1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t lo_calculate_size(struct loop_device *lo, struct file *file) 141 { 142 struct kstat stat; 143 loff_t loopsize; 144 int ret; 145 146 /* 147 * Get the accurate file size. This provides better results than 148 * cached inode data, particularly for network filesystems where 149 * metadata may be stale. 150 */ 151 ret = vfs_getattr_nosec(&file->f_path, &stat, STATX_SIZE, 0); 152 if (ret) 153 return 0; 154 155 loopsize = stat.size; 156 if (lo->lo_offset > 0) 157 loopsize -= lo->lo_offset; 158 /* offset is beyond i_size, weird but possible */ 159 if (loopsize < 0) 160 return 0; 161 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 162 loopsize = lo->lo_sizelimit; 163 /* 164 * Unfortunately, if we want to do I/O on the device, 165 * the number of 512-byte sectors has to fit into a sector_t. 166 */ 167 return loopsize >> 9; 168 } 169 170 /* 171 * We support direct I/O only if lo_offset is aligned with the logical I/O size 172 * of backing device, and the logical block size of loop is bigger than that of 173 * the backing device. 174 */ 175 static bool lo_can_use_dio(struct loop_device *lo) 176 { 177 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 178 return false; 179 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 180 return false; 181 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 182 return false; 183 return true; 184 } 185 186 /* 187 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 188 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 189 * disabled when the device block size is too small or the offset is unaligned. 190 * 191 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 192 * not the originally passed in one. 193 */ 194 static inline void loop_update_dio(struct loop_device *lo) 195 { 196 lockdep_assert_held(&lo->lo_mutex); 197 WARN_ON_ONCE(lo->lo_state == Lo_bound && 198 lo->lo_queue->mq_freeze_depth == 0); 199 200 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 201 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 202 } 203 204 /** 205 * loop_set_size() - sets device size and notifies userspace 206 * @lo: struct loop_device to set the size for 207 * @size: new size of the loop device 208 * 209 * Callers must validate that the size passed into this function fits into 210 * a sector_t, eg using loop_validate_size() 211 */ 212 static void loop_set_size(struct loop_device *lo, loff_t size) 213 { 214 if (!set_capacity_and_notify(lo->lo_disk, size)) 215 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 216 } 217 218 static void loop_clear_limits(struct loop_device *lo, int mode) 219 { 220 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 221 222 if (mode & FALLOC_FL_ZERO_RANGE) 223 lim.max_write_zeroes_sectors = 0; 224 225 if (mode & FALLOC_FL_PUNCH_HOLE) { 226 lim.max_hw_discard_sectors = 0; 227 lim.discard_granularity = 0; 228 } 229 230 /* 231 * XXX: this updates the queue limits without freezing the queue, which 232 * is against the locking protocol and dangerous. But we can't just 233 * freeze the queue as we're inside the ->queue_rq method here. So this 234 * should move out into a workqueue unless we get the file operations to 235 * advertise if they support specific fallocate operations. 236 */ 237 queue_limits_commit_update(lo->lo_queue, &lim); 238 } 239 240 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 241 int mode) 242 { 243 /* 244 * We use fallocate to manipulate the space mappings used by the image 245 * a.k.a. discard/zerorange. 246 */ 247 struct file *file = lo->lo_backing_file; 248 int ret; 249 250 mode |= FALLOC_FL_KEEP_SIZE; 251 252 if (!bdev_max_discard_sectors(lo->lo_device)) 253 return -EOPNOTSUPP; 254 255 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 256 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 257 return -EIO; 258 259 /* 260 * We initially configure the limits in a hope that fallocate is 261 * supported and clear them here if that turns out not to be true. 262 */ 263 if (unlikely(ret == -EOPNOTSUPP)) 264 loop_clear_limits(lo, mode); 265 266 return ret; 267 } 268 269 static int lo_req_flush(struct loop_device *lo, struct request *rq) 270 { 271 int ret = vfs_fsync(lo->lo_backing_file, 0); 272 if (unlikely(ret && ret != -EINVAL)) 273 ret = -EIO; 274 275 return ret; 276 } 277 278 static void lo_complete_rq(struct request *rq) 279 { 280 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 281 blk_status_t ret = BLK_STS_OK; 282 283 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 284 req_op(rq) != REQ_OP_READ) { 285 if (cmd->ret < 0) 286 ret = errno_to_blk_status(cmd->ret); 287 goto end_io; 288 } 289 290 /* 291 * Short READ - if we got some data, advance our request and 292 * retry it. If we got no data, end the rest with EIO. 293 */ 294 if (cmd->ret) { 295 blk_update_request(rq, BLK_STS_OK, cmd->ret); 296 cmd->ret = 0; 297 blk_mq_requeue_request(rq, true); 298 } else { 299 struct bio *bio = rq->bio; 300 301 while (bio) { 302 zero_fill_bio(bio); 303 bio = bio->bi_next; 304 } 305 306 ret = BLK_STS_IOERR; 307 end_io: 308 blk_mq_end_request(rq, ret); 309 } 310 } 311 312 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 313 { 314 struct request *rq = blk_mq_rq_from_pdu(cmd); 315 316 if (!atomic_dec_and_test(&cmd->ref)) 317 return; 318 kfree(cmd->bvec); 319 cmd->bvec = NULL; 320 if (req_op(rq) == REQ_OP_WRITE) 321 kiocb_end_write(&cmd->iocb); 322 if (likely(!blk_should_fake_timeout(rq->q))) 323 blk_mq_complete_request(rq); 324 } 325 326 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 327 { 328 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 329 330 cmd->ret = ret; 331 lo_rw_aio_do_completion(cmd); 332 } 333 334 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 335 loff_t pos, int rw) 336 { 337 struct iov_iter iter; 338 struct req_iterator rq_iter; 339 struct bio_vec *bvec; 340 struct request *rq = blk_mq_rq_from_pdu(cmd); 341 struct bio *bio = rq->bio; 342 struct file *file = lo->lo_backing_file; 343 struct bio_vec tmp; 344 unsigned int offset; 345 int nr_bvec = 0; 346 int ret; 347 348 rq_for_each_bvec(tmp, rq, rq_iter) 349 nr_bvec++; 350 351 if (rq->bio != rq->biotail) { 352 353 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 354 GFP_NOIO); 355 if (!bvec) 356 return -EIO; 357 cmd->bvec = bvec; 358 359 /* 360 * The bios of the request may be started from the middle of 361 * the 'bvec' because of bio splitting, so we can't directly 362 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 363 * API will take care of all details for us. 364 */ 365 rq_for_each_bvec(tmp, rq, rq_iter) { 366 *bvec = tmp; 367 bvec++; 368 } 369 bvec = cmd->bvec; 370 offset = 0; 371 } else { 372 /* 373 * Same here, this bio may be started from the middle of the 374 * 'bvec' because of bio splitting, so offset from the bvec 375 * must be passed to iov iterator 376 */ 377 offset = bio->bi_iter.bi_bvec_done; 378 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 379 } 380 atomic_set(&cmd->ref, 2); 381 382 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 383 iter.iov_offset = offset; 384 385 cmd->iocb.ki_pos = pos; 386 cmd->iocb.ki_filp = file; 387 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 388 if (cmd->use_aio) { 389 cmd->iocb.ki_complete = lo_rw_aio_complete; 390 cmd->iocb.ki_flags = IOCB_DIRECT; 391 } else { 392 cmd->iocb.ki_complete = NULL; 393 cmd->iocb.ki_flags = 0; 394 } 395 396 if (rw == ITER_SOURCE) { 397 kiocb_start_write(&cmd->iocb); 398 ret = file->f_op->write_iter(&cmd->iocb, &iter); 399 } else 400 ret = file->f_op->read_iter(&cmd->iocb, &iter); 401 402 lo_rw_aio_do_completion(cmd); 403 404 if (ret != -EIOCBQUEUED) 405 lo_rw_aio_complete(&cmd->iocb, ret); 406 return -EIOCBQUEUED; 407 } 408 409 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 410 { 411 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 412 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 413 414 switch (req_op(rq)) { 415 case REQ_OP_FLUSH: 416 return lo_req_flush(lo, rq); 417 case REQ_OP_WRITE_ZEROES: 418 /* 419 * If the caller doesn't want deallocation, call zeroout to 420 * write zeroes the range. Otherwise, punch them out. 421 */ 422 return lo_fallocate(lo, rq, pos, 423 (rq->cmd_flags & REQ_NOUNMAP) ? 