1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 141 { 142 loff_t loopsize; 143 144 /* Compute loopsize in bytes */ 145 loopsize = i_size_read(file->f_mapping->host); 146 if (offset > 0) 147 loopsize -= offset; 148 /* offset is beyond i_size, weird but possible */ 149 if (loopsize < 0) 150 return 0; 151 152 if (sizelimit > 0 && sizelimit < loopsize) 153 loopsize = sizelimit; 154 /* 155 * Unfortunately, if we want to do I/O on the device, 156 * the number of 512-byte sectors has to fit into a sector_t. 157 */ 158 return loopsize >> 9; 159 } 160 161 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 162 { 163 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 164 } 165 166 /* 167 * We support direct I/O only if lo_offset is aligned with the logical I/O size 168 * of backing device, and the logical block size of loop is bigger than that of 169 * the backing device. 170 */ 171 static bool lo_can_use_dio(struct loop_device *lo) 172 { 173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 174 return false; 175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 176 return false; 177 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 178 return false; 179 return true; 180 } 181 182 /* 183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 185 * disabled when the device block size is too small or the offset is unaligned. 186 * 187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 188 * not the originally passed in one. 189 */ 190 static inline void loop_update_dio(struct loop_device *lo) 191 { 192 lockdep_assert_held(&lo->lo_mutex); 193 WARN_ON_ONCE(lo->lo_state == Lo_bound && 194 lo->lo_queue->mq_freeze_depth == 0); 195 196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 198 } 199 200 /** 201 * loop_set_size() - sets device size and notifies userspace 202 * @lo: struct loop_device to set the size for 203 * @size: new size of the loop device 204 * 205 * Callers must validate that the size passed into this function fits into 206 * a sector_t, eg using loop_validate_size() 207 */ 208 static void loop_set_size(struct loop_device *lo, loff_t size) 209 { 210 if (!set_capacity_and_notify(lo->lo_disk, size)) 211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 212 } 213 214 static void loop_clear_limits(struct loop_device *lo, int mode) 215 { 216 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 217 218 if (mode & FALLOC_FL_ZERO_RANGE) 219 lim.max_write_zeroes_sectors = 0; 220 221 if (mode & FALLOC_FL_PUNCH_HOLE) { 222 lim.max_hw_discard_sectors = 0; 223 lim.discard_granularity = 0; 224 } 225 226 /* 227 * XXX: this updates the queue limits without freezing the queue, which 228 * is against the locking protocol and dangerous. But we can't just 229 * freeze the queue as we're inside the ->queue_rq method here. So this 230 * should move out into a workqueue unless we get the file operations to 231 * advertise if they support specific fallocate operations. 232 */ 233 queue_limits_commit_update(lo->lo_queue, &lim); 234 } 235 236 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 237 int mode) 238 { 239 /* 240 * We use fallocate to manipulate the space mappings used by the image 241 * a.k.a. discard/zerorange. 242 */ 243 struct file *file = lo->lo_backing_file; 244 int ret; 245 246 mode |= FALLOC_FL_KEEP_SIZE; 247 248 if (!bdev_max_discard_sectors(lo->lo_device)) 249 return -EOPNOTSUPP; 250 251 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 252 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 253 return -EIO; 254 255 /* 256 * We initially configure the limits in a hope that fallocate is 257 * supported and clear them here if that turns out not to be true. 258 */ 259 if (unlikely(ret == -EOPNOTSUPP)) 260 loop_clear_limits(lo, mode); 261 262 return ret; 263 } 264 265 static int lo_req_flush(struct loop_device *lo, struct request *rq) 266 { 267 int ret = vfs_fsync(lo->lo_backing_file, 0); 268 if (unlikely(ret && ret != -EINVAL)) 269 ret = -EIO; 270 271 return ret; 272 } 273 274 static void lo_complete_rq(struct request *rq) 275 { 276 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 277 blk_status_t ret = BLK_STS_OK; 278 279 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 280 req_op(rq) != REQ_OP_READ) { 281 if (cmd->ret < 0) 282 ret = errno_to_blk_status(cmd->ret); 283 goto end_io; 284 } 285 286 /* 287 * Short READ - if we got some data, advance our request and 288 * retry it. If we got no data, end the rest with EIO. 289 */ 290 if (cmd->ret) { 291 blk_update_request(rq, BLK_STS_OK, cmd->ret); 292 cmd->ret = 0; 293 blk_mq_requeue_request(rq, true); 294 } else { 295 struct bio *bio = rq->bio; 296 297 while (bio) { 298 zero_fill_bio(bio); 299 bio = bio->bi_next; 300 } 301 302 ret = BLK_STS_IOERR; 303 end_io: 304 blk_mq_end_request(rq, ret); 305 } 306 } 307 308 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 309 { 310 struct request *rq = blk_mq_rq_from_pdu(cmd); 311 312 if (!atomic_dec_and_test(&cmd->ref)) 313 return; 314 kfree(cmd->bvec); 315 cmd->bvec = NULL; 316 if (likely(!blk_should_fake_timeout(rq->q))) 317 blk_mq_complete_request(rq); 318 } 319 320 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 321 { 322 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 323 324 cmd->ret = ret; 325 lo_rw_aio_do_completion(cmd); 326 } 327 328 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 329 loff_t pos, int rw) 330 { 331 struct iov_iter iter; 332 struct req_iterator rq_iter; 333 struct bio_vec *bvec; 334 struct request *rq = blk_mq_rq_from_pdu(cmd); 335 struct bio *bio = rq->bio; 336 struct file *file = lo->lo_backing_file; 337 struct bio_vec tmp; 338 unsigned int offset; 339 int nr_bvec = 0; 340 int ret; 341 342 rq_for_each_bvec(tmp, rq, rq_iter) 343 nr_bvec++; 344 345 if (rq->bio != rq->biotail) { 346 347 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 348 GFP_NOIO); 349 if (!bvec) 350 return -EIO; 351 cmd->bvec = bvec; 352 353 /* 354 * The bios of the request may be started from the middle of 355 * the 'bvec' because of bio splitting, so we can't directly 356 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 357 * API will take care of all details for us. 358 */ 359 rq_for_each_bvec(tmp, rq, rq_iter) { 360 *bvec = tmp; 361 bvec++; 362 } 363 bvec = cmd->bvec; 364 offset = 0; 365 } else { 366 /* 367 * Same here, this bio may be started from the middle of the 368 * 'bvec' because of bio splitting, so offset from the bvec 369 * must be passed to iov iterator 370 */ 371 offset = bio->bi_iter.bi_bvec_done; 372 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 373 } 374 atomic_set(&cmd->ref, 2); 375 376 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 377 iter.iov_offset = offset; 378 379 cmd->iocb.ki_pos = pos; 380 cmd->iocb.ki_filp = file; 381 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 382 if (cmd->use_aio) { 383 cmd->iocb.ki_complete = lo_rw_aio_complete; 384 cmd->iocb.ki_flags = IOCB_DIRECT; 385 } else { 386 cmd->iocb.ki_complete = NULL; 387 cmd->iocb.ki_flags = 0; 388 } 389 390 if (rw == ITER_SOURCE) 391 ret = file->f_op->write_iter(&cmd->iocb, &iter); 392 else 393 ret = file->f_op->read_iter(&cmd->iocb, &iter); 394 395 lo_rw_aio_do_completion(cmd); 396 397 if (ret != -EIOCBQUEUED) 398 lo_rw_aio_complete(&cmd->iocb, ret); 399 return -EIOCBQUEUED; 400 } 401 402 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 403 { 404 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 405 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 406 407 switch (req_op(rq)) { 408 case REQ_OP_FLUSH: 409 return lo_req_flush(lo, rq); 410 case REQ_OP_WRITE_ZEROES: 411 /* 412 * If the caller doesn't want deallocation, call zeroout to 413 * write zeroes the range. Otherwise, punch them out. 414 */ 415 return lo_fallocate(lo, rq, pos, 416 (rq->cmd_flags & REQ_NOUNMAP) ? 