1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 82 #include "loop.h" 83 84 #include <linux/uaccess.h> 85 86 static DEFINE_IDR(loop_index_idr); 87 static DEFINE_MUTEX(loop_ctl_mutex); 88 89 static int max_part; 90 static int part_shift; 91 92 static int transfer_xor(struct loop_device *lo, int cmd, 93 struct page *raw_page, unsigned raw_off, 94 struct page *loop_page, unsigned loop_off, 95 int size, sector_t real_block) 96 { 97 char *raw_buf = kmap_atomic(raw_page) + raw_off; 98 char *loop_buf = kmap_atomic(loop_page) + loop_off; 99 char *in, *out, *key; 100 int i, keysize; 101 102 if (cmd == READ) { 103 in = raw_buf; 104 out = loop_buf; 105 } else { 106 in = loop_buf; 107 out = raw_buf; 108 } 109 110 key = lo->lo_encrypt_key; 111 keysize = lo->lo_encrypt_key_size; 112 for (i = 0; i < size; i++) 113 *out++ = *in++ ^ key[(i & 511) % keysize]; 114 115 kunmap_atomic(loop_buf); 116 kunmap_atomic(raw_buf); 117 cond_resched(); 118 return 0; 119 } 120 121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 122 { 123 if (unlikely(info->lo_encrypt_key_size <= 0)) 124 return -EINVAL; 125 return 0; 126 } 127 128 static struct loop_func_table none_funcs = { 129 .number = LO_CRYPT_NONE, 130 }; 131 132 static struct loop_func_table xor_funcs = { 133 .number = LO_CRYPT_XOR, 134 .transfer = transfer_xor, 135 .init = xor_init 136 }; 137 138 /* xfer_funcs[0] is special - its release function is never called */ 139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 140 &none_funcs, 141 &xor_funcs 142 }; 143 144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 145 { 146 loff_t loopsize; 147 148 /* Compute loopsize in bytes */ 149 loopsize = i_size_read(file->f_mapping->host); 150 if (offset > 0) 151 loopsize -= offset; 152 /* offset is beyond i_size, weird but possible */ 153 if (loopsize < 0) 154 return 0; 155 156 if (sizelimit > 0 && sizelimit < loopsize) 157 loopsize = sizelimit; 158 /* 159 * Unfortunately, if we want to do I/O on the device, 160 * the number of 512-byte sectors has to fit into a sector_t. 161 */ 162 return loopsize >> 9; 163 } 164 165 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 166 { 167 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 168 } 169 170 static void __loop_update_dio(struct loop_device *lo, bool dio) 171 { 172 struct file *file = lo->lo_backing_file; 173 struct address_space *mapping = file->f_mapping; 174 struct inode *inode = mapping->host; 175 unsigned short sb_bsize = 0; 176 unsigned dio_align = 0; 177 bool use_dio; 178 179 if (inode->i_sb->s_bdev) { 180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 181 dio_align = sb_bsize - 1; 182 } 183 184 /* 185 * We support direct I/O only if lo_offset is aligned with the 186 * logical I/O size of backing device, and the logical block 187 * size of loop is bigger than the backing device's and the loop 188 * needn't transform transfer. 189 * 190 * TODO: the above condition may be loosed in the future, and 191 * direct I/O may be switched runtime at that time because most 192 * of requests in sane applications should be PAGE_SIZE aligned 193 */ 194 if (dio) { 195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 196 !(lo->lo_offset & dio_align) && 197 mapping->a_ops->direct_IO && 198 !lo->transfer) 199 use_dio = true; 200 else 201 use_dio = false; 202 } else { 203 use_dio = false; 204 } 205 206 if (lo->use_dio == use_dio) 207 return; 208 209 /* flush dirty pages before changing direct IO */ 210 vfs_fsync(file, 0); 211 212 /* 213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 215 * will get updated by ioctl(LOOP_GET_STATUS) 216 */ 217 if (lo->lo_state == Lo_bound) 218 blk_mq_freeze_queue(lo->lo_queue); 219 lo->use_dio = use_dio; 220 if (use_dio) { 221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 222 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 223 } else { 224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 226 } 227 if (lo->lo_state == Lo_bound) 228 blk_mq_unfreeze_queue(lo->lo_queue); 229 } 230 231 /** 232 * loop_validate_block_size() - validates the passed in block size 233 * @bsize: size to validate 234 */ 235 static int 236 loop_validate_block_size(unsigned