xref: /linux/drivers/block/loop.c (revision 1692713ee94e8d26f592a8e90b817ef66354246c)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/smp_lock.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/loop.h>
68 #include <linux/compat.h>
69 #include <linux/suspend.h>
70 #include <linux/freezer.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
77 #include <linux/splice.h>
78 
79 #include <asm/uaccess.h>
80 
81 static LIST_HEAD(loop_devices);
82 static DEFINE_MUTEX(loop_devices_mutex);
83 
84 static int max_part;
85 static int part_shift;
86 
87 /*
88  * Transfer functions
89  */
90 static int transfer_none(struct loop_device *lo, int cmd,
91 			 struct page *raw_page, unsigned raw_off,
92 			 struct page *loop_page, unsigned loop_off,
93 			 int size, sector_t real_block)
94 {
95 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
97 
98 	if (cmd == READ)
99 		memcpy(loop_buf, raw_buf, size);
100 	else
101 		memcpy(raw_buf, loop_buf, size);
102 
103 	kunmap_atomic(raw_buf, KM_USER0);
104 	kunmap_atomic(loop_buf, KM_USER1);
105 	cond_resched();
106 	return 0;
107 }
108 
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 			struct page *raw_page, unsigned raw_off,
111 			struct page *loop_page, unsigned loop_off,
112 			int size, sector_t real_block)
113 {
114 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 	char *in, *out, *key;
117 	int i, keysize;
118 
119 	if (cmd == READ) {
120 		in = raw_buf;
121 		out = loop_buf;
122 	} else {
123 		in = loop_buf;
124 		out = raw_buf;
125 	}
126 
127 	key = lo->lo_encrypt_key;
128 	keysize = lo->lo_encrypt_key_size;
129 	for (i = 0; i < size; i++)
130 		*out++ = *in++ ^ key[(i & 511) % keysize];
131 
132 	kunmap_atomic(raw_buf, KM_USER0);
133 	kunmap_atomic(loop_buf, KM_USER1);
134 	cond_resched();
135 	return 0;
136 }
137 
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
139 {
140 	if (unlikely(info->lo_encrypt_key_size <= 0))
141 		return -EINVAL;
142 	return 0;
143 }
144 
145 static struct loop_func_table none_funcs = {
146 	.number = LO_CRYPT_NONE,
147 	.transfer = transfer_none,
148 };
149 
150 static struct loop_func_table xor_funcs = {
151 	.number = LO_CRYPT_XOR,
152 	.transfer = transfer_xor,
153 	.init = xor_init
154 };
155 
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 	&none_funcs,
159 	&xor_funcs
160 };
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	loff_t size, offset, loopsize;
165 
166 	/* Compute loopsize in bytes */
167 	size = i_size_read(file->f_mapping->host);
168 	offset = lo->lo_offset;
169 	loopsize = size - offset;
170 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 		loopsize = lo->lo_sizelimit;
172 
173 	/*
174 	 * Unfortunately, if we want to do I/O on the device,
175 	 * the number of 512-byte sectors has to fit into a sector_t.
176 	 */
177 	return loopsize >> 9;
178 }
179 
180 static int
181 figure_loop_size(struct loop_device *lo)
182 {
183 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 	sector_t x = (sector_t)size;
185 
186 	if (unlikely((loff_t)x != size))
187 		return -EFBIG;
188 
189 	set_capacity(lo->lo_disk, x);
190 	return 0;
191 }
192 
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 	       struct page *rpage, unsigned roffs,
196 	       struct page *lpage, unsigned loffs,
197 	       int size, sector_t rblock)
198 {
199 	if (unlikely(!lo->transfer))
200 		return 0;
201 
202 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
203 }
204 
205 /**
206  * do_lo_send_aops - helper for writing data to a loop device
207  *
208  * This is the fast version for backing filesystems which implement the address
209  * space operations write_begin and write_end.
210  */
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 		loff_t pos, struct page *unused)
213 {
214 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 	struct address_space *mapping = file->f_mapping;
216 	pgoff_t index;
217 	unsigned offset, bv_offs;
218 	int len, ret;
219 
220 	mutex_lock(&mapping->host->i_mutex);
221 	index = pos >> PAGE_CACHE_SHIFT;
222 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 	bv_offs = bvec->bv_offset;
224 	len = bvec->bv_len;
225 	while (len > 0) {
226 		sector_t IV;
227 		unsigned size, copied;
228 		int transfer_result;
229 		struct page *page;
230 		void *fsdata;
231 
232 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 		size = PAGE_CACHE_SIZE - offset;
234 		if (size > len)
235 			size = len;
236 
237 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 							&page, &fsdata);
239 		if (ret)
240 			goto fail;
241 
242 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
243 				bvec->bv_page, bv_offs, size, IV);
244 		copied = size;
245 		if (unlikely(transfer_result))
246 			copied = 0;
247 
248 		ret = pagecache_write_end(file, mapping, pos, size, copied,
249 							page, fsdata);
250 		if (ret < 0 || ret != copied)
251 			goto fail;
252 
253 		if (unlikely(transfer_result))
254 			goto fail;
255 
256 		bv_offs += copied;
257 		len -= copied;
258 		offset = 0;
259 		index++;
260 		pos += copied;
261 	}
262 	ret = 0;
263 out:
264 	mutex_unlock(&mapping->host->i_mutex);
265 	return ret;
266 fail:
267 	ret = -1;
268 	goto out;
269 }
270 
271 /**
272  * __do_lo_send_write - helper for writing data to a loop device
273  *
274  * This helper just factors out common code between do_lo_send_direct_write()
275  * and do_lo_send_write().
