1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 141 { 142 loff_t loopsize; 143 144 /* Compute loopsize in bytes */ 145 loopsize = i_size_read(file->f_mapping->host); 146 if (offset > 0) 147 loopsize -= offset; 148 /* offset is beyond i_size, weird but possible */ 149 if (loopsize < 0) 150 return 0; 151 152 if (sizelimit > 0 && sizelimit < loopsize) 153 loopsize = sizelimit; 154 /* 155 * Unfortunately, if we want to do I/O on the device, 156 * the number of 512-byte sectors has to fit into a sector_t. 157 */ 158 return loopsize >> 9; 159 } 160 161 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 162 { 163 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 164 } 165 166 /* 167 * We support direct I/O only if lo_offset is aligned with the logical I/O size 168 * of backing device, and the logical block size of loop is bigger than that of 169 * the backing device. 170 */ 171 static bool lo_can_use_dio(struct loop_device *lo) 172 { 173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 174 return false; 175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 176 return false; 177 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 178 return false; 179 return true; 180 } 181 182 /* 183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 185 * disabled when the device block size is too small or the offset is unaligned. 186 * 187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 188 * not the originally passed in one. 189 */ 190 static inline void loop_update_dio(struct loop_device *lo) 191 { 192 lockdep_assert_held(&lo->lo_mutex); 193 WARN_ON_ONCE(lo->lo_state == Lo_bound && 194 lo->lo_queue->mq_freeze_depth == 0); 195 196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 198 } 199 200 /** 201 * loop_set_size() - sets device size and notifies userspace 202 * @lo: struct loop_device to set the size for 203 * @size: new size of the loop device 204 * 205 * Callers must validate that the size passed into this function fits into 206 * a sector_t, eg using loop_validate_size() 207 */ 208 static void loop_set_size(struct loop_device *lo, loff_t size) 209 { 210 if (!set_capacity_and_notify(lo->lo_disk, size)) 211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 212 } 213 214 static void loop_clear_limits(struct loop_device *lo, int mode) 215 { 216 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 217 218 if (mode & FALLOC_FL_ZERO_RANGE) 219 lim.max_write_zeroes_sectors = 0; 220 221 if (mode & FALLOC_FL_PUNCH_HOLE) { 222 lim.max_hw_discard_sectors = 0; 223 lim.discard_granularity = 0; 224 } 225 226 /* 227 * XXX: this updates the queue limits without freezing the queue, which 228 * is against the locking protocol and dangerous. But we can't just 229 * freeze the queue as we're inside the ->queue_rq method here. So this 230 * should move out into a workqueue unless we get the file operations to 231 * advertise if they support specific fallocate operations. 232 */ 233 queue_limits_commit_update(lo->lo_queue, &lim); 234 } 235 236 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 237 int mode) 238 { 239 /* 240 * We use fallocate to manipulate the space mappings used by the image 241 * a.k.a. discard/zerorange. 242 */ 243 struct file *file = lo->lo_backing_file; 244 int ret; 245 246 mode |= FALLOC_FL_KEEP_SIZE; 247 248 if (!bdev_max_discard_sectors(lo->lo_device)) 249 return -EOPNOTSUPP; 250 251 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 252 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 253 return -EIO; 254 255 /* 256 * We initially configure the limits in a hope that fallocate is 257 * supported and clear them here if that turns out not to be true. 258 */ 259 if (unlikely(ret == -EOPNOTSUPP)) 260 loop_clear_limits(lo, mode); 261 262 return ret; 263 } 264 265 static int lo_req_flush(struct loop_device *lo, struct request *rq) 266 { 267 int ret = vfs_fsync(lo->lo_backing_file, 0); 268 if (unlikely(ret && ret != -EINVAL)) 269 ret = -EIO; 270 271 return ret; 272 } 273 274 static void lo_complete_rq(struct request *rq) 275 { 276 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 277 blk_status_t ret = BLK_STS_OK; 278 279 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 280 req_op(rq) != REQ_OP_READ) { 281 if (cmd->ret < 0) 282 ret = errno_to_blk_status(cmd->ret); 283 goto end_io; 284 } 285 286 /* 287 * Short READ - if we got some data, advance our request and 288 * retry it. If we got no data, end the rest with EIO. 289 */ 290 if (cmd->ret) { 291 blk_update_request(rq, BLK_STS_OK, cmd->ret); 292 cmd->ret = 0; 293 blk_mq_requeue_request(rq, true); 294 } else { 295 struct bio *bio = rq->bio; 296 297 while (bio) { 298 zero_fill_bio(bio); 299 bio = bio->bi_next; 300 } 301 302 ret = BLK_STS_IOERR; 303 end_io: 304 blk_mq_end_request(rq, ret); 305 } 306 } 307 308 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 309 { 310 struct request *rq = blk_mq_rq_from_pdu(cmd); 311 312 if (!atomic_dec_and_test(&cmd->ref)) 313 return; 314 kfree(cmd->bvec); 315 cmd->bvec = NULL; 316 if (req_op(rq) == REQ_OP_WRITE) 317 kiocb_end_write(&cmd->iocb); 318 if (likely(!blk_should_fake_timeout(rq->q))) 319 blk_mq_complete_request(rq); 320 } 321 322 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 323 { 324 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 325 326 cmd->ret = ret; 327 lo_rw_aio_do_completion(cmd); 328 } 329 330 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 331 loff_t pos, int rw) 332 { 333 struct iov_iter iter; 334 struct req_iterator rq_iter; 335 struct bio_vec *bvec; 336 struct request *rq = blk_mq_rq_from_pdu(cmd); 337 struct bio *bio = rq->bio; 338 struct file *file = lo->lo_backing_file; 339 struct bio_vec tmp; 340 unsigned int offset; 341 int nr_bvec = 0; 342 int ret; 343 344 rq_for_each_bvec(tmp, rq, rq_iter) 345 nr_bvec++; 346 347 if (rq->bio != rq->biotail) { 348 349 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 350 GFP_NOIO); 351 if (!bvec) 352 return -EIO; 353 cmd->bvec = bvec; 354 355 /* 356 * The bios of the request may be started from the middle of 357 * the 'bvec' because of bio splitting, so we can't directly 358 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 359 * API will take care of all details for us. 360 */ 361 rq_for_each_bvec(tmp, rq, rq_iter) { 362 *bvec = tmp; 363 bvec++; 364 } 365 bvec = cmd->bvec; 366 offset = 0; 367 } else { 368 /* 369 * Same here, this bio may be started from the middle of the 370 * 'bvec' because of bio splitting, so offset from the bvec 371 * must be passed to iov iterator 372 */ 373 offset = bio->bi_iter.bi_bvec_done; 374 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 375 } 376 atomic_set(&cmd->ref, 2); 377 378 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 379 iter.iov_offset = offset; 380 381 cmd->iocb.ki_pos = pos; 382 cmd->iocb.ki_filp = file; 383 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 384 if (cmd->use_aio) { 385 cmd->iocb.ki_complete = lo_rw_aio_complete; 386 cmd->iocb.ki_flags = IOCB_DIRECT; 387 } else { 388 cmd->iocb.ki_complete = NULL; 389 cmd->iocb.ki_flags = 0; 390 } 391 392 if (rw == ITER_SOURCE) { 393 kiocb_start_write(&cmd->iocb); 394 ret = file->f_op->write_iter(&cmd->iocb, &iter); 395 } else 396 ret = file->f_op->read_iter(&cmd->iocb, &iter); 397 398 lo_rw_aio_do_completion(cmd); 399 400 if (ret != -EIOCBQUEUED) 401 lo_rw_aio_complete(&cmd->iocb, ret); 402 return -EIOCBQUEUED; 403 } 404 405 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 406 { 407 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 408 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 409 410 switch (req_op(rq)) { 411 case REQ_OP_FLUSH: 412 return lo_req_flush(lo, rq); 413 case REQ_OP_WRITE_ZEROES: 414 /* 415 * If the caller doesn't want deallocation, call zeroout to 416 * write zeroes the range. Otherwise, punch them out. 417 */ 418 return lo_fallocate(lo, rq, pos, 419 (rq->cmd_flags & REQ_NOUNMAP) ? 