424 FALLOC_FL_ZERO_RANGE : 425 FALLOC_FL_PUNCH_HOLE); 426 case REQ_OP_DISCARD: 427 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 428 case REQ_OP_WRITE: 429 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 430 case REQ_OP_READ: 431 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 432 default: 433 WARN_ON_ONCE(1); 434 return -EIO; 435 } 436 } 437 438 static void loop_reread_partitions(struct loop_device *lo) 439 { 440 int rc; 441 442 mutex_lock(&lo->lo_disk->open_mutex); 443 rc = bdev_disk_changed(lo->lo_disk, false); 444 mutex_unlock(&lo->lo_disk->open_mutex); 445 if (rc) 446 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 447 __func__, lo->lo_number, lo->lo_file_name, rc); 448 } 449 450 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 451 { 452 struct file *file = lo->lo_backing_file; 453 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 454 struct kstat st; 455 456 /* 457 * Use the minimal dio alignment of the file system if provided. 458 */ 459 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 460 (st.result_mask & STATX_DIOALIGN)) 461 return st.dio_offset_align; 462 463 /* 464 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 465 * a handful of file systems support the STATX_DIOALIGN flag. 466 */ 467 if (sb_bdev) 468 return bdev_logical_block_size(sb_bdev); 469 return SECTOR_SIZE; 470 } 471 472 static inline int is_loop_device(struct file *file) 473 { 474 struct inode *i = file->f_mapping->host; 475 476 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 477 } 478 479 static int loop_validate_file(struct file *file, struct block_device *bdev) 480 { 481 struct inode *inode = file->f_mapping->host; 482 struct file *f = file; 483 484 /* Avoid recursion */ 485 while (is_loop_device(f)) { 486 struct loop_device *l; 487 488 lockdep_assert_held(&loop_validate_mutex); 489 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 490 return -EBADF; 491 492 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 493 if (l->lo_state != Lo_bound) 494 return -EINVAL; 495 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 496 rmb(); 497 f = l->lo_backing_file; 498 } 499 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 500 return -EINVAL; 501 return 0; 502 } 503 504 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 505 { 506 lo->lo_backing_file = file; 507 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 508 mapping_set_gfp_mask(file->f_mapping, 509 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 510 if (lo->lo_backing_file->f_flags & O_DIRECT) 511 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 512 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 513 } 514 515 static int loop_check_backing_file(struct file *file) 516 { 517 if (!file->f_op->read_iter) 518 return -EINVAL; 519 520 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter) 521 return -EINVAL; 522 523 return 0; 524 } 525 526 /* 527 * loop_change_fd switched the backing store of a loopback device to 528 * a new file. This is useful for operating system installers to free up 529 * the original file and in High Availability environments to switch to 530 * an alternative location for the content in case of server meltdown. 531 * This can only work if the loop device is used read-only, and if the 532 * new backing store is the same size and type as the old backing store. 533 */ 534 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 535 unsigned int arg) 536 { 537 struct file *file = fget(arg); 538 struct file *old_file; 539 unsigned int memflags; 540 int error; 541 bool partscan; 542 bool is_loop; 543 544 if (!file) 545 return -EBADF; 546 547 error = loop_check_backing_file(file); 548 if (error) 549 return error; 550 551 /* suppress uevents while reconfiguring the device */ 552 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 553 554 is_loop = is_loop_device(file); 555 error = loop_global_lock_killable(lo, is_loop); 556 if (error) 557 goto out_putf; 558 error = -ENXIO; 559 if (lo->lo_state != Lo_bound) 560 goto out_err; 561 562 /* the loop device has to be read-only */ 563 error = -EINVAL; 564 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 565 goto out_err; 566 567 error = loop_validate_file(file, bdev); 568 if (error) 569 goto out_err; 570 571 old_file = lo->lo_backing_file; 572 573 error = -EINVAL; 574 575 /* size of the new backing store needs to be the same */ 576 if (lo_calculate_size(lo, file) != lo_calculate_size(lo, old_file)) 577 goto out_err; 578 579 /* 580 * We might switch to direct I/O mode for the loop device, write back 581 * all dirty data the page cache now that so that the individual I/O 582 * operations don't have to do that. 583 */ 584 vfs_fsync(file, 0); 585 586 /* and ... switch */ 587 disk_force_media_change(lo->lo_disk); 588 memflags = blk_mq_freeze_queue(lo->lo_queue); 589 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 590 loop_assign_backing_file(lo, file); 591 loop_update_dio(lo); 592 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 593 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 594 loop_global_unlock(lo, is_loop); 595 596 /* 597 * Flush loop_validate_file() before fput(), for l->lo_backing_file 598 * might be pointing at old_file which might be the last reference. 599 */ 600 if (!is_loop) { 601 mutex_lock(&loop_validate_mutex); 602 mutex_unlock(&loop_validate_mutex); 603 } 604 /* 605 * We must drop file reference outside of lo_mutex as dropping 606 * the file ref can take open_mutex which creates circular locking 607 * dependency. 608 */ 609 fput(old_file); 610 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 611 if (partscan) 612 loop_reread_partitions(lo); 613 614 error = 0; 615 done: 616 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 617 return error; 618 619 out_err: 620 loop_global_unlock(lo, is_loop); 621 out_putf: 622 fput(file); 623 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 624 goto done; 625 } 626 627 /* loop sysfs attributes */ 628 629 static ssize_t loop_attr_show(struct device *dev, char *page, 630 ssize_t (*callback)(struct loop_device *, char *)) 631 { 632 struct gendisk *disk = dev_to_disk(dev); 633 struct loop_device *lo = disk->private_data; 634 635 return callback(lo, page); 636 } 637 638 #define LOOP_ATTR_RO(_name) \ 639 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 640 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 641 struct device_attribute *attr, char *b) \ 642 { \ 643 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 644 } \ 645 static struct device_attribute loop_attr_##_name = \ 646 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 647 648 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 649 { 650 ssize_t ret; 651 char *p = NULL; 652 653 spin_lock_irq(&lo->lo_lock); 654 if (lo->lo_backing_file) 655 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 656 spin_unlock_irq(&lo->lo_lock); 657 658 if (IS_ERR_OR_NULL(p)) 659 ret = PTR_ERR(p); 660 else { 661 ret = strlen(p); 662 memmove(buf, p, ret); 663 buf[ret++] = '\n'; 664 buf[ret] = 0; 665 } 666 667 return ret; 668 } 669 670 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 671 { 672 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 673 } 674 675 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 676 { 677 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 