276  */
277 static int __do_lo_send_write(struct file *file,
278 		u8 *buf, const int len, loff_t pos)
279 {
280 	ssize_t bw;
281 	mm_segment_t old_fs = get_fs();
282 
283 	set_fs(get_ds());
284 	bw = file->f_op->write(file, buf, len, &pos);
285 	set_fs(old_fs);
286 	if (likely(bw == len))
287 		return 0;
288 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
289 			(unsigned long long)pos, len);
290 	if (bw >= 0)
291 		bw = -EIO;
292 	return bw;
293 }
294 
295 /**
296  * do_lo_send_direct_write - helper for writing data to a loop device
297  *
298  * This is the fast, non-transforming version for backing filesystems which do
299  * not implement the address space operations write_begin and write_end.
300  * It uses the write file operation which should be present on all writeable
301  * filesystems.
302  */
303 static int do_lo_send_direct_write(struct loop_device *lo,
304 		struct bio_vec *bvec, loff_t pos, struct page *page)
305 {
306 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
307 			kmap(bvec->bv_page) + bvec->bv_offset,
308 			bvec->bv_len, pos);
309 	kunmap(bvec->bv_page);
310 	cond_resched();
311 	return bw;
312 }
313 
314 /**
315  * do_lo_send_write - helper for writing data to a loop device
316  *
317  * This is the slow, transforming version for filesystems which do not
318  * implement the address space operations write_begin and write_end.  It
319  * uses the write file operation which should be present on all writeable
320  * filesystems.
321  *
322  * Using fops->write is slower than using aops->{prepare,commit}_write in the
323  * transforming case because we need to double buffer the data as we cannot do
324  * the transformations in place as we do not have direct access to the
325  * destination pages of the backing file.
326  */
327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
328 		loff_t pos, struct page *page)
329 {
330 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
331 			bvec->bv_offset, bvec->bv_len, pos >> 9);
332 	if (likely(!ret))
333 		return __do_lo_send_write(lo->lo_backing_file,
334 				page_address(page), bvec->bv_len,
335 				pos);
336 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
337 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
338 	if (ret > 0)
339 		ret = -EIO;
340 	return ret;
341 }
342 
343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
344 {
345 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
346 			struct page *page);
347 	struct bio_vec *bvec;
348 	struct page *page = NULL;
349 	int i, ret = 0;
350 
351 	do_lo_send = do_lo_send_aops;
352 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
353 		do_lo_send = do_lo_send_direct_write;
354 		if (lo->transfer != transfer_none) {
355 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
356 			if (unlikely(!page))
357 				goto fail;
358 			kmap(page);
359 			do_lo_send = do_lo_send_write;
360 		}
361 	}
362 	bio_for_each_segment(bvec, bio, i) {
363 		ret = do_lo_send(lo, bvec, pos, page);
364 		if (ret < 0)
365 			break;
366 		pos += bvec->bv_len;
367 	}
368 	if (page) {
369 		kunmap(page);
370 		__free_page(page);
371 	}
372 out:
373 	return ret;
374 fail:
375 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
376 	ret = -ENOMEM;
377 	goto out;
378 }
379 
380 struct lo_read_data {
381 	struct loop_device *lo;
382 	struct page *page;
383 	unsigned offset;
384 	int bsize;
385 };
386 
387 static int
388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
389 		struct splice_desc *sd)
390 {
391 	struct lo_read_data *p = sd->u.data;
392 	struct loop_device *lo = p->lo;
393 	struct page *page = buf->page;
394 	sector_t IV;
395 	int size, ret;
396 
397 	ret = buf->ops->confirm(pipe, buf);
398 	if (unlikely(ret))
399 		return ret;
400 
401 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
402 							(buf->offset >> 9);
403 	size = sd->len;
404 	if (size > p->bsize)
405 		size = p->bsize;
406 
407 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
408 		printk(KERN_ERR "loop: transfer error block %ld\n",
409 		       page->index);
410 		size = -EINVAL;
411 	}
412 
413 	flush_dcache_page(p->page);
414 
415 	if (size > 0)
416 		p->offset += size;
417 
418 	return size;
419 }
420 
421 static int
422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
423 {
424 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
425 }
426 
427 static int
428 do_lo_receive(struct loop_device *lo,
429 	      struct bio_vec *bvec, int bsize, loff_t pos)
430 {
431 	struct lo_read_data cookie;
432 	struct splice_desc sd;
433 	struct file *file;
434 	long retval;
435 
436 	cookie.lo = lo;
437 	cookie.page = bvec->bv_page;
438 	cookie.offset = bvec->bv_offset;
439 	cookie.bsize = bsize;
440 
441 	sd.len = 0;
442 	sd.total_len = bvec->bv_len;
443 	sd.flags = 0;
444 	sd.pos = pos;
445 	sd.u.data = &cookie;
446 
447 	file = lo->lo_backing_file;
448 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
449 
450 	if (retval < 0)
451 		return retval;
452 
453 	return 0;
454 }
455 
456 static int
457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
458 {
459 	struct bio_vec *bvec;
460 	int i, ret = 0;
461 
462 	bio_for_each_segment(bvec, bio, i) {
463 		ret = do_lo_receive(lo, bvec, bsize, pos);
464 		if (ret < 0)
465 			break;
466 		pos += bvec->bv_len;
467 	}
468 	return ret;
469 }
470 
471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
472 {
473 	loff_t pos;
474 	int ret;
475 
476 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