short bsize) 237 { 238 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /** 245 * loop_set_size() - sets device size and notifies userspace 246 * @lo: struct loop_device to set the size for 247 * @size: new size of the loop device 248 * 249 * Callers must validate that the size passed into this function fits into 250 * a sector_t, eg using loop_validate_size() 251 */ 252 static void loop_set_size(struct loop_device *lo, loff_t size) 253 { 254 if (!set_capacity_and_notify(lo->lo_disk, size)) 255 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 256 } 257 258 static inline int 259 lo_do_transfer(struct loop_device *lo, int cmd, 260 struct page *rpage, unsigned roffs, 261 struct page *lpage, unsigned loffs, 262 int size, sector_t rblock) 263 { 264 int ret; 265 266 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 267 if (likely(!ret)) 268 return 0; 269 270 printk_ratelimited(KERN_ERR 271 "loop: Transfer error at byte offset %llu, length %i.\n", 272 (unsigned long long)rblock << 9, size); 273 return ret; 274 } 275 276 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 277 { 278 struct iov_iter i; 279 ssize_t bw; 280 281 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 282 283 file_start_write(file); 284 bw = vfs_iter_write(file, &i, ppos, 0); 285 file_end_write(file); 286 287 if (likely(bw == bvec->bv_len)) 288 return 0; 289 290 printk_ratelimited(KERN_ERR 291 "loop: Write error at byte offset %llu, length %i.\n", 292 (unsigned long long)*ppos, bvec->bv_len); 293 if (bw >= 0) 294 bw = -EIO; 295 return bw; 296 } 297 298 static int lo_write_simple(struct loop_device *lo, struct request *rq, 299 loff_t pos) 300 { 301 struct bio_vec bvec; 302 struct req_iterator iter; 303 int ret = 0; 304 305 rq_for_each_segment(bvec, rq, iter) { 306 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 307 if (ret < 0) 308 break; 309 cond_resched(); 310 } 311 312 return ret; 313 } 314 315 /* 316 * This is the slow, transforming version that needs to double buffer the 317 * data as it cannot do the transformations in place without having direct 318 * access to the destination pages of the backing file. 319 */ 320 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 321 loff_t pos) 322 { 323 struct bio_vec bvec, b; 324 struct req_iterator iter; 325 struct page *page; 326 int ret = 0; 327 328 page = alloc_page(GFP_NOIO); 329 if (unlikely(!page)) 330 return -ENOMEM; 331 332 rq_for_each_segment(bvec, rq, iter) { 333 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 334 bvec.bv_offset, bvec.bv_len, pos >> 9); 335 if (unlikely(ret)) 336 break; 337 338 b.bv_page = page; 339 b.bv_offset = 0; 340 b.bv_len = bvec.bv_len; 341 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 342 if (ret < 0) 343 break; 344 } 345 346 __free_page(page); 347 return ret; 348 } 349 350 static int lo_read_simple(struct loop_device *lo, struct request *rq, 351 loff_t pos) 352 { 353 struct bio_vec bvec; 354 struct req_iterator iter; 355 struct iov_iter i; 356 ssize_t len; 357 358 rq_for_each_segment(bvec, rq, iter) { 359 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 360 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 361 if (len < 0) 362 return len; 363 364 flush_dcache_page(bvec.bv_page); 365 366 if (len != bvec.bv_len) { 367 struct bio *bio; 368 369 __rq_for_each_bio(bio, rq) 370 zero_fill_bio(bio); 371 break; 372 } 373 cond_resched(); 374 } 375 376 return 0; 377 } 378 379 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 380 loff_t pos) 381 { 382 struct bio_vec bvec, b; 383 struct req_iterator iter; 384 struct iov_iter i; 385 struct page *page; 386 ssize_t len; 387 int ret = 0; 388 389 page = alloc_page(GFP_NOIO); 390 if (unlikely(!page)) 391 return -ENOMEM; 392 393 rq_for_each_segment(bvec, rq, iter) { 394 loff_t offset = pos; 395 396 b.bv_page = page; 397 b.bv_offset = 0; 398 b.bv_len = bvec.bv_len; 399 400 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 401 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 402 if (len < 0) { 403 ret = len; 404 goto out_free_page; 405 } 406 407 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 408 bvec.bv_offset, len, offset >> 9); 409 if (ret) 410 goto out_free_page; 411 412 flush_dcache_page(bvec.bv_page); 413 414 if (len != bvec.bv_len) { 415 struct bio *bio; 416 417 __rq_for_each_bio(bio, rq) 418 zero_fill_bio(bio); 419 break; 420 } 421 } 422 423 ret = 0; 424 out_free_page: 425 __free_page(page); 426 return ret; 427 } 428 429 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 430 int mode) 431 { 432 /* 433 * We use fallocate to manipulate the space mappings used by the image 434 * a.k.a. discard/zerorange. However we do not support this if 435 * encryption is enabled, because it may give an attacker useful 436 * information. 