420 FALLOC_FL_ZERO_RANGE : 421 FALLOC_FL_PUNCH_HOLE); 422 case REQ_OP_DISCARD: 423 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 424 case REQ_OP_WRITE: 425 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 426 case REQ_OP_READ: 427 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 428 default: 429 WARN_ON_ONCE(1); 430 return -EIO; 431 } 432 } 433 434 static void loop_reread_partitions(struct loop_device *lo) 435 { 436 int rc; 437 438 mutex_lock(&lo->lo_disk->open_mutex); 439 rc = bdev_disk_changed(lo->lo_disk, false); 440 mutex_unlock(&lo->lo_disk->open_mutex); 441 if (rc) 442 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 443 __func__, lo->lo_number, lo->lo_file_name, rc); 444 } 445 446 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 447 { 448 struct file *file = lo->lo_backing_file; 449 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 450 struct kstat st; 451 452 /* 453 * Use the minimal dio alignment of the file system if provided. 454 */ 455 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 456 (st.result_mask & STATX_DIOALIGN)) 457 return st.dio_offset_align; 458 459 /* 460 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 461 * a handful of file systems support the STATX_DIOALIGN flag. 462 */ 463 if (sb_bdev) 464 return bdev_logical_block_size(sb_bdev); 465 return SECTOR_SIZE; 466 } 467 468 static inline int is_loop_device(struct file *file) 469 { 470 struct inode *i = file->f_mapping->host; 471 472 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 473 } 474 475 static int loop_validate_file(struct file *file, struct block_device *bdev) 476 { 477 struct inode *inode = file->f_mapping->host; 478 struct file *f = file; 479 480 /* Avoid recursion */ 481 while (is_loop_device(f)) { 482 struct loop_device *l; 483 484 lockdep_assert_held(&loop_validate_mutex); 485 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 486 return -EBADF; 487 488 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 489 if (l->lo_state != Lo_bound) 490 return -EINVAL; 491 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 492 rmb(); 493 f = l->lo_backing_file; 494 } 495 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 496 return -EINVAL; 497 return 0; 498 } 499 500 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 501 { 502 lo->lo_backing_file = file; 503 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 504 mapping_set_gfp_mask(file->f_mapping, 505 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 506 if (lo->lo_backing_file->f_flags & O_DIRECT) 507 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 508 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 509 } 510 511 static int loop_check_backing_file(struct file *file) 512 { 513 if (!file->f_op->read_iter) 514 return -EINVAL; 515 516 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter) 517 return -EINVAL; 518 519 return 0; 520 } 521 522 /* 523 * loop_change_fd switched the backing store of a loopback device to 524 * a new file. This is useful for operating system installers to free up 525 * the original file and in High Availability environments to switch to 526 * an alternative location for the content in case of server meltdown. 527 * This can only work if the loop device is used read-only, and if the 528 * new backing store is the same size and type as the old backing store. 529 */ 530 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 531 unsigned int arg) 532 { 533 struct file *file = fget(arg); 534 struct file *old_file; 535 unsigned int memflags; 536 int error; 537 bool partscan; 538 bool is_loop; 539 540 if (!file) 541 return -EBADF; 542 543 error = loop_check_backing_file(file); 544 if (error) 545 return error; 546 547 /* suppress uevents while reconfiguring the device */ 548 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 549 550 is_loop = is_loop_device(file); 551 error = loop_global_lock_killable(lo, is_loop); 552 if (error) 553 goto out_putf; 554 error = -ENXIO; 555 if (lo->lo_state != Lo_bound) 556 goto out_err; 557 558 /* the loop device has to be read-only */ 559 error = -EINVAL; 560 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 561 goto out_err; 562 563 error = loop_validate_file(file, bdev); 564 if (error) 565 goto out_err; 566 567 old_file = lo->lo_backing_file; 568 569 error = -EINVAL; 570 571 /* size of the new backing store needs to be the same */ 572 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 573 goto out_err; 574 575 /* 576 * We might switch to direct I/O mode for the loop device, write back 577 * all dirty data the page cache now that so that the individual I/O 578 * operations don't have to do that. 579 */ 580 vfs_fsync(file, 0); 581 582 /* and ... switch */ 583 disk_force_media_change(lo->lo_disk); 584 memflags = blk_mq_freeze_queue(lo->lo_queue); 585 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 586 loop_assign_backing_file(lo, file); 587 loop_update_dio(lo); 588 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 589 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 590 loop_global_unlock(lo, is_loop); 591 592 /* 593 * Flush loop_validate_file() before fput(), for l->lo_backing_file 594 * might be pointing at old_file which might be the last reference. 595 */ 596 if (!is_loop) { 597 mutex_lock(&loop_validate_mutex); 598 mutex_unlock(&loop_validate_mutex); 599 } 600 /* 601 * We must drop file reference outside of lo_mutex as dropping 602 * the file ref can take open_mutex which creates circular locking 603 * dependency. 604 */ 605 fput(old_file); 606 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 607 if (partscan) 608 loop_reread_partitions(lo); 609 610 error = 0; 611 done: 612 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 613 return error; 614 615 out_err: 616 loop_global_unlock(lo, is_loop); 617 out_putf: 618 fput(file); 619 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 620 goto done; 621 } 622 623 /* loop sysfs attributes */ 624 625 static ssize_t loop_attr_show(struct device *dev, char *page, 626 ssize_t (*callback)(struct loop_device *, char *)) 627 { 628 struct gendisk *disk = dev_to_disk(dev); 629 struct loop_device *lo = disk->private_data; 630 631 return callback(lo, page); 632 } 633 634 #define LOOP_ATTR_RO(_name) \ 635 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 636 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 637 struct device_attribute *attr, char *b) \ 638 { \ 639 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 640 } \ 641 static struct device_attribute loop_attr_##_name = \ 642 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 643 644 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 645 { 646 ssize_t ret; 647 char *p = NULL; 648 649 spin_lock_irq(&lo->lo_lock); 650 if (lo->lo_backing_file) 651 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 652 spin_unlock_irq(&lo->lo_lock); 653 654 if (IS_ERR_OR_NULL(p)) 655 ret = PTR_ERR(p); 656 else { 657 ret = strlen(p); 658 memmove(buf, p, ret); 659 buf[ret++] = '\n'; 660 buf[ret] = 0; 661 } 662 663 return ret; 664 } 665 666 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 667 { 668 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 669 } 670 671 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 672 { 673 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 674 } 675 676 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 677 { 678 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 679 680 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 681 } 682 683 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 