417 FALLOC_FL_ZERO_RANGE : 418 FALLOC_FL_PUNCH_HOLE); 419 case REQ_OP_DISCARD: 420 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 421 case REQ_OP_WRITE: 422 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 423 case REQ_OP_READ: 424 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 425 default: 426 WARN_ON_ONCE(1); 427 return -EIO; 428 } 429 } 430 431 static void loop_reread_partitions(struct loop_device *lo) 432 { 433 int rc; 434 435 mutex_lock(&lo->lo_disk->open_mutex); 436 rc = bdev_disk_changed(lo->lo_disk, false); 437 mutex_unlock(&lo->lo_disk->open_mutex); 438 if (rc) 439 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 440 __func__, lo->lo_number, lo->lo_file_name, rc); 441 } 442 443 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 444 { 445 struct file *file = lo->lo_backing_file; 446 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 447 struct kstat st; 448 449 /* 450 * Use the minimal dio alignment of the file system if provided. 451 */ 452 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 453 (st.result_mask & STATX_DIOALIGN)) 454 return st.dio_offset_align; 455 456 /* 457 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 458 * a handful of file systems support the STATX_DIOALIGN flag. 459 */ 460 if (sb_bdev) 461 return bdev_logical_block_size(sb_bdev); 462 return SECTOR_SIZE; 463 } 464 465 static inline int is_loop_device(struct file *file) 466 { 467 struct inode *i = file->f_mapping->host; 468 469 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 470 } 471 472 static int loop_validate_file(struct file *file, struct block_device *bdev) 473 { 474 struct inode *inode = file->f_mapping->host; 475 struct file *f = file; 476 477 /* Avoid recursion */ 478 while (is_loop_device(f)) { 479 struct loop_device *l; 480 481 lockdep_assert_held(&loop_validate_mutex); 482 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 483 return -EBADF; 484 485 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 486 if (l->lo_state != Lo_bound) 487 return -EINVAL; 488 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 489 rmb(); 490 f = l->lo_backing_file; 491 } 492 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 493 return -EINVAL; 494 return 0; 495 } 496 497 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 498 { 499 lo->lo_backing_file = file; 500 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 501 mapping_set_gfp_mask(file->f_mapping, 502 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 503 if (lo->lo_backing_file->f_flags & O_DIRECT) 504 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 505 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 506 } 507 508 static int loop_check_backing_file(struct file *file) 509 { 510 if (!file->f_op->read_iter) 511 return -EINVAL; 512 513 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter) 514 return -EINVAL; 515 516 return 0; 517 } 518 519 /* 520 * loop_change_fd switched the backing store of a loopback device to 521 * a new file. This is useful for operating system installers to free up 522 * the original file and in High Availability environments to switch to 523 * an alternative location for the content in case of server meltdown. 524 * This can only work if the loop device is used read-only, and if the 525 * new backing store is the same size and type as the old backing store. 526 */ 527 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 528 unsigned int arg) 529 { 530 struct file *file = fget(arg); 531 struct file *old_file; 532 unsigned int memflags; 533 int error; 534 bool partscan; 535 bool is_loop; 536 537 if (!file) 538 return -EBADF; 539 540 error = loop_check_backing_file(file); 541 if (error) 542 return error; 543 544 /* suppress uevents while reconfiguring the device */ 545 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 546 547 is_loop = is_loop_device(file); 548 error = loop_global_lock_killable(lo, is_loop); 549 if (error) 550 goto out_putf; 551 error = -ENXIO; 552 if (lo->lo_state != Lo_bound) 553 goto out_err; 554 555 /* the loop device has to be read-only */ 556 error = -EINVAL; 557 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 558 goto out_err; 559 560 error = loop_validate_file(file, bdev); 561 if (error) 562 goto out_err; 563 564 old_file = lo->lo_backing_file; 565 566 error = -EINVAL; 567 568 /* size of the new backing store needs to be the same */ 569 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 570 goto out_err; 571 572 /* 573 * We might switch to direct I/O mode for the loop device, write back 574 * all dirty data the page cache now that so that the individual I/O 575 * operations don't have to do that. 576 */ 577 vfs_fsync(file, 0); 578 579 /* and ... switch */ 580 disk_force_media_change(lo->lo_disk); 581 memflags = blk_mq_freeze_queue(lo->lo_queue); 582 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 583 loop_assign_backing_file(lo, file); 584 loop_update_dio(lo); 585 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 586 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 587 loop_global_unlock(lo, is_loop); 588 589 /* 590 * Flush loop_validate_file() before fput(), for l->lo_backing_file 591 * might be pointing at old_file which might be the last reference. 592 */ 593 if (!is_loop) { 594 mutex_lock(&loop_validate_mutex); 595 mutex_unlock(&loop_validate_mutex); 596 } 597 /* 598 * We must drop file reference outside of lo_mutex as dropping 599 * the file ref can take open_mutex which creates circular locking 600 * dependency. 601 */ 602 fput(old_file); 603 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 604 if (partscan) 605 loop_reread_partitions(lo); 606 607 error = 0; 608 done: 609 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 610 return error; 611 612 out_err: 613 loop_global_unlock(lo, is_loop); 614 out_putf: 615 fput(file); 616 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 617 goto done; 618 } 619 620 /* loop sysfs attributes */ 621 622 static ssize_t loop_attr_show(struct device *dev, char *page, 623 ssize_t (*callback)(struct loop_device *, char *)) 624 { 625 struct gendisk *disk = dev_to_disk(dev); 626 struct loop_device *lo = disk->private_data; 627 628 return callback(lo, page); 629 } 630 631 #define LOOP_ATTR_RO(_name) \ 632 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 633 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 634 struct device_attribute *attr, char *b) \ 635 { \ 636 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 637 } \ 638 static struct device_attribute loop_attr_##_name = \ 639 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 640 641 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 642 { 643 ssize_t ret; 644 char *p = NULL; 645 646 spin_lock_irq(&lo->lo_lock); 647 if (lo->lo_backing_file) 648 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 649 spin_unlock_irq(&lo->lo_lock); 650 651 if (IS_ERR_OR_NULL(p)) 652 ret = PTR_ERR(p); 653 else { 654 ret = strlen(p); 655 memmove(buf, p, ret); 656 buf[ret++] = '\n'; 657 buf[ret] = 0; 658 } 659 660 return ret; 661 } 662 663 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 664 { 665 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 666 } 667 668 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 669 { 670 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 671 } 672 673 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 674 { 675 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 676 677 