437 */ 438 struct file *file = lo->lo_backing_file; 439 struct request_queue *q = lo->lo_queue; 440 int ret; 441 442 mode |= FALLOC_FL_KEEP_SIZE; 443 444 if (!blk_queue_discard(q)) { 445 ret = -EOPNOTSUPP; 446 goto out; 447 } 448 449 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 450 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 451 ret = -EIO; 452 out: 453 return ret; 454 } 455 456 static int lo_req_flush(struct loop_device *lo, struct request *rq) 457 { 458 struct file *file = lo->lo_backing_file; 459 int ret = vfs_fsync(file, 0); 460 if (unlikely(ret && ret != -EINVAL)) 461 ret = -EIO; 462 463 return ret; 464 } 465 466 static void lo_complete_rq(struct request *rq) 467 { 468 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 469 blk_status_t ret = BLK_STS_OK; 470 471 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 472 req_op(rq) != REQ_OP_READ) { 473 if (cmd->ret < 0) 474 ret = errno_to_blk_status(cmd->ret); 475 goto end_io; 476 } 477 478 /* 479 * Short READ - if we got some data, advance our request and 480 * retry it. If we got no data, end the rest with EIO. 481 */ 482 if (cmd->ret) { 483 blk_update_request(rq, BLK_STS_OK, cmd->ret); 484 cmd->ret = 0; 485 blk_mq_requeue_request(rq, true); 486 } else { 487 if (cmd->use_aio) { 488 struct bio *bio = rq->bio; 489 490 while (bio) { 491 zero_fill_bio(bio); 492 bio = bio->bi_next; 493 } 494 } 495 ret = BLK_STS_IOERR; 496 end_io: 497 blk_mq_end_request(rq, ret); 498 } 499 } 500 501 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 502 { 503 struct request *rq = blk_mq_rq_from_pdu(cmd); 504 505 if (!atomic_dec_and_test(&cmd->ref)) 506 return; 507 kfree(cmd->bvec); 508 cmd->bvec = NULL; 509 if (likely(!blk_should_fake_timeout(rq->q))) 510 blk_mq_complete_request(rq); 511 } 512 513 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 514 { 515 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 516 517 if (cmd->css) 518 css_put(cmd->css); 519 cmd->ret = ret; 520 lo_rw_aio_do_completion(cmd); 521 } 522 523 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 524 loff_t pos, bool rw) 525 { 526 struct iov_iter iter; 527 struct req_iterator rq_iter; 528 struct bio_vec *bvec; 529 struct request *rq = blk_mq_rq_from_pdu(cmd); 530 struct bio *bio = rq->bio; 531 struct file *file = lo->lo_backing_file; 532 struct bio_vec tmp; 533 unsigned int offset; 534 int nr_bvec = 0; 535 int ret; 536 537 rq_for_each_bvec(tmp, rq, rq_iter) 538 nr_bvec++; 539 540 if (rq->bio != rq->biotail) { 541 542 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 543 GFP_NOIO); 544 if (!bvec) 545 return -EIO; 546 cmd->bvec = bvec; 547 548 /* 549 * The bios of the request may be started from the middle of 550 * the 'bvec' because of bio splitting, so we can't directly 551 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 552 * API will take care of all details for us. 553 */ 554 rq_for_each_bvec(tmp, rq, rq_iter) { 555 *bvec = tmp; 556 bvec++; 557 } 558 bvec = cmd->bvec; 559 offset = 0; 560 } else { 561 /* 562 * Same here, this bio may be started from the middle of the 563 * 'bvec' because of bio splitting, so offset from the bvec 564 * must be passed to iov iterator 565 */ 566 offset = bio->bi_iter.bi_bvec_done; 567 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 568 } 569 atomic_set(&cmd->ref, 2); 570 571 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 572 iter.iov_offset = offset; 573 574 cmd->iocb.ki_pos = pos; 575 cmd->iocb.ki_filp = file; 576 cmd->iocb.ki_complete = lo_rw_aio_complete; 577 cmd->iocb.ki_flags = IOCB_DIRECT; 