1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/smp_lock.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/loop.h> 68 #include <linux/compat.h> 69 #include <linux/suspend.h> 70 #include <linux/freezer.h> 71 #include <linux/writeback.h> 72 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 73 #include <linux/completion.h> 74 #include <linux/highmem.h> 75 #include <linux/gfp.h> 76 #include <linux/kthread.h> 77 #include <linux/splice.h> 78 79 #include <asm/uaccess.h> 80 81 static LIST_HEAD(loop_devices); 82 static DEFINE_MUTEX(loop_devices_mutex); 83 84 static int max_part; 85 static int part_shift; 86 87 /* 88 * Transfer functions 89 */ 90 static int transfer_none(struct loop_device *lo, int cmd, 91 struct page *raw_page, unsigned raw_off, 92 struct page *loop_page, unsigned loop_off, 93 int size, sector_t real_block) 94 { 95 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 96 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 97 98 if (cmd == READ) 99 memcpy(loop_buf, raw_buf, size); 100 else 101 memcpy(raw_buf, loop_buf, size); 102 103 kunmap_atomic(raw_buf, KM_USER0); 104 kunmap_atomic(loop_buf, KM_USER1); 105 cond_resched(); 106 return 0; 107 } 108 109 static int transfer_xor(struct loop_device *lo, int cmd, 110 struct page *raw_page, unsigned raw_off, 111 struct page *loop_page, unsigned loop_off, 112 int size, sector_t real_block) 113 { 114 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 115 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 116 char *in, *out, *key; 117 int i, keysize; 118 119 if (cmd == READ) { 120 in = raw_buf; 121 out = loop_buf; 122 } else { 123 in = loop_buf; 124 out = raw_buf; 125 } 126 127 key = lo->lo_encrypt_key; 128 keysize = lo->lo_encrypt_key_size; 129 for (i = 0; i < size; i++) 130 *out++ = *in++ ^ key[(i & 511) % keysize]; 131 132 kunmap_atomic(raw_buf, KM_USER0); 133 kunmap_atomic(loop_buf, KM_USER1); 134 cond_resched(); 135 return 0; 136 } 137 138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 139 { 140 if (unlikely(info->lo_encrypt_key_size <= 0)) 141 return -EINVAL; 142 return 0; 143 } 144 145 static struct loop_func_table none_funcs = { 146 .number = LO_CRYPT_NONE, 147 .transfer = transfer_none, 148 }; 149 150 static struct loop_func_table xor_funcs = { 151 .number = LO_CRYPT_XOR, 152 .transfer = transfer_xor, 153 .init = xor_init 154 }; 155 156 /* xfer_funcs[0] is special - its release function is never called */ 157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 158 &none_funcs, 159 &xor_funcs 160 }; 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 loff_t size, offset, loopsize; 165 166 /* Compute loopsize in bytes */ 167 size = i_size_read(file->f_mapping->host); 168 offset = lo->lo_offset; 169 loopsize = size - offset; 170 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 171 loopsize = lo->lo_sizelimit; 172 173 /* 174 * Unfortunately, if we want to do I/O on the device, 175 * the number of 512-byte sectors has to fit into a sector_t. 176 */ 177 return loopsize >> 9; 178 } 179 180 static int 181 figure_loop_size(struct loop_device *lo) 182 { 183 loff_t size = get_loop_size(lo, lo->lo_backing_file); 184 sector_t x = (sector_t)size; 185 186 if (unlikely((loff_t)x != size)) 187 return -EFBIG; 188 189 set_capacity(lo->lo_disk, x); 190 return 0; 191 } 192 193 static inline int 194 lo_do_transfer(struct loop_device *lo, int cmd, 195 struct page *rpage, unsigned roffs, 196 struct page *lpage, unsigned loffs, 197 int size, sector_t rblock) 198 { 199 if (unlikely(!lo->transfer)) 200 return 0; 201 202 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 203 } 204 205 /** 206 * do_lo_send_aops - helper for writing data to a loop device 207 * 208 * This is the fast version for backing filesystems which implement the address 209 * space operations write_begin and write_end. 210 */ 211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 212 loff_t pos, struct page *unused) 213 { 214 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 215 struct address_space *mapping = file->f_mapping; 216 pgoff_t index; 217 unsigned offset, bv_offs; 218 int len, ret; 219 220 mutex_lock(&mapping->host->i_mutex); 221 index = pos >> PAGE_CACHE_SHIFT; 222 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 223 bv_offs = bvec->bv_offset; 224 len = bvec->bv_len; 225 while (len > 0) { 226 sector_t IV; 227 unsigned size, copied; 228 int transfer_result; 229 struct page *page; 230 void *fsdata; 231 232 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 233 size = PAGE_CACHE_SIZE - offset; 234 if (size > len) 235 size = len; 236 237 ret = pagecache_write_begin(file, mapping, pos, size, 0, 238 &page, &fsdata); 239 if (ret) 240 goto fail; 241 242 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 243 bvec->bv_page, bv_offs, size, IV); 244 copied = size; 245 if (unlikely(transfer_result)) 246 copied = 0; 247 248 ret = pagecache_write_end(file, mapping, pos, size, copied, 249 page, fsdata); 250 if (ret < 0 || ret != copied) 251 goto fail; 252 253 if (unlikely(transfer_result)) 254 goto fail; 255 256 bv_offs += copied; 257 len -= copied; 258 offset = 0; 259 index++; 260 pos += copied; 261 } 262 ret = 0; 263 out: 264 mutex_unlock(&mapping->host->i_mutex); 265 return ret; 266 fail: 267 ret = -1; 268 goto out; 269 } 270 271 /** 272 * __do_lo_send_write - helper for writing data to a loop device 273 * 274 * This helper just factors out common code between do_lo_send_direct_write() 275 * and do_lo_send_write(). 