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 678 } 679 680 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 681 { 682 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 683 684 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 685 } 686 687 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 688 { 689 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 690 691 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 692 } 693 694 LOOP_ATTR_RO(backing_file); 695 LOOP_ATTR_RO(offset); 696 LOOP_ATTR_RO(sizelimit); 697 LOOP_ATTR_RO(autoclear); 698 LOOP_ATTR_RO(partscan); 699 LOOP_ATTR_RO(dio); 700 701 static struct attribute *loop_attrs[] = { 702 &loop_attr_backing_file.attr, 703 &loop_attr_offset.attr, 704 &loop_attr_sizelimit.attr, 705 &loop_attr_autoclear.attr, 706 &loop_attr_partscan.attr, 707 &loop_attr_dio.attr, 708 NULL, 709 }; 710 711 static struct attribute_group loop_attribute_group = { 712 .name = "loop", 713 .attrs= loop_attrs, 714 }; 715 716 static void loop_sysfs_init(struct loop_device *lo) 717 { 718 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 719 &loop_attribute_group); 720 } 721 722 static void loop_sysfs_exit(struct loop_device *lo) 723 { 724 if (lo->sysfs_inited) 725 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 726 &loop_attribute_group); 727 } 728 729 static void loop_get_discard_config(struct loop_device *lo, 730 u32 *granularity, u32 *max_discard_sectors) 731 { 732 struct file *file = lo->lo_backing_file; 733 struct inode *inode = file->f_mapping->host; 734 struct kstatfs sbuf; 735 736 /* 737 * If the backing device is a block device, mirror its zeroing 738 * capability. Set the discard sectors to the block device's zeroing 739 * capabilities because loop discards result in blkdev_issue_zeroout(), 740 * not blkdev_issue_discard(). This maintains consistent behavior with 741 * file-backed loop devices: discarded regions read back as zero. 742 */ 743 if (S_ISBLK(inode->i_mode)) { 744 struct block_device *bdev = I_BDEV(inode); 745 746 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 747 *granularity = bdev_discard_granularity(bdev); 748 749 /* 750 * We use punch hole to reclaim the free space used by the 751 * image a.k.a. discard. 752 */ 753 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 754 *max_discard_sectors = UINT_MAX >> 9; 755 *granularity = sbuf.f_bsize; 756 } 757 } 758 759 struct loop_worker { 760 struct rb_node rb_node; 761 struct work_struct work; 762 struct list_head cmd_list; 763 struct list_head idle_list; 764 struct loop_device *lo; 765 struct cgroup_subsys_state *blkcg_css; 766 unsigned long last_ran_at; 767 }; 768 769 static void loop_workfn(struct work_struct *work); 770 771 #ifdef CONFIG_BLK_CGROUP 772 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 773 { 774 return !css || css == blkcg_root_css; 775 } 776 #else 777 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 778 { 779 return !css; 780 } 781 #endif 782 783 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 784 { 785 struct rb_node **node, *parent = NULL; 786 struct loop_worker *cur_worker, *worker = NULL; 787 struct work_struct *work; 788 struct list_head *cmd_list; 789 790 spin_lock_irq(&lo->lo_work_lock); 791 792 if (queue_on_root_worker(cmd->blkcg_css)) 793 goto queue_work; 794 795 node = &lo->worker_tree.rb_node; 796 797 while (*node) { 798 parent = *node; 799 cur_worker = container_of(*node, struct loop_worker, rb_node); 800 if (cur_worker->blkcg_css == cmd->blkcg_css) { 801 worker = cur_worker; 802 break; 803 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 804 node = &(*node)->rb_left; 805 } else { 806 node = &(*node)->rb_right; 807 } 808 } 809 if (worker) 810 goto queue_work; 811 812 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 813 /* 814 * In the event we cannot allocate a worker, just queue on the 815 * rootcg worker and issue the I/O as the rootcg 816 */ 817 if (!worker) { 818 cmd->blkcg_css = NULL; 819 if (cmd->memcg_css) 820 css_put(cmd->memcg_css); 821 cmd->memcg_css = NULL; 822 goto queue_work; 823 } 824 825 worker->blkcg_css = cmd->blkcg_css; 826 css_get(worker->blkcg_css); 827 INIT_WORK(&worker->work, loop_workfn); 828 INIT_LIST_HEAD(&worker->cmd_list); 829 INIT_LIST_HEAD(&worker->idle_list); 830 worker->lo = lo; 831 rb_link_node(&worker->rb_node, parent, node); 832 rb_insert_color(&worker->rb_node, &lo->worker_tree); 833 queue_work: 834 if (worker) { 835 /* 836 * We need to remove from the idle list here while 837 * holding the lock so that the idle timer doesn't 838 * free the worker 839 */ 840 if (!list_empty(&worker->idle_list)) 841 list_del_init(&worker->idle_list); 842 work = &worker->work; 843 cmd_list = &worker->cmd_list; 844 } else { 845 work = &lo->rootcg_work; 846 cmd_list = &lo->rootcg_cmd_list; 847 } 848 list_add_tail(&cmd->list_entry, cmd_list); 849 queue_work(lo->workqueue, work); 850 spin_unlock_irq(&lo->lo_work_lock); 851 } 852 853 static void loop_set_timer(struct loop_device *lo) 854 { 855 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 856 } 857 858 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 859 { 860 struct loop_worker *pos, *worker; 861 862 spin_lock_irq(&lo->lo_work_lock); 863 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 864 idle_list) { 865 if (!delete_all && 866 time_is_after_jiffies(worker->last_ran_at + 867 LOOP_IDLE_WORKER_TIMEOUT)) 868 break; 869 list_del(&worker->idle_list); 870 rb_erase(&worker->rb_node, &lo->worker_tree); 871 css_put(worker->blkcg_css); 872 kfree(worker); 873 } 874 if (!list_empty(&lo->idle_worker_list)) 875 loop_set_timer(lo); 876 spin_unlock_irq(&lo->lo_work_lock); 877 } 878 879 static void loop_free_idle_workers_timer(struct timer_list *timer) 880 { 881 struct loop_device *lo = container_of(timer, struct loop_device, timer); 882 883 return loop_free_idle_workers(lo, false); 884 } 885 886 /** 887 * loop_set_status_from_info - configure device from loop_info 888 * @lo: struct loop_device to configure 889 * @info: struct loop_info64 to configure the device with 890 * 891 * Configures the loop device parameters according to the passed 892 * in loop_info64 configuration. 893 */ 894 static int 895 loop_set_status_from_info(struct loop_device *lo, 896 const struct loop_info64 *info) 897 { 898 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 899 return -EINVAL; 900 901 switch (info->lo_encrypt_type) { 902 case LO_CRYPT_NONE: 903 break; 904 case LO_CRYPT_XOR: 905 pr_warn("support for the xor transformation has been removed.