)
1560 {
1561 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1562 
1563 	cmd->rq = rq;
1564 	INIT_WORK(&cmd->read_work, loop_queue_read_work);
1565 
1566 	return 0;
1567 }
1568 
1569 static struct blk_mq_ops loop_mq_ops = {
1570 	.queue_rq       = loop_queue_rq,
1571 	.map_queue      = blk_mq_map_queue,
1572 	.init_request	= loop_init_request,
1573 };
1574 
1575 static int loop_add(struct loop_device **l, int i)
1576 {
1577 	struct loop_device *lo;
1578 	struct gendisk *disk;
1579 	int err;
1580 
1581 	err = -ENOMEM;
1582 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1583 	if (!lo)
1584 		goto out;
1585 
1586 	lo->lo_state = Lo_unbound;
1587 
1588 	/* allocate id, if @id >= 0, we're requesting that specific id */
1589 	if (i >= 0) {
1590 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1591 		if (err == -ENOSPC)
1592 			err = -EEXIST;
1593 	} else {
1594 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1595 	}
1596 	if (err < 0)
1597 		goto out_free_dev;
1598 	i = err;
1599 
1600 	err = -ENOMEM;
1601 	lo->tag_set.ops = &loop_mq_ops;
1602 	lo->tag_set.nr_hw_queues = 1;
1603 	lo->tag_set.queue_depth = 128;
1604 	lo->tag_set.numa_node = NUMA_NO_NODE;
1605 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1606 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1607 	lo->tag_set.driver_data = lo;
1608 
1609 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1610 	if (err)
1611 		goto out_free_idr;
1612 
1613 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1614 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1615 		err = PTR_ERR(lo->lo_queue);
1616 		goto out_cleanup_tags;
1617 	}
1618 	lo->lo_queue->queuedata = lo;
1619 
1620 	INIT_LIST_HEAD(&lo->write_cmd_head);
1621 	INIT_WORK(&lo->write_work, loop_queue_write_work);
1622 
1623 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1624 	if (!disk)
1625 		goto out_free_queue;
1626 
1627 	/*
1628 	 * Disable partition scanning by default. The in-kernel partition
1629 	 * scanning can be requested individually per-device during its
1630 	 * setup. Userspace can always add and remove partitions from all
1631 	 * devices. The needed partition minors are allocated from the
1632 	 * extended minor space, the main loop device numbers will continue
1633 	 * to match the loop minors, regardless of the number of partitions
1634 	 * used.
1635 	 *
1636 	 * If max_part is given, partition scanning is globally enabled for
1637 	 * all loop devices. The minors for the main loop devices will be
1638 	 * multiples of max_part.
1639 	 *
1640 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1641 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1642 	 * complicated, are too static, inflexible and may surprise
1643 	 * userspace tools. Parameters like this in general should be avoided.