276 */ 277 static int __do_lo_send_write(struct file *file, 278 u8 *buf, const int len, loff_t pos) 279 { 280 ssize_t bw; 281 mm_segment_t old_fs = get_fs(); 282 283 set_fs(get_ds()); 284 bw = file->f_op->write(file, buf, len, &pos); 285 set_fs(old_fs); 286 if (likely(bw == len)) 287 return 0; 288 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 289 (unsigned long long)pos, len); 290 if (bw >= 0) 291 bw = -EIO; 292 return bw; 293 } 294 295 /** 296 * do_lo_send_direct_write - helper for writing data to a loop device 297 * 298 * This is the fast, non-transforming version for backing filesystems which do 299 * not implement the address space operations write_begin and write_end. 300 * It uses the write file operation which should be present on all writeable 301 * filesystems. 302 */ 303 static int do_lo_send_direct_write(struct loop_device *lo, 304 struct bio_vec *bvec, loff_t pos, struct page *page) 305 { 306 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 307 kmap(bvec->bv_page) + bvec->bv_offset, 308 bvec->bv_len, pos); 309 kunmap(bvec->bv_page); 310 cond_resched(); 311 return bw; 312 } 313 314 /** 315 * do_lo_send_write - helper for writing data to a loop device 316 * 317 * This is the slow, transforming version for filesystems which do not 318 * implement the address space operations write_begin and write_end. It 319 * uses the write file operation which should be present on all writeable 320 * filesystems. 321 * 322 * Using fops->write is slower than using aops->{prepare,commit}_write in the 323 * transforming case because we need to double buffer the data as we cannot do 324 * the transformations in place as we do not have direct access to the 325 * destination pages of the backing file. 326 */ 327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 328 loff_t pos, struct page *page) 329 { 330 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 331 bvec->bv_offset, bvec->bv_len, pos >> 9); 332 if (likely(!ret)) 333 return __do_lo_send_write(lo->lo_backing_file, 334 page_address(page), bvec->bv_len, 335 pos); 336 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 337 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 338 if (ret > 0) 339 ret = -EIO; 340 return ret; 341 } 342 343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 344 { 345 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 346 struct page *page); 347 struct bio_vec *bvec; 348 struct page *page = NULL; 349 int i, ret = 0; 350 351 do_lo_send = do_lo_send_aops; 352 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 353 do_lo_send = do_lo_send_direct_write; 354 if (lo->transfer != transfer_none) { 355 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 356 if (unlikely(!page)) 357 goto fail; 358 kmap(page); 359 do_lo_send = do_lo_send_write; 360 } 361 } 362 bio_for_each_segment(bvec, bio, i) { 363 ret = do_lo_send(lo, bvec, pos, page); 364 if (ret < 0) 365 break; 366 pos += bvec->bv_len; 367 } 368 if (page) { 369 kunmap(page); 370 __free_page(page); 371 } 372 out: 373 return ret; 374 fail: 375 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 376 ret = -ENOMEM; 377 goto out; 378 } 379 380 struct lo_read_data { 381 struct loop_device *lo; 382 struct page *page; 383 unsigned offset; 384 int bsize; 385 }; 386 387 static int 388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 389 struct splice_desc *sd) 390 { 391 struct lo_read_data *p = sd->u.data; 392 struct loop_device *lo = p->lo; 393 struct page *page = buf->page; 394 sector_t IV; 395 int size, ret; 396 397 ret = buf->ops->confirm(pipe, buf); 398 if (unlikely(ret)) 399 return ret; 400 401 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 402 (buf->offset >> 9); 403 size = sd->len; 404 if (size > p->bsize) 405 size = p->bsize; 406 407 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 408 printk(KERN_ERR "loop: transfer error block %ld\n", 409 page->index); 410 size = -EINVAL; 411 } 412 413 flush_dcache_page(p->page); 414 415 if (size > 0) 416 p->offset += size; 417 418 return size; 419 } 420 421 static int 422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 423 { 424 return __splice_from_pipe(pipe, sd, lo_splice_actor); 425 } 426 427 static int 428 do_lo_receive(struct loop_device *lo, 429 struct bio_vec *bvec, int bsize, loff_t pos) 430 { 431 struct lo_read_data cookie; 432 struct splice_desc sd; 433 struct file *file; 434 long retval; 435 436 cookie.lo = lo; 437 cookie.page = bvec->bv_page; 438 cookie.offset = bvec->bv_offset; 439 cookie.bsize = bsize; 440 441 sd.len = 0; 442 sd.total_len = bvec->bv_len; 443 sd.flags = 0; 444 sd.pos = pos; 445 sd.u.data = &cookie; 446 447 file = lo->lo_backing_file; 448 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 449 450 if (retval < 0) 451 return retval; 452 453 return 0; 454 } 455 456 static int 457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 458 { 459 struct bio_vec *bvec; 460 int i, ret = 0; 461 462 bio_for_each_segment(bvec, bio, i) { 463 ret = do_lo_receive(lo, bvec, bsize, pos); 464 if (ret < 0) 465 break; 466 pos += bvec->bv_len; 467 } 468 return ret; 469 } 470 471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 472 { 473 loff_t pos; 474 int ret; 475 476 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 477 if (bio_rw(bio) == WRITE) 478 ret = lo_send(lo, bio, pos); 479 else 480 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 481 return ret; 482 } 483 484 /* 485 * Add bio to back of pending list 486 */ 487 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 488 { 489 if (lo->lo_biotail) { 490 lo->lo_biotail->bi_next = bio; 491 lo->lo_biotail = bio; 492 } else 493 lo->lo_bio = lo->lo_biotail = bio; 494 } 495 496 /* 497 * Grab first pending buffer 498 */ 499 static struct bio *loop_get_bio(struct loop_device *lo) 500 { 501 struct bio *bio; 502 503 if ((bio = lo->lo_bio)) { 504 if (bio == lo->lo_biotail) 505 lo->lo_biotail = NULL; 506 lo->lo_bio = bio->bi_next; 507 bio->bi_next = NULL; 508 } 509 510 return bio; 511 } 512 513 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 514 { 515 struct loop_device *lo = q->queuedata; 516 int rw = bio_rw(old_bio); 517 518 if (rw == READA) 519 rw = READ; 520 521 BUG_ON(!lo || (rw != READ && rw != WRITE)); 522 523 spin_lock_irq(&lo->lo_lock); 524 if (lo->lo_state != Lo_bound) 525 goto out; 526 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 527 goto out; 528 loop_add_bio(lo, old_bio); 529 wake_up(&lo->lo_event); 530 spin_unlock_irq(&lo->lo_lock); 531 return 0; 532 533 out: 534 spin_unlock_irq(&lo->lo_lock); 535 bio_io_error(old_bio); 536 return 0; 537 } 538 539 /* 540 * kick off io on the underlying address space 541 */ 542 static void loop_unplug(struct request_queue *q) 543 { 544 struct loop_device *lo = q->queuedata; 545 546 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 547 blk_run_address_space(lo->lo_backing_file->f_mapping); 548 } 549 550 struct switch_request { 551 struct file *file; 552 struct completion wait; 553 }; 554 555 static void do_loop_switch(struct loop_device *, struct switch_request *); 556 557 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 558 { 559 if (unlikely(!bio->bi_bdev)) { 560 do_loop_switch(lo, bio->bi_private); 561 bio_put(bio); 562 } else { 563 int ret = do_bio_filebacked(lo, bio); 564 bio_endio(bio, ret); 565 } 566 } 567 568 /* 569 * worker thread that handles reads/writes to file backed loop devices, 570 * to avoid blocking in our make_request_fn. it also does loop decrypting 571 * on reads for block backed loop, as that is too heavy to do from 572 * b_end_io context where irqs may be disabled. 573 * 574 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 575 * calling kthread_stop(). Therefore once kthread_should_stop() is 576 * true, make_request will not place any more requests. Therefore 577 * once kthread_should_stop() is true and lo_bio is NULL, we are 578 * done with the loop. 579 */ 580 static int loop_thread(void *data) 581 { 582 struct loop_device *lo = data; 583 struct bio *bio; 584 585 set_user_nice(current, -20); 586 587 while (!kthread_should_stop() || lo->lo_bio) { 588 589 wait_event_interruptible(lo->lo_event, 590 lo->lo_bio || kthread_should_stop()); 591 592 if (!lo->lo_bio) 593 continue; 594 spin_lock_irq(&lo->lo_lock); 595 bio = loop_get_bio(lo); 596 spin_unlock_irq(&lo->lo_lock); 597 598 BUG_ON(!bio); 599 loop_handle_bio(lo, bio); 600 } 601 602 return 0; 603 } 604 605 /* 606 * loop_switch performs the hard work of switching a backing store. 607 * First it needs to flush existing IO, it does this by sending a magic 608 * BIO down the pipe. The completion of this BIO does the actual switch. 609 */ 610 static int loop_switch(struct loop_device *lo, struct file *file) 611 { 612 struct switch_request w; 613 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 614 if (!bio) 615 return -ENOMEM; 616 init_completion(&w.wait); 617 w.file = file; 618 bio->bi_private = &w; 619 bio->bi_bdev = NULL; 620 loop_make_request(lo->lo_queue, bio); 621 wait_for_completion(&w.wait); 622 return 0; 623 } 624 625 /* 626 * Helper to flush the IOs in loop, but keeping loop thread running 627 */ 628 static int loop_flush(struct loop_device *lo) 629 { 630 /* loop not yet configured, no running thread, nothing to flush */ 631 if (!lo->lo_thread) 632 return 0; 633 634 return loop_switch(lo, NULL); 635 } 636 637 /* 638 * Do the actual switch; called from the BIO completion routine 639 */ 640 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 641 { 642 struct file *file = p->file; 643 struct file *old_file = lo->lo_backing_file; 644 struct address_space *mapping; 645 646 /* if no new file, only flush of queued bios requested */ 647 if (!file) 648 goto out; 649 650 mapping = file->f_mapping; 651 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 652 lo->lo_backing_file = file; 653 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 654 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 655 lo->old_gfp_mask = mapping_gfp_mask(mapping); 656 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 657 out: 658 complete(&p->wait); 659 } 660 661 662 /* 663 * loop_change_fd switched the backing store of a loopback device to 664 * a new file. This is useful for operating system installers to free up 665 * the original file and in High Availability environments to switch to 666 * an alternative location for the content in case of server meltdown. 