678 } 679 680 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 681 { 682 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 683 684 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 685 } 686 687 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 688 { 689 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 690 691 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 692 } 693 694 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 695 { 696 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 697 698 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 699 } 700 701 LOOP_ATTR_RO(backing_file); 702 LOOP_ATTR_RO(offset); 703 LOOP_ATTR_RO(sizelimit); 704 LOOP_ATTR_RO(autoclear); 705 LOOP_ATTR_RO(partscan); 706 LOOP_ATTR_RO(dio); 707 708 static struct attribute *loop_attrs[] = { 709 &loop_attr_backing_file.attr, 710 &loop_attr_offset.attr, 711 &loop_attr_sizelimit.attr, 712 &loop_attr_autoclear.attr, 713 &loop_attr_partscan.attr, 714 &loop_attr_dio.attr, 715 NULL, 716 }; 717 718 static struct attribute_group loop_attribute_group = { 719 .name = "loop", 720 .attrs= loop_attrs, 721 }; 722 723 static void loop_sysfs_init(struct loop_device *lo) 724 { 725 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 726 &loop_attribute_group); 727 } 728 729 static void loop_sysfs_exit(struct loop_device *lo) 730 { 731 if (lo->sysfs_inited) 732 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 733 &loop_attribute_group); 734 } 735 736 static void loop_get_discard_config(struct loop_device *lo, 737 u32 *granularity, u32 *max_discard_sectors) 738 { 739 struct file *file = lo->lo_backing_file; 740 struct inode *inode = file->f_mapping->host; 741 struct kstatfs sbuf; 742 743 /* 744 * If the backing device is a block device, mirror its zeroing 745 * capability. Set the discard sectors to the block device's zeroing 746 * capabilities because loop discards result in blkdev_issue_zeroout(), 747 * not blkdev_issue_discard(). This maintains consistent behavior with 748 * file-backed loop devices: discarded regions read back as zero. 749 */ 750 if (S_ISBLK(inode->i_mode)) { 751 struct block_device *bdev = I_BDEV(inode); 752 753 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 754 *granularity = bdev_discard_granularity(bdev); 755 756 /* 757 * We use punch hole to reclaim the free space used by the 758 * image a.k.a. discard. 759 */ 760 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 761 *max_discard_sectors = UINT_MAX >> 9; 762 *granularity = sbuf.f_bsize; 763 } 764 } 765 766 struct loop_worker { 767 struct rb_node rb_node; 768 struct work_struct work; 769 struct list_head cmd_list; 770 struct list_head idle_list; 771 struct loop_device *lo; 772 struct cgroup_subsys_state *blkcg_css; 773 unsigned long last_ran_at; 774 }; 775 776 static void loop_workfn(struct work_struct *work); 777 778 #ifdef CONFIG_BLK_CGROUP 779 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 780 { 781 return !css || css == blkcg_root_css; 782 } 783 #else 784 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 785 { 786 return !css; 787 } 788 #endif 789 790 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 791 { 792 struct rb_node **node, *parent = NULL; 793 struct loop_worker *cur_worker, *worker = NULL; 794 struct work_struct *work; 795 struct list_head *cmd_list; 796 797 spin_lock_irq(&lo->lo_work_lock); 798 799 if (queue_on_root_worker(cmd->blkcg_css)) 800 goto queue_work; 801 802 node = &lo->worker_tree.rb_node; 803 804 while (*node) { 805 parent = *node; 806 cur_worker = container_of(*node, struct loop_worker, rb_node); 807 if (cur_worker->blkcg_css == cmd->blkcg_css) { 808 worker = cur_worker; 809 break; 810 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 811 node = &(*node)->rb_left; 812 } else { 813 node = &(*node)->rb_right; 814 } 815 } 816 if (worker) 817 goto queue_work; 818 819 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 820 /* 821 * In the event we cannot allocate a worker, just queue on the 822 * rootcg worker and issue the I/O as the rootcg 823 */ 824 if (!worker) { 825 cmd->blkcg_css = NULL; 826 if (cmd->memcg_css) 827 css_put(cmd->memcg_css); 828 cmd->memcg_css = NULL; 829 goto queue_work; 830 } 831 832 worker->blkcg_css = cmd->blkcg_css; 833 css_get(worker->blkcg_css); 834 INIT_WORK(&worker->work, loop_workfn); 835 INIT_LIST_HEAD(&worker->cmd_list); 836 INIT_LIST_HEAD(&worker->idle_list); 837 worker->lo = lo; 838 rb_link_node(&worker->rb_node, parent, node); 839 rb_insert_color(&worker->rb_node, &lo->worker_tree); 840 queue_work: 841 if (worker) { 842 /* 843 * We need to remove from the idle list here while 844 * holding the lock so that the idle timer doesn't 845 * free the worker 846 */ 847 if (!list_empty(&worker->idle_list)) 848 list_del_init(&worker->idle_list); 849 work = &worker->work; 850 cmd_list = &worker->cmd_list; 851 } else { 852 work = &lo->rootcg_work; 853 cmd_list = &lo->rootcg_cmd_list; 854 } 855 list_add_tail(&cmd->list_entry, cmd_list); 856 queue_work(lo->workqueue, work); 857 spin_unlock_irq(&lo->lo_work_lock); 858 } 859 860 static void loop_set_timer(struct loop_device *lo) 861 { 862 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 863 } 864 865 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 866 { 867 struct loop_worker *pos, *worker; 868 869 spin_lock_irq(&lo->lo_work_lock); 870 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 871 idle_list) { 872 if (!delete_all && 873 time_is_after_jiffies(worker->last_ran_at + 874 LOOP_IDLE_WORKER_TIMEOUT)) 875 break; 876 list_del(&worker->idle_list); 877 rb_erase(&worker->rb_node, &lo->worker_tree); 878 css_put(worker->blkcg_css); 879 kfree(worker); 880 } 881 if (!list_empty(&lo->idle_worker_list)) 882 loop_set_timer(lo); 883 spin_unlock_irq(&lo->lo_work_lock); 884 } 885 886 static void loop_free_idle_workers_timer(struct timer_list *timer) 887 { 888 struct loop_device *lo = container_of(timer, struct loop_device, timer); 889 890 return loop_free_idle_workers(lo, false); 891 } 892 893 /** 894 * loop_set_status_from_info - configure device from loop_info 895 * @lo: struct loop_device to configure 896 * @info: struct loop_info64 to configure the device with 897 * 898 * Configures the loop device parameters according to the passed 899 * in loop_info64 configuration. 900 */ 901 static int 902 loop_set_status_from_info(struct loop_device *lo, 903 const struct loop_info64 *info) 904 { 905 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 906 return -EINVAL; 907 908 switch (info->lo_encrypt_type) { 909 case LO_CRYPT_NONE: 910 break; 911 case LO_CRYPT_XOR: 912 pr_warn("support for the xor transformation has been removed.