684 { 685 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 686 687 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 688 } 689 690 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 691 { 692 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 693 694 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 695 } 696 697 LOOP_ATTR_RO(backing_file); 698 LOOP_ATTR_RO(offset); 699 LOOP_ATTR_RO(sizelimit); 700 LOOP_ATTR_RO(autoclear); 701 LOOP_ATTR_RO(partscan); 702 LOOP_ATTR_RO(dio); 703 704 static struct attribute *loop_attrs[] = { 705 &loop_attr_backing_file.attr, 706 &loop_attr_offset.attr, 707 &loop_attr_sizelimit.attr, 708 &loop_attr_autoclear.attr, 709 &loop_attr_partscan.attr, 710 &loop_attr_dio.attr, 711 NULL, 712 }; 713 714 static struct attribute_group loop_attribute_group = { 715 .name = "loop", 716 .attrs= loop_attrs, 717 }; 718 719 static void loop_sysfs_init(struct loop_device *lo) 720 { 721 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 722 &loop_attribute_group); 723 } 724 725 static void loop_sysfs_exit(struct loop_device *lo) 726 { 727 if (lo->sysfs_inited) 728 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 729 &loop_attribute_group); 730 } 731 732 static void loop_get_discard_config(struct loop_device *lo, 733 u32 *granularity, u32 *max_discard_sectors) 734 { 735 struct file *file = lo->lo_backing_file; 736 struct inode *inode = file->f_mapping->host; 737 struct kstatfs sbuf; 738 739 /* 740 * If the backing device is a block device, mirror its zeroing 741 * capability. Set the discard sectors to the block device's zeroing 742 * capabilities because loop discards result in blkdev_issue_zeroout(), 743 * not blkdev_issue_discard(). This maintains consistent behavior with 744 * file-backed loop devices: discarded regions read back as zero. 745 */ 746 if (S_ISBLK(inode->i_mode)) { 747 struct block_device *bdev = I_BDEV(inode); 748 749 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 750 *granularity = bdev_discard_granularity(bdev); 751 752 /* 753 * We use punch hole to reclaim the free space used by the 754 * image a.k.a. discard. 755 */ 756 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 757 *max_discard_sectors = UINT_MAX >> 9; 758 *granularity = sbuf.f_bsize; 759 } 760 } 761 762 struct loop_worker { 763 struct rb_node rb_node; 764 struct work_struct work; 765 struct list_head cmd_list; 766 struct list_head idle_list; 767 struct loop_device *lo; 768 struct cgroup_subsys_state *blkcg_css; 769 unsigned long last_ran_at; 770 }; 771 772 static void loop_workfn(struct work_struct *work); 773 774 #ifdef CONFIG_BLK_CGROUP 775 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 776 { 777 return !css || css == blkcg_root_css; 778 } 779 #else 780 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 781 { 782 return !css; 783 } 784 #endif 785 786 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 787 { 788 struct rb_node **node, *parent = NULL; 789 struct loop_worker *cur_worker, *worker = NULL; 790 struct work_struct *work; 791 struct list_head *cmd_list; 792 793 spin_lock_irq(&lo->lo_work_lock); 794 795 if (queue_on_root_worker(cmd->blkcg_css)) 796 goto queue_work; 797 798 node = &lo->worker_tree.rb_node; 799 800 while (*node) { 801 parent = *node; 802 cur_worker = container_of(*node, struct loop_worker, rb_node); 803 if (cur_worker->blkcg_css == cmd->blkcg_css) { 804 worker = cur_worker; 805 break; 806 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 807 node = &(*node)->rb_left; 808 } else { 809 node = &(*node)->rb_right; 810 } 811 } 812 if (worker) 813 goto queue_work; 814 815 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 816 /* 817 * In the event we cannot allocate a worker, just queue on the 818 * rootcg worker and issue the I/O as the rootcg 819 */ 820 if (!worker) { 821 cmd->blkcg_css = NULL; 822 if (cmd->memcg_css) 823 css_put(cmd->memcg_css); 824 cmd->memcg_css = NULL; 825 goto queue_work; 826 } 827 828 worker->blkcg_css = cmd->blkcg_css; 829 css_get(worker->blkcg_css); 830 INIT_WORK(&worker->work, loop_workfn); 831 INIT_LIST_HEAD(&worker->cmd_list); 832 INIT_LIST_HEAD(&worker->idle_list); 833 worker->lo = lo; 834 rb_link_node(&worker->rb_node, parent, node); 835 rb_insert_color(&worker->rb_node, &lo->worker_tree); 836 queue_work: 837 if (worker) { 838 /* 839 * We need to remove from the idle list here while 840 * holding the lock so that the idle timer doesn't 841 * free the worker 842 */ 843 if (!list_empty(&worker->idle_list)) 844 list_del_init(&worker->idle_list); 845 work = &worker->work; 846 cmd_list = &worker->cmd_list; 847 } else { 848 work = &lo->rootcg_work; 849 cmd_list = &lo->rootcg_cmd_list; 850 } 851 list_add_tail(&cmd->list_entry, cmd_list); 852 queue_work(lo->workqueue, work); 853 spin_unlock_irq(&lo->lo_work_lock); 854 } 855 856 static void loop_set_timer(struct loop_device *lo) 857 { 858 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 859 } 860 861 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 862 { 863 struct loop_worker *pos, *worker; 864 865 spin_lock_irq(&lo->lo_work_lock); 866 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 867 idle_list) { 868 if (!delete_all && 869 time_is_after_jiffies(worker->last_ran_at + 870 LOOP_IDLE_WORKER_TIMEOUT)) 871 break; 872 list_del(&worker->idle_list); 873 rb_erase(&worker->rb_node, &lo->worker_tree); 874 css_put(worker->blkcg_css); 875 kfree(worker); 876 } 877 if (!list_empty(&lo->idle_worker_list)) 878 loop_set_timer(lo); 879 spin_unlock_irq(&lo->lo_work_lock); 880 } 881 882 static void loop_free_idle_workers_timer(struct timer_list *timer) 883 { 884 struct loop_device *lo = container_of(timer, struct loop_device, timer); 885 886 return loop_free_idle_workers(lo, false); 887 } 888 889 /** 890 * loop_set_status_from_info - configure device from loop_info 891 * @lo: struct loop_device to configure 892 * @info: struct loop_info64 to configure the device with 893 * 894 * Configures the loop device parameters according to the passed 895 * in loop_info64 configuration. 896 */ 897 static int 898 loop_set_status_from_info(struct loop_device *lo, 899 const struct loop_info64 *info) 900 { 901 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 902 return -EINVAL; 903 904 switch (info->lo_encrypt_type) { 905 case LO_CRYPT_NONE: 906 break; 907 case LO_CRYPT_XOR: 908 pr_warn("support for the xor transformation has been removed.\n"); 909 return -EINVAL; 910 case LO_CRYPT_CRYPTOAPI: 911 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 912 return -EINVAL; 913 default: 914 return -EINVAL; 915 } 916 917 /* Avoid assigning overflow values */ 918 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 919 return -EOVERFLOW; 920 921 lo->lo_offset = info->lo_offset; 922 lo->lo_sizelimit = info->lo_sizelimit; 923 924 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 925 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 926 return 0; 927 } 928 929 static unsigned int loop_default_blocksize(struct loop_device *lo) 930 { 931 /* In case of direct I/O, match underlying minimum I/O size */ 932 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 933 return lo->lo_min_dio_size; 934 return SECTOR_SIZE; 935 } 936 937 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 938 unsigned int bsize) 939 { 940 struct file *file = lo->lo_backing_file; 941 struct inode *inode = file->f_mapping->host; 942 struct block_device *backing_bdev = NULL; 943 u32 granularity = 0, max_discard_sectors = 0; 944 945 if (S_ISBLK(inode->i_mode)) 946 backing_bdev = I_BDEV(inode); 947 else if (inode->i_sb->s_bdev) 948 backing_bdev = inode->i_sb->s_bdev; 949 950 if (!bsize) 951 bsize = loop_default_blocksize(lo); 952 953 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 