578 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 579 if (cmd->css) 580 kthread_associate_blkcg(cmd->css); 581 582 if (rw == WRITE) 583 ret = call_write_iter(file, &cmd->iocb, &iter); 584 else 585 ret = call_read_iter(file, &cmd->iocb, &iter); 586 587 lo_rw_aio_do_completion(cmd); 588 kthread_associate_blkcg(NULL); 589 590 if (ret != -EIOCBQUEUED) 591 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 592 return 0; 593 } 594 595 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 596 { 597 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 598 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 599 600 /* 601 * lo_write_simple and lo_read_simple should have been covered 602 * by io submit style function like lo_rw_aio(), one blocker 603 * is that lo_read_simple() need to call flush_dcache_page after 604 * the page is written from kernel, and it isn't easy to handle 605 * this in io submit style function which submits all segments 606 * of the req at one time. And direct read IO doesn't need to 607 * run flush_dcache_page(). 608 */ 609 switch (req_op(rq)) { 610 case REQ_OP_FLUSH: 611 return lo_req_flush(lo, rq); 612 case REQ_OP_WRITE_ZEROES: 613 /* 614 * If the caller doesn't want deallocation, call zeroout to 615 * write zeroes the range. Otherwise, punch them out. 616 */ 617 return lo_fallocate(lo, rq, pos, 618 (rq->cmd_flags & REQ_NOUNMAP) ? 619 FALLOC_FL_ZERO_RANGE : 620 FALLOC_FL_PUNCH_HOLE); 621 case REQ_OP_DISCARD: 622 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 623 case REQ_OP_WRITE: 624 if (lo->transfer) 625 return lo_write_transfer(lo, rq, pos); 626 else if (cmd->use_aio) 627 return lo_rw_aio(lo, cmd, pos, WRITE); 628 else 629 return lo_write_simple(lo, rq, pos); 630 case REQ_OP_READ: 631 if (lo->transfer) 632 return lo_read_transfer(lo, rq, pos); 633 else if (cmd->use_aio) 634 return lo_rw_aio(lo, cmd, pos, READ); 635 else 636 return lo_read_simple(lo, rq, pos); 637 default: 638 WARN_ON_ONCE(1); 639 return -EIO; 640 } 641 } 642 643 static inline void loop_update_dio(struct loop_device *lo) 644 { 645 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 646 lo->use_dio); 647 } 648 649 static void loop_reread_partitions(struct loop_device *lo, 650 struct block_device *bdev) 651 { 652 int rc; 653 654 mutex_lock(&bdev->bd_mutex); 655 rc = bdev_disk_changed(bdev, false); 656 mutex_unlock(&bdev->bd_mutex); 657 if (rc) 658 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 659 __func__, lo->lo_number, lo->lo_file_name, rc); 660 } 661 662 static inline int is_loop_device(struct file *file) 663 { 664 struct inode *i = file->f_mapping->host; 665 666 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 667 } 668 669 static int loop_validate_file(struct file *file, struct block_device *bdev) 670 { 671 struct inode *inode = file->f_mapping->host; 672 struct file *f = file; 673 674 /* Avoid recursion */ 675 while (is_loop_device(f)) { 676 struct loop_device *l; 677 678 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 679 return -EBADF; 680 681 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 682 if (l->lo_state != Lo_bound) { 683 return -EINVAL; 684 } 685 f = l->lo_backing_file; 686 } 687 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 688 return -EINVAL; 689 return 0; 690 } 691 692 /* 693 * loop_change_fd switched the backing store of a loopback device to 694 * a new file. This is useful for operating system installers to free up 695 * the original file and in High Availability environments to switch to 696 * an alternative location for the content in case of server meltdown. 697 * This can only work if the loop device is used read-only, and if the 698 * new backing store is the same size and type as the old backing store. 