477 	if (bio_rw(bio) == WRITE)
478 		ret = lo_send(lo, bio, pos);
479 	else
480 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
481 	return ret;
482 }
483 
484 /*
485  * Add bio to back of pending list
486  */
487 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
488 {
489 	if (lo->lo_biotail) {
490 		lo->lo_biotail->bi_next = bio;
491 		lo->lo_biotail = bio;
492 	} else
493 		lo->lo_bio = lo->lo_biotail = bio;
494 }
495 
496 /*
497  * Grab first pending buffer
498  */
499 static struct bio *loop_get_bio(struct loop_device *lo)
500 {
501 	struct bio *bio;
502 
503 	if ((bio = lo->lo_bio)) {
504 		if (bio == lo->lo_biotail)
505 			lo->lo_biotail = NULL;
506 		lo->lo_bio = bio->bi_next;
507 		bio->bi_next = NULL;
508 	}
509 
510 	return bio;
511 }
512 
513 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
514 {
515 	struct loop_device *lo = q->queuedata;
516 	int rw = bio_rw(old_bio);
517 
518 	if (rw == READA)
519 		rw = READ;
520 
521 	BUG_ON(!lo || (rw != READ && rw != WRITE));
522 
523 	spin_lock_irq(&lo->lo_lock);
524 	if (lo->lo_state != Lo_bound)
525 		goto out;
526 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
527 		goto out;
528 	loop_add_bio(lo, old_bio);
529 	wake_up(&lo->lo_event);
530 	spin_unlock_irq(&lo->lo_lock);
531 	return 0;
532 
533 out:
534 	spin_unlock_irq(&lo->lo_lock);
535 	bio_io_error(old_bio);
536 	return 0;
537 }
538 
539 /*
540  * kick off io on the underlying address space
541  */
542 static void loop_unplug(struct request_queue *q)
543 {
544 	struct loop_device *lo = q->queuedata;
545 
546 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
547 	blk_run_address_space(lo->lo_backing_file->f_mapping);
548 }
549 
550 struct switch_request {
551 	struct file *file;
552 	struct completion wait;
553 };
554 
555 static void do_loop_switch(struct loop_device *, struct switch_request *);
556 
557 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
558 {
559 	if (unlikely(!bio->bi_bdev)) {
560 		do_loop_switch(lo, bio->bi_private);
561 		bio_put(bio);
562 	} else {
563 		int ret = do_bio_filebacked(lo, bio);
564 		bio_endio(bio, ret);
565 	}
566 }
567 
568 /*
569  * worker thread that handles reads/writes to file backed loop devices,
570  * to avoid blocking in our make_request_fn. it also does loop decrypting
571  * on reads for block backed loop, as that is too heavy to do from
572  * b_end_io context where irqs may be disabled.
573  *
574  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
575  * calling kthread_stop().  Therefore once kthread_should_stop() is
576  * true, make_request will not place any more requests.  Therefore
577  * once kthread_should_stop() is true and lo_bio is NULL, we are
578  * done with the loop.
579  */
580 static int loop_thread(void *data)
581 {
582 	struct loop_device *lo = data;
583 	struct bio *bio;
584 
585 	set_user_nice(current, -20);
586 
587 	while (!kthread_should_stop() || lo->lo_bio) {
588 
589 		wait_event_interruptible(lo->lo_event,
590 				lo->lo_bio || kthread_should_stop());
591 
592 		if (!lo->lo_bio)
593 			continue;
594 		spin_lock_irq(&lo->lo_lock);
595 		bio = loop_get_bio(lo);
596 		spin_unlock_irq(&lo->lo_lock);
597 
598 		BUG_ON(!bio);
599 		loop_handle_bio(lo, bio);
600 	}
601 
602 	return 0;
603 }
604 
605 /*
606  * loop_switch performs the hard work of switching a backing store.
607  * First it needs to flush existing IO, it does this by sending a magic
608  * BIO down the pipe. The completion of this BIO does the actual switch.
609  */
610 static int loop_switch(struct loop_device *lo, struct file *file)
611 {
612 	struct switch_request w;
613 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
614 	if (!bio)
615 		return -ENOMEM;
616 	init_completion(&w.wait);
617 	w.file = file;
618 	bio->bi_private = &w;
619 	bio->bi_bdev = NULL;
620 	loop_make_request(lo->lo_queue, bio);
621 	wait_for_completion(&w.wait);
622 	return 0;
623 }
624 
625 /*
626  * Helper to flush the IOs in loop, but keeping loop thread running
627  */
628 static int loop_flush(struct loop_device *lo)
629 {
630 	/* loop not yet configured, no running thread, nothing to flush */
631 	if (!lo->lo_thread)
632 		return 0;
633 
634 	return loop_switch(lo, NULL);
635 }
636 
637 /*
638  * Do the actual switch; called from the BIO completion routine
639  */
640 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
641 {
642 	struct file *file = p->file;
643 	struct file *old_file = lo->lo_backing_file;
644 	struct address_space *mapping;
645 
646 	/* if no new file, only flush of queued bios requested */
647 	if (!file)
648 		goto out;
649 
650 	mapping = file->f_mapping;
651 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
652 	lo->lo_backing_file = file;
653 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
654 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
655 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
656 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
657 out:
658 	complete(&p->wait);
659 }
660 
661 
662 /*
663  * loop_change_fd switched the backing store of a loopback device to
664  * a new file. This is useful for operating system installers to free up
665  * the original file and in High Availability environments to switch to
666  * an alternative location for the content in case of server meltdown.
667  * This can only work if the loop device is used read-only, and if the
668  * new backing store is the same size and type as the old backing store.