954 955 lim->logical_block_size = bsize; 956 lim->physical_block_size = bsize; 957 lim->io_min = bsize; 958 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 959 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 960 lim->features |= BLK_FEAT_WRITE_CACHE; 961 if (backing_bdev && !bdev_nonrot(backing_bdev)) 962 lim->features |= BLK_FEAT_ROTATIONAL; 963 lim->max_hw_discard_sectors = max_discard_sectors; 964 lim->max_write_zeroes_sectors = max_discard_sectors; 965 if (max_discard_sectors) 966 lim->discard_granularity = granularity; 967 else 968 lim->discard_granularity = 0; 969 } 970 971 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 972 struct block_device *bdev, 973 const struct loop_config *config) 974 { 975 struct file *file = fget(config->fd); 976 struct queue_limits lim; 977 int error; 978 loff_t size; 979 bool partscan; 980 bool is_loop; 981 982 if (!file) 983 return -EBADF; 984 985 error = loop_check_backing_file(file); 986 if (error) 987 return error; 988 989 is_loop = is_loop_device(file); 990 991 /* This is safe, since we have a reference from open(). */ 992 __module_get(THIS_MODULE); 993 994 /* 995 * If we don't hold exclusive handle for the device, upgrade to it 996 * here to avoid changing device under exclusive owner. 997 */ 998 if (!(mode & BLK_OPEN_EXCL)) { 999 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1000 if (error) 1001 goto out_putf; 1002 } 1003 1004 error = loop_global_lock_killable(lo, is_loop); 1005 if (error) 1006 goto out_bdev; 1007 1008 error = -EBUSY; 1009 if (lo->lo_state != Lo_unbound) 1010 goto out_unlock; 1011 1012 error = loop_validate_file(file, bdev); 1013 if (error) 1014 goto out_unlock; 1015 1016 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1017 error = -EINVAL; 1018 goto out_unlock; 1019 } 1020 1021 error = loop_set_status_from_info(lo, &config->info); 1022 if (error) 1023 goto out_unlock; 1024 lo->lo_flags = config->info.lo_flags; 1025 1026 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1027 !file->f_op->write_iter) 1028 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1029 1030 if (!lo->workqueue) { 1031 lo->workqueue = alloc_workqueue("loop%d", 1032 WQ_UNBOUND | WQ_FREEZABLE, 1033 0, lo->lo_number); 1034 if (!lo->workqueue) { 1035 error = -ENOMEM; 1036 goto out_unlock; 1037 } 1038 } 1039 1040 /* suppress uevents while reconfiguring the device */ 1041 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1042 1043 disk_force_media_change(lo->lo_disk); 1044 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1045 1046 lo->lo_device = bdev; 1047 loop_assign_backing_file(lo, file); 1048 1049 lim = queue_limits_start_update(lo->lo_queue); 1050 loop_update_limits(lo, &lim, config->block_size); 1051 /* No need to freeze the queue as the device isn't bound yet. */ 1052 error = queue_limits_commit_update(lo->lo_queue, &lim); 1053 if (error) 1054 goto out_unlock; 1055 1056 /* 1057 * We might switch to direct I/O mode for the loop device, write back 1058 * all dirty data the page cache now that so that the individual I/O 1059 * operations don't have to do that. 1060 */ 1061 vfs_fsync(file, 0); 1062 1063 loop_update_dio(lo); 1064 loop_sysfs_init(lo); 1065 1066 size = get_loop_size(lo, file); 1067 loop_set_size(lo, size); 1068 1069 /* Order wrt reading lo_state in loop_validate_file(). */ 1070 wmb(); 1071 1072 lo->lo_state = Lo_bound; 1073 if (part_shift) 1074 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1075 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1076 if (partscan) 1077 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1078 1079 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1080 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1081 1082 loop_global_unlock(lo, is_loop); 1083 if (partscan) 1084 loop_reread_partitions(lo); 1085 1086 if (!(mode & BLK_OPEN_EXCL)) 1087 bd_abort_claiming(bdev, loop_configure); 1088 1089 return 0; 1090 1091 out_unlock: 1092 loop_global_unlock(lo, is_loop); 1093 out_bdev: 1094 if (!(mode & BLK_OPEN_EXCL)) 1095 bd_abort_claiming(bdev, loop_configure); 1096 out_putf: 1097 fput(file); 1098 /* This is safe: open() is still holding a reference. */ 1099 module_put(THIS_MODULE); 1100 return error; 1101 } 1102 1103 static void __loop_clr_fd(struct loop_device *lo) 1104 { 1105 struct queue_limits lim; 1106 struct file *filp; 1107 gfp_t gfp = lo->old_gfp_mask; 1108 1109 spin_lock_irq(&lo->lo_lock); 1110 filp = lo->lo_backing_file; 1111 lo->lo_backing_file = NULL; 1112 spin_unlock_irq(&lo->lo_lock); 1113 1114 lo->lo_device = NULL; 1115 lo->lo_offset = 0; 1116 lo->lo_sizelimit = 0; 1117 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1118 1119 /* 1120 * Reset the block size to the default. 1121 * 1122 * No queue freezing needed because this is called from the final 1123 * ->release call only, so there can't be any outstanding I/O. 1124 */ 1125 lim = queue_limits_start_update(lo->lo_queue); 1126 lim.logical_block_size = SECTOR_SIZE; 1127 lim.physical_block_size = SECTOR_SIZE; 1128 lim.io_min = SECTOR_SIZE; 1129 queue_limits_commit_update(lo->lo_queue, &lim); 1130 1131 invalidate_disk(lo->lo_disk); 1132 loop_sysfs_exit(lo); 1133 /* let user-space know about this change */ 1134 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1135 mapping_set_gfp_mask(filp->f_mapping, gfp); 1136 /* This is safe: open() is still holding a reference. */ 1137 module_put(THIS_MODULE); 1138 1139 disk_force_media_change(lo->lo_disk); 1140 1141 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1142 int err; 1143 1144 /* 1145 * open_mutex has been held already in release path, so don't 1146 * acquire it if this function is called in such case. 1147 * 1148 * If the reread partition isn't from release path, lo_refcnt 1149 * must be at least one and it can only become zero when the 1150 * current holder is released. 1151 */ 1152 err = bdev_disk_changed(lo->lo_disk, false); 1153 if (err) 1154 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1155 __func__, lo->lo_number, err); 1156 /* Device is gone, no point in returning error */ 1157 } 1158 1159 /* 1160 * lo->lo_state is set to Lo_unbound here after above partscan has 1161 * finished. There cannot be anybody else entering __loop_clr_fd() as 1162 * Lo_rundown state protects us from all the other places trying to 1163 * change the 'lo' device. 1164 */ 1165 lo->lo_flags = 0; 1166 if (!part_shift) 1167 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1168 mutex_lock(&lo->lo_mutex); 1169 lo->lo_state = Lo_unbound; 1170 mutex_unlock(&lo->lo_mutex); 1171 1172 /* 1173 * Need not hold lo_mutex to fput backing file. Calling fput holding 1174 * lo_mutex triggers a circular lock dependency possibility warning as 1175 * fput can take open_mutex which is usually taken before lo_mutex. 1176 */ 1177 fput(filp); 1178 } 1179 1180 static int loop_clr_fd(struct loop_device *lo) 1181 { 1182 int err; 1183 1184 /* 1185 * Since lo_ioctl() is called without locks held, it is possible that 1186 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1187 * 1188 * Therefore, use global lock when setting Lo_rundown state in order to 1189 * make sure that loop_validate_file() will fail if the "struct file" 1190 * which loop_configure()/loop_change_fd() found via fget() was this 1191 * loop device. 1192 */ 1193 err = loop_global_lock_killable(lo, true); 1194 if (err) 1195 return err; 1196 if (lo->lo_state != Lo_bound) { 1197 loop_global_unlock(lo, true); 1198 return -ENXIO; 1199 } 1200 /* 1201 * Mark the device for removing the backing device on last close. 