667 * This can only work if the loop device is used read-only, and if the 668 * new backing store is the same size and type as the old backing store. 669 */ 670 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 671 unsigned int arg) 672 { 673 struct file *file, *old_file; 674 struct inode *inode; 675 int error; 676 677 error = -ENXIO; 678 if (lo->lo_state != Lo_bound) 679 goto out; 680 681 /* the loop device has to be read-only */ 682 error = -EINVAL; 683 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 684 goto out; 685 686 error = -EBADF; 687 file = fget(arg); 688 if (!file) 689 goto out; 690 691 inode = file->f_mapping->host; 692 old_file = lo->lo_backing_file; 693 694 error = -EINVAL; 695 696 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 697 goto out_putf; 698 699 /* new backing store needs to support loop (eg splice_read) */ 700 if (!inode->i_fop->splice_read) 701 goto out_putf; 702 703 /* size of the new backing store needs to be the same */ 704 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 705 goto out_putf; 706 707 /* and ... switch */ 708 error = loop_switch(lo, file); 709 if (error) 710 goto out_putf; 711 712 fput(old_file); 713 if (max_part > 0) 714 ioctl_by_bdev(bdev, BLKRRPART, 0); 715 return 0; 716 717 out_putf: 718 fput(file); 719 out: 720 return error; 721 } 722 723 static inline int is_loop_device(struct file *file) 724 { 725 struct inode *i = file->f_mapping->host; 726 727 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 728 } 729 730 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 731 struct block_device *bdev, unsigned int arg) 732 { 733 struct file *file, *f; 734 struct inode *inode; 735 struct address_space *mapping; 736 unsigned lo_blocksize; 737 int lo_flags = 0; 738 int error; 739 loff_t size; 740 741 /* This is safe, since we have a reference from open(). */ 742 __module_get(THIS_MODULE); 743 744 error = -EBADF; 745 file = fget(arg); 746 if (!file) 747 goto out; 748 749 error = -EBUSY; 750 if (lo->lo_state != Lo_unbound) 751 goto out_putf; 752 753 /* Avoid recursion */ 754 f = file; 755 while (is_loop_device(f)) { 756 struct loop_device *l; 757 758 if (f->f_mapping->host->i_bdev == bdev) 759 goto out_putf; 760 761 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 762 if (l->lo_state == Lo_unbound) { 763 error = -EINVAL; 764 goto out_putf; 765 } 766 f = l->lo_backing_file; 767 } 768 769 mapping = file->f_mapping; 770 inode = mapping->host; 771 772 if (!(file->f_mode & FMODE_WRITE)) 773 lo_flags |= LO_FLAGS_READ_ONLY; 774 775 error = -EINVAL; 776 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 777 const struct address_space_operations *aops = mapping->a_ops; 778 /* 779 * If we can't read - sorry. If we only can't write - well, 780 * it's going to be read-only. 781 */ 782 if (!file->f_op->splice_read) 783 goto out_putf; 784 if (aops->write_begin) 785 lo_flags |= LO_FLAGS_USE_AOPS; 786 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 787 lo_flags |= LO_FLAGS_READ_ONLY; 788 789 lo_blocksize = S_ISBLK(inode->i_mode) ? 790 inode->i_bdev->bd_block_size : PAGE_SIZE; 791 792 error = 0; 793 } else { 794 goto out_putf; 795 } 796 797 size = get_loop_size(lo, file); 798 799 if ((loff_t)(sector_t)size != size) { 800 error = -EFBIG; 801 goto out_putf; 802 } 803 804 if (!(mode & FMODE_WRITE)) 805 lo_flags |= LO_FLAGS_READ_ONLY; 806 807 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 808 809 lo->lo_blocksize = lo_blocksize; 810 lo->lo_device = bdev; 811 lo->lo_flags = lo_flags; 812 lo->lo_backing_file = file; 813 lo->transfer = transfer_none; 814 lo->ioctl = NULL; 815 lo->lo_sizelimit = 0; 816 lo->old_gfp_mask = mapping_gfp_mask(mapping); 817 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 818 819 lo->lo_bio = lo->lo_biotail = NULL; 820 821 /* 822 * set queue make_request_fn, and add limits based on lower level 823 * device 824 */ 825 blk_queue_make_request(lo->lo_queue, loop_make_request); 826 lo->lo_queue->queuedata = lo; 827 lo->lo_queue->unplug_fn = loop_unplug; 828 829 set_capacity(lo->lo_disk, size); 830 bd_set_size(bdev, size << 9); 831 832 set_blocksize(bdev, lo_blocksize); 833 834 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 835 lo->lo_number); 836 if (IS_ERR(lo->lo_thread)) { 837 error = PTR_ERR(lo->lo_thread); 838 goto out_clr; 839 } 840 lo->lo_state = Lo_bound; 841 wake_up_process(lo->lo_thread); 842 if (max_part > 0) 843 ioctl_by_bdev(bdev, BLKRRPART, 0); 844 return 0; 845 846 out_clr: 847 lo->lo_thread = NULL; 848 lo->lo_device = NULL; 849 lo->lo_backing_file = NULL; 850 lo->lo_flags = 0; 851 set_capacity(lo->lo_disk, 0); 852 invalidate_bdev(bdev); 853 bd_set_size(bdev, 0); 854 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 855 lo->lo_state = Lo_unbound; 856 out_putf: 857 fput(file); 858 out: 859 /* This is safe: open() is still holding a reference. */ 860 module_put(THIS_MODULE); 861 return error; 862 } 863 864 static int 865 loop_release_xfer(struct loop_device *lo) 866 { 867 int err = 0; 868 struct loop_func_table *xfer = lo->lo_encryption; 869 870 if (xfer) { 