669  */
670 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
671 			  unsigned int arg)
672 {
673 	struct file	*file, *old_file;
674 	struct inode	*inode;
675 	int		error;
676 
677 	error = -ENXIO;
678 	if (lo->lo_state != Lo_bound)
679 		goto out;
680 
681 	/* the loop device has to be read-only */
682 	error = -EINVAL;
683 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
684 		goto out;
685 
686 	error = -EBADF;
687 	file = fget(arg);
688 	if (!file)
689 		goto out;
690 
691 	inode = file->f_mapping->host;
692 	old_file = lo->lo_backing_file;
693 
694 	error = -EINVAL;
695 
696 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
697 		goto out_putf;
698 
699 	/* new backing store needs to support loop (eg splice_read) */
700 	if (!inode->i_fop->splice_read)
701 		goto out_putf;
702 
703 	/* size of the new backing store needs to be the same */
704 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
705 		goto out_putf;
706 
707 	/* and ... switch */
708 	error = loop_switch(lo, file);
709 	if (error)
710 		goto out_putf;
711 
712 	fput(old_file);
713 	if (max_part > 0)
714 		ioctl_by_bdev(bdev, BLKRRPART, 0);
715 	return 0;
716 
717  out_putf:
718 	fput(file);
719  out:
720 	return error;
721 }
722 
723 static inline int is_loop_device(struct file *file)
724 {
725 	struct inode *i = file->f_mapping->host;
726 
727 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
728 }
729 
730 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
731 		       struct block_device *bdev, unsigned int arg)
732 {
733 	struct file	*file, *f;
734 	struct inode	*inode;
735 	struct address_space *mapping;
736 	unsigned lo_blocksize;
737 	int		lo_flags = 0;
738 	int		error;
739 	loff_t		size;
740 
741 	/* This is safe, since we have a reference from open(). */
742 	__module_get(THIS_MODULE);
743 
744 	error = -EBADF;
745 	file = fget(arg);
746 	if (!file)
747 		goto out;
748 
749 	error = -EBUSY;
750 	if (lo->lo_state != Lo_unbound)
751 		goto out_putf;
752 
753 	/* Avoid recursion */
754 	f = file;
755 	while (is_loop_device(f)) {
756 		struct loop_device *l;
757 
758 		if (f->f_mapping->host->i_bdev == bdev)
759 			goto out_putf;
760 
761 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
762 		if (l->lo_state == Lo_unbound) {
763 			error = -EINVAL;
764 			goto out_putf;
765 		}
766 		f = l->lo_backing_file;
767 	}
768 
769 	mapping = file->f_mapping;
770 	inode = mapping->host;
771 
772 	if (!(file->f_mode & FMODE_WRITE))
773 		lo_flags |= LO_FLAGS_READ_ONLY;
774 
775 	error = -EINVAL;
776 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
777 		const struct address_space_operations *aops = mapping->a_ops;
778 		/*
779 		 * If we can't read - sorry. If we only can't write - well,
780 		 * it's going to be read-only.
781 		 */
782 		if (!file->f_op->splice_read)
783 			goto out_putf;
784 		if (aops->write_begin)
785 			lo_flags |= LO_FLAGS_USE_AOPS;
786 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
787 			lo_flags |= LO_FLAGS_READ_ONLY;
788 
789 		lo_blocksize = S_ISBLK(inode->i_mode) ?
790 			inode->i_bdev->bd_block_size : PAGE_SIZE;
791 
792 		error = 0;
793 	} else {
794 		goto out_putf;
795 	}
796 
797 	size = get_loop_size(lo, file);
798 
799 	if ((loff_t)(sector_t)size != size) {
800 		error = -EFBIG;
801 		goto out_putf;
802 	}
803 
804 	if (!(mode & FMODE_WRITE))
805 		lo_flags |= LO_FLAGS_READ_ONLY;
806 
807 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
808 
809 	lo->lo_blocksize = lo_blocksize;
810 	lo->lo_device = bdev;
811 	lo->lo_flags = lo_flags;
812 	lo->lo_backing_file = file;
813 	lo->transfer = transfer_none;
814 	lo->ioctl = NULL;
815 	lo->lo_sizelimit = 0;
816 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
817 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
818 
819 	lo->lo_bio = lo->lo_biotail = NULL;
820 
821 	/*
822 	 * set queue make_request_fn, and add limits based on lower level
823 	 * device
824 	 */
825 	blk_queue_make_request(lo->lo_queue, loop_make_request);
826 	lo->lo_queue->queuedata = lo;
827 	lo->lo_queue->unplug_fn = loop_unplug;
828 
829 	set_capacity(lo->lo_disk, size);
830 	bd_set_size(bdev, size << 9);
831 
832 	set_blocksize(bdev, lo_blocksize);
833 
834 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
835 						lo->lo_number);
836 	if (IS_ERR(lo->lo_thread)) {
837 		error = PTR_ERR(lo->lo_thread);
838 		goto out_clr;
839 	}
840 	lo->lo_state = Lo_bound;
841 	wake_up_process(lo->lo_thread);
842 	if (max_part > 0)
843 		ioctl_by_bdev(bdev, BLKRRPART, 0);
844 	return 0;
845 
846 out_clr:
847 	lo->lo_thread = NULL;
848 	lo->lo_device = NULL;
849 	lo->lo_backing_file = NULL;
850 	lo->lo_flags = 0;
851 	set_capacity(lo->lo_disk, 0);
852 	invalidate_bdev(bdev);
853 	bd_set_size(bdev, 0);
854 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
855 	lo->lo_state = Lo_unbound;
856  out_putf:
857 	fput(file);
858  out:
859 	/* This is safe: open() is still holding a reference. */
860 	module_put(THIS_MODULE);
861 	return error;
862 }
863 
864 static int
865 loop_release_xfer(struct loop_device *lo)
866 {
867 	int err = 0;
868 	struct loop_func_table *xfer = lo->lo_encryption;
869 
870 	if (xfer) {
871 		if (xfer->release)
872 			err = xfer->release(lo);
873 		lo->transfer = NULL;
874 		lo->lo_encryption = NULL;