1202 * If we are the only opener, also switch the state to roundown here to 1203 * prevent new openers from coming in. 1204 */ 1205 1206 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1207 if (disk_openers(lo->lo_disk) == 1) 1208 lo->lo_state = Lo_rundown; 1209 loop_global_unlock(lo, true); 1210 1211 return 0; 1212 } 1213 1214 static int 1215 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1216 { 1217 int err; 1218 bool partscan = false; 1219 bool size_changed = false; 1220 unsigned int memflags; 1221 1222 err = mutex_lock_killable(&lo->lo_mutex); 1223 if (err) 1224 return err; 1225 if (lo->lo_state != Lo_bound) { 1226 err = -ENXIO; 1227 goto out_unlock; 1228 } 1229 1230 if (lo->lo_offset != info->lo_offset || 1231 lo->lo_sizelimit != info->lo_sizelimit) { 1232 size_changed = true; 1233 sync_blockdev(lo->lo_device); 1234 invalidate_bdev(lo->lo_device); 1235 } 1236 1237 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1238 memflags = blk_mq_freeze_queue(lo->lo_queue); 1239 1240 err = loop_set_status_from_info(lo, info); 1241 if (err) 1242 goto out_unfreeze; 1243 1244 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1245 (info->lo_flags & LO_FLAGS_PARTSCAN); 1246 1247 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1248 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1249 1250 /* update the direct I/O flag if lo_offset changed */ 1251 loop_update_dio(lo); 1252 1253 out_unfreeze: 1254 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1255 if (partscan) 1256 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1257 if (!err && size_changed) { 1258 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1259 lo->lo_backing_file); 1260 loop_set_size(lo, new_size); 1261 } 1262 out_unlock: 1263 mutex_unlock(&lo->lo_mutex); 1264 if (partscan) 1265 loop_reread_partitions(lo); 1266 1267 return err; 1268 } 1269 1270 static int 1271 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1272 { 1273 struct path path; 1274 struct kstat stat; 1275 int ret; 1276 1277 ret = mutex_lock_killable(&lo->lo_mutex); 1278 if (ret) 1279 return ret; 1280 if (lo->lo_state != Lo_bound) { 1281 mutex_unlock(&lo->lo_mutex); 1282 return -ENXIO; 1283 } 1284 1285 memset(info, 0, sizeof(*info)); 1286 info->lo_number = lo->lo_number; 1287 info->lo_offset = lo->lo_offset; 1288 info->lo_sizelimit = lo->lo_sizelimit; 1289 info->lo_flags = lo->lo_flags; 1290 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1291 1292 /* Drop lo_mutex while we call into the filesystem. */ 1293 path = lo->lo_backing_file->f_path; 1294 path_get(&path); 1295 mutex_unlock(&lo->lo_mutex); 1296 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1297 if (!ret) { 1298 info->lo_device = huge_encode_dev(stat.dev); 1299 info->lo_inode = stat.ino; 1300 info->lo_rdevice = huge_encode_dev(stat.rdev); 1301 } 1302 path_put(&path); 1303 return ret; 1304 } 1305 1306 static void 1307 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1308 { 1309 memset(info64, 0, sizeof(*info64)); 1310 info64->lo_number = info->lo_number; 1311 info64->lo_device = info->lo_device; 1312 info64->lo_inode = info->lo_inode; 1313 info64->lo_rdevice = info->lo_rdevice; 1314 info64->lo_offset = info->lo_offset; 1315 info64->lo_sizelimit = 0; 1316 info64->lo_flags = info->lo_flags; 1317 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1318 } 1319 1320 static int 1321 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1322 { 1323 memset(info, 0, sizeof(*info)); 1324 info->lo_number = info64->lo_number; 1325 info->lo_device = info64->lo_device; 1326 info->lo_inode = info64->lo_inode; 1327 info->lo_rdevice = info64->lo_rdevice; 1328 info->lo_offset = info64->lo_offset; 1329 info->lo_flags = info64->lo_flags; 1330 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1331 1332 /* error in case values were truncated */ 1333 if (info->lo_device != info64->lo_device || 1334 info->lo_rdevice != info64->lo_rdevice || 1335 info->lo_inode != info64->lo_inode || 1336 info->lo_offset != info64->lo_offset) 1337 return -EOVERFLOW; 1338 1339 return 0; 1340 } 1341 1342 static int 1343 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1344 { 1345 struct loop_info info; 1346 struct loop_info64 info64; 1347 1348 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1349 return -EFAULT; 1350 loop_info64_from_old(&info, &info64); 1351 return loop_set_status(lo, &info64); 1352 } 1353 1354 static int 1355 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1356 { 1357 struct loop_info64 info64; 1358 1359 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1360 return -EFAULT; 1361 return loop_set_status(lo, &info64); 1362 } 1363 1364 static int 1365 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1366 struct loop_info info; 1367 struct loop_info64 info64; 1368 int err; 1369 1370 if (!arg) 1371 return -EINVAL; 1372 err = loop_get_status(lo, &info64); 1373 if (!err) 1374 err = loop_info64_to_old(&info64, &info); 1375 if (!err && copy_to_user(arg, &info, sizeof(info))) 1376 err = -EFAULT; 1377 1378 return err; 1379 } 1380 1381 static int 1382 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1383 struct loop_info64 info64; 1384 int err; 1385 1386 if (!arg) 1387 return -EINVAL; 1388 err = loop_get_status(lo, &info64); 1389 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1390 err = -EFAULT; 1391 1392 return err; 1393 } 1394 1395 static int loop_set_capacity(struct loop_device *lo) 1396 { 1397 loff_t size; 1398 1399 if (unlikely(lo->lo_state != Lo_bound)) 1400 return -ENXIO; 1401 1402 size = get_loop_size(lo, lo->lo_backing_file); 1403 loop_set_size(lo, size); 1404 1405 return 0; 1406 } 1407 1408 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1409 { 1410 bool use_dio = !!arg; 1411 unsigned int memflags; 1412 1413 if (lo->lo_state != Lo_bound) 1414 return -ENXIO; 1415 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1416 return 0; 1417 1418 if (use_dio) { 1419 if (!lo_can_use_dio(lo)) 1420 return -EINVAL; 1421 /* flush dirty pages before starting to use direct I/O */ 1422 vfs_fsync(lo->lo_backing_file, 0); 1423 } 1424 1425 memflags = blk_mq_freeze_queue(lo->lo_queue); 1426 if (use_dio) 1427 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1428 else 1429 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1430 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1431 return 0; 1432 } 1433 1434 static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode, 1435 struct block_device *bdev, unsigned long arg) 1436 { 1437 struct queue_limits lim; 1438 unsigned int memflags; 1439 int err = 0; 1440 1441 /* 1442 * If we don't hold exclusive handle for the device, upgrade to it 1443 * here to avoid changing device under exclusive owner. 1444 */ 1445 if (!(mode & BLK_OPEN_EXCL)) { 1446 err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL); 1447 if (err) 1448 return err; 1449 } 1450 1451 err = mutex_lock_killable(&lo->lo_mutex); 1452 if (err) 1453 goto abort_claim; 1454 1455 if (lo->lo_state != Lo_bound) { 1456 err = -ENXIO; 1457 goto unlock; 1458 } 1459 1460 if (lo->lo_queue->limits.logical_block_size == arg) 1461 goto unlock; 1462 1463 sync_blockdev(lo->lo_device); 1464 invalidate_bdev(lo->lo_device); 1465 1466 lim = queue_limits_start_update(lo->lo_queue); 1467 loop_update_limits(lo, &lim, arg); 1468 1469 memflags = blk_mq_freeze_queue(lo->lo_queue); 1470 err = queue_limits_commit_update(lo->lo_queue, &lim); 1471 loop_update_dio(lo); 1472 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1473 1474 unlock: 1475 mutex_unlock(&lo->lo_mutex); 1476 abort_claim: 1477 if (!