699 */ 700 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 701 unsigned int arg) 702 { 703 struct file *file = NULL, *old_file; 704 int error; 705 bool partscan; 706 707 error = mutex_lock_killable(&loop_ctl_mutex); 708 if (error) 709 return error; 710 error = -ENXIO; 711 if (lo->lo_state != Lo_bound) 712 goto out_err; 713 714 /* the loop device has to be read-only */ 715 error = -EINVAL; 716 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 717 goto out_err; 718 719 error = -EBADF; 720 file = fget(arg); 721 if (!file) 722 goto out_err; 723 724 error = loop_validate_file(file, bdev); 725 if (error) 726 goto out_err; 727 728 old_file = lo->lo_backing_file; 729 730 error = -EINVAL; 731 732 /* size of the new backing store needs to be the same */ 733 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 734 goto out_err; 735 736 /* and ... switch */ 737 blk_mq_freeze_queue(lo->lo_queue); 738 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 739 lo->lo_backing_file = file; 740 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 741 mapping_set_gfp_mask(file->f_mapping, 742 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 743 loop_update_dio(lo); 744 blk_mq_unfreeze_queue(lo->lo_queue); 745 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 746 mutex_unlock(&loop_ctl_mutex); 747 /* 748 * We must drop file reference outside of loop_ctl_mutex as dropping 749 * the file ref can take bd_mutex which creates circular locking 750 * dependency. 751 */ 752 fput(old_file); 753 if (partscan) 754 loop_reread_partitions(lo, bdev); 755 return 0; 756 757 out_err: 758 mutex_unlock(&loop_ctl_mutex); 759 if (file) 760 fput(file); 761 return error; 762 } 763 764 /* loop sysfs attributes */ 765 766 static ssize_t loop_attr_show(struct device *dev, char *page, 767 ssize_t (*callback)(struct loop_device *, char *)) 768 { 769 struct gendisk *disk = dev_to_disk(dev); 770 struct loop_device *lo = disk->private_data; 771 772 return callback(lo, page); 773 } 774 775 #define LOOP_ATTR_RO(_name) \ 776 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 777 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 778 struct device_attribute *attr, char *b) \ 779 { \ 780 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 781 } \ 782 static struct device_attribute loop_attr_##_name = \ 783 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 784 785 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 786 { 787 ssize_t ret; 788 char *p = NULL; 789 790 spin_lock_irq(&lo->lo_lock); 791 if (lo->lo_backing_file) 792 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 793 spin_unlock_irq(&lo->lo_lock); 794 795 if (IS_ERR_OR_NULL(p)) 796 ret = PTR_ERR(p); 797 else { 798 ret = strlen(p); 799 memmove(buf, p, ret); 800 buf[ret++] = '\n'; 801 buf[ret] = 0; 802 } 803 804 return ret; 805 } 806 807 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 808 { 809 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 810 } 811 812 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 813 { 814 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 815 } 816 817 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 818 { 819 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 820 821 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 822 } 823 824 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 825 { 826 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 827 828 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 829 } 830 831 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 832 { 833 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 834 835 return sprintf(buf, "%s\n", dio ? "1" : "0"); 836 } 837 838 LOOP_ATTR_RO(backing_file); 839 LOOP_ATTR_RO(offset); 840 LOOP_ATTR_RO(sizelimit); 841 LOOP_ATTR_RO(autoclear); 842 LOOP_ATTR_RO(partscan); 843 LOOP_ATTR_RO(dio); 844 845 static struct attribute *loop_attrs[] = { 846 &loop_attr_backing_file.attr, 847 &loop_attr_offset.attr, 848 &loop_attr_sizelimit.attr, 849 &loop_attr_autoclear.attr, 850 &loop_attr_partscan.attr, 851 &loop_attr_dio.attr, 852 NULL, 853 }; 854 855 static struct attribute_group loop_attribute_group = { 856 .name = "loop", 857 .attrs= loop_attrs, 858 }; 859 860 static void loop_sysfs_init(struct loop_device *lo) 861 { 862 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 863 &loop_attribute_group); 864 } 865 866 static void loop_sysfs_exit(struct loop_device *lo) 867 { 868 if (lo->sysfs_inited) 869 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 870 &loop_attribute_group); 871 } 872 873 static void loop_config_discard(struct