\n"); 906 return -EINVAL; 907 case LO_CRYPT_CRYPTOAPI: 908 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 909 return -EINVAL; 910 default: 911 return -EINVAL; 912 } 913 914 /* Avoid assigning overflow values */ 915 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 916 return -EOVERFLOW; 917 918 lo->lo_offset = info->lo_offset; 919 lo->lo_sizelimit = info->lo_sizelimit; 920 921 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 922 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 923 return 0; 924 } 925 926 static unsigned int loop_default_blocksize(struct loop_device *lo) 927 { 928 /* In case of direct I/O, match underlying minimum I/O size */ 929 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 930 return lo->lo_min_dio_size; 931 return SECTOR_SIZE; 932 } 933 934 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 935 unsigned int bsize) 936 { 937 struct file *file = lo->lo_backing_file; 938 struct inode *inode = file->f_mapping->host; 939 struct block_device *backing_bdev = NULL; 940 u32 granularity = 0, max_discard_sectors = 0; 941 942 if (S_ISBLK(inode->i_mode)) 943 backing_bdev = I_BDEV(inode); 944 else if (inode->i_sb->s_bdev) 945 backing_bdev = inode->i_sb->s_bdev; 946 947 if (!bsize) 948 bsize = loop_default_blocksize(lo); 949 950 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 951 952 lim->logical_block_size = bsize; 953 lim->physical_block_size = bsize; 954 lim->io_min = bsize; 955 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 956 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 957 lim->features |= BLK_FEAT_WRITE_CACHE; 958 if (backing_bdev && !bdev_nonrot(backing_bdev)) 959 lim->features |= BLK_FEAT_ROTATIONAL; 960 lim->max_hw_discard_sectors = max_discard_sectors; 961 lim->max_write_zeroes_sectors = max_discard_sectors; 962 if (max_discard_sectors) 963 lim->discard_granularity = granularity; 964 else 965 lim->discard_granularity = 0; 966 } 967 968 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 969 struct block_device *bdev, 970 const struct loop_config *config) 971 { 972 struct file *file = fget(config->fd); 973 struct queue_limits lim; 974 int error; 975 loff_t size; 976 bool partscan; 977 bool is_loop; 978 979 if (!file) 980 return -EBADF; 981 982 error = loop_check_backing_file(file); 983 if (error) 984 return error; 985 986 is_loop = is_loop_device(file); 987 988 /* This is safe, since we have a reference from open(). */ 989 __module_get(THIS_MODULE); 990 991 /* 992 * If we don't hold exclusive handle for the device, upgrade to it 993 * here to avoid changing device under exclusive owner. 994 */ 995 if (!(mode & BLK_OPEN_EXCL)) { 996 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 997 if (error) 998 goto out_putf; 999 } 1000 1001 error = loop_global_lock_killable(lo, is_loop); 1002 if (error) 1003 goto out_bdev; 1004 1005 error = -EBUSY; 1006 if (lo->lo_state != Lo_unbound) 1007 goto out_unlock; 1008 1009 error = loop_validate_file(file, bdev); 1010 if (error) 1011 goto out_unlock; 1012 1013 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1014 error = -EINVAL; 1015 goto out_unlock; 1016 } 1017 1018 error = loop_set_status_from_info(lo, &config->info); 1019 if (error) 1020 goto out_unlock; 1021 lo->lo_flags = config->info.lo_flags; 1022 1023 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1024 !file->f_op->write_iter) 1025 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1026 1027 if (!lo->workqueue) { 1028 lo->workqueue = alloc_workqueue("loop%d", 1029 WQ_UNBOUND | WQ_FREEZABLE, 1030 0, lo->lo_number); 1031 if (!lo->workqueue) { 1032 error = -ENOMEM; 1033 goto out_unlock; 1034 } 1035 } 1036 1037 /* suppress uevents while reconfiguring the device */ 1038 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1039 1040 disk_force_media_change(lo->lo_disk); 1041 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1042 1043 lo->lo_device = bdev; 1044 loop_assign_backing_file(lo, file); 1045 1046 lim = queue_limits_start_update(lo->lo_queue); 1047 loop_update_limits(lo, &lim, config->block_size); 1048 /* No need to freeze the queue as the device isn't bound yet. */ 1049 error = queue_limits_commit_update(lo->lo_queue, &lim); 1050 if (error) 1051 goto out_unlock; 1052 1053 /* 1054 * We might switch to direct I/O mode for the loop device, write back 1055 * all dirty data the page cache now that so that the individual I/O 1056 * operations don't have to do that. 1057 */ 1058 vfs_fsync(file, 0); 1059 1060 loop_update_dio(lo); 1061 loop_sysfs_init(lo); 1062 1063 size = get_loop_size(lo, file); 1064 loop_set_size(lo, size); 1065 1066 /* Order wrt reading lo_state in loop_validate_file(). */ 1067 wmb(); 1068 1069 lo->lo_state = Lo_bound; 1070 if (part_shift) 1071 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1072 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1073 if (partscan) 1074 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1075 1076 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1077 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1078 1079 loop_global_unlock(lo, is_loop); 1080 if (partscan) 1081 loop_reread_partitions(lo); 1082 1083 if (!(mode & BLK_OPEN_EXCL)) 1084 bd_abort_claiming(bdev, loop_configure); 1085 1086 return 0; 1087 1088 out_unlock: 1089 loop_global_unlock(lo, is_loop); 1090 out_bdev: 1091 if (!(mode & BLK_OPEN_EXCL)) 1092 bd_abort_claiming(bdev, loop_configure); 1093 out_putf: 1094 fput(file); 1095 /* This is safe: open() is still holding a reference. */ 1096 module_put(THIS_MODULE); 1097 return error; 1098 } 1099 1100 static void __loop_clr_fd(struct loop_device *lo) 1101 { 1102 struct queue_limits lim; 1103 struct file *filp; 1104 gfp_t gfp = lo->old_gfp_mask; 1105 1106 spin_lock_irq(&lo->lo_lock); 1107 filp = lo->lo_backing_file; 1108 lo->lo_backing_file = NULL; 1109 spin_unlock_irq(&lo->lo_lock); 1110 1111 lo->lo_device = NULL; 1112 lo->lo_offset = 0; 1113 lo->lo_sizelimit = 0; 1114 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1115 1116 /* 1117 * Reset the block size to the default. 1118 * 1119 * No queue freezing needed because this is called from the final 1120 * ->release call only, so there can't be any outstanding I/O. 1121 */ 1122 lim = queue_limits_start_update(lo->lo_queue); 1123 lim.logical_block_size = SECTOR_SIZE; 1124 lim.physical_block_size = SECTOR_SIZE; 1125 lim.io_min = SECTOR_SIZE; 1126 queue_limits_commit_update(lo->lo_queue, &lim); 1127 1128 invalidate_disk(lo->lo_disk); 1129 loop_sysfs_exit(lo); 1130 /* let user-space know about this change */ 1131 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1132 mapping_set_gfp_mask(filp->f_mapping, gfp); 1133 /* This is safe: open() is still holding a reference. */ 1134 module_put(THIS_MODULE); 1135 1136 disk_force_media_change(lo->lo_disk); 1137 1138 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1139 int err; 1140 1141 /* 1142 * open_mutex has been held already in release path, so don't 1143 * acquire it if this function is called in such case. 1144 * 1145 * If the reread partition isn't from release path, lo_refcnt 1146 * must be at least one and it can only become zero when the 1147 * current holder is released. 1148 */ 1149 err = bdev_disk_changed(lo->lo_disk, false); 1150 if (err) 1151 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1152 __func__, lo->lo_number, err); 1153 /* Device is gone, no point in returning error */ 1154 } 1155 1156 /* 1157 * lo->lo_state is set to Lo_unbound here after above partscan has 1158 * finished. There cannot be anybody else entering __loop_clr_fd() as 1159 * Lo_rundown state protects us from all the other places trying to 1160 * change the 'lo' device. 1161 */ 1162 lo->lo_flags = 0; 1163 if (!part_shift) 1164 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1165 mutex_lock(&lo->lo_mutex); 1166 lo->lo_state = Lo_unbound; 1167 mutex_unlock(&lo->lo_mutex); 1168 1169 /* 1170 * Need not hold lo_mutex to fput backing file. Calling fput holding 1171 * lo_mutex triggers a circular lock dependency possibility warning as 1172 * fput can take open_mutex which is usually taken before lo_mutex. 1173 */ 1174 fput(filp); 1175 } 1176 1177 static int loop_clr_fd(struct loop_device *lo) 1178 { 1179 int err; 1180 1181 /* 1182 * Since lo_ioctl() is called without locks held, it is possible that 1183 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1184 * 1185 * Therefore, use global lock when setting Lo_rundown state in order to 1186 * make sure that loop_validate_file() will fail if the "struct file" 1187 * which loop_configure()/loop_change_fd() found via fget() was this 1188 * loop device. 1189 */ 1190 err = loop_global_lock_killable(lo, true); 1191 if (err) 1192 return err; 1193 if (lo->lo_state != Lo_bound) { 1194 loop_global_unlock(lo, true); 1195 return -ENXIO; 1196 } 1197 /* 1198 * Mark the device for removing the backing device on last close. 