(mode & BLK_OPEN_EXCL)) 1478 bd_abort_claiming(bdev, loop_set_block_size); 1479 return err; 1480 } 1481 1482 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1483 unsigned long arg) 1484 { 1485 int err; 1486 1487 err = mutex_lock_killable(&lo->lo_mutex); 1488 if (err) 1489 return err; 1490 switch (cmd) { 1491 case LOOP_SET_CAPACITY: 1492 err = loop_set_capacity(lo); 1493 break; 1494 case LOOP_SET_DIRECT_IO: 1495 err = loop_set_dio(lo, arg); 1496 break; 1497 default: 1498 err = -EINVAL; 1499 } 1500 mutex_unlock(&lo->lo_mutex); 1501 return err; 1502 } 1503 1504 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1505 unsigned int cmd, unsigned long arg) 1506 { 1507 struct loop_device *lo = bdev->bd_disk->private_data; 1508 void __user *argp = (void __user *) arg; 1509 int err; 1510 1511 switch (cmd) { 1512 case LOOP_SET_FD: { 1513 /* 1514 * Legacy case - pass in a zeroed out struct loop_config with 1515 * only the file descriptor set , which corresponds with the 1516 * default parameters we'd have used otherwise. 1517 */ 1518 struct loop_config config; 1519 1520 memset(&config, 0, sizeof(config)); 1521 config.fd = arg; 1522 1523 return loop_configure(lo, mode, bdev, &config); 1524 } 1525 case LOOP_CONFIGURE: { 1526 struct loop_config config; 1527 1528 if (copy_from_user(&config, argp, sizeof(config))) 1529 return -EFAULT; 1530 1531 return loop_configure(lo, mode, bdev, &config); 1532 } 1533 case LOOP_CHANGE_FD: 1534 return loop_change_fd(lo, bdev, arg); 1535 case LOOP_CLR_FD: 1536 return loop_clr_fd(lo); 1537 case LOOP_SET_STATUS: 1538 err = -EPERM; 1539 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1540 err = loop_set_status_old(lo, argp); 1541 break; 1542 case LOOP_GET_STATUS: 1543 return loop_get_status_old(lo, argp); 1544 case LOOP_SET_STATUS64: 1545 err = -EPERM; 1546 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1547 err = loop_set_status64(lo, argp); 1548 break; 1549 case LOOP_GET_STATUS64: 1550 return loop_get_status64(lo, argp); 1551 case LOOP_SET_BLOCK_SIZE: 1552 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1553 return -EPERM; 1554 return loop_set_block_size(lo, mode, bdev, arg); 1555 case LOOP_SET_CAPACITY: 1556 case LOOP_SET_DIRECT_IO: 1557 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1558 return -EPERM; 1559 fallthrough; 1560 default: 1561 err = lo_simple_ioctl(lo, cmd, arg); 1562 break; 1563 } 1564 1565 return err; 1566 } 1567 1568 #ifdef CONFIG_COMPAT 1569 struct compat_loop_info { 1570 compat_int_t lo_number; /* ioctl r/o */ 1571 compat_dev_t lo_device; /* ioctl r/o */ 1572 compat_ulong_t lo_inode; /* ioctl r/o */ 1573 compat_dev_t lo_rdevice; /* ioctl r/o */ 1574 compat_int_t lo_offset; 1575 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1576 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1577 compat_int_t lo_flags; /* ioctl r/o */ 1578 char lo_name[LO_NAME_SIZE]; 1579 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1580 compat_ulong_t lo_init[2]; 1581 char reserved[4]; 1582 }; 1583 1584 /* 1585 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1586 * - noinlined to reduce stack space usage in main part of driver 1587 */ 1588 static noinline int 1589 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1590 struct loop_info64 *info64) 1591 { 1592 struct compat_loop_info info; 1593 1594 if (copy_from_user(&info, arg, sizeof(info))) 1595 return -EFAULT; 1596 1597 memset(info64, 0, sizeof(*info64)); 1598 info64->lo_number = info.lo_number; 1599 info64->lo_device = info.lo_device; 1600 info64->lo_inode = info.lo_inode; 1601 info64->lo_rdevice = info.lo_rdevice; 1602 info64->lo_offset = info.lo_offset; 1603 info64->lo_sizelimit = 0; 1604 info64->lo_flags = info.lo_flags; 1605 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1606 return 0; 1607 } 1608 1609 /* 1610 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1611 * - noinlined to reduce stack space usage in main part of driver 1612 */ 1613 static noinline int 1614 loop_info64_to_compat(const struct loop_info64 *info64, 1615 struct compat_loop_info __user *arg) 1616 { 1617 struct compat_loop_info info; 1618 1619 memset(&info, 0, sizeof(info)); 1620 info.lo_number = info64->lo_number; 1621 info.lo_device = info64->lo_device; 1622 info.lo_inode = info64->lo_inode; 1623 info.lo_rdevice = info64->lo_rdevice; 1624 info.lo_offset = info64->lo_offset; 1625 info.lo_flags = info64->lo_flags; 1626 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1627 1628 /* error in case values were truncated */ 1629 if (info.lo_device != info64->lo_device || 1630 info.lo_rdevice != info64->lo_rdevice || 1631 info.lo_inode != info64->lo_inode || 1632 info.lo_offset != info64->lo_offset) 1633 return -EOVERFLOW; 1634 1635 if (copy_to_user(arg, &info, sizeof(info))) 1636 return -EFAULT; 1637 return 0; 1638 } 1639 1640 static int 1641 loop_set_status_compat(struct loop_device *lo, 1642 const struct compat_loop_info __user *arg) 1643 { 1644 struct loop_info64 info64; 1645 int ret; 1646 1647 ret = loop_info64_from_compat(arg, &info64); 1648 if (ret < 0) 1649 return ret; 1650 return loop_set_status(lo, &info64); 1651 } 1652 1653 static int 1654 loop_get_status_compat(struct loop_device *lo, 1655 struct compat_loop_info __user *arg) 1656 { 1657 struct loop_info64 info64; 1658 int err; 1659 1660 if (!arg) 1661 return -EINVAL; 1662 err = loop_get_status(lo, &info64); 1663 if (!err) 1664 err = loop_info64_to_compat(&info64, arg); 1665 return err; 1666 } 1667 1668 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1669 unsigned int cmd, unsigned long arg) 1670 { 1671 struct loop_device *lo = bdev->bd_disk->private_data; 1672 int err; 1673 1674 switch(cmd) { 1675 case LOOP_SET_STATUS: 1676 err = loop_set_status_compat(lo, 1677 (const struct compat_loop_info __user *)arg); 1678 break; 1679 case LOOP_GET_STATUS: 1680 err = loop_get_status_compat(lo, 1681 (struct compat_loop_info __user *)arg); 1682 break; 1683 case LOOP_SET_CAPACITY: 1684 case LOOP_CLR_FD: 1685 case LOOP_GET_STATUS64: 1686 case LOOP_SET_STATUS64: 1687 case LOOP_CONFIGURE: 1688 arg = (unsigned long) compat_ptr(arg); 1689 fallthrough; 1690 case LOOP_SET_FD: 1691 case LOOP_CHANGE_FD: 1692 case LOOP_SET_BLOCK_SIZE: 1693 case LOOP_SET_DIRECT_IO: 1694 err = lo_ioctl(bdev, mode, cmd, arg); 1695 break; 1696 default: 1697 err = -ENOIOCTLCMD; 1698 break; 1699 } 1700 return err; 1701 } 1702 #endif 1703 1704 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1705 { 1706 struct loop_device *lo = disk->private_data; 1707 int err; 1708 1709 err = mutex_lock_killable(&lo->lo_mutex); 1710 if (err) 1711 return err; 1712 1713 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1714 err = -ENXIO; 1715 mutex_unlock(&lo->lo_mutex); 1716 return err; 1717 } 1718 1719 static void lo_release(struct gendisk *disk) 1720 { 1721 struct loop_device *lo = disk->private_data; 1722 bool need_clear = false; 1723 1724 if (disk_openers(disk) > 0) 1725 return; 1726 /* 1727 * Clear the backing device information if this is the last close of 1728 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1729 * has been called. 1730 */ 1731 1732 mutex_lock(&lo->lo_mutex); 1733 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1734 lo->lo_state = Lo_rundown; 1735 1736 need_clear = (lo->lo_state == Lo_rundown); 1737 mutex_unlock(&lo->lo_mutex); 1738 1739 if (need_clear) 1740 __loop_clr_fd(lo); 1741 } 1742 1743 static void lo_free_disk(struct gendisk *disk) 1744 { 1745 struct loop_device *lo = disk->private_data; 1746 1747 if (lo->workqueue) 1748 destroy_workqueue(lo->workqueue); 1749 loop_free_idle_workers(lo, true); 1750 timer_shutdown_sync(&lo->timer); 1751 mutex_destroy(&lo->lo_mutex); 1752 kfree(lo); 1753 } 1754 1755 static const struct block_device_operations lo_fops = { 1756 .owner = THIS_MODULE, 1757 .open = lo_open, 1758 .release = lo_release, 1759 .ioctl = lo_ioctl, 1760 #ifdef CONFIG_COMPAT 1761 .compat_ioctl = lo_compat_ioctl, 1762 #endif 1763 .free_disk = lo_free_disk, 1764 }; 1765 1766 /* 1767 * And now the modules code and kernel interface. 