1644 	 */
1645 	if (!part_shift)
1646 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1647 	disk->flags |= GENHD_FL_EXT_DEVT;
1648 	mutex_init(&lo->lo_ctl_mutex);
1649 	lo->lo_number		= i;
1650 	spin_lock_init(&lo->lo_lock);
1651 	disk->major		= LOOP_MAJOR;
1652 	disk->first_minor	= i << part_shift;
1653 	disk->fops		= &lo_fops;
1654 	disk->private_data	= lo;
1655 	disk->queue		= lo->lo_queue;
1656 	sprintf(disk->disk_name, "loop%d", i);
1657 	add_disk(disk);
1658 	*l = lo;
1659 	return lo->lo_number;
1660 
1661 out_free_queue:
1662 	blk_cleanup_queue(lo->lo_queue);
1663 out_cleanup_tags:
1664 	blk_mq_free_tag_set(&lo->tag_set);
1665 out_free_idr:
1666 	idr_remove(&loop_index_idr, i);
1667 out_free_dev:
1668 	kfree(lo);
1669 out:
1670 	return err;
1671 }
1672 
1673 static void loop_remove(struct loop_device *lo)
1674 {
1675 	del_gendisk(lo->lo_disk);
1676 	blk_cleanup_queue(lo->lo_queue);
1677 	blk_mq_free_tag_set(&lo->tag_set);
1678 	put_disk(lo->lo_disk);
1679 	kfree(lo);
1680 }
1681 
1682 static int find_free_cb(int id, void *ptr, void *data)
1683 {
1684 	struct loop_device *lo = ptr;
1685 	struct loop_device **l = data;
1686 
1687 	if (lo->lo_state == Lo_unbound) {
1688 		*l = lo;
1689 		return 1;
1690 	}
1691 	return 0;
1692 }
1693 
1694 static int loop_lookup(struct loop_device **l, int i)
1695 {
1696 	struct loop_device *lo;
1697 	int ret = -ENODEV;
1698 
1699 	if (i < 0) {
1700 		int err;
1701 
1702 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1703 		if (err == 1) {
1704 			*l = lo;
1705 			ret = lo->lo_number;
1706 		}
1707 		goto out;
1708 	}
1709 
1710 	/* lookup and return a specific i */
1711 	lo = idr_find(&loop_index_idr, i);
1712 	if (lo) {
1713 		*l = lo;
1714 		ret = lo->lo_number;
1715 	}
1716 out:
1717 	return ret;
1718 }
1719 
1720 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1721 {
1722 	struct loop_device *lo;
1723 	struct kobject *kobj;
1724 	int err;
1725 
1726 	mutex_lock(&loop_index_mutex);
1727 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1728 	if (err < 0)
1729 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1730 	if (err < 0)
1731 		kobj = NULL;
1732 	else
1733 		kobj = get_disk(lo->lo_disk);
1734 	mutex_unlock(&loop_index_mutex);
1735 
1736 	*part = 0;
1737 	return kobj;
1738 }
1739 
1740 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1741 			       unsigned long parm)
1742 {
1743 	struct loop_device *lo;
1744 	int ret = -ENOSYS;
1745 
1746 	mutex_lock(&loop_index_mutex);
1747 	switch (cmd) {
1748 	case LOOP_CTL_ADD:
1749 		ret = loop_lookup(&lo, parm);
1750 		if (ret >= 0) {
1751 			ret = -EEXIST;
1752 			break;
1753 		}
1754 		ret = loop_add(&lo, parm);
1755 		break;
1756 	case LOOP_CTL_REMOVE:
1757 		ret = loop_lookup(&lo, parm);
1758 		if (ret < 0)
1759 			break;
1760 		mutex_lock(&lo->lo_ctl_mutex);
1761 		if (lo->lo_state != Lo_unbound) {
1762 			ret = -EBUSY;
1763 			mutex_unlock(&lo->lo_ctl_mutex);
1764 			break;
1765 		}
1766 		if (lo->lo_refcnt > 0) {
1767 			ret = -EBUSY;
1768 			mutex_unlock(&lo->lo_ctl_mutex);
1769 			break;
1770 		}
1771 		lo->lo_disk->private_data = NULL;
1772 		mutex_unlock(&lo->lo_ctl_mutex);
1773 		idr_remove(&loop_index_idr, lo->lo_number);
1774 		loop_remove(lo);
1775 		break;
1776 	case LOOP_CTL_GET_FREE:
1777 		ret = loop_lookup(&lo, -1);
1778 		if (ret >= 0)
1779 			break;
1780 		ret = loop_add(&lo, -1);
1781 	}
1782 	mutex_unlock(&loop_index_mutex);
1783 
1784 	return ret;
1785 }
1786 
1787 static const struct file_operations loop_ctl_fops = {
1788 	.open		= nonseekable_open,
1789 	.unlocked_ioctl	= loop_control_ioctl,
1790 	.compat_ioctl	= loop_control_ioctl,
1791 	.owner		= THIS_MODULE,
1792 	.llseek		= noop_llseek,
1793 };
1794 
1795 static struct miscdevice loop_misc = {
1796 	.minor		= LOOP_CTRL_MINOR,
1797 	.name		= "loop-control",
1798 	.fops		= &loop_ctl_fops,
1799 };
1800 
1801 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1802 MODULE_ALIAS("devname:loop-control");
1803 
1804 static int __init loop_init(void)
1805 {
1806 	int i, nr;
1807 	unsigned long range;
1808 	struct loop_device *lo;
1809 	int err;
1810 
1811 	err = misc_register(&loop_misc);
1812 	if (err < 0)
1813 		return err;
1814 
1815 	part_shift = 0;
1816 	if (max_part > 0) {
1817 		part_shift = fls(max_part);
1818 
1819 		/*
1820 		 * Adjust max_part according to part_shift as it is exported
1821 		 * to user space so that user can decide correct minor number
1822 		 * if [s]he want to create more devices.