loop_device *lo) 874 { 875 struct file *file = lo->lo_backing_file; 876 struct inode *inode = file->f_mapping->host; 877 struct request_queue *q = lo->lo_queue; 878 u32 granularity, max_discard_sectors; 879 880 /* 881 * If the backing device is a block device, mirror its zeroing 882 * capability. Set the discard sectors to the block device's zeroing 883 * capabilities because loop discards result in blkdev_issue_zeroout(), 884 * not blkdev_issue_discard(). This maintains consistent behavior with 885 * file-backed loop devices: discarded regions read back as zero. 886 */ 887 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) { 888 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 889 890 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 891 granularity = backingq->limits.discard_granularity ?: 892 queue_physical_block_size(backingq); 893 894 /* 895 * We use punch hole to reclaim the free space used by the 896 * image a.k.a. discard. However we do not support discard if 897 * encryption is enabled, because it may give an attacker 898 * useful information. 899 */ 900 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) { 901 max_discard_sectors = 0; 902 granularity = 0; 903 904 } else { 905 max_discard_sectors = UINT_MAX >> 9; 906 granularity = inode->i_sb->s_blocksize; 907 } 908 909 if (max_discard_sectors) { 910 q->limits.discard_granularity = granularity; 911 blk_queue_max_discard_sectors(q, max_discard_sectors); 912 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 913 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 914 } else { 915 q->limits.discard_granularity = 0; 916 blk_queue_max_discard_sectors(q, 0); 917 blk_queue_max_write_zeroes_sectors(q, 0); 918 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 919 } 920 q->limits.discard_alignment = 0; 921 } 922 923 static void loop_unprepare_queue(struct loop_device *lo) 924 { 925 kthread_flush_worker(&lo->worker); 926 kthread_stop(lo->worker_task); 927 } 928 929 static int loop_kthread_worker_fn(void *worker_ptr) 930 { 931 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 932 return kthread_worker_fn(worker_ptr); 933 } 934 935 static int loop_prepare_queue(struct loop_device *lo) 936 { 937 kthread_init_worker(&lo->worker); 938 lo->worker_task = kthread_run(loop_kthread_worker_fn, 939 &lo->worker, "loop%d", lo->lo_number); 940 if (IS_ERR(lo->worker_task)) 941 return -ENOMEM; 942 set_user_nice(lo->worker_task, MIN_NICE); 943 return 0; 944 } 945 946 static void loop_update_rotational(struct loop_device *lo) 947 { 948 struct file *file = lo->lo_backing_file; 949 struct inode *file_inode = file->f_mapping->host; 950 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 951 struct request_queue *q = lo->lo_queue; 952 bool nonrot = true; 953 954 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 955 if (file_bdev) 956 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 957 958 if (nonrot) 959 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 960 else 961 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 962 } 963 964 static int 965 loop_release_xfer(struct loop_device *lo) 966 { 967 int err = 0; 968 struct loop_func_table *xfer = lo->lo_encryption; 969 970 if (xfer) { 971 if (xfer->release) 972 err = xfer->release(lo); 973 lo->transfer = NULL; 974 lo->lo_encryption = NULL; 975 module_put(xfer->owner); 976 } 977 return err; 978 } 979 980 static int 981 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 982 const struct loop_info64 *i) 983 { 984 int err = 0; 985 986 if (xfer) { 987 struct module *owner = xfer->owner; 988 989 if (!try_module_get(owner)) 990 return -EINVAL; 991 if (xfer->init) 992 err = xfer->init(lo, i); 993 if (err) 994 module_put(owner); 995 else 996 lo->lo_encryption = xfer; 997 } 998 return err; 999 } 1000 1001 /** 1002 * loop_set_status_from_info - configure device from loop_info 1003 * @lo: struct loop_device to configure 1004 * @info: struct loop_info64 to configure the device with 1005 * 1006 * Configures the loop device parameters according to the passed 1007 * in loop_info64 configuration. 