871 if (xfer->release) 872 err = xfer->release(lo); 873 lo->transfer = NULL; 874 lo->lo_encryption = NULL; 875 module_put(xfer->owner); 876 } 877 return err; 878 } 879 880 static int 881 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 882 const struct loop_info64 *i) 883 { 884 int err = 0; 885 886 if (xfer) { 887 struct module *owner = xfer->owner; 888 889 if (!try_module_get(owner)) 890 return -EINVAL; 891 if (xfer->init) 892 err = xfer->init(lo, i); 893 if (err) 894 module_put(owner); 895 else 896 lo->lo_encryption = xfer; 897 } 898 return err; 899 } 900 901 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 902 { 903 struct file *filp = lo->lo_backing_file; 904 gfp_t gfp = lo->old_gfp_mask; 905 906 if (lo->lo_state != Lo_bound) 907 return -ENXIO; 908 909 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 910 return -EBUSY; 911 912 if (filp == NULL) 913 return -EINVAL; 914 915 spin_lock_irq(&lo->lo_lock); 916 lo->lo_state = Lo_rundown; 917 spin_unlock_irq(&lo->lo_lock); 918 919 kthread_stop(lo->lo_thread); 920 921 lo->lo_queue->unplug_fn = NULL; 922 lo->lo_backing_file = NULL; 923 924 loop_release_xfer(lo); 925 lo->transfer = NULL; 926 lo->ioctl = NULL; 927 lo->lo_device = NULL; 928 lo->lo_encryption = NULL; 929 lo->lo_offset = 0; 930 lo->lo_sizelimit = 0; 931 lo->lo_encrypt_key_size = 0; 932 lo->lo_flags = 0; 933 lo->lo_thread = NULL; 934 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 935 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 936 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 937 if (bdev) 938 invalidate_bdev(bdev); 939 set_capacity(lo->lo_disk, 0); 940 if (bdev) 941 bd_set_size(bdev, 0); 942 mapping_set_gfp_mask(filp->f_mapping, gfp); 943 lo->lo_state = Lo_unbound; 944 fput(filp); 945 /* This is safe: open() is still holding a reference. */ 946 module_put(THIS_MODULE); 947 if (max_part > 0) 948 ioctl_by_bdev(bdev, BLKRRPART, 0); 949 return 0; 950 } 951 952 static int 953 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 954 { 955 int err; 956 struct loop_func_table *xfer; 957 uid_t uid = current_uid(); 958 959 if (lo->lo_encrypt_key_size && 960 lo->lo_key_owner != uid && 961 !capable(CAP_SYS_ADMIN)) 962 return -EPERM; 963 if (lo->lo_state != Lo_bound) 964 return -ENXIO; 965 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 966 return -EINVAL; 967 968 err = loop_release_xfer(lo); 969 if (err) 970 return err; 971 972 if (info->lo_encrypt_type) { 973 unsigned int type = info->lo_encrypt_type; 974 975 if (type >= MAX_LO_CRYPT) 976 return -EINVAL; 977 xfer = xfer_funcs[type]; 978 if (xfer == NULL) 979 return -EINVAL; 980 } else 981 xfer = NULL; 982 983 err = loop_init_xfer(lo, xfer, info); 984 if (err) 985 return err; 986 987 if (lo->lo_offset != info->lo_offset || 988 lo->lo_sizelimit != info->lo_sizelimit) { 989 lo->lo_offset = info->lo_offset; 990 lo->lo_sizelimit = info->lo_sizelimit; 991 if (figure_loop_size(lo)) 992 return -EFBIG; 993 } 994 995 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 996 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 997 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 998 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 999 1000 if (!xfer) 1001 xfer = &none_funcs; 1002 lo->transfer = xfer->transfer; 1003 lo->ioctl = xfer->ioctl; 1004 1005 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1006 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1007 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1008 1009 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1010 lo->lo_init[0] = info->lo_init[0]; 1011 lo->lo_init[1] = info->lo_init[1]; 1012 if (info->lo_encrypt_key_size) { 1013 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1014 info->lo_encrypt_key_size); 1015 lo->lo_key_owner = uid; 1016 } 1017 1018 return 0; 1019 } 1020 1021 static int 1022 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1023 { 1024 struct file *file = lo->lo_backing_file; 1025 struct kstat stat; 1026 int error; 1027 1028 if (lo->lo_state != Lo_bound) 1029 return -ENXIO; 1030 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1031 if (error) 1032 return error; 1033 memset(info, 0, sizeof(*info)); 1034 info->lo_number = lo->lo_number; 1035 info->lo_device = huge_encode_dev(stat.dev); 1036 info->lo_inode = stat.ino; 1037 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1038 info->lo_offset = lo->lo_offset; 1039 info->lo_sizelimit = lo->lo_sizelimit; 1040 info->lo_flags = lo->lo_flags; 1041 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1042 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1043 info->lo_encrypt_type = 1044 lo->lo_encryption ? lo->lo_encryption->number : 0; 1045 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1046 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1047 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1048 lo->lo_encrypt_key_size); 1049 } 1050 return 0; 1051 } 1052 1053 static void 1054 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1055 { 1056 memset(info64, 0, sizeof(*info64)); 1057 info64->lo_number = info->lo_number; 1058 info64->lo_device = info->lo_device; 1059 info64->lo_inode = info->lo_inode; 1060 info64->lo_rdevice = info->lo_rdevice; 1061 info64->lo_offset = info->lo_offset; 1062 info64->lo_sizelimit = 0; 1063 info64->lo_encrypt_type = info->lo_encrypt_type; 1064 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1065 info64->lo_flags = info->lo_flags; 1066 info64->lo_init[0] = info->lo_init[0]; 1067 info64->lo_init[1] = info->lo_init[1]; 1068 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1069 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1070 else 1071 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1072 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1073 } 1074 1075 static int 1076 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1077 { 1078 memset(info, 0, sizeof(*info)); 1079 info->lo_number = info64->lo_number; 1080 info->lo_device = info64->lo_device; 1081 info->lo_inode = info64->lo_inode; 1082 info->lo_rdevice = info64->lo_rdevice; 1083 info->lo_offset = info64->lo_offset; 1084 info->lo_encrypt_type = info64->lo_encrypt_type; 1085 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1086 info->lo_flags = info64->lo_flags; 1087 info->lo_init[0] = info64->lo_init[0]; 1088 info->lo_init[1] = info64->lo_init[1]; 1089 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1090 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1091 else 1092 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1093 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1094 1095 /* error in case values were truncated */ 1096 if (info->lo_device != info64->lo_device || 1097 info->lo_rdevice != info64->lo_rdevice || 1098 info->lo_inode != info64->lo_inode || 1099 info->lo_offset != info64->lo_offset) 1100 return -EOVERFLOW; 1101 1102 return 0; 1103 } 1104 1105 static int 1106 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1107 { 1108 struct loop_info info; 1109 struct loop_info64 info64; 1110 1111 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1112 return -EFAULT; 1113 loop_info64_from_old(&info, &info64); 1114 return loop_set_status(lo, &info64); 1115 } 1116 1117 static int 1118 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1119 { 1120 struct loop_info64 info64; 1121 1122 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1123 return -EFAULT; 1124 return loop_set_status(lo, &info64); 1125 } 1126 1127 static int 1128 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1129 struct loop_info info; 1130 struct loop_info64 info64; 1131 int err = 0; 1132 1133 if (!arg) 1134 err = -EINVAL; 1135 if (!err) 1136 err = loop_get_status(lo, &info64); 1137 if (!err) 1138 err = loop_info64_to_old(&info64, &info); 1139 if (!err && copy_to_user(arg, &info, sizeof(info))) 1140 err = -EFAULT; 1141 1142 return err; 1143 } 1144 1145 static int 1146 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1147 struct loop_info64 info64; 1148 int err = 0; 1149 1150 if (!arg) 1151 err = -EINVAL; 1152 if (!err) 1153 err = loop_get_status(lo, &info64); 1154 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1155 err = -EFAULT; 1156 1157 return err; 1158 } 1159 1160 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1161 unsigned int cmd, unsigned long arg) 1162 { 1163 struct loop_device *lo = bdev->bd_disk->private_data; 1164 int err; 1165 1166 mutex_lock(&lo->lo_ctl_mutex); 1167 switch (cmd) { 1168 case LOOP_SET_FD: 1169 err = loop_set_fd(lo, mode, bdev, arg); 1170 break; 1171 case LOOP_CHANGE_FD: 1172 err = loop_change_fd(lo, bdev, arg); 1173 break; 1174 case LOOP_CLR_FD: 1175 err = loop_clr_fd(lo, bdev); 1176 break; 1177 case LOOP_SET_STATUS: 1178 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1179 break; 1180 case LOOP_GET_STATUS: 1181 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1182 break; 1183 case LOOP_SET_STATUS64: 1184 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1185 break; 1186 case LOOP_GET_STATUS64: 1187 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1188 break; 1189 default: 1190 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1191 } 1192 mutex_unlock(&lo->lo_ctl_mutex); 1193 return err; 1194 } 1195 1196 #ifdef CONFIG_COMPAT 1197 struct compat_loop_info { 1198 compat_int_t lo_number; /* ioctl r/o */ 1199 compat_dev_t lo_device; /* ioctl r/o */ 1200 compat_ulong_t lo_inode; /* ioctl r/o */ 1201 compat_dev_t lo_rdevice; /* ioctl r/o */ 1202 compat_int_t lo_offset; 1203 compat_int_t lo_encrypt_type; 1204 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1205 compat_int_t lo_flags; /* ioctl r/o */ 1206 char lo_name[LO_NAME_SIZE]; 1207 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1208 compat_ulong_t lo_init[2]; 1209 char reserved[4]; 1210 }; 1211 1212 /* 1213 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1214 * - noinlined to reduce stack space usage in main part of driver 1215 */ 1216 static noinline int 1217 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1218 struct loop_info64 *info64) 1219 { 1220 struct compat_loop_info info; 1221 1222 if (copy_from_user(&info, arg, sizeof(info))) 1223 return -EFAULT; 1224 1225 memset(info64, 0, sizeof(*info64)); 1226 info64->lo_number = info.lo_number; 1227 info64->lo_device = info.lo_device; 1228 info64->lo_inode = info.lo_inode; 1229 info64->lo_rdevice = info.lo_rdevice; 1230 info64->lo_offset = info.lo_offset; 1231 info64->lo_sizelimit = 0; 1232 info64->lo_encrypt_type = info.lo_encrypt_type; 1233 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1234 info64->lo_flags = info.lo_flags; 1235 info64->lo_init[0] = info.lo_init[0]; 1236 info64->lo_init[1] = info.lo_init[1]; 1237 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1238 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1239 else 1240 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1241 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1242 return 0; 1243 } 1244 1245 /* 1246 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1247 * - noinlined to reduce stack space usage in main part of driver 1248 */ 1249 static noinline int 1250 loop_info64_to_compat(const struct loop_info64 *info64, 1251 struct compat_loop_info __user *arg) 1252 { 1253 struct compat_loop_info info; 1254 1255 memset(&info, 0, sizeof(info)); 1256 info.lo_number = info64->lo_number; 1257 info.lo_device = info64->lo_device; 1258 info.lo_inode = info64->lo_inode; 1259 info.lo_rdevice = info64->lo_rdevice; 1260 info.lo_offset = info64->lo_offset; 1261 info.lo_encrypt_type = info64->lo_encrypt_type; 1262 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1263 info.lo_flags = info64->lo_flags; 1264 info.lo_init[0] = info64->lo_init[0]; 1265 info.lo_init[1] = info64->lo_init[1]; 1266 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1267 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1268 else 1269 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1270 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1271 1272 /* error in case values were truncated */ 1273 if (info.lo_device != info64->lo_device || 1274 info.lo_rdevice != info64->lo_rdevice || 1275 info.lo_inode != info64->lo_inode || 1276 info.lo_offset != info64->lo_offset || 1277 info.lo_init[0] != info64->lo_init[0] || 1278 info.lo_init[1] != info64->lo_init[1]) 1279 return -EOVERFLOW; 1280 1281 if (copy_to_user(arg, &info, sizeof(info))) 1282 return -EFAULT; 1283 return 0; 1284 } 1285 1286 static int 1287 loop_set_status_compat(struct loop_device *lo, 1288 const struct compat_loop_info __user *arg) 1289 { 1290 struct loop_info64 info64; 1291 int ret; 1292 1293 ret = loop_info64_from_compat(arg, &info64); 1294 if (ret < 0) 1295 return ret; 1296 return loop_set_status(lo, &info64); 1297 } 1298 1299 static int 1300 loop_get_status_compat(struct loop_device *lo, 1301 struct compat_loop_info __user *arg) 1302 { 1303 struct loop_info64 info64; 1304 int err = 0; 1305 1306 if (!arg) 1307 err = -EINVAL; 1308 if (!err) 1309 err = loop_get_status(lo, &info64); 1310 if (!err) 1311 err = loop_info64_to_compat(&info64, arg); 1312 return err; 1313 } 1314 1315 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1316 unsigned int cmd, unsigned long arg) 1317 { 1318 struct loop_device *lo = bdev->bd_disk->private_data; 1319 int err; 1320 1321 switch(cmd) { 1322 case LOOP_SET_STATUS: 1323 mutex_lock(&lo->lo_ctl_mutex); 1324 err = loop_set_status_compat( 1325 lo, (const struct compat_loop_info __user *) arg); 1326 mutex_unlock(&lo->lo_ctl_mutex); 1327 break; 1328 case LOOP_GET_STATUS: 1329 mutex_lock(&lo->lo_ctl_mutex); 1330 err = loop_get_status_compat( 1331 lo, (struct compat_loop_info __user *) arg); 1332 mutex_unlock(&lo->lo_ctl_mutex); 1333 break; 1334 case LOOP_CLR_FD: 1335 case LOOP_GET_STATUS64: 1336 case LOOP_SET_STATUS64: 1337 arg = (unsigned long) compat_ptr(arg); 1338 case LOOP_SET_FD: 1339 case LOOP_CHANGE_FD: 1340 err = lo_ioctl(bdev, mode, cmd, arg); 1341 break; 1342 default: 1343 err = -ENOIOCTLCMD; 1344 break; 1345 } 1346 return err; 1347 } 1348 #endif 1349 1350 static int lo_open(struct block_device *bdev, fmode_t mode) 1351 { 1352 struct loop_device *lo = bdev->bd_disk->private_data; 1353 1354 mutex_lock(&lo->lo_ctl_mutex); 1355 lo->lo_refcnt++; 1356 mutex_unlock(&lo->lo_ctl_mutex); 1357 1358 return 0; 1359 } 1360 1361 static int lo_release(struct gendisk *disk, fmode_t mode) 1362 { 1363 struct loop_device *lo = disk->private_data; 1364 1365 mutex_lock(&lo->lo_ctl_mutex); 1366 1367 if (--lo->lo_refcnt) 1368 goto out; 1369 1370 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1371 /* 1372 * In autoclear mode, stop the loop thread 1373 * and remove configuration after last close. 1374 */ 1375 loop_clr_fd(lo, NULL); 1376 } else { 1377 /* 1378 * Otherwise keep thread (if running) and config, 1379 * but flush possible ongoing bios in thread. 1380 */ 1381 loop_flush(lo); 1382 } 1383 1384 out: 1385 mutex_unlock(&lo->lo_ctl_mutex); 1386 1387 return 0; 1388 } 1389 1390 static struct block_device_operations lo_fops = { 1391 .owner = THIS_MODULE, 1392 .open = lo_open, 1393 .release = lo_release, 1394 .ioctl = lo_ioctl, 1395 #ifdef CONFIG_COMPAT 1396 .compat_ioctl = lo_compat_ioctl, 1397 #endif 1398 }; 1399 1400 /* 1401 * And now the modules code and kernel interface. 