1823 		 *
1824 		 * Note that -1 is required because partition 0 is reserved
1825 		 * for the whole disk.
1826 		 */
1827 		max_part = (1UL << part_shift) - 1;
1828 	}
1829 
1830 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1831 		err = -EINVAL;
1832 		goto misc_out;
1833 	}
1834 
1835 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1836 		err = -EINVAL;
1837 		goto misc_out;
1838 	}
1839 
1840 	/*
1841 	 * If max_loop is specified, create that many devices upfront.
1842 	 * This also becomes a hard limit. If max_loop is not specified,
1843 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1844 	 * init time. Loop devices can be requested on-demand with the
1845 	 * /dev/loop-control interface, or be instantiated by accessing
1846 	 * a 'dead' device node.
1847 	 */
1848 	if (max_loop) {
1849 		nr = max_loop;
1850 		range = max_loop << part_shift;
1851 	} else {
1852 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1853 		range = 1UL << MINORBITS;
1854 	}
1855 
1856 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1857 		err = -EIO;
1858 		goto misc_out;
1859 	}
1860 
1861 	loop_wq = alloc_workqueue("kloopd",
1862 			WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 0);
1863 	if (!loop_wq) {
1864 		err = -ENOMEM;
1865 		goto misc_out;
1866 	}
1867 
1868 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1869 				  THIS_MODULE, loop_probe, NULL, NULL);
1870 
1871 	/* pre-create number of devices given by config or max_loop */
1872 	mutex_lock(&loop_index_mutex);
1873 	for (i = 0; i < nr; i++)
1874 		loop_add(&lo, i);
1875 	mutex_unlock(&loop_index_mutex);
1876 
1877 	printk(KERN_INFO "loop: module loaded\n");
1878 	return 0;
1879 
1880 misc_out:
1881 	misc_deregister(&loop_misc);
1882 	return err;
1883 }
1884 
1885 static int loop_exit_cb(int id, void *ptr, void *data)
1886 {
1887 	struct loop_device *lo = ptr;
1888 
1889 	loop_remove(lo);
1890 	return 0;
1891 }
1892 
1893 static void __exit loop_exit(void)
1894 {
1895 	unsigned long range;
1896 
1897 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1898 
1899 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1900 	idr_destroy(&loop_index_idr);
1901 
1902 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1903 	unregister_blkdev(LOOP_MAJOR, "loop");
1904 
1905 	destroy_workqueue(loop_wq);
1906 
1907 	misc_deregister(&loop_misc);
1908 }
1909 
1910 module_init(loop_init);
1911 module_exit(loop_exit);
1912 
1913 #ifndef MODULE
1914 static int __init max_loop_setup(char *str)
1915 {
1916 	max_loop = simple_strtol(str, NULL, 0);
1917 	return 1;
1918 }
1919 
1920 __setup("max_loop=", max_loop_setup);
1921 #endif
1922