1768 */ 1769 1770 /* 1771 * If max_loop is specified, create that many devices upfront. 1772 * This also becomes a hard limit. If max_loop is not specified, 1773 * the default isn't a hard limit (as before commit 85c50197716c 1774 * changed the default value from 0 for max_loop=0 reasons), just 1775 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1776 * init time. Loop devices can be requested on-demand with the 1777 * /dev/loop-control interface, or be instantiated by accessing 1778 * a 'dead' device node. 1779 */ 1780 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1781 1782 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1783 static bool max_loop_specified; 1784 1785 static int max_loop_param_set_int(const char *val, 1786 const struct kernel_param *kp) 1787 { 1788 int ret; 1789 1790 ret = param_set_int(val, kp); 1791 if (ret < 0) 1792 return ret; 1793 1794 max_loop_specified = true; 1795 return 0; 1796 } 1797 1798 static const struct kernel_param_ops max_loop_param_ops = { 1799 .set = max_loop_param_set_int, 1800 .get = param_get_int, 1801 }; 1802 1803 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1804 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1805 #else 1806 module_param(max_loop, int, 0444); 1807 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1808 #endif 1809 1810 module_param(max_part, int, 0444); 1811 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1812 1813 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1814 1815 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1816 { 1817 int qd, ret; 1818 1819 ret = kstrtoint(s, 0, &qd); 1820 if (ret < 0) 1821 return ret; 1822 if (qd < 1) 1823 return -EINVAL; 1824 hw_queue_depth = qd; 1825 return 0; 1826 } 1827 1828 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1829 .set = loop_set_hw_queue_depth, 1830 .get = param_get_int, 1831 }; 1832 1833 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1834 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1835 1836 MODULE_DESCRIPTION("Loopback device support"); 1837 MODULE_LICENSE("GPL"); 1838 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1839 1840 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1841 const struct blk_mq_queue_data *bd) 1842 { 1843 struct request *rq = bd->rq; 1844 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1845 struct loop_device *lo = rq->q->queuedata; 1846 1847 blk_mq_start_request(rq); 1848 1849 if (lo->lo_state != Lo_bound) 1850 return BLK_STS_IOERR; 1851 1852 switch (req_op(rq)) { 1853 case REQ_OP_FLUSH: 1854 case REQ_OP_DISCARD: 1855 case REQ_OP_WRITE_ZEROES: 1856 cmd->use_aio = false; 1857 break; 1858 default: 1859 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1860 break; 1861 } 1862 1863 /* always use the first bio's css */ 1864 cmd->blkcg_css = NULL; 1865 cmd->memcg_css = NULL; 1866 #ifdef CONFIG_BLK_CGROUP 1867 if (rq->bio) { 1868 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1869 #ifdef CONFIG_MEMCG 1870 if (cmd->blkcg_css) { 1871 cmd->memcg_css = 1872 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1873 &memory_cgrp_subsys); 1874 } 1875 #endif 1876 } 1877 #endif 1878 loop_queue_work(lo, cmd); 1879 1880 return BLK_STS_OK; 1881 } 1882 1883 static void loop_handle_cmd(struct loop_cmd *cmd) 1884 { 1885 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1886 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1887 struct request *rq = blk_mq_rq_from_pdu(cmd); 1888 const bool write = op_is_write(req_op(rq)); 1889 struct loop_device *lo = rq->q->queuedata; 1890 int ret = 0; 1891 struct mem_cgroup *old_memcg = NULL; 1892 1893 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1894 ret = -EIO; 1895 goto failed; 1896 } 1897 1898 if (cmd_blkcg_css) 1899 kthread_associate_blkcg(cmd_blkcg_css); 1900 if (cmd_memcg_css) 1901 old_memcg = set_active_memcg( 1902 mem_cgroup_from_css(cmd_memcg_css)); 1903 1904 /* 1905 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1906 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1907 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1908 * not yet been completed. 1909 */ 1910 ret = do_req_filebacked(lo, rq); 1911 1912 if (cmd_blkcg_css) 1913 kthread_associate_blkcg(NULL); 1914 1915 if (cmd_memcg_css) { 1916 set_active_memcg(old_memcg); 1917 css_put(cmd_memcg_css); 1918 } 1919 failed: 1920 /* complete non-aio request */ 1921 if (ret != -EIOCBQUEUED) { 1922 if (ret == -EOPNOTSUPP) 1923 cmd->ret = ret; 1924 else 1925 cmd->ret = ret ? -EIO : 0; 1926 if (likely(!blk_should_fake_timeout(rq->q))) 1927 blk_mq_complete_request(rq); 1928 } 1929 } 1930 1931 static void loop_process_work(struct loop_worker *worker, 1932 struct list_head *cmd_list, struct loop_device *lo) 1933 { 1934 int orig_flags = current->flags; 1935 struct loop_cmd *cmd; 1936 1937 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1938 spin_lock_irq(&lo->lo_work_lock); 1939 while (!list_empty(cmd_list)) { 1940 cmd = container_of( 1941 cmd_list->next, struct loop_cmd, list_entry); 1942 list_del(cmd_list->next); 1943 spin_unlock_irq(&lo->lo_work_lock); 1944 1945 loop_handle_cmd(cmd); 1946 cond_resched(); 1947 1948 spin_lock_irq(&lo->lo_work_lock); 1949 } 1950 1951 /* 1952 * We only add to the idle list if there are no pending cmds 1953 * *and* the worker will not run again which ensures that it 1954 * is safe to free any worker on the idle list 1955 */ 1956 if (worker && !work_pending(&worker->work)) { 1957 worker->last_ran_at = jiffies; 1958 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1959 loop_set_timer(lo); 1960 } 1961 spin_unlock_irq(&lo->lo_work_lock); 1962 current->flags = orig_flags; 1963 } 1964 1965 static void loop_workfn(struct work_struct *work) 1966 { 1967 struct loop_worker *worker = 1968 container_of(work, struct loop_worker, work); 1969 loop_process_work(worker, &worker->cmd_list, worker->lo); 1970 } 1971 1972 static void loop_rootcg_workfn(struct work_struct *work) 1973 { 1974 struct loop_device *lo = 1975 container_of(work, struct loop_device, rootcg_work); 1976 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1977 } 1978 1979 static const struct blk_mq_ops loop_mq_ops = { 1980 .queue_rq = loop_queue_rq, 1981 .complete = lo_complete_rq, 1982 }; 1983 1984 static int loop_add(int i) 1985 { 1986 struct queue_limits lim = { 1987 /* 1988 * Random number picked from the historic block max_sectors cap. 1989 */ 1990 .max_hw_sectors = 2560u, 1991 }; 1992 struct loop_device *lo; 1993 struct gendisk *disk; 1994 int err; 1995 1996 err = -ENOMEM; 1997 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1998 if (!lo) 1999 goto out; 2000 lo->worker_tree = RB_ROOT; 2001 INIT_LIST_HEAD(&lo->idle_worker_list); 2002 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2003 lo->lo_state = Lo_unbound; 2004 2005 err = mutex_lock_killable(&loop_ctl_mutex); 2006 if (err) 2007 goto out_free_dev; 2008 2009 /* allocate id, if @id >= 0, we're requesting that specific id */ 2010 if (i >= 0) { 2011 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2012 if (err == -ENOSPC) 2013 err = -EEXIST; 2014 } else { 2015 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2016 } 2017 mutex_unlock(&loop_ctl_mutex); 2018 if (err < 0) 2019 goto out_free_dev; 2020 i = err; 2021 2022 lo->tag_set.ops = &loop_mq_ops; 2023 lo->tag_set.nr_hw_queues = 1; 2024 lo->tag_set.queue_depth = hw_queue_depth; 2025 lo->tag_set.numa_node = NUMA_NO_NODE; 2026 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2027 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2028 lo->tag_set.driver_data = lo; 2029 2030 err = blk_mq_alloc_tag_set(&lo->tag_set); 2031 if (err) 2032 goto out_free_idr; 2033 2034 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2035 if (IS_ERR(disk)) { 2036 err = PTR_ERR(disk); 2037 goto out_cleanup_tags; 2038 } 2039 lo->lo_queue = lo->lo_disk->queue; 2040 2041 /* 2042 * Disable partition scanning by default. The in-kernel partition 2043 * scanning can be requested individually per-device during its 2044 * setup. Userspace can always add and remove partitions from all 2045 * devices. The needed partition minors are allocated from the 2046 * extended minor space, the main loop device numbers will continue 2047 * to match the loop minors, regardless of the number of partitions 2048 * used. 2049 * 2050 * If max_part is given, partition scanning is globally enabled for 2051 * all loop devices. The minors for the main loop devices will be 2052 * multiples of max_part. 2053 * 2054 * Note: Global-for-all-devices, set-only-at-init, read-only module 2055 * parameteters like 'max_loop' and 'max_part' make things needlessly 2056 * complicated, are too static, inflexible and may surprise 2057 * userspace tools. Parameters like this in general should be avoided. 