\n"); 913 return -EINVAL; 914 case LO_CRYPT_CRYPTOAPI: 915 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 916 return -EINVAL; 917 default: 918 return -EINVAL; 919 } 920 921 /* Avoid assigning overflow values */ 922 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 923 return -EOVERFLOW; 924 925 lo->lo_offset = info->lo_offset; 926 lo->lo_sizelimit = info->lo_sizelimit; 927 928 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 929 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 930 return 0; 931 } 932 933 static unsigned int loop_default_blocksize(struct loop_device *lo) 934 { 935 /* In case of direct I/O, match underlying minimum I/O size */ 936 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 937 return lo->lo_min_dio_size; 938 return SECTOR_SIZE; 939 } 940 941 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 942 unsigned int bsize) 943 { 944 struct file *file = lo->lo_backing_file; 945 struct inode *inode = file->f_mapping->host; 946 struct block_device *backing_bdev = NULL; 947 u32 granularity = 0, max_discard_sectors = 0; 948 949 if (S_ISBLK(inode->i_mode)) 950 backing_bdev = I_BDEV(inode); 951 else if (inode->i_sb->s_bdev) 952 backing_bdev = inode->i_sb->s_bdev; 953 954 if (!bsize) 955 bsize = loop_default_blocksize(lo); 956 957 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 958 959 lim->logical_block_size = bsize; 960 lim->physical_block_size = bsize; 961 lim->io_min = bsize; 962 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 963 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 964 lim->features |= BLK_FEAT_WRITE_CACHE; 965 if (backing_bdev && !bdev_nonrot(backing_bdev)) 966 lim->features |= BLK_FEAT_ROTATIONAL; 967 lim->max_hw_discard_sectors = max_discard_sectors; 968 lim->max_write_zeroes_sectors = max_discard_sectors; 969 if (max_discard_sectors) 970 lim->discard_granularity = granularity; 971 else 972 lim->discard_granularity = 0; 973 } 974 975 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 976 struct block_device *bdev, 977 const struct loop_config *config) 978 { 979 struct file *file = fget(config->fd); 980 struct queue_limits lim; 981 int error; 982 loff_t size; 983 bool partscan; 984 bool is_loop; 985 986 if (!file) 987 return -EBADF; 988 989 error = loop_check_backing_file(file); 990 if (error) 991 return error; 992 993 is_loop = is_loop_device(file); 994 995 /* This is safe, since we have a reference from open(). */ 996 __module_get(THIS_MODULE); 997 998 /* 999 * If we don't hold exclusive handle for the device, upgrade to it 1000 * here to avoid changing device under exclusive owner. 1001 */ 1002 if (!(mode & BLK_OPEN_EXCL)) { 1003 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1004 if (error) 1005 goto out_putf; 1006 } 1007 1008 error = loop_global_lock_killable(lo, is_loop); 1009 if (error) 1010 goto out_bdev; 1011 1012 error = -EBUSY; 1013 if (lo->lo_state != Lo_unbound) 1014 goto out_unlock; 1015 1016 error = loop_validate_file(file, bdev); 1017 if (error) 1018 goto out_unlock; 1019 1020 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1021 error = -EINVAL; 1022 goto out_unlock; 1023 } 1024 1025 error = loop_set_status_from_info(lo, &config->info); 1026 if (error) 1027 goto out_unlock; 1028 lo->lo_flags = config->info.lo_flags; 1029 1030 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1031 !file->f_op->write_iter) 1032 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1033 1034 if (!lo->workqueue) { 1035 lo->workqueue = alloc_workqueue("loop%d", 1036 WQ_UNBOUND | WQ_FREEZABLE, 1037 0, lo->lo_number); 1038 if (!lo->workqueue) { 1039 error = -ENOMEM; 1040 goto out_unlock; 1041 } 1042 } 1043 1044 /* suppress uevents while reconfiguring the device */ 1045 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1046 1047 disk_force_media_change(lo->lo_disk); 1048 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1049 1050 lo->lo_device = bdev; 1051 loop_assign_backing_file(lo, file); 1052 1053 lim = queue_limits_start_update(lo->lo_queue); 1054 loop_update_limits(lo, &lim, config->block_size); 1055 /* No need to freeze the queue as the device isn't bound yet. */ 1056 error = queue_limits_commit_update(lo->lo_queue, &lim); 1057 if (error) 1058 goto out_unlock; 1059 1060 /* 1061 * We might switch to direct I/O mode for the loop device, write back 1062 * all dirty data the page cache now that so that the individual I/O 1063 * operations don't have to do that. 1064 */ 1065 vfs_fsync(file, 0); 1066 1067 loop_update_dio(lo); 1068 loop_sysfs_init(lo); 1069 1070 size = lo_calculate_size(lo, file); 1071 loop_set_size(lo, size); 1072 1073 /* Order wrt reading lo_state in loop_validate_file(). */ 1074 wmb(); 1075 1076 lo->lo_state = Lo_bound; 1077 if (part_shift) 1078 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1079 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1080 if (partscan) 1081 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1082 1083 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1084 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1085 1086 loop_global_unlock(lo, is_loop); 1087 if (partscan) 1088 loop_reread_partitions(lo); 1089 1090 if (!(mode & BLK_OPEN_EXCL)) 1091 bd_abort_claiming(bdev, loop_configure); 1092 1093 return 0; 1094 1095 out_unlock: 1096 loop_global_unlock(lo, is_loop); 1097 out_bdev: 1098 if (!(mode & BLK_OPEN_EXCL)) 1099 bd_abort_claiming(bdev, loop_configure); 1100 out_putf: 1101 fput(file); 1102 /* This is safe: open() is still holding a reference. */ 1103 module_put(THIS_MODULE); 1104 return error; 1105 } 1106 1107 static void __loop_clr_fd(struct loop_device *lo) 1108 { 1109 struct queue_limits lim; 1110 struct file *filp; 1111 gfp_t gfp = lo->old_gfp_mask; 1112 1113 spin_lock_irq(&lo->lo_lock); 1114 filp = lo->lo_backing_file; 1115 lo->lo_backing_file = NULL; 1116 spin_unlock_irq(&lo->lo_lock); 1117 1118 lo->lo_device = NULL; 1119 lo->lo_offset = 0; 1120 lo->lo_sizelimit = 0; 1121 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1122 1123 /* 1124 * Reset the block size to the default. 1125 * 1126 * No queue freezing needed because this is called from the final 1127 * ->release call only, so there can't be any outstanding I/O. 1128 */ 1129 lim = queue_limits_start_update(lo->lo_queue); 1130 lim.logical_block_size = SECTOR_SIZE; 1131 lim.physical_block_size = SECTOR_SIZE; 1132 lim.io_min = SECTOR_SIZE; 1133 queue_limits_commit_update(lo->lo_queue, &lim); 1134 1135 invalidate_disk(lo->lo_disk); 1136 loop_sysfs_exit(lo); 1137 /* let user-space know about this change */ 1138 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1139 mapping_set_gfp_mask(filp->f_mapping, gfp); 1140 /* This is safe: open() is still holding a reference. */ 1141 module_put(THIS_MODULE); 1142 1143 disk_force_media_change(lo->lo_disk); 1144 1145 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1146 int err; 1147 1148 /* 1149 * open_mutex has been held already in release path, so don't 1150 * acquire it if this function is called in such case. 1151 * 1152 * If the reread partition isn't from release path, lo_refcnt 1153 * must be at least one and it can only become zero when the 1154 * current holder is released. 1155 */ 1156 err = bdev_disk_changed(lo->lo_disk, false); 1157 if (err) 1158 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1159 __func__, lo->lo_number, err); 1160 /* Device is gone, no point in returning error */ 1161 } 1162 1163 /* 1164 * lo->lo_state is set to Lo_unbound here after above partscan has 1165 * finished. There cannot be anybody else entering __loop_clr_fd() as 1166 * Lo_rundown state protects us from all the other places trying to 1167 * change the 'lo' device. 1168 */ 1169 lo->lo_flags = 0; 1170 if (!part_shift) 1171 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1172 mutex_lock(&lo->lo_mutex); 1173 lo->lo_state = Lo_unbound; 1174 mutex_unlock(&lo->lo_mutex); 1175 1176 /* 1177 * Need not hold lo_mutex to fput backing file. Calling fput holding 1178 * lo_mutex triggers a circular lock dependency possibility warning as 1179 * fput can take open_mutex which is usually taken before lo_mutex. 1180 */ 1181 fput(filp); 1182 } 1183 1184 static int loop_clr_fd(struct loop_device *lo) 1185 { 1186 int err; 1187 1188 /* 1189 * Since lo_ioctl() is called without locks held, it is possible that 1190 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1191 * 1192 * Therefore, use global lock when setting Lo_rundown state in order to 1193 * make sure that loop_validate_file() will fail if the "struct file" 1194 * which loop_configure()/loop_change_fd() found via fget() was this 1195 * loop device. 1196 */ 1197 err = loop_global_lock_killable(lo, true); 1198 if (err) 1199 return err; 1200 if (lo->lo_state != Lo_bound) { 1201 loop_global_unlock(lo, true); 1202 return -ENXIO; 1203 } 1204 /* 1205 * Mark the device for removing the backing device on last close. 