1199 * If we are the only opener, also switch the state to roundown here to 1200 * prevent new openers from coming in. 1201 */ 1202 1203 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1204 if (disk_openers(lo->lo_disk) == 1) 1205 lo->lo_state = Lo_rundown; 1206 loop_global_unlock(lo, true); 1207 1208 return 0; 1209 } 1210 1211 static int 1212 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1213 { 1214 int err; 1215 bool partscan = false; 1216 bool size_changed = false; 1217 unsigned int memflags; 1218 1219 err = mutex_lock_killable(&lo->lo_mutex); 1220 if (err) 1221 return err; 1222 if (lo->lo_state != Lo_bound) { 1223 err = -ENXIO; 1224 goto out_unlock; 1225 } 1226 1227 if (lo->lo_offset != info->lo_offset || 1228 lo->lo_sizelimit != info->lo_sizelimit) { 1229 size_changed = true; 1230 sync_blockdev(lo->lo_device); 1231 invalidate_bdev(lo->lo_device); 1232 } 1233 1234 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1235 memflags = blk_mq_freeze_queue(lo->lo_queue); 1236 1237 err = loop_set_status_from_info(lo, info); 1238 if (err) 1239 goto out_unfreeze; 1240 1241 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1242 (info->lo_flags & LO_FLAGS_PARTSCAN); 1243 1244 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1245 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1246 1247 if (size_changed) { 1248 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1249 lo->lo_backing_file); 1250 loop_set_size(lo, new_size); 1251 } 1252 1253 /* update the direct I/O flag if lo_offset changed */ 1254 loop_update_dio(lo); 1255 1256 out_unfreeze: 1257 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1258 if (partscan) 1259 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1260 out_unlock: 1261 mutex_unlock(&lo->lo_mutex); 1262 if (partscan) 1263 loop_reread_partitions(lo); 1264 1265 return err; 1266 } 1267 1268 static int 1269 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1270 { 1271 struct path path; 1272 struct kstat stat; 1273 int ret; 1274 1275 ret = mutex_lock_killable(&lo->lo_mutex); 1276 if (ret) 1277 return ret; 1278 if (lo->lo_state != Lo_bound) { 1279 mutex_unlock(&lo->lo_mutex); 1280 return -ENXIO; 1281 } 1282 1283 memset(info, 0, sizeof(*info)); 1284 info->lo_number = lo->lo_number; 1285 info->lo_offset = lo->lo_offset; 1286 info->lo_sizelimit = lo->lo_sizelimit; 1287 info->lo_flags = lo->lo_flags; 1288 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1289 1290 /* Drop lo_mutex while we call into the filesystem. */ 1291 path = lo->lo_backing_file->f_path; 1292 path_get(&path); 1293 mutex_unlock(&lo->lo_mutex); 1294 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1295 if (!ret) { 1296 info->lo_device = huge_encode_dev(stat.dev); 1297 info->lo_inode = stat.ino; 1298 info->lo_rdevice = huge_encode_dev(stat.rdev); 1299 } 1300 path_put(&path); 1301 return ret; 1302 } 1303 1304 static void 1305 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1306 { 1307 memset(info64, 0, sizeof(*info64)); 1308 info64->lo_number = info->lo_number; 1309 info64->lo_device = info->lo_device; 1310 info64->lo_inode = info->lo_inode; 1311 info64->lo_rdevice = info->lo_rdevice; 1312 info64->lo_offset = info->lo_offset; 1313 info64->lo_sizelimit = 0; 1314 info64->lo_flags = info->lo_flags; 1315 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1316 } 1317 1318 static int 1319 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1320 { 1321 memset(info, 0, sizeof(*info)); 1322 info->lo_number = info64->lo_number; 1323 info->lo_device = info64->lo_device; 1324 info->lo_inode = info64->lo_inode; 1325 info->lo_rdevice = info64->lo_rdevice; 1326 info->lo_offset = info64->lo_offset; 1327 info->lo_flags = info64->lo_flags; 1328 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1329 1330 /* error in case values were truncated */ 1331 if (info->lo_device != info64->lo_device || 1332 info->lo_rdevice != info64->lo_rdevice || 1333 info->lo_inode != info64->lo_inode || 1334 info->lo_offset != info64->lo_offset) 1335 return -EOVERFLOW; 1336 1337 return 0; 1338 } 1339 1340 static int 1341 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1342 { 1343 struct loop_info info; 1344 struct loop_info64 info64; 1345 1346 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1347 return -EFAULT; 1348 loop_info64_from_old(&info, &info64); 1349 return loop_set_status(lo, &info64); 1350 } 1351 1352 static int 1353 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1354 { 1355 struct loop_info64 info64; 1356 1357 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1358 return -EFAULT; 1359 return loop_set_status(lo, &info64); 1360 } 1361 1362 static int 1363 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1364 struct loop_info info; 1365 struct loop_info64 info64; 1366 int err; 1367 1368 if (!arg) 1369 return -EINVAL; 1370 err = loop_get_status(lo, &info64); 1371 if (!err) 1372 err = loop_info64_to_old(&info64, &info); 1373 if (!err && copy_to_user(arg, &info, sizeof(info))) 1374 err = -EFAULT; 1375 1376 return err; 1377 } 1378 1379 static int 1380 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1381 struct loop_info64 info64; 1382 int err; 1383 1384 if (!arg) 1385 return -EINVAL; 1386 err = loop_get_status(lo, &info64); 1387 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1388 err = -EFAULT; 1389 1390 return err; 1391 } 1392 1393 static int loop_set_capacity(struct loop_device *lo) 1394 { 1395 loff_t size; 1396 1397 if (unlikely(lo->lo_state != Lo_bound)) 1398 return -ENXIO; 1399 1400 size = get_loop_size(lo, lo->lo_backing_file); 1401 loop_set_size(lo, size); 1402 1403 return 0; 1404 } 1405 1406 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1407 { 1408 bool use_dio = !!arg; 1409 unsigned int memflags; 1410 1411 if (lo->lo_state != Lo_bound) 1412 return -ENXIO; 1413 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1414 return 0; 1415 1416 if (use_dio) { 1417 if (!lo_can_use_dio(lo)) 1418 return -EINVAL; 1419 /* flush dirty pages before starting to use direct I/O */ 1420 vfs_fsync(lo->lo_backing_file, 0); 1421 } 1422 1423 memflags = blk_mq_freeze_queue(lo->lo_queue); 1424 if (use_dio) 1425 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1426 else 1427 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1428 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1429 return 0; 1430 } 1431 1432 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1433 { 1434 struct queue_limits lim; 1435 unsigned int memflags; 1436 int err = 0; 1437 1438 if (lo->lo_state != Lo_bound) 1439 return -ENXIO; 1440 1441 if (lo->lo_queue->limits.logical_block_size == arg) 1442 return 0; 1443 1444 sync_blockdev(lo->lo_device); 1445 invalidate_bdev(lo->lo_device); 1446 1447 lim = queue_limits_start_update(lo->lo_queue); 1448 loop_update_limits(lo, &lim, arg); 1449 1450 memflags = blk_mq_freeze_queue(lo->lo_queue); 1451 err = queue_limits_commit_update(lo->lo_queue, &lim); 1452 loop_update_dio(lo); 1453 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1454 1455 return err; 1456 } 1457 1458 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1459 unsigned long arg) 1460 { 1461 int err; 1462 1463 err = mutex_lock_killable(&lo->lo_mutex); 1464 if (err) 1465 return err; 1466 switch (cmd) { 1467 case LOOP_SET_CAPACITY: 1468 err = loop_set_capacity(lo); 1469 break; 1470 case LOOP_SET_DIRECT_IO: 1471 err = loop_set_dio(lo, arg); 1472 break; 1473 case LOOP_SET_BLOCK_SIZE: 1474 err = loop_set_block_size(lo, arg); 1475 break; 1476 default: 1477 err = -EINVAL; 1478 } 1479 mutex_unlock(&lo->lo_mutex); 1480 return err; 1481 } 1482 1483 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1484 unsigned int cmd, unsigned long arg) 1485 { 1486 struct loop_device *lo = bdev->bd_disk->private_data; 1487 void __user *argp = (void __user *) arg; 1488 int err; 1489 1490 switch (cmd) { 1491 case LOOP_SET_FD: { 1492 /* 1493 * Legacy case - pass in a zeroed out struct loop_config with 1494 * only the file descriptor set , which corresponds with the 1495 * default parameters we'd have used otherwise. 