875 		module_put(xfer->owner);
876 	}
877 	return err;
878 }
879 
880 static int
881 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
882 	       const struct loop_info64 *i)
883 {
884 	int err = 0;
885 
886 	if (xfer) {
887 		struct module *owner = xfer->owner;
888 
889 		if (!try_module_get(owner))
890 			return -EINVAL;
891 		if (xfer->init)
892 			err = xfer->init(lo, i);
893 		if (err)
894 			module_put(owner);
895 		else
896 			lo->lo_encryption = xfer;
897 	}
898 	return err;
899 }
900 
901 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
902 {
903 	struct file *filp = lo->lo_backing_file;
904 	gfp_t gfp = lo->old_gfp_mask;
905 
906 	if (lo->lo_state != Lo_bound)
907 		return -ENXIO;
908 
909 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
910 		return -EBUSY;
911 
912 	if (filp == NULL)
913 		return -EINVAL;
914 
915 	spin_lock_irq(&lo->lo_lock);
916 	lo->lo_state = Lo_rundown;
917 	spin_unlock_irq(&lo->lo_lock);
918 
919 	kthread_stop(lo->lo_thread);
920 
921 	lo->lo_queue->unplug_fn = NULL;
922 	lo->lo_backing_file = NULL;
923 
924 	loop_release_xfer(lo);
925 	lo->transfer = NULL;
926 	lo->ioctl = NULL;
927 	lo->lo_device = NULL;
928 	lo->lo_encryption = NULL;
929 	lo->lo_offset = 0;
930 	lo->lo_sizelimit = 0;
931 	lo->lo_encrypt_key_size = 0;
932 	lo->lo_flags = 0;
933 	lo->lo_thread = NULL;
934 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
935 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
936 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
937 	if (bdev)
938 		invalidate_bdev(bdev);
939 	set_capacity(lo->lo_disk, 0);
940 	if (bdev)
941 		bd_set_size(bdev, 0);
942 	mapping_set_gfp_mask(filp->f_mapping, gfp);
943 	lo->lo_state = Lo_unbound;
944 	fput(filp);
945 	/* This is safe: open() is still holding a reference. */
946 	module_put(THIS_MODULE);
947 	if (max_part > 0)
948 		ioctl_by_bdev(bdev, BLKRRPART, 0);
949 	return 0;
950 }
951 
952 static int
953 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
954 {
955 	int err;
956 	struct loop_func_table *xfer;
957 	uid_t uid = current_uid();
958 
959 	if (lo->lo_encrypt_key_size &&
960 	    lo->lo_key_owner != uid &&
961 	    !capable(CAP_SYS_ADMIN))
962 		return -EPERM;
963 	if (lo->lo_state != Lo_bound)
964 		return -ENXIO;
965 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
966 		return -EINVAL;
967 
968 	err = loop_release_xfer(lo);
969 	if (err)
970 		return err;
971 
972 	if (info->lo_encrypt_type) {
973 		unsigned int type = info->lo_encrypt_type;
974 
975 		if (type >= MAX_LO_CRYPT)
976 			return -EINVAL;
977 		xfer = xfer_funcs[type];
978 		if (xfer == NULL)
979 			return -EINVAL;
980 	} else
981 		xfer = NULL;
982 
983 	err = loop_init_xfer(lo, xfer, info);
984 	if (err)
985 		return err;
986 
987 	if (lo->lo_offset != info->lo_offset ||
988 	    lo->lo_sizelimit != info->lo_sizelimit) {
989 		lo->lo_offset = info->lo_offset;
990 		lo->lo_sizelimit = info->lo_sizelimit;
991 		if (figure_loop_size(lo))
992 			return -EFBIG;
993 	}
994 
995 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
996 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
997 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
998 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
999 
1000 	if (!xfer)
1001 		xfer = &none_funcs;
1002 	lo->transfer = xfer->transfer;
1003 	lo->ioctl = xfer->ioctl;
1004 
1005 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1006 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1007 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1008 
1009 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1010 	lo->lo_init[0] = info->lo_init[0];
1011 	lo->lo_init[1] = info->lo_init[1];
1012 	if (info->lo_encrypt_key_size) {
1013 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1014 		       info->lo_encrypt_key_size);
1015 		lo->lo_key_owner = uid;
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 static int
1022 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1023 {
1024 	struct file *file = lo->lo_backing_file;
1025 	struct kstat stat;
1026 	int error;
1027 
1028 	if (lo->lo_state != Lo_bound)
1029 		return -ENXIO;
1030 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1031 	if (error)
1032 		return error;
1033 	memset(info, 0, sizeof(*info));
1034 	info->lo_number = lo->lo_number;
1035 	info->lo_device = huge_encode_dev(stat.dev);
1036 	info->lo_inode = stat.ino;
1037 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1038 	info->lo_offset = lo->lo_offset;
1039 	info->lo_sizelimit = lo->lo_sizelimit;
1040 	info->lo_flags = lo->lo_flags;
1041 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1042 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1043 	info->lo_encrypt_type =
1044 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1045 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1046 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1047 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1048 		       lo->lo_encrypt_key_size);
1049 	}
1050 	return 0;
1051 }
1052 
1053 static void
1054 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1055 {
1056 	memset(info64, 0, sizeof(*info64));
1057 	info64->lo_number = info->lo_number;
1058 	info64->lo_device = info->lo_device;