1206 * If we are the only opener, also switch the state to roundown here to 1207 * prevent new openers from coming in. 1208 */ 1209 1210 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1211 if (disk_openers(lo->lo_disk) == 1) 1212 lo->lo_state = Lo_rundown; 1213 loop_global_unlock(lo, true); 1214 1215 return 0; 1216 } 1217 1218 static int 1219 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1220 { 1221 int err; 1222 bool partscan = false; 1223 bool size_changed = false; 1224 unsigned int memflags; 1225 1226 err = mutex_lock_killable(&lo->lo_mutex); 1227 if (err) 1228 return err; 1229 if (lo->lo_state != Lo_bound) { 1230 err = -ENXIO; 1231 goto out_unlock; 1232 } 1233 1234 if (lo->lo_offset != info->lo_offset || 1235 lo->lo_sizelimit != info->lo_sizelimit) { 1236 size_changed = true; 1237 sync_blockdev(lo->lo_device); 1238 invalidate_bdev(lo->lo_device); 1239 } 1240 1241 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1242 memflags = blk_mq_freeze_queue(lo->lo_queue); 1243 1244 err = loop_set_status_from_info(lo, info); 1245 if (err) 1246 goto out_unfreeze; 1247 1248 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1249 (info->lo_flags & LO_FLAGS_PARTSCAN); 1250 1251 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1252 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1253 1254 /* update the direct I/O flag if lo_offset changed */ 1255 loop_update_dio(lo); 1256 1257 out_unfreeze: 1258 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1259 if (partscan) 1260 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1261 if (!err && size_changed) { 1262 loff_t new_size = lo_calculate_size(lo, lo->lo_backing_file); 1263 loop_set_size(lo, new_size); 1264 } 1265 out_unlock: 1266 mutex_unlock(&lo->lo_mutex); 1267 if (partscan) 1268 loop_reread_partitions(lo); 1269 1270 return err; 1271 } 1272 1273 static int 1274 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1275 { 1276 struct path path; 1277 struct kstat stat; 1278 int ret; 1279 1280 ret = mutex_lock_killable(&lo->lo_mutex); 1281 if (ret) 1282 return ret; 1283 if (lo->lo_state != Lo_bound) { 1284 mutex_unlock(&lo->lo_mutex); 1285 return -ENXIO; 1286 } 1287 1288 memset(info, 0, sizeof(*info)); 1289 info->lo_number = lo->lo_number; 1290 info->lo_offset = lo->lo_offset; 1291 info->lo_sizelimit = lo->lo_sizelimit; 1292 info->lo_flags = lo->lo_flags; 1293 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1294 1295 /* Drop lo_mutex while we call into the filesystem. */ 1296 path = lo->lo_backing_file->f_path; 1297 path_get(&path); 1298 mutex_unlock(&lo->lo_mutex); 1299 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1300 if (!ret) { 1301 info->lo_device = huge_encode_dev(stat.dev); 1302 info->lo_inode = stat.ino; 1303 info->lo_rdevice = huge_encode_dev(stat.rdev); 1304 } 1305 path_put(&path); 1306 return ret; 1307 } 1308 1309 static void 1310 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1311 { 1312 memset(info64, 0, sizeof(*info64)); 1313 info64->lo_number = info->lo_number; 1314 info64->lo_device = info->lo_device; 1315 info64->lo_inode = info->lo_inode; 1316 info64->lo_rdevice = info->lo_rdevice; 1317 info64->lo_offset = info->lo_offset; 1318 info64->lo_sizelimit = 0; 1319 info64->lo_flags = info->lo_flags; 1320 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1321 } 1322 1323 static int 1324 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1325 { 1326 memset(info, 0, sizeof(*info)); 1327 info->lo_number = info64->lo_number; 1328 info->lo_device = info64->lo_device; 1329 info->lo_inode = info64->lo_inode; 1330 info->lo_rdevice = info64->lo_rdevice; 1331 info->lo_offset = info64->lo_offset; 1332 info->lo_flags = info64->lo_flags; 1333 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1334 1335 /* error in case values were truncated */ 1336 if (info->lo_device != info64->lo_device || 1337 info->lo_rdevice != info64->lo_rdevice || 1338 info->lo_inode != info64->lo_inode || 1339 info->lo_offset != info64->lo_offset) 1340 return -EOVERFLOW; 1341 1342 return 0; 1343 } 1344 1345 static int 1346 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1347 { 1348 struct loop_info info; 1349 struct loop_info64 info64; 1350 1351 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1352 return -EFAULT; 1353 loop_info64_from_old(&info, &info64); 1354 return loop_set_status(lo, &info64); 1355 } 1356 1357 static int 1358 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1359 { 1360 struct loop_info64 info64; 1361 1362 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1363 return -EFAULT; 1364 return loop_set_status(lo, &info64); 1365 } 1366 1367 static int 1368 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1369 struct loop_info info; 1370 struct loop_info64 info64; 1371 int err; 1372 1373 if (!arg) 1374 return -EINVAL; 1375 err = loop_get_status(lo, &info64); 1376 if (!err) 1377 err = loop_info64_to_old(&info64, &info); 1378 if (!err && copy_to_user(arg, &info, sizeof(info))) 1379 err = -EFAULT; 1380 1381 return err; 1382 } 1383 1384 static int 1385 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1386 struct loop_info64 info64; 1387 int err; 1388 1389 if (!arg) 1390 return -EINVAL; 1391 err = loop_get_status(lo, &info64); 1392 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1393 err = -EFAULT; 1394 1395 return err; 1396 } 1397 1398 static int loop_set_capacity(struct loop_device *lo) 1399 { 1400 loff_t size; 1401 1402 if (unlikely(lo->lo_state != Lo_bound)) 1403 return -ENXIO; 1404 1405 size = lo_calculate_size(lo, lo->lo_backing_file); 1406 loop_set_size(lo, size); 1407 1408 return 0; 1409 } 1410 1411 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1412 { 1413 bool use_dio = !!arg; 1414 unsigned int memflags; 1415 1416 if (lo->lo_state != Lo_bound) 1417 return -ENXIO; 1418 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1419 return 0; 1420 1421 if (use_dio) { 1422 if (!lo_can_use_dio(lo)) 1423 return -EINVAL; 1424 /* flush dirty pages before starting to use direct I/O */ 1425 vfs_fsync(lo->lo_backing_file, 0); 1426 } 1427 1428 memflags = blk_mq_freeze_queue(lo->lo_queue); 1429 if (use_dio) 1430 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1431 else 1432 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1433 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1434 return 0; 1435 } 1436 1437 static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode, 1438 struct block_device *bdev, unsigned long arg) 1439 { 1440 struct queue_limits lim; 1441 unsigned int memflags; 1442 int err = 0; 1443 1444 /* 1445 * If we don't hold exclusive handle for the device, upgrade to it 1446 * here to avoid changing device under exclusive owner. 1447 */ 1448 if (!(mode & BLK_OPEN_EXCL)) { 1449 err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL); 1450 if (err) 1451 return err; 1452 } 1453 1454 err = mutex_lock_killable(&lo->lo_mutex); 1455 if (err) 1456 goto abort_claim; 1457 1458 if (lo->lo_state != Lo_bound) { 1459 err = -ENXIO; 1460 goto unlock; 1461 } 1462 1463 if (lo->lo_queue->limits.logical_block_size == arg) 1464 goto unlock; 1465 1466 sync_blockdev(lo->lo_device); 1467 invalidate_bdev(lo->lo_device); 1468 1469 lim = queue_limits_start_update(lo->lo_queue); 1470 loop_update_limits(lo, &lim, arg); 1471 1472 memflags = blk_mq_freeze_queue(lo->lo_queue); 1473 err = queue_limits_commit_update(lo->lo_queue, &lim); 1474 loop_update_dio(lo); 1475 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1476 1477 unlock: 1478 mutex_unlock(&lo->lo_mutex); 1479 abort_claim: 1480 if (!