2058 */ 2059 if (!part_shift) 2060 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2061 mutex_init(&lo->lo_mutex); 2062 lo->lo_number = i; 2063 spin_lock_init(&lo->lo_lock); 2064 spin_lock_init(&lo->lo_work_lock); 2065 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2066 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2067 disk->major = LOOP_MAJOR; 2068 disk->first_minor = i << part_shift; 2069 disk->minors = 1 << part_shift; 2070 disk->fops = &lo_fops; 2071 disk->private_data = lo; 2072 disk->queue = lo->lo_queue; 2073 disk->events = DISK_EVENT_MEDIA_CHANGE; 2074 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2075 sprintf(disk->disk_name, "loop%d", i); 2076 /* Make this loop device reachable from pathname. */ 2077 err = add_disk(disk); 2078 if (err) 2079 goto out_cleanup_disk; 2080 2081 /* Show this loop device. */ 2082 mutex_lock(&loop_ctl_mutex); 2083 lo->idr_visible = true; 2084 mutex_unlock(&loop_ctl_mutex); 2085 2086 return i; 2087 2088 out_cleanup_disk: 2089 put_disk(disk); 2090 out_cleanup_tags: 2091 blk_mq_free_tag_set(&lo->tag_set); 2092 out_free_idr: 2093 mutex_lock(&loop_ctl_mutex); 2094 idr_remove(&loop_index_idr, i); 2095 mutex_unlock(&loop_ctl_mutex); 2096 out_free_dev: 2097 kfree(lo); 2098 out: 2099 return err; 2100 } 2101 2102 static void loop_remove(struct loop_device *lo) 2103 { 2104 /* Make this loop device unreachable from pathname. */ 2105 del_gendisk(lo->lo_disk); 2106 blk_mq_free_tag_set(&lo->tag_set); 2107 2108 mutex_lock(&loop_ctl_mutex); 2109 idr_remove(&loop_index_idr, lo->lo_number); 2110 mutex_unlock(&loop_ctl_mutex); 2111 2112 put_disk(lo->lo_disk); 2113 } 2114 2115 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2116 static void loop_probe(dev_t dev) 2117 { 2118 int idx = MINOR(dev) >> part_shift; 2119 2120 if (max_loop_specified && max_loop && idx >= max_loop) 2121 return; 2122 loop_add(idx); 2123 } 2124 #else 2125 #define loop_probe NULL 2126 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2127 2128 static int loop_control_remove(int idx) 2129 { 2130 struct loop_device *lo; 2131 int ret; 2132 2133 if (idx < 0) { 2134 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2135 return -EINVAL; 2136 } 2137 2138 /* Hide this loop device for serialization. */ 2139 ret = mutex_lock_killable(&loop_ctl_mutex); 2140 if (ret) 2141 return ret; 2142 lo = idr_find(&loop_index_idr, idx); 2143 if (!lo || !lo->idr_visible) 2144 ret = -ENODEV; 2145 else 2146 lo->idr_visible = false; 2147 mutex_unlock(&loop_ctl_mutex); 2148 if (ret) 2149 return ret; 2150 2151 /* Check whether this loop device can be removed. */ 2152 ret = mutex_lock_killable(&lo->lo_mutex); 2153 if (ret) 2154 goto mark_visible; 2155 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2156 mutex_unlock(&lo->lo_mutex); 2157 ret = -EBUSY; 2158 goto mark_visible; 2159 } 2160 /* Mark this loop device as no more bound, but not quite unbound yet */ 2161 lo->lo_state = Lo_deleting; 2162 mutex_unlock(&lo->lo_mutex); 2163 2164 loop_remove(lo); 2165 return 0; 2166 2167 mark_visible: 2168 /* Show this loop device again. */ 2169 mutex_lock(&loop_ctl_mutex); 2170 lo->idr_visible = true; 2171 mutex_unlock(&loop_ctl_mutex); 2172 return ret; 2173 } 2174 2175 static int loop_control_get_free(int idx) 2176 { 2177 struct loop_device *lo; 2178 int id, ret; 2179 2180 ret = mutex_lock_killable(&loop_ctl_mutex); 2181 if (ret) 2182 return ret; 2183 idr_for_each_entry(&loop_index_idr, lo, id) { 2184 /* Hitting a race results in creating a new loop device which is harmless. */ 2185 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2186 goto found; 2187 } 2188 mutex_unlock(&loop_ctl_mutex); 2189 return loop_add(-1); 2190 found: 2191 mutex_unlock(&loop_ctl_mutex); 2192 return id; 2193 } 2194 2195 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2196 unsigned long parm) 2197 { 2198 switch (cmd) { 2199 case LOOP_CTL_ADD: 2200 return loop_add(parm); 2201 case LOOP_CTL_REMOVE: 2202 return loop_control_remove(parm); 2203 case LOOP_CTL_GET_FREE: 2204 return loop_control_get_free(parm); 2205 default: 2206 return -ENOSYS; 2207 } 2208 } 2209 2210 static const struct file_operations loop_ctl_fops = { 2211 .open = nonseekable_open, 2212 .unlocked_ioctl = loop_control_ioctl, 2213 .compat_ioctl = loop_control_ioctl, 2214 .owner = THIS_MODULE, 2215 .llseek = noop_llseek, 2216 }; 2217 2218 static struct miscdevice loop_misc = { 2219 .minor = LOOP_CTRL_MINOR, 2220 .name = "loop-control", 2221 .fops = &loop_ctl_fops, 2222 }; 2223 2224 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2225 MODULE_ALIAS("devname:loop-control"); 2226 2227 static int __init loop_init(void) 2228 { 2229 int i; 2230 int err; 2231 2232 part_shift = 0; 2233 if (max_part > 0) { 2234 part_shift = fls(max_part); 2235 2236 /* 2237 * Adjust max_part according to part_shift as it is exported 2238 * to user space so that user can decide correct minor number 2239 * if [s]he want to create more devices. 2240 * 2241 * Note that -1 is required because partition 0 is reserved 2242 * for the whole disk. 2243 */ 2244 max_part = (1UL << part_shift) - 1; 2245 } 2246 2247 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2248 err = -EINVAL; 2249 goto err_out; 2250 } 2251 2252 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2253 err = -EINVAL; 2254 goto err_out; 2255 } 2256 2257 err = misc_register(&loop_misc); 2258 if (err < 0) 2259 goto err_out; 2260 2261 2262 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2263 err = -EIO; 2264 goto misc_out; 2265 } 2266 2267 /* pre-create number of devices given by config or max_loop */ 2268 for (i = 0; i < max_loop; i++) 2269 loop_add(i); 2270 2271 printk(KERN_INFO "loop: module loaded\n"); 2272 return 0; 2273 2274 misc_out: 2275 misc_deregister(&loop_misc); 2276 err_out: 2277 return err; 2278 } 2279 2280 static void __exit loop_exit(void) 2281 { 2282 struct loop_device *lo; 2283 int id; 2284 2285 unregister_blkdev(LOOP_MAJOR, "loop"); 2286 misc_deregister(&loop_misc); 2287 2288 /* 2289 * There is no need to use loop_ctl_mutex here, for nobody else can 2290 * access loop_index_idr when this module is unloading (unless forced 2291 * module unloading is requested). If this is not a clean unloading, 2292 * we have no means to avoid kernel crash. 2293 */ 2294 idr_for_each_entry(&loop_index_idr, lo, id) 2295 loop_remove(lo); 2296 2297 idr_destroy(&loop_index_idr); 2298 } 2299 2300 module_init(loop_init); 2301 module_exit(loop_exit); 2302 2303 #ifndef MODULE 2304 static int __init max_loop_setup(char *str) 2305 { 2306 max_loop = simple_strtol(str, NULL, 0); 2307 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2308 max_loop_specified = true; 2309 #endif 2310 return 1; 2311 } 2312 2313 __setup("max_loop=", max_loop_setup); 2314 #endif 2315