1059 	info64->lo_inode = info->lo_inode;
1060 	info64->lo_rdevice = info->lo_rdevice;
1061 	info64->lo_offset = info->lo_offset;
1062 	info64->lo_sizelimit = 0;
1063 	info64->lo_encrypt_type = info->lo_encrypt_type;
1064 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1065 	info64->lo_flags = info->lo_flags;
1066 	info64->lo_init[0] = info->lo_init[0];
1067 	info64->lo_init[1] = info->lo_init[1];
1068 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1069 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1070 	else
1071 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1072 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1073 }
1074 
1075 static int
1076 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1077 {
1078 	memset(info, 0, sizeof(*info));
1079 	info->lo_number = info64->lo_number;
1080 	info->lo_device = info64->lo_device;
1081 	info->lo_inode = info64->lo_inode;
1082 	info->lo_rdevice = info64->lo_rdevice;
1083 	info->lo_offset = info64->lo_offset;
1084 	info->lo_encrypt_type = info64->lo_encrypt_type;
1085 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1086 	info->lo_flags = info64->lo_flags;
1087 	info->lo_init[0] = info64->lo_init[0];
1088 	info->lo_init[1] = info64->lo_init[1];
1089 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1090 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1091 	else
1092 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1093 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1094 
1095 	/* error in case values were truncated */
1096 	if (info->lo_device != info64->lo_device ||
1097 	    info->lo_rdevice != info64->lo_rdevice ||
1098 	    info->lo_inode != info64->lo_inode ||
1099 	    info->lo_offset != info64->lo_offset)
1100 		return -EOVERFLOW;
1101 
1102 	return 0;
1103 }
1104 
1105 static int
1106 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1107 {
1108 	struct loop_info info;
1109 	struct loop_info64 info64;
1110 
1111 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1112 		return -EFAULT;
1113 	loop_info64_from_old(&info, &info64);
1114 	return loop_set_status(lo, &info64);
1115 }
1116 
1117 static int
1118 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1119 {
1120 	struct loop_info64 info64;
1121 
1122 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1123 		return -EFAULT;
1124 	return loop_set_status(lo, &info64);
1125 }
1126 
1127 static int
1128 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1129 	struct loop_info info;
1130 	struct loop_info64 info64;
1131 	int err = 0;
1132 
1133 	if (!arg)
1134 		err = -EINVAL;
1135 	if (!err)
1136 		err = loop_get_status(lo, &info64);
1137 	if (!err)
1138 		err = loop_info64_to_old(&info64, &info);
1139 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1140 		err = -EFAULT;
1141 
1142 	return err;
1143 }
1144 
1145 static int
1146 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1147 	struct loop_info64 info64;
1148 	int err = 0;
1149 
1150 	if (!arg)
1151 		err = -EINVAL;
1152 	if (!err)
1153 		err = loop_get_status(lo, &info64);
1154 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1155 		err = -EFAULT;
1156 
1157 	return err;
1158 }
1159 
1160 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1161 	unsigned int cmd, unsigned long arg)
1162 {
1163 	struct loop_device *lo = bdev->bd_disk->private_data;
1164 	int err;
1165 
1166 	mutex_lock(&lo->lo_ctl_mutex);
1167 	switch (cmd) {
1168 	case LOOP_SET_FD:
1169 		err = loop_set_fd(lo, mode, bdev, arg);
1170 		break;
1171 	case LOOP_CHANGE_FD:
1172 		err = loop_change_fd(lo, bdev, arg);
1173 		break;
1174 	case LOOP_CLR_FD:
1175 		err = loop_clr_fd(lo, bdev);
1176 		break;
1177 	case LOOP_SET_STATUS:
1178 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1179 		break;
1180 	case LOOP_GET_STATUS:
1181 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1182 		break;
1183 	case LOOP_SET_STATUS64:
1184 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1185 		break;
1186 	case LOOP_GET_STATUS64:
1187 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1188 		break;
1189 	default:
1190 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1191 	}
1192 	mutex_unlock(&lo->lo_ctl_mutex);
1193 	return err;
1194 }
1195 
1196 #ifdef CONFIG_COMPAT
1197 struct compat_loop_info {
1198 	compat_int_t	lo_number;      /* ioctl r/o */
1199 	compat_dev_t	lo_device;      /* ioctl r/o */
1200 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1201 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1202 	compat_int_t	lo_offset;
1203 	compat_int_t	lo_encrypt_type;
1204 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1205 	compat_int_t	lo_flags;       /* ioctl r/o */
1206 	char		lo_name[LO_NAME_SIZE];
1207 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1208 	compat_ulong_t	lo_init[2];
1209 	char		reserved[4];
1210 };
1211 
1212 /*
1213  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1214  * - noinlined to reduce stack space usage in main part of driver
1215  */
1216 static noinline int
1217 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1218 			struct loop_info64 *info64)
1219 {
1220 	struct compat_loop_info info;
1221 
1222 	if (copy_from_user(&info, arg, sizeof(info)))
1223 		return -EFAULT;
1224 
1225 	memset(info64, 0, sizeof(*info64));