(mode & BLK_OPEN_EXCL)) 1481 bd_abort_claiming(bdev, loop_set_block_size); 1482 return err; 1483 } 1484 1485 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1486 unsigned long arg) 1487 { 1488 int err; 1489 1490 err = mutex_lock_killable(&lo->lo_mutex); 1491 if (err) 1492 return err; 1493 switch (cmd) { 1494 case LOOP_SET_CAPACITY: 1495 err = loop_set_capacity(lo); 1496 break; 1497 case LOOP_SET_DIRECT_IO: 1498 err = loop_set_dio(lo, arg); 1499 break; 1500 default: 1501 err = -EINVAL; 1502 } 1503 mutex_unlock(&lo->lo_mutex); 1504 return err; 1505 } 1506 1507 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1508 unsigned int cmd, unsigned long arg) 1509 { 1510 struct loop_device *lo = bdev->bd_disk->private_data; 1511 void __user *argp = (void __user *) arg; 1512 int err; 1513 1514 switch (cmd) { 1515 case LOOP_SET_FD: { 1516 /* 1517 * Legacy case - pass in a zeroed out struct loop_config with 1518 * only the file descriptor set , which corresponds with the 1519 * default parameters we'd have used otherwise. 1520 */ 1521 struct loop_config config; 1522 1523 memset(&config, 0, sizeof(config)); 1524 config.fd = arg; 1525 1526 return loop_configure(lo, mode, bdev, &config); 1527 } 1528 case LOOP_CONFIGURE: { 1529 struct loop_config config; 1530 1531 if (copy_from_user(&config, argp, sizeof(config))) 1532 return -EFAULT; 1533 1534 return loop_configure(lo, mode, bdev, &config); 1535 } 1536 case LOOP_CHANGE_FD: 1537 return loop_change_fd(lo, bdev, arg); 1538 case LOOP_CLR_FD: 1539 return loop_clr_fd(lo); 1540 case LOOP_SET_STATUS: 1541 err = -EPERM; 1542 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1543 err = loop_set_status_old(lo, argp); 1544 break; 1545 case LOOP_GET_STATUS: 1546 return loop_get_status_old(lo, argp); 1547 case LOOP_SET_STATUS64: 1548 err = -EPERM; 1549 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1550 err = loop_set_status64(lo, argp); 1551 break; 1552 case LOOP_GET_STATUS64: 1553 return loop_get_status64(lo, argp); 1554 case LOOP_SET_BLOCK_SIZE: 1555 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1556 return -EPERM; 1557 return loop_set_block_size(lo, mode, bdev, arg); 1558 case LOOP_SET_CAPACITY: 1559 case LOOP_SET_DIRECT_IO: 1560 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1561 return -EPERM; 1562 fallthrough; 1563 default: 1564 err = lo_simple_ioctl(lo, cmd, arg); 1565 break; 1566 } 1567 1568 return err; 1569 } 1570 1571 #ifdef CONFIG_COMPAT 1572 struct compat_loop_info { 1573 compat_int_t lo_number; /* ioctl r/o */ 1574 compat_dev_t lo_device; /* ioctl r/o */ 1575 compat_ulong_t lo_inode; /* ioctl r/o */ 1576 compat_dev_t lo_rdevice; /* ioctl r/o */ 1577 compat_int_t lo_offset; 1578 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1579 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1580 compat_int_t lo_flags; /* ioctl r/o */ 1581 char lo_name[LO_NAME_SIZE]; 1582 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1583 compat_ulong_t lo_init[2]; 1584 char reserved[4]; 1585 }; 1586 1587 /* 1588 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1589 * - noinlined to reduce stack space usage in main part of driver 1590 */ 1591 static noinline int 1592 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1593 struct loop_info64 *info64) 1594 { 1595 struct compat_loop_info info; 1596 1597 if (copy_from_user(&info, arg, sizeof(info))) 1598 return -EFAULT; 1599 1600 memset(info64, 0, sizeof(*info64)); 1601 info64->lo_number = info.lo_number; 1602 info64->lo_device = info.lo_device; 1603 info64->lo_inode = info.lo_inode; 1604 info64->lo_rdevice = info.lo_rdevice; 1605 info64->lo_offset = info.lo_offset; 1606 info64->lo_sizelimit = 0; 1607 info64->lo_flags = info.lo_flags; 1608 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1609 return 0; 1610 } 1611 1612 /* 1613 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1614 * - noinlined to reduce stack space usage in main part of driver 1615 */ 1616 static noinline int 1617 loop_info64_to_compat(const struct loop_info64 *info64, 1618 struct compat_loop_info __user *arg) 1619 { 1620 struct compat_loop_info info; 1621 1622 memset(&info, 0, sizeof(info)); 1623 info.lo_number = info64->lo_number; 1624 info.lo_device = info64->lo_device; 1625 info.lo_inode = info64->lo_inode; 1626 info.lo_rdevice = info64->lo_rdevice; 1627 info.lo_offset = info64->lo_offset; 1628 info.lo_flags = info64->lo_flags; 1629 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1630 1631 /* error in case values were truncated */ 1632 if (info.lo_device != info64->lo_device || 1633 info.lo_rdevice != info64->lo_rdevice || 1634 info.lo_inode != info64->lo_inode || 1635 info.lo_offset != info64->lo_offset) 1636 return -EOVERFLOW; 1637 1638 if (copy_to_user(arg, &info, sizeof(info))) 1639 return -EFAULT; 1640 return 0; 1641 } 1642 1643 static int 1644 loop_set_status_compat(struct loop_device *lo, 1645 const struct compat_loop_info __user *arg) 1646 { 1647 struct loop_info64 info64; 1648 int ret; 1649 1650 ret = loop_info64_from_compat(arg, &info64); 1651 if (ret < 0) 1652 return ret; 1653 return loop_set_status(lo, &info64); 1654 } 1655 1656 static int 1657 loop_get_status_compat(struct loop_device *lo, 1658 struct compat_loop_info __user *arg) 1659 { 1660 struct loop_info64 info64; 1661 int err; 1662 1663 if (!arg) 1664 return -EINVAL; 1665 err = loop_get_status(lo, &info64); 1666 if (!err) 1667 err = loop_info64_to_compat(&info64, arg); 1668 return err; 1669 } 1670 1671 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1672 unsigned int cmd, unsigned long arg) 1673 { 1674 struct loop_device *lo = bdev->bd_disk->private_data; 1675 int err; 1676 1677 switch(cmd) { 1678 case LOOP_SET_STATUS: 1679 err = loop_set_status_compat(lo, 1680 (const struct compat_loop_info __user *)arg); 1681 break; 1682 case LOOP_GET_STATUS: 1683 err = loop_get_status_compat(lo, 1684 (struct compat_loop_info __user *)arg); 1685 break; 1686 case LOOP_SET_CAPACITY: 1687 case LOOP_CLR_FD: 1688 case LOOP_GET_STATUS64: 1689 case LOOP_SET_STATUS64: 1690 case LOOP_CONFIGURE: 1691 arg = (unsigned long) compat_ptr(arg); 1692 fallthrough; 1693 case LOOP_SET_FD: 1694 case LOOP_CHANGE_FD: 1695 case LOOP_SET_BLOCK_SIZE: 1696 case LOOP_SET_DIRECT_IO: 1697 err = lo_ioctl(bdev, mode, cmd, arg); 1698 break; 1699 default: 1700 err = -ENOIOCTLCMD; 1701 break; 1702 } 1703 return err; 1704 } 1705 #endif 1706 1707 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1708 { 1709 struct loop_device *lo = disk->private_data; 1710 int err; 1711 1712 err = mutex_lock_killable(&lo->lo_mutex); 1713 if (err) 1714 return err; 1715 1716 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1717 err = -ENXIO; 1718 mutex_unlock(&lo->lo_mutex); 1719 return err; 1720 } 1721 1722 static void lo_release(struct gendisk *disk) 1723 { 1724 struct loop_device *lo = disk->private_data; 1725 bool need_clear = false; 1726 1727 if (disk_openers(disk) > 0) 1728 return; 1729 /* 1730 * Clear the backing device information if this is the last close of 1731 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1732 * has been called. 1733 */ 1734 1735 mutex_lock(&lo->lo_mutex); 1736 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1737 lo->lo_state = Lo_rundown; 1738 1739 need_clear = (lo->lo_state == Lo_rundown); 1740 mutex_unlock(&lo->lo_mutex); 1741 1742 if (need_clear) 1743 __loop_clr_fd(lo); 1744 } 1745 1746 static void lo_free_disk(struct gendisk *disk) 1747 { 1748 struct loop_device *lo = disk->private_data; 1749 1750 if (lo->workqueue) 1751 destroy_workqueue(lo->workqueue); 1752 loop_free_idle_workers(lo, true); 1753 timer_shutdown_sync(&lo->timer); 1754 mutex_destroy(&lo->lo_mutex); 1755 kfree(lo); 1756 } 1757 1758 static const struct block_device_operations lo_fops = { 1759 .owner = THIS_MODULE, 1760 .open = lo_open, 1761 .release = lo_release, 1762 .ioctl = lo_ioctl, 1763 #ifdef CONFIG_COMPAT 1764 .compat_ioctl = lo_compat_ioctl, 1765 #endif 1766 .free_disk = lo_free_disk, 1767 }; 1768 1769 /* 1770 * And now the modules code and kernel interface. 