1402 */ 1403 static int max_loop; 1404 module_param(max_loop, int, 0); 1405 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1406 module_param(max_part, int, 0); 1407 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1408 MODULE_LICENSE("GPL"); 1409 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1410 1411 int loop_register_transfer(struct loop_func_table *funcs) 1412 { 1413 unsigned int n = funcs->number; 1414 1415 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1416 return -EINVAL; 1417 xfer_funcs[n] = funcs; 1418 return 0; 1419 } 1420 1421 int loop_unregister_transfer(int number) 1422 { 1423 unsigned int n = number; 1424 struct loop_device *lo; 1425 struct loop_func_table *xfer; 1426 1427 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1428 return -EINVAL; 1429 1430 xfer_funcs[n] = NULL; 1431 1432 list_for_each_entry(lo, &loop_devices, lo_list) { 1433 mutex_lock(&lo->lo_ctl_mutex); 1434 1435 if (lo->lo_encryption == xfer) 1436 loop_release_xfer(lo); 1437 1438 mutex_unlock(&lo->lo_ctl_mutex); 1439 } 1440 1441 return 0; 1442 } 1443 1444 EXPORT_SYMBOL(loop_register_transfer); 1445 EXPORT_SYMBOL(loop_unregister_transfer); 1446 1447 static struct loop_device *loop_alloc(int i) 1448 { 1449 struct loop_device *lo; 1450 struct gendisk *disk; 1451 1452 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1453 if (!lo) 1454 goto out; 1455 1456 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1457 if (!lo->lo_queue) 1458 goto out_free_dev; 1459 1460 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1461 if (!disk) 1462 goto out_free_queue; 1463 1464 mutex_init(&lo->lo_ctl_mutex); 1465 lo->lo_number = i; 1466 lo->lo_thread = NULL; 1467 init_waitqueue_head(&lo->lo_event); 1468 spin_lock_init(&lo->lo_lock); 1469 disk->major = LOOP_MAJOR; 1470 disk->first_minor = i << part_shift; 1471 disk->fops = &lo_fops; 1472 disk->private_data = lo; 1473 disk->queue = lo->lo_queue; 1474 sprintf(disk->disk_name, "loop%d", i); 1475 return lo; 1476 1477 out_free_queue: 1478 blk_cleanup_queue(lo->lo_queue); 1479 out_free_dev: 1480 kfree(lo); 1481 out: 1482 return NULL; 1483 } 1484 1485 static void loop_free(struct loop_device *lo) 1486 { 1487 blk_cleanup_queue(lo->lo_queue); 1488 put_disk(lo->lo_disk); 1489 list_del(&lo->lo_list); 1490 kfree(lo); 1491 } 1492 1493 static struct loop_device *loop_init_one(int i) 1494 { 1495 struct loop_device *lo; 1496 1497 list_for_each_entry(lo, &loop_devices, lo_list) { 1498 if (lo->lo_number == i) 1499 return lo; 1500 } 1501 1502 lo = loop_alloc(i); 1503 if (lo) { 1504 add_disk(lo->lo_disk); 1505 list_add_tail(&lo->lo_list, &loop_devices); 1506 } 1507 return lo; 1508 } 1509 1510 static void loop_del_one(struct loop_device *lo) 1511 { 1512 del_gendisk(lo->lo_disk); 1513 loop_free(lo); 1514 } 1515 1516 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1517 { 1518 struct loop_device *lo; 1519 struct kobject *kobj; 1520 1521 mutex_lock(&loop_devices_mutex); 1522 lo = loop_init_one(dev & MINORMASK); 1523 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1524 mutex_unlock(&loop_devices_mutex); 1525 1526 *part = 0; 1527 return kobj; 1528 } 1529 1530 static int __init loop_init(void) 1531 { 1532 int i, nr; 1533 unsigned long range; 1534 struct loop_device *lo, *next; 1535 1536 /* 1537 * loop module now has a feature to instantiate underlying device 1538 * structure on-demand, provided that there is an access dev node. 1539 * However, this will not work well with user space tool that doesn't 1540 * know about such "feature". In order to not break any existing 1541 * tool, we do the following: 1542 * 1543 * (1) if max_loop is specified, create that many upfront, and this 1544 * also becomes a hard limit. 1545 * (2) if max_loop is not specified, create 8 loop device on module 1546 * load, user can further extend loop device by create dev node 1547 * themselves and have kernel automatically instantiate actual 1548 * device on-demand. 1549 */ 1550 1551 part_shift = 0; 1552 if (max_part > 0) 1553 part_shift = fls(max_part); 1554 1555 if (max_loop > 1UL << (MINORBITS - part_shift)) 1556 return -EINVAL; 1557 1558 if (max_loop) { 1559 nr = max_loop; 1560 range = max_loop; 1561 } else { 1562 nr = 8; 1563 range = 1UL << (MINORBITS - part_shift); 1564 } 1565 1566 if (register_blkdev(LOOP_MAJOR, "loop")) 1567 return -EIO; 1568 1569 for (i = 0; i < nr; i++) { 1570 lo = loop_alloc(i); 1571 if (!lo) 1572 goto Enomem; 1573 list_add_tail(&lo->lo_list, &loop_devices); 1574 } 1575 1576 /* point of no return */ 1577 1578 list_for_each_entry(lo, &loop_devices, lo_list) 1579 add_disk(lo->lo_disk); 1580 1581 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1582 THIS_MODULE, loop_probe, NULL, NULL); 1583 1584 printk(KERN_INFO "loop: module loaded\n"); 1585 return 0; 1586 1587 Enomem: 1588 printk(KERN_INFO "loop: out of memory\n"); 1589 1590 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1591 loop_free(lo); 1592 1593 unregister_blkdev(LOOP_MAJOR, "loop"); 1594 return -ENOMEM; 1595 } 1596 1597 static void __exit loop_exit(void) 1598 { 1599 unsigned long range; 1600 struct loop_device *lo, *next; 1601 1602 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1603 1604 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1605 loop_del_one(lo); 1606 1607 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1608 unregister_blkdev(LOOP_MAJOR, "loop"); 1609 } 1610 1611 module_init(loop_init); 1612 module_exit(loop_exit); 1613 1614 #ifndef MODULE 1615 static int __init max_loop_setup(char *str) 1616 { 1617 max_loop = simple_strtol(str, NULL, 0); 1618 return 1; 1619 } 1620 1621 __setup("max_loop=", max_loop_setup); 1622 #endif 1623