1226 	info64->lo_number = info.lo_number;
1227 	info64->lo_device = info.lo_device;
1228 	info64->lo_inode = info.lo_inode;
1229 	info64->lo_rdevice = info.lo_rdevice;
1230 	info64->lo_offset = info.lo_offset;
1231 	info64->lo_sizelimit = 0;
1232 	info64->lo_encrypt_type = info.lo_encrypt_type;
1233 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1234 	info64->lo_flags = info.lo_flags;
1235 	info64->lo_init[0] = info.lo_init[0];
1236 	info64->lo_init[1] = info.lo_init[1];
1237 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1238 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1239 	else
1240 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1241 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1242 	return 0;
1243 }
1244 
1245 /*
1246  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1247  * - noinlined to reduce stack space usage in main part of driver
1248  */
1249 static noinline int
1250 loop_info64_to_compat(const struct loop_info64 *info64,
1251 		      struct compat_loop_info __user *arg)
1252 {
1253 	struct compat_loop_info info;
1254 
1255 	memset(&info, 0, sizeof(info));
1256 	info.lo_number = info64->lo_number;
1257 	info.lo_device = info64->lo_device;
1258 	info.lo_inode = info64->lo_inode;
1259 	info.lo_rdevice = info64->lo_rdevice;
1260 	info.lo_offset = info64->lo_offset;
1261 	info.lo_encrypt_type = info64->lo_encrypt_type;
1262 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1263 	info.lo_flags = info64->lo_flags;
1264 	info.lo_init[0] = info64->lo_init[0];
1265 	info.lo_init[1] = info64->lo_init[1];
1266 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1267 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1268 	else
1269 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1270 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1271 
1272 	/* error in case values were truncated */
1273 	if (info.lo_device != info64->lo_device ||
1274 	    info.lo_rdevice != info64->lo_rdevice ||
1275 	    info.lo_inode != info64->lo_inode ||
1276 	    info.lo_offset != info64->lo_offset ||
1277 	    info.lo_init[0] != info64->lo_init[0] ||
1278 	    info.lo_init[1] != info64->lo_init[1])
1279 		return -EOVERFLOW;
1280 
1281 	if (copy_to_user(arg, &info, sizeof(info)))
1282 		return -EFAULT;
1283 	return 0;
1284 }
1285 
1286 static int
1287 loop_set_status_compat(struct loop_device *lo,
1288 		       const struct compat_loop_info __user *arg)
1289 {
1290 	struct loop_info64 info64;
1291 	int ret;
1292 
1293 	ret = loop_info64_from_compat(arg, &info64);
1294 	if (ret < 0)
1295 		return ret;
1296 	return loop_set_status(lo, &info64);
1297 }
1298 
1299 static int
1300 loop_get_status_compat(struct loop_device *lo,
1301 		       struct compat_loop_info __user *arg)
1302 {
1303 	struct loop_info64 info64;
1304 	int err = 0;
1305 
1306 	if (!arg)
1307 		err = -EINVAL;
1308 	if (!err)
1309 		err = loop_get_status(lo, &info64);
1310 	if (!err)
1311 		err = loop_info64_to_compat(&info64, arg);
1312 	return err;
1313 }
1314 
1315 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1316 			   unsigned int cmd, unsigned long arg)
1317 {
1318 	struct loop_device *lo = bdev->bd_disk->private_data;
1319 	int err;
1320 
1321 	switch(cmd) {
1322 	case LOOP_SET_STATUS:
1323 		mutex_lock(&lo->lo_ctl_mutex);
1324 		err = loop_set_status_compat(
1325 			lo, (const struct compat_loop_info __user *) arg);
1326 		mutex_unlock(&lo->lo_ctl_mutex);
1327 		break;
1328 	case LOOP_GET_STATUS:
1329 		mutex_lock(&lo->lo_ctl_mutex);
1330 		err = loop_get_status_compat(
1331 			lo, (struct compat_loop_info __user *) arg);
1332 		mutex_unlock(&lo->lo_ctl_mutex);
1333 		break;
1334 	case LOOP_CLR_FD:
1335 	case LOOP_GET_STATUS64:
1336 	case LOOP_SET_STATUS64:
1337 		arg = (unsigned long) compat_ptr(arg);
1338 	case LOOP_SET_FD:
1339 	case LOOP_CHANGE_FD:
1340 		err = lo_ioctl(bdev, mode, cmd, arg);
1341 		break;
1342 	default:
1343 		err = -ENOIOCTLCMD;
1344 		break;
1345 	}
1346 	return err;
1347 }
1348 #endif
1349 
1350 static int lo_open(struct block_device *bdev, fmode_t mode)
1351 {
1352 	struct loop_device *lo = bdev->bd_disk->private_data;
1353 
1354 	mutex_lock(&lo->lo_ctl_mutex);
1355 	lo->lo_refcnt++;
1356 	mutex_unlock(&lo->lo_ctl_mutex);
1357 
1358 	return 0;
1359 }
1360 
1361 static int lo_release(struct gendisk *disk, fmode_t mode)
1362 {
1363 	struct loop_device *lo = disk->private_data;
1364 
1365 	mutex_lock(&lo->lo_ctl_mutex);
1366 
1367 	if (--lo->lo_refcnt)
1368 		goto out;
1369 
1370 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1371 		/*
1372 		 * In autoclear mode, stop the loop thread
1373 		 * and remove configuration after last close.
1374 		 */
1375 		loop_clr_fd(lo, NULL);
1376 	} else {
1377 		/*
1378 		 * Otherwise keep thread (if running) and config,
1379 		 * but flush possible ongoing bios in thread.
1380 		 */
1381 		loop_flush(lo);
1382 	}
1383 
1384 out:
1385 	mutex_unlock(&lo->lo_ctl_mutex);
1386 
1387 	return 0;
1388 }
1389 
1390 static struct block_device_operations lo_fops = {
1391 	.owner =	THIS_MODULE,
1392 	.open =		lo_open,
1393 	.release =	lo_release,
1394 	.ioctl =	lo_ioctl,
1395 #ifdef CONFIG_COMPAT
1396 	.compat_ioctl =	lo_compat_ioctl,
1397 #endif
1398 };
1399 
1400 /*
1401  * And now the modules code and kernel interface.