1496 */ 1497 struct loop_config config; 1498 1499 memset(&config, 0, sizeof(config)); 1500 config.fd = arg; 1501 1502 return loop_configure(lo, mode, bdev, &config); 1503 } 1504 case LOOP_CONFIGURE: { 1505 struct loop_config config; 1506 1507 if (copy_from_user(&config, argp, sizeof(config))) 1508 return -EFAULT; 1509 1510 return loop_configure(lo, mode, bdev, &config); 1511 } 1512 case LOOP_CHANGE_FD: 1513 return loop_change_fd(lo, bdev, arg); 1514 case LOOP_CLR_FD: 1515 return loop_clr_fd(lo); 1516 case LOOP_SET_STATUS: 1517 err = -EPERM; 1518 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1519 err = loop_set_status_old(lo, argp); 1520 break; 1521 case LOOP_GET_STATUS: 1522 return loop_get_status_old(lo, argp); 1523 case LOOP_SET_STATUS64: 1524 err = -EPERM; 1525 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1526 err = loop_set_status64(lo, argp); 1527 break; 1528 case LOOP_GET_STATUS64: 1529 return loop_get_status64(lo, argp); 1530 case LOOP_SET_CAPACITY: 1531 case LOOP_SET_DIRECT_IO: 1532 case LOOP_SET_BLOCK_SIZE: 1533 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1534 return -EPERM; 1535 fallthrough; 1536 default: 1537 err = lo_simple_ioctl(lo, cmd, arg); 1538 break; 1539 } 1540 1541 return err; 1542 } 1543 1544 #ifdef CONFIG_COMPAT 1545 struct compat_loop_info { 1546 compat_int_t lo_number; /* ioctl r/o */ 1547 compat_dev_t lo_device; /* ioctl r/o */ 1548 compat_ulong_t lo_inode; /* ioctl r/o */ 1549 compat_dev_t lo_rdevice; /* ioctl r/o */ 1550 compat_int_t lo_offset; 1551 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1552 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1553 compat_int_t lo_flags; /* ioctl r/o */ 1554 char lo_name[LO_NAME_SIZE]; 1555 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1556 compat_ulong_t lo_init[2]; 1557 char reserved[4]; 1558 }; 1559 1560 /* 1561 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1562 * - noinlined to reduce stack space usage in main part of driver 1563 */ 1564 static noinline int 1565 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1566 struct loop_info64 *info64) 1567 { 1568 struct compat_loop_info info; 1569 1570 if (copy_from_user(&info, arg, sizeof(info))) 1571 return -EFAULT; 1572 1573 memset(info64, 0, sizeof(*info64)); 1574 info64->lo_number = info.lo_number; 1575 info64->lo_device = info.lo_device; 1576 info64->lo_inode = info.lo_inode; 1577 info64->lo_rdevice = info.lo_rdevice; 1578 info64->lo_offset = info.lo_offset; 1579 info64->lo_sizelimit = 0; 1580 info64->lo_flags = info.lo_flags; 1581 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1582 return 0; 1583 } 1584 1585 /* 1586 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1587 * - noinlined to reduce stack space usage in main part of driver 1588 */ 1589 static noinline int 1590 loop_info64_to_compat(const struct loop_info64 *info64, 1591 struct compat_loop_info __user *arg) 1592 { 1593 struct compat_loop_info info; 1594 1595 memset(&info, 0, sizeof(info)); 1596 info.lo_number = info64->lo_number; 1597 info.lo_device = info64->lo_device; 1598 info.lo_inode = info64->lo_inode; 1599 info.lo_rdevice = info64->lo_rdevice; 1600 info.lo_offset = info64->lo_offset; 1601 info.lo_flags = info64->lo_flags; 1602 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1603 1604 /* error in case values were truncated */ 1605 if (info.lo_device != info64->lo_device || 1606 info.lo_rdevice != info64->lo_rdevice || 1607 info.lo_inode != info64->lo_inode || 1608 info.lo_offset != info64->lo_offset) 1609 return -EOVERFLOW; 1610 1611 if (copy_to_user(arg, &info, sizeof(info))) 1612 return -EFAULT; 1613 return 0; 1614 } 1615 1616 static int 1617 loop_set_status_compat(struct loop_device *lo, 1618 const struct compat_loop_info __user *arg) 1619 { 1620 struct loop_info64 info64; 1621 int ret; 1622 1623 ret = loop_info64_from_compat(arg, &info64); 1624 if (ret < 0) 1625 return ret; 1626 return loop_set_status(lo, &info64); 1627 } 1628 1629 static int 1630 loop_get_status_compat(struct loop_device *lo, 1631 struct compat_loop_info __user *arg) 1632 { 1633 struct loop_info64 info64; 1634 int err; 1635 1636 if (!arg) 1637 return -EINVAL; 1638 err = loop_get_status(lo, &info64); 1639 if (!err) 1640 err = loop_info64_to_compat(&info64, arg); 1641 return err; 1642 } 1643 1644 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1645 unsigned int cmd, unsigned long arg) 1646 { 1647 struct loop_device *lo = bdev->bd_disk->private_data; 1648 int err; 1649 1650 switch(cmd) { 1651 case LOOP_SET_STATUS: 1652 err = loop_set_status_compat(lo, 1653 (const struct compat_loop_info __user *)arg); 1654 break; 1655 case LOOP_GET_STATUS: 1656 err = loop_get_status_compat(lo, 1657 (struct compat_loop_info __user *)arg); 1658 break; 1659 case LOOP_SET_CAPACITY: 1660 case LOOP_CLR_FD: 1661 case LOOP_GET_STATUS64: 1662 case LOOP_SET_STATUS64: 1663 case LOOP_CONFIGURE: 1664 arg = (unsigned long) compat_ptr(arg); 1665 fallthrough; 1666 case LOOP_SET_FD: 1667 case LOOP_CHANGE_FD: 1668 case LOOP_SET_BLOCK_SIZE: 1669 case LOOP_SET_DIRECT_IO: 1670 err = lo_ioctl(bdev, mode, cmd, arg); 1671 break; 1672 default: 1673 err = -ENOIOCTLCMD; 1674 break; 1675 } 1676 return err; 1677 } 1678 #endif 1679 1680 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1681 { 1682 struct loop_device *lo = disk->private_data; 1683 int err; 1684 1685 err = mutex_lock_killable(&lo->lo_mutex); 1686 if (err) 1687 return err; 1688 1689 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1690 err = -ENXIO; 1691 mutex_unlock(&lo->lo_mutex); 1692 return err; 1693 } 1694 1695 static void lo_release(struct gendisk *disk) 1696 { 1697 struct loop_device *lo = disk->private_data; 1698 bool need_clear = false; 1699 1700 if (disk_openers(disk) > 0) 1701 return; 1702 /* 1703 * Clear the backing device information if this is the last close of 1704 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1705 * has been called. 1706 */ 1707 1708 mutex_lock(&lo->lo_mutex); 1709 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1710 lo->lo_state = Lo_rundown; 1711 1712 need_clear = (lo->lo_state == Lo_rundown); 1713 mutex_unlock(&lo->lo_mutex); 1714 1715 if (need_clear) 1716 __loop_clr_fd(lo); 1717 } 1718 1719 static void lo_free_disk(struct gendisk *disk) 1720 { 1721 struct loop_device *lo = disk->private_data; 1722 1723 if (lo->workqueue) 1724 destroy_workqueue(lo->workqueue); 1725 loop_free_idle_workers(lo, true); 1726 timer_shutdown_sync(&lo->timer); 1727 mutex_destroy(&lo->lo_mutex); 1728 kfree(lo); 1729 } 1730 1731 static const struct block_device_operations lo_fops = { 1732 .owner = THIS_MODULE, 1733 .open = lo_open, 1734 .release = lo_release, 1735 .ioctl = lo_ioctl, 1736 #ifdef CONFIG_COMPAT 1737 .compat_ioctl = lo_compat_ioctl, 1738 #endif 1739 .free_disk = lo_free_disk, 1740 }; 1741 1742 /* 1743 * And now the modules code and kernel interface. 1744 */ 1745 1746 /* 1747 * If max_loop is specified, create that many devices upfront. 