1771 */ 1772 1773 /* 1774 * If max_loop is specified, create that many devices upfront. 1775 * This also becomes a hard limit. If max_loop is not specified, 1776 * the default isn't a hard limit (as before commit 85c50197716c 1777 * changed the default value from 0 for max_loop=0 reasons), just 1778 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1779 * init time. Loop devices can be requested on-demand with the 1780 * /dev/loop-control interface, or be instantiated by accessing 1781 * a 'dead' device node. 1782 */ 1783 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1784 1785 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1786 static bool max_loop_specified; 1787 1788 static int max_loop_param_set_int(const char *val, 1789 const struct kernel_param *kp) 1790 { 1791 int ret; 1792 1793 ret = param_set_int(val, kp); 1794 if (ret < 0) 1795 return ret; 1796 1797 max_loop_specified = true; 1798 return 0; 1799 } 1800 1801 static const struct kernel_param_ops max_loop_param_ops = { 1802 .set = max_loop_param_set_int, 1803 .get = param_get_int, 1804 }; 1805 1806 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1807 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1808 #else 1809 module_param(max_loop, int, 0444); 1810 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1811 #endif 1812 1813 module_param(max_part, int, 0444); 1814 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1815 1816 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1817 1818 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1819 { 1820 int qd, ret; 1821 1822 ret = kstrtoint(s, 0, &qd); 1823 if (ret < 0) 1824 return ret; 1825 if (qd < 1) 1826 return -EINVAL; 1827 hw_queue_depth = qd; 1828 return 0; 1829 } 1830 1831 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1832 .set = loop_set_hw_queue_depth, 1833 .get = param_get_int, 1834 }; 1835 1836 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1837 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1838 1839 MODULE_DESCRIPTION("Loopback device support"); 1840 MODULE_LICENSE("GPL"); 1841 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1842 1843 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1844 const struct blk_mq_queue_data *bd) 1845 { 1846 struct request *rq = bd->rq; 1847 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1848 struct loop_device *lo = rq->q->queuedata; 1849 1850 blk_mq_start_request(rq); 1851 1852 if (lo->lo_state != Lo_bound) 1853 return BLK_STS_IOERR; 1854 1855 switch (req_op(rq)) { 1856 case REQ_OP_FLUSH: 1857 case REQ_OP_DISCARD: 1858 case REQ_OP_WRITE_ZEROES: 1859 cmd->use_aio = false; 1860 break; 1861 default: 1862 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1863 break; 1864 } 1865 1866 /* always use the first bio's css */ 1867 cmd->blkcg_css = NULL; 1868 cmd->memcg_css = NULL; 1869 #ifdef CONFIG_BLK_CGROUP 1870 if (rq->bio) { 1871 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1872 #ifdef CONFIG_MEMCG 1873 if (cmd->blkcg_css) { 1874 cmd->memcg_css = 1875 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1876 &memory_cgrp_subsys); 1877 } 1878 #endif 1879 } 1880 #endif 1881 loop_queue_work(lo, cmd); 1882 1883 return BLK_STS_OK; 1884 } 1885 1886 static void loop_handle_cmd(struct loop_cmd *cmd) 1887 { 1888 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1889 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1890 struct request *rq = blk_mq_rq_from_pdu(cmd); 1891 const bool write = op_is_write(req_op(rq)); 1892 struct loop_device *lo = rq->q->queuedata; 1893 int ret = 0; 1894 struct mem_cgroup *old_memcg = NULL; 1895 1896 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1897 ret = -EIO; 1898 goto failed; 1899 } 1900 1901 if (cmd_blkcg_css) 1902 kthread_associate_blkcg(cmd_blkcg_css); 1903 if (cmd_memcg_css) 1904 old_memcg = set_active_memcg( 1905 mem_cgroup_from_css(cmd_memcg_css)); 1906 1907 /* 1908 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1909 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1910 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1911 * not yet been completed. 1912 */ 1913 ret = do_req_filebacked(lo, rq); 1914 1915 if (cmd_blkcg_css) 1916 kthread_associate_blkcg(NULL); 1917 1918 if (cmd_memcg_css) { 1919 set_active_memcg(old_memcg); 1920 css_put(cmd_memcg_css); 1921 } 1922 failed: 1923 /* complete non-aio request */ 1924 if (ret != -EIOCBQUEUED) { 1925 if (ret == -EOPNOTSUPP) 1926 cmd->ret = ret; 1927 else 1928 cmd->ret = ret ? -EIO : 0; 1929 if (likely(!blk_should_fake_timeout(rq->q))) 1930 blk_mq_complete_request(rq); 1931 } 1932 } 1933 1934 static void loop_process_work(struct loop_worker *worker, 1935 struct list_head *cmd_list, struct loop_device *lo) 1936 { 1937 int orig_flags = current->flags; 1938 struct loop_cmd *cmd; 1939 1940 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1941 spin_lock_irq(&lo->lo_work_lock); 1942 while (!list_empty(cmd_list)) { 1943 cmd = container_of( 1944 cmd_list->next, struct loop_cmd, list_entry); 1945 list_del(cmd_list->next); 1946 spin_unlock_irq(&lo->lo_work_lock); 1947 1948 loop_handle_cmd(cmd); 1949 cond_resched(); 1950 1951 spin_lock_irq(&lo->lo_work_lock); 1952 } 1953 1954 /* 1955 * We only add to the idle list if there are no pending cmds 1956 * *and* the worker will not run again which ensures that it 1957 * is safe to free any worker on the idle list 1958 */ 1959 if (worker && !work_pending(&worker->work)) { 1960 worker->last_ran_at = jiffies; 1961 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1962 loop_set_timer(lo); 1963 } 1964 spin_unlock_irq(&lo->lo_work_lock); 1965 current->flags = orig_flags; 1966 } 1967 1968 static void loop_workfn(struct work_struct *work) 1969 { 1970 struct loop_worker *worker = 1971 container_of(work, struct loop_worker, work); 1972 loop_process_work(worker, &worker->cmd_list, worker->lo); 1973 } 1974 1975 static void loop_rootcg_workfn(struct work_struct *work) 1976 { 1977 struct loop_device *lo = 1978 container_of(work, struct loop_device, rootcg_work); 1979 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1980 } 1981 1982 static const struct blk_mq_ops loop_mq_ops = { 1983 .queue_rq = loop_queue_rq, 1984 .complete = lo_complete_rq, 1985 }; 1986 1987 static int loop_add(int i) 1988 { 1989 struct queue_limits lim = { 1990 /* 1991 * Random number picked from the historic block max_sectors cap. 1992 */ 1993 .max_hw_sectors = 2560u, 1994 }; 1995 struct loop_device *lo; 1996 struct gendisk *disk; 1997 int err; 1998 1999 err = -ENOMEM; 2000 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2001 if (!lo) 2002 goto out; 2003 lo->worker_tree = RB_ROOT; 2004 INIT_LIST_HEAD(&lo->idle_worker_list); 2005 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2006 lo->lo_state = Lo_unbound; 2007 2008 err = mutex_lock_killable(&loop_ctl_mutex); 2009 if (err) 2010 goto out_free_dev; 2011 2012 /* allocate id, if @id >= 0, we're requesting that specific id */ 2013 if (i >= 0) { 2014 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2015 if (err == -ENOSPC) 2016 err = -EEXIST; 2017 } else { 2018 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2019 } 2020 mutex_unlock(&loop_ctl_mutex); 2021 if (err < 0) 2022 goto out_free_dev; 2023 i = err; 2024 2025 lo->tag_set.ops = &loop_mq_ops; 2026 lo->tag_set.nr_hw_queues = 1; 2027 lo->tag_set.queue_depth = hw_queue_depth; 2028 lo->tag_set.numa_node = NUMA_NO_NODE; 2029 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2030 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2031 lo->tag_set.driver_data = lo; 2032 2033 err = blk_mq_alloc_tag_set(&lo->tag_set); 2034 if (err) 2035 goto out_free_idr; 2036 2037 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2038 if (IS_ERR(disk)) { 2039 err = PTR_ERR(disk); 2040 goto out_cleanup_tags; 2041 } 2042 lo->lo_queue = lo->lo_disk->queue; 2043 2044 /* 2045 * Disable partition scanning by default. The in-kernel partition 2046 * scanning can be requested individually per-device during its 2047 * setup. Userspace can always add and remove partitions from all 2048 * devices. The needed partition minors are allocated from the 2049 * extended minor space, the main loop device numbers will continue 2050 * to match the loop minors, regardless of the number of partitions 2051 * used. 2052 * 2053 * If max_part is given, partition scanning is globally enabled for 2054 * all loop devices. The minors for the main loop devices will be 2055 * multiples of max_part. 2056 * 2057 * Note: Global-for-all-devices, set-only-at-init, read-only module 2058 * parameteters like 'max_loop' and 'max_part' make things needlessly 2059 * complicated, are too static, inflexible and may surprise 2060 * userspace tools. Parameters like this in general should be avoided. 