1402  */
1403 static int max_loop;
1404 module_param(max_loop, int, 0);
1405 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1406 module_param(max_part, int, 0);
1407 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1408 MODULE_LICENSE("GPL");
1409 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1410 
1411 int loop_register_transfer(struct loop_func_table *funcs)
1412 {
1413 	unsigned int n = funcs->number;
1414 
1415 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1416 		return -EINVAL;
1417 	xfer_funcs[n] = funcs;
1418 	return 0;
1419 }
1420 
1421 int loop_unregister_transfer(int number)
1422 {
1423 	unsigned int n = number;
1424 	struct loop_device *lo;
1425 	struct loop_func_table *xfer;
1426 
1427 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1428 		return -EINVAL;
1429 
1430 	xfer_funcs[n] = NULL;
1431 
1432 	list_for_each_entry(lo, &loop_devices, lo_list) {
1433 		mutex_lock(&lo->lo_ctl_mutex);
1434 
1435 		if (lo->lo_encryption == xfer)
1436 			loop_release_xfer(lo);
1437 
1438 		mutex_unlock(&lo->lo_ctl_mutex);
1439 	}
1440 
1441 	return 0;
1442 }
1443 
1444 EXPORT_SYMBOL(loop_register_transfer);
1445 EXPORT_SYMBOL(loop_unregister_transfer);
1446 
1447 static struct loop_device *loop_alloc(int i)
1448 {
1449 	struct loop_device *lo;
1450 	struct gendisk *disk;
1451 
1452 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1453 	if (!lo)
1454 		goto out;
1455 
1456 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1457 	if (!lo->lo_queue)
1458 		goto out_free_dev;
1459 
1460 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1461 	if (!disk)
1462 		goto out_free_queue;
1463 
1464 	mutex_init(&lo->lo_ctl_mutex);
1465 	lo->lo_number		= i;
1466 	lo->lo_thread		= NULL;
1467 	init_waitqueue_head(&lo->lo_event);
1468 	spin_lock_init(&lo->lo_lock);
1469 	disk->major		= LOOP_MAJOR;
1470 	disk->first_minor	= i << part_shift;
1471 	disk->fops		= &lo_fops;
1472 	disk->private_data	= lo;
1473 	disk->queue		= lo->lo_queue;
1474 	sprintf(disk->disk_name, "loop%d", i);
1475 	return lo;
1476 
1477 out_free_queue:
1478 	blk_cleanup_queue(lo->lo_queue);
1479 out_free_dev:
1480 	kfree(lo);
1481 out:
1482 	return NULL;
1483 }
1484 
1485 static void loop_free(struct loop_device *lo)
1486 {
1487 	blk_cleanup_queue(lo->lo_queue);
1488 	put_disk(lo->lo_disk);
1489 	list_del(&lo->lo_list);
1490 	kfree(lo);
1491 }
1492 
1493 static struct loop_device *loop_init_one(int i)
1494 {
1495 	struct loop_device *lo;
1496 
1497 	list_for_each_entry(lo, &loop_devices, lo_list) {
1498 		if (lo->lo_number == i)
1499 			return lo;
1500 	}
1501 
1502 	lo = loop_alloc(i);
1503 	if (lo) {
1504 		add_disk(lo->lo_disk);
1505 		list_add_tail(&lo->lo_list, &loop_devices);
1506 	}
1507 	return lo;
1508 }
1509 
1510 static void loop_del_one(struct loop_device *lo)
1511 {
1512 	del_gendisk(lo->lo_disk);
1513 	loop_free(lo);
1514 }
1515 
1516 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1517 {
1518 	struct loop_device *lo;
1519 	struct kobject *kobj;
1520 
1521 	mutex_lock(&loop_devices_mutex);
1522 	lo = loop_init_one(dev & MINORMASK);
1523 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1524 	mutex_unlock(&loop_devices_mutex);
1525 
1526 	*part = 0;
1527 	return kobj;
1528 }
1529 
1530 static int __init loop_init(void)
1531 {
1532 	int i, nr;
1533 	unsigned long range;
1534 	struct loop_device *lo, *next;
1535 
1536 	/*
1537 	 * loop module now has a feature to instantiate underlying device
1538 	 * structure on-demand, provided that there is an access dev node.
1539 	 * However, this will not work well with user space tool that doesn't
1540 	 * know about such "feature".  In order to not break any existing
1541 	 * tool, we do the following:
1542 	 *
1543 	 * (1) if max_loop is specified, create that many upfront, and this
1544 	 *     also becomes a hard limit.
1545 	 * (2) if max_loop is not specified, create 8 loop device on module
1546 	 *     load, user can further extend loop device by create dev node
1547 	 *     themselves and have kernel automatically instantiate actual
1548 	 *     device on-demand.
1549 	 */
1550 
1551 	part_shift = 0;
1552 	if (max_part > 0)
1553 		part_shift = fls(max_part);
1554 
1555 	if (max_loop > 1UL << (MINORBITS - part_shift))
1556 		return -EINVAL;
1557 
1558 	if (max_loop) {
1559 		nr = max_loop;
1560 		range = max_loop;
1561 	} else {
1562 		nr = 8;
1563 		range = 1UL << (MINORBITS - part_shift);
1564 	}
1565 
1566 	if (register_blkdev(LOOP_MAJOR, "loop"))
1567 		return -EIO;
1568 
1569 	for (i = 0; i < nr; i++) {
1570 		lo = loop_alloc(i);
1571 		if (!lo)
1572 			goto Enomem;
1573 		list_add_tail(&lo->lo_list, &loop_devices);
1574 	}
1575 
1576 	/* point of no return */
1577 
1578 	list_for_each_entry(lo, &loop_devices, lo_list)
1579 		add_disk(lo->lo_disk);
1580 
1581 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1582 				  THIS_MODULE, loop_probe, NULL, NULL);
1583 
1584 	printk(KERN_INFO "loop: module loaded\n");
1585 	return 0;
1586 
1587 Enomem:
1588 	printk(KERN_INFO "loop: out of memory\n");
1589 
1590 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1591 		loop_free(lo);
1592 
1593 	unregister_blkdev(LOOP_MAJOR, "loop");
1594 	return -ENOMEM;
1595 }
1596 
1597 static void __exit loop_exit(void)
1598 {
1599 	unsigned long range;
1600 	struct loop_device *lo, *next;
1601 
1602 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1603 
1604 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1605 		loop_del_one(lo);
1606 
1607 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1608 	unregister_blkdev(LOOP_MAJOR, "loop");
1609 }
1610 
1611 module_init(loop_init);
1612 module_exit(loop_exit);
1613 
1614 #ifndef MODULE
1615 static int __init max_loop_setup(char *str)
1616 {
1617 	max_loop = simple_strtol(str, NULL, 0);
1618 	return 1;
1619 }
1620 
1621 __setup("max_loop=", max_loop_setup);
1622 #endif
1623