1748 * This also becomes a hard limit. If max_loop is not specified, 1749 * the default isn't a hard limit (as before commit 85c50197716c 1750 * changed the default value from 0 for max_loop=0 reasons), just 1751 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1752 * init time. Loop devices can be requested on-demand with the 1753 * /dev/loop-control interface, or be instantiated by accessing 1754 * a 'dead' device node. 1755 */ 1756 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1757 1758 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1759 static bool max_loop_specified; 1760 1761 static int max_loop_param_set_int(const char *val, 1762 const struct kernel_param *kp) 1763 { 1764 int ret; 1765 1766 ret = param_set_int(val, kp); 1767 if (ret < 0) 1768 return ret; 1769 1770 max_loop_specified = true; 1771 return 0; 1772 } 1773 1774 static const struct kernel_param_ops max_loop_param_ops = { 1775 .set = max_loop_param_set_int, 1776 .get = param_get_int, 1777 }; 1778 1779 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1780 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1781 #else 1782 module_param(max_loop, int, 0444); 1783 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1784 #endif 1785 1786 module_param(max_part, int, 0444); 1787 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1788 1789 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1790 1791 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1792 { 1793 int qd, ret; 1794 1795 ret = kstrtoint(s, 0, &qd); 1796 if (ret < 0) 1797 return ret; 1798 if (qd < 1) 1799 return -EINVAL; 1800 hw_queue_depth = qd; 1801 return 0; 1802 } 1803 1804 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1805 .set = loop_set_hw_queue_depth, 1806 .get = param_get_int, 1807 }; 1808 1809 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1810 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1811 1812 MODULE_DESCRIPTION("Loopback device support"); 1813 MODULE_LICENSE("GPL"); 1814 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1815 1816 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1817 const struct blk_mq_queue_data *bd) 1818 { 1819 struct request *rq = bd->rq; 1820 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1821 struct loop_device *lo = rq->q->queuedata; 1822 1823 blk_mq_start_request(rq); 1824 1825 if (lo->lo_state != Lo_bound) 1826 return BLK_STS_IOERR; 1827 1828 switch (req_op(rq)) { 1829 case REQ_OP_FLUSH: 1830 case REQ_OP_DISCARD: 1831 case REQ_OP_WRITE_ZEROES: 1832 cmd->use_aio = false; 1833 break; 1834 default: 1835 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1836 break; 1837 } 1838 1839 /* always use the first bio's css */ 1840 cmd->blkcg_css = NULL; 1841 cmd->memcg_css = NULL; 1842 #ifdef CONFIG_BLK_CGROUP 1843 if (rq->bio) { 1844 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1845 #ifdef CONFIG_MEMCG 1846 if (cmd->blkcg_css) { 1847 cmd->memcg_css = 1848 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1849 &memory_cgrp_subsys); 1850 } 1851 #endif 1852 } 1853 #endif 1854 loop_queue_work(lo, cmd); 1855 1856 return BLK_STS_OK; 1857 } 1858 1859 static void loop_handle_cmd(struct loop_cmd *cmd) 1860 { 1861 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1862 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1863 struct request *rq = blk_mq_rq_from_pdu(cmd); 1864 const bool write = op_is_write(req_op(rq)); 1865 struct loop_device *lo = rq->q->queuedata; 1866 int ret = 0; 1867 struct mem_cgroup *old_memcg = NULL; 1868 1869 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1870 ret = -EIO; 1871 goto failed; 1872 } 1873 1874 if (cmd_blkcg_css) 1875 kthread_associate_blkcg(cmd_blkcg_css); 1876 if (cmd_memcg_css) 1877 old_memcg = set_active_memcg( 1878 mem_cgroup_from_css(cmd_memcg_css)); 1879 1880 /* 1881 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1882 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1883 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1884 * not yet been completed. 1885 */ 1886 ret = do_req_filebacked(lo, rq); 1887 1888 if (cmd_blkcg_css) 1889 kthread_associate_blkcg(NULL); 1890 1891 if (cmd_memcg_css) { 1892 set_active_memcg(old_memcg); 1893 css_put(cmd_memcg_css); 1894 } 1895 failed: 1896 /* complete non-aio request */ 1897 if (ret != -EIOCBQUEUED) { 1898 if (ret == -EOPNOTSUPP) 1899 cmd->ret = ret; 1900 else 1901 cmd->ret = ret ? -EIO : 0; 1902 if (likely(!blk_should_fake_timeout(rq->q))) 1903 blk_mq_complete_request(rq); 1904 } 1905 } 1906 1907 static void loop_process_work(struct loop_worker *worker, 1908 struct list_head *cmd_list, struct loop_device *lo) 1909 { 1910 int orig_flags = current->flags; 1911 struct loop_cmd *cmd; 1912 1913 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1914 spin_lock_irq(&lo->lo_work_lock); 1915 while (!list_empty(cmd_list)) { 1916 cmd = container_of( 1917 cmd_list->next, struct loop_cmd, list_entry); 1918 list_del(cmd_list->next); 1919 spin_unlock_irq(&lo->lo_work_lock); 1920 1921 loop_handle_cmd(cmd); 1922 cond_resched(); 1923 1924 spin_lock_irq(&lo->lo_work_lock); 1925 } 1926 1927 /* 1928 * We only add to the idle list if there are no pending cmds 1929 * *and* the worker will not run again which ensures that it 1930 * is safe to free any worker on the idle list 1931 */ 1932 if (worker && !work_pending(&worker->work)) { 1933 worker->last_ran_at = jiffies; 1934 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1935 loop_set_timer(lo); 1936 } 1937 spin_unlock_irq(&lo->lo_work_lock); 1938 current->flags = orig_flags; 1939 } 1940 1941 static void loop_workfn(struct work_struct *work) 1942 { 1943 struct loop_worker *worker = 1944 container_of(work, struct loop_worker, work); 1945 loop_process_work(worker, &worker->cmd_list, worker->lo); 1946 } 1947 1948 static void loop_rootcg_workfn(struct work_struct *work) 1949 { 1950 struct loop_device *lo = 1951 container_of(work, struct loop_device, rootcg_work); 1952 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1953 } 1954 1955 static const struct blk_mq_ops loop_mq_ops = { 1956 .queue_rq = loop_queue_rq, 1957 .complete = lo_complete_rq, 1958 }; 1959 1960 static int loop_add(int i) 1961 { 1962 struct queue_limits lim = { 1963 /* 1964 * Random number picked from the historic block max_sectors cap. 1965 */ 1966 .max_hw_sectors = 2560u, 1967 }; 1968 struct loop_device *lo; 1969 struct gendisk *disk; 1970 int err; 1971 1972 err = -ENOMEM; 1973 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1974 if (!lo) 1975 goto out; 1976 lo->worker_tree = RB_ROOT; 1977 INIT_LIST_HEAD(&lo->idle_worker_list); 1978 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 1979 lo->lo_state = Lo_unbound; 1980 1981 err = mutex_lock_killable(&loop_ctl_mutex); 1982 if (err) 1983 goto out_free_dev; 1984 1985 /* allocate id, if @id >= 0, we're requesting that specific id */ 1986 if (i >= 0) { 1987 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1988 if (err == -ENOSPC) 1989 err = -EEXIST; 1990 } else { 1991 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1992 } 1993 mutex_unlock(&loop_ctl_mutex); 1994 if (err < 0) 1995 goto out_free_dev; 1996 i = err; 1997 1998 lo->tag_set.ops = &loop_mq_ops; 1999 lo->tag_set.nr_hw_queues = 1; 2000 lo->tag_set.queue_depth = hw_queue_depth; 2001 lo->tag_set.numa_node = NUMA_NO_NODE; 2002 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2003 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2004 lo->tag_set.driver_data = lo; 2005 2006 err = blk_mq_alloc_tag_set(&lo->tag_set); 2007 if (err) 2008 goto out_free_idr; 2009 2010 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2011 if (IS_ERR(disk)) { 2012 err = PTR_ERR(disk); 2013 goto out_cleanup_tags; 2014 } 2015 lo->lo_queue = lo->lo_disk->queue; 2016 2017 /* 2018 * Disable partition scanning by default. The in-kernel partition 2019 * scanning can be requested individually per-device during its 2020 * setup. Userspace can always add and remove partitions from all 2021 * devices. The needed partition minors are allocated from the 2022 * extended minor space, the main loop device numbers will continue 2023 * to match the loop minors, regardless of the number of partitions 2024 * used. 2025 * 2026 * If max_part is given, partition scanning is globally enabled for 2027 * all loop devices. The minors for the main loop devices will be 2028 * multiples of max_part. 2029 * 2030 * Note: Global-for-all-devices, set-only-at-init, read-only module 2031 * parameteters like 'max_loop' and 'max_part' make things needlessly 2032 * complicated, are too static, inflexible and may surprise 2033 * userspace tools. Parameters like this in general should be avoided. 