2061 */ 2062 if (!part_shift) 2063 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2064 mutex_init(&lo->lo_mutex); 2065 lo->lo_number = i; 2066 spin_lock_init(&lo->lo_lock); 2067 spin_lock_init(&lo->lo_work_lock); 2068 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2069 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2070 disk->major = LOOP_MAJOR; 2071 disk->first_minor = i << part_shift; 2072 disk->minors = 1 << part_shift; 2073 disk->fops = &lo_fops; 2074 disk->private_data = lo; 2075 disk->queue = lo->lo_queue; 2076 disk->events = DISK_EVENT_MEDIA_CHANGE; 2077 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2078 sprintf(disk->disk_name, "loop%d", i); 2079 /* Make this loop device reachable from pathname. */ 2080 err = add_disk(disk); 2081 if (err) 2082 goto out_cleanup_disk; 2083 2084 /* Show this loop device. */ 2085 mutex_lock(&loop_ctl_mutex); 2086 lo->idr_visible = true; 2087 mutex_unlock(&loop_ctl_mutex); 2088 2089 return i; 2090 2091 out_cleanup_disk: 2092 put_disk(disk); 2093 out_cleanup_tags: 2094 blk_mq_free_tag_set(&lo->tag_set); 2095 out_free_idr: 2096 mutex_lock(&loop_ctl_mutex); 2097 idr_remove(&loop_index_idr, i); 2098 mutex_unlock(&loop_ctl_mutex); 2099 out_free_dev: 2100 kfree(lo); 2101 out: 2102 return err; 2103 } 2104 2105 static void loop_remove(struct loop_device *lo) 2106 { 2107 /* Make this loop device unreachable from pathname. */ 2108 del_gendisk(lo->lo_disk); 2109 blk_mq_free_tag_set(&lo->tag_set); 2110 2111 mutex_lock(&loop_ctl_mutex); 2112 idr_remove(&loop_index_idr, lo->lo_number); 2113 mutex_unlock(&loop_ctl_mutex); 2114 2115 put_disk(lo->lo_disk); 2116 } 2117 2118 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2119 static void loop_probe(dev_t dev) 2120 { 2121 int idx = MINOR(dev) >> part_shift; 2122 2123 if (max_loop_specified && max_loop && idx >= max_loop) 2124 return; 2125 loop_add(idx); 2126 } 2127 #else 2128 #define loop_probe NULL 2129 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2130 2131 static int loop_control_remove(int idx) 2132 { 2133 struct loop_device *lo; 2134 int ret; 2135 2136 if (idx < 0) { 2137 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2138 return -EINVAL; 2139 } 2140 2141 /* Hide this loop device for serialization. */ 2142 ret = mutex_lock_killable(&loop_ctl_mutex); 2143 if (ret) 2144 return ret; 2145 lo = idr_find(&loop_index_idr, idx); 2146 if (!lo || !lo->idr_visible) 2147 ret = -ENODEV; 2148 else 2149 lo->idr_visible = false; 2150 mutex_unlock(&loop_ctl_mutex); 2151 if (ret) 2152 return ret; 2153 2154 /* Check whether this loop device can be removed. */ 2155 ret = mutex_lock_killable(&lo->lo_mutex); 2156 if (ret) 2157 goto mark_visible; 2158 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2159 mutex_unlock(&lo->lo_mutex); 2160 ret = -EBUSY; 2161 goto mark_visible; 2162 } 2163 /* Mark this loop device as no more bound, but not quite unbound yet */ 2164 lo->lo_state = Lo_deleting; 2165 mutex_unlock(&lo->lo_mutex); 2166 2167 loop_remove(lo); 2168 return 0; 2169 2170 mark_visible: 2171 /* Show this loop device again. */ 2172 mutex_lock(&loop_ctl_mutex); 2173 lo->idr_visible = true; 2174 mutex_unlock(&loop_ctl_mutex); 2175 return ret; 2176 } 2177 2178 static int loop_control_get_free(int idx) 2179 { 2180 struct loop_device *lo; 2181 int id, ret; 2182 2183 ret = mutex_lock_killable(&loop_ctl_mutex); 2184 if (ret) 2185 return ret; 2186 idr_for_each_entry(&loop_index_idr, lo, id) { 2187 /* Hitting a race results in creating a new loop device which is harmless. */ 2188 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2189 goto found; 2190 } 2191 mutex_unlock(&loop_ctl_mutex); 2192 return loop_add(-1); 2193 found: 2194 mutex_unlock(&loop_ctl_mutex); 2195 return id; 2196 } 2197 2198 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2199 unsigned long parm) 2200 { 2201 switch (cmd) { 2202 case LOOP_CTL_ADD: 2203 return loop_add(parm); 2204 case LOOP_CTL_REMOVE: 2205 return loop_control_remove(parm); 2206 case LOOP_CTL_GET_FREE: 2207 return loop_control_get_free(parm); 2208 default: 2209 return -ENOSYS; 2210 } 2211 } 2212 2213 static const struct file_operations loop_ctl_fops = { 2214 .open = nonseekable_open, 2215 .unlocked_ioctl = loop_control_ioctl, 2216 .compat_ioctl = loop_control_ioctl, 2217 .owner = THIS_MODULE, 2218 .llseek = noop_llseek, 2219 }; 2220 2221 static struct miscdevice loop_misc = { 2222 .minor = LOOP_CTRL_MINOR, 2223 .name = "loop-control", 2224 .fops = &loop_ctl_fops, 2225 }; 2226 2227 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2228 MODULE_ALIAS("devname:loop-control"); 2229 2230 static int __init loop_init(void) 2231 { 2232 int i; 2233 int err; 2234 2235 part_shift = 0; 2236 if (max_part > 0) { 2237 part_shift = fls(max_part); 2238 2239 /* 2240 * Adjust max_part according to part_shift as it is exported 2241 * to user space so that user can decide correct minor number 2242 * if [s]he want to create more devices. 2243 * 2244 * Note that -1 is required because partition 0 is reserved 2245 * for the whole disk. 2246 */ 2247 max_part = (1UL << part_shift) - 1; 2248 } 2249 2250 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2251 err = -EINVAL; 2252 goto err_out; 2253 } 2254 2255 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2256 err = -EINVAL; 2257 goto err_out; 2258 } 2259 2260 err = misc_register(&loop_misc); 2261 if (err < 0) 2262 goto err_out; 2263 2264 2265 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2266 err = -EIO; 2267 goto misc_out; 2268 } 2269 2270 /* pre-create number of devices given by config or max_loop */ 2271 for (i = 0; i < max_loop; i++) 2272 loop_add(i); 2273 2274 printk(KERN_INFO "loop: module loaded\n"); 2275 return 0; 2276 2277 misc_out: 2278 misc_deregister(&loop_misc); 2279 err_out: 2280 return err; 2281 } 2282 2283 static void __exit loop_exit(void) 2284 { 2285 struct loop_device *lo; 2286 int id; 2287 2288 unregister_blkdev(LOOP_MAJOR, "loop"); 2289 misc_deregister(&loop_misc); 2290 2291 /* 2292 * There is no need to use loop_ctl_mutex here, for nobody else can 2293 * access loop_index_idr when this module is unloading (unless forced 2294 * module unloading is requested). If this is not a clean unloading, 2295 * we have no means to avoid kernel crash. 2296 */ 2297 idr_for_each_entry(&loop_index_idr, lo, id) 2298 loop_remove(lo); 2299 2300 idr_destroy(&loop_index_idr); 2301 } 2302 2303 module_init(loop_init); 2304 module_exit(loop_exit); 2305 2306 #ifndef MODULE 2307 static int __init max_loop_setup(char *str) 2308 { 2309 max_loop = simple_strtol(str, NULL, 0); 2310 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2311 max_loop_specified = true; 2312 #endif 2313 return 1; 2314 } 2315 2316 __setup("max_loop=", max_loop_setup); 2317 #endif 2318