2034 */ 2035 if (!part_shift) 2036 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2037 mutex_init(&lo->lo_mutex); 2038 lo->lo_number = i; 2039 spin_lock_init(&lo->lo_lock); 2040 spin_lock_init(&lo->lo_work_lock); 2041 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2042 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2043 disk->major = LOOP_MAJOR; 2044 disk->first_minor = i << part_shift; 2045 disk->minors = 1 << part_shift; 2046 disk->fops = &lo_fops; 2047 disk->private_data = lo; 2048 disk->queue = lo->lo_queue; 2049 disk->events = DISK_EVENT_MEDIA_CHANGE; 2050 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2051 sprintf(disk->disk_name, "loop%d", i); 2052 /* Make this loop device reachable from pathname. */ 2053 err = add_disk(disk); 2054 if (err) 2055 goto out_cleanup_disk; 2056 2057 /* Show this loop device. */ 2058 mutex_lock(&loop_ctl_mutex); 2059 lo->idr_visible = true; 2060 mutex_unlock(&loop_ctl_mutex); 2061 2062 return i; 2063 2064 out_cleanup_disk: 2065 put_disk(disk); 2066 out_cleanup_tags: 2067 blk_mq_free_tag_set(&lo->tag_set); 2068 out_free_idr: 2069 mutex_lock(&loop_ctl_mutex); 2070 idr_remove(&loop_index_idr, i); 2071 mutex_unlock(&loop_ctl_mutex); 2072 out_free_dev: 2073 kfree(lo); 2074 out: 2075 return err; 2076 } 2077 2078 static void loop_remove(struct loop_device *lo) 2079 { 2080 /* Make this loop device unreachable from pathname. */ 2081 del_gendisk(lo->lo_disk); 2082 blk_mq_free_tag_set(&lo->tag_set); 2083 2084 mutex_lock(&loop_ctl_mutex); 2085 idr_remove(&loop_index_idr, lo->lo_number); 2086 mutex_unlock(&loop_ctl_mutex); 2087 2088 put_disk(lo->lo_disk); 2089 } 2090 2091 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2092 static void loop_probe(dev_t dev) 2093 { 2094 int idx = MINOR(dev) >> part_shift; 2095 2096 if (max_loop_specified && max_loop && idx >= max_loop) 2097 return; 2098 loop_add(idx); 2099 } 2100 #else 2101 #define loop_probe NULL 2102 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2103 2104 static int loop_control_remove(int idx) 2105 { 2106 struct loop_device *lo; 2107 int ret; 2108 2109 if (idx < 0) { 2110 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2111 return -EINVAL; 2112 } 2113 2114 /* Hide this loop device for serialization. */ 2115 ret = mutex_lock_killable(&loop_ctl_mutex); 2116 if (ret) 2117 return ret; 2118 lo = idr_find(&loop_index_idr, idx); 2119 if (!lo || !lo->idr_visible) 2120 ret = -ENODEV; 2121 else 2122 lo->idr_visible = false; 2123 mutex_unlock(&loop_ctl_mutex); 2124 if (ret) 2125 return ret; 2126 2127 /* Check whether this loop device can be removed. */ 2128 ret = mutex_lock_killable(&lo->lo_mutex); 2129 if (ret) 2130 goto mark_visible; 2131 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2132 mutex_unlock(&lo->lo_mutex); 2133 ret = -EBUSY; 2134 goto mark_visible; 2135 } 2136 /* Mark this loop device as no more bound, but not quite unbound yet */ 2137 lo->lo_state = Lo_deleting; 2138 mutex_unlock(&lo->lo_mutex); 2139 2140 loop_remove(lo); 2141 return 0; 2142 2143 mark_visible: 2144 /* Show this loop device again. */ 2145 mutex_lock(&loop_ctl_mutex); 2146 lo->idr_visible = true; 2147 mutex_unlock(&loop_ctl_mutex); 2148 return ret; 2149 } 2150 2151 static int loop_control_get_free(int idx) 2152 { 2153 struct loop_device *lo; 2154 int id, ret; 2155 2156 ret = mutex_lock_killable(&loop_ctl_mutex); 2157 if (ret) 2158 return ret; 2159 idr_for_each_entry(&loop_index_idr, lo, id) { 2160 /* Hitting a race results in creating a new loop device which is harmless. */ 2161 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2162 goto found; 2163 } 2164 mutex_unlock(&loop_ctl_mutex); 2165 return loop_add(-1); 2166 found: 2167 mutex_unlock(&loop_ctl_mutex); 2168 return id; 2169 } 2170 2171 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2172 unsigned long parm) 2173 { 2174 switch (cmd) { 2175 case LOOP_CTL_ADD: 2176 return loop_add(parm); 2177 case LOOP_CTL_REMOVE: 2178 return loop_control_remove(parm); 2179 case LOOP_CTL_GET_FREE: 2180 return loop_control_get_free(parm); 2181 default: 2182 return -ENOSYS; 2183 } 2184 } 2185 2186 static const struct file_operations loop_ctl_fops = { 2187 .open = nonseekable_open, 2188 .unlocked_ioctl = loop_control_ioctl, 2189 .compat_ioctl = loop_control_ioctl, 2190 .owner = THIS_MODULE, 2191 .llseek = noop_llseek, 2192 }; 2193 2194 static struct miscdevice loop_misc = { 2195 .minor = LOOP_CTRL_MINOR, 2196 .name = "loop-control", 2197 .fops = &loop_ctl_fops, 2198 }; 2199 2200 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2201 MODULE_ALIAS("devname:loop-control"); 2202 2203 static int __init loop_init(void) 2204 { 2205 int i; 2206 int err; 2207 2208 part_shift = 0; 2209 if (max_part > 0) { 2210 part_shift = fls(max_part); 2211 2212 /* 2213 * Adjust max_part according to part_shift as it is exported 2214 * to user space so that user can decide correct minor number 2215 * if [s]he want to create more devices. 2216 * 2217 * Note that -1 is required because partition 0 is reserved 2218 * for the whole disk. 2219 */ 2220 max_part = (1UL << part_shift) - 1; 2221 } 2222 2223 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2224 err = -EINVAL; 2225 goto err_out; 2226 } 2227 2228 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2229 err = -EINVAL; 2230 goto err_out; 2231 } 2232 2233 err = misc_register(&loop_misc); 2234 if (err < 0) 2235 goto err_out; 2236 2237 2238 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2239 err = -EIO; 2240 goto misc_out; 2241 } 2242 2243 /* pre-create number of devices given by config or max_loop */ 2244 for (i = 0; i < max_loop; i++) 2245 loop_add(i); 2246 2247 printk(KERN_INFO "loop: module loaded\n"); 2248 return 0; 2249 2250 misc_out: 2251 misc_deregister(&loop_misc); 2252 err_out: 2253 return err; 2254 } 2255 2256 static void __exit loop_exit(void) 2257 { 2258 struct loop_device *lo; 2259 int id; 2260 2261 unregister_blkdev(LOOP_MAJOR, "loop"); 2262 misc_deregister(&loop_misc); 2263 2264 /* 2265 * There is no need to use loop_ctl_mutex here, for nobody else can 2266 * access loop_index_idr when this module is unloading (unless forced 2267 * module unloading is requested). If this is not a clean unloading, 2268 * we have no means to avoid kernel crash. 2269 */ 2270 idr_for_each_entry(&loop_index_idr, lo, id) 2271 loop_remove(lo); 2272 2273 idr_destroy(&loop_index_idr); 2274 } 2275 2276 module_init(loop_init); 2277 module_exit(loop_exit); 2278 2279 #ifndef MODULE 2280 static int __init max_loop_setup(char *str) 2281 { 2282 max_loop = simple_strtol(str, NULL, 0); 2283 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2284 max_loop_specified = true; 2285 #endif 2286 return 1; 2287 } 2288 2289 __setup("max_loop=", max_loop_setup); 2290 #endif 2291