1008 */ 1009 static int 1010 loop_set_status_from_info(struct loop_device *lo, 1011 const struct loop_info64 *info) 1012 { 1013 int err; 1014 struct loop_func_table *xfer; 1015 kuid_t uid = current_uid(); 1016 1017 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1018 return -EINVAL; 1019 1020 err = loop_release_xfer(lo); 1021 if (err) 1022 return err; 1023 1024 if (info->lo_encrypt_type) { 1025 unsigned int type = info->lo_encrypt_type; 1026 1027 if (type >= MAX_LO_CRYPT) 1028 return -EINVAL; 1029 xfer = xfer_funcs[type]; 1030 if (xfer == NULL) 1031 return -EINVAL; 1032 } else 1033 xfer = NULL; 1034 1035 err = loop_init_xfer(lo, xfer, info); 1036 if (err) 1037 return err; 1038 1039 lo->lo_offset = info->lo_offset; 1040 lo->lo_sizelimit = info->lo_sizelimit; 1041 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1042 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1043 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1044 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1045 1046 if (!xfer) 1047 xfer = &none_funcs; 1048 lo->transfer = xfer->transfer; 1049 lo->ioctl = xfer->ioctl; 1050 1051 lo->lo_flags = info->lo_flags; 1052 1053 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1054 lo->lo_init[0] = info->lo_init[0]; 1055 lo->lo_init[1] = info->lo_init[1]; 1056 if (info->lo_encrypt_key_size) { 1057 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1058 info->lo_encrypt_key_size); 1059 lo->lo_key_owner = uid; 1060 } 1061 1062 return 0; 1063 } 1064 1065 static int loop_configure(struct loop_device *lo, fmode_t mode, 1066 struct block_device *bdev, 1067 const struct loop_config *config) 1068 { 1069 struct file *file; 1070 struct inode *inode; 1071 struct address_space *mapping; 1072 int error; 1073 loff_t size; 1074 bool partscan; 1075 unsigned short bsize; 1076 1077 /* This is safe, since we have a reference from open(). */ 1078 __module_get(THIS_MODULE); 1079 1080 error = -EBADF; 1081 file = fget(config->fd); 1082 if (!file) 1083 goto out; 1084 1085 /* 1086 * If we don't hold exclusive handle for the device, upgrade to it 1087 * here to avoid changing device under exclusive owner. 1088 */ 1089 if (!(mode & FMODE_EXCL)) { 1090 error = bd_prepare_to_claim(bdev, loop_configure); 1091 if (error) 1092 goto out_putf; 1093 } 1094 1095 error = mutex_lock_killable(&loop_ctl_mutex); 1096 if (error) 1097 goto out_bdev; 1098 1099 error = -EBUSY; 1100 if (lo->lo_state != Lo_unbound) 1101 goto out_unlock; 1102 1103 error = loop_validate_file(file, bdev); 1104 if (error) 1105 goto out_unlock; 1106 1107 mapping = file->f_mapping; 1108 inode = mapping->host; 1109 1110 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1111 error = -EINVAL; 1112 goto out_unlock; 1113 } 1114 1115 if (config->block_size) { 1116 error = loop_validate_block_size(config->block_size); 1117 if (error) 1118 goto out_unlock; 1119 } 1120 1121 error = loop_set_status_from_info(lo, &config->info); 1122 if (error) 1123 goto out_unlock; 1124 1125 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1126 !file->f_op->write_iter) 1127 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1128 1129 error = loop_prepare_queue(lo); 1130 if (error) 1131 goto out_unlock; 1132 1133 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1134 1135 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1136 lo->lo_device = bdev; 1137 lo->lo_backing_file = file; 1138 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1139 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1140 1141 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1142 blk_queue_write_cache(lo->lo_queue, true, false); 1143 1144 if (config->block_size) 1145 bsize = config->block_size; 1146 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1147 /* In case of direct I/O, match underlying block size */ 1148 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1149 else 1150 bsize = 512; 1151 1152 blk_queue_logical_block_size(lo->lo_queue, bsize); 1153 blk_queue_physical_block_size(lo->lo_queue, bsize); 1154 blk_queue_io_min(lo->lo_queue, bsize); 1155 1156 loop_update_rotational(lo); 1157 loop_update_dio(lo); 1158 loop_sysfs_init(lo); 1159 1160 size = get_loop_size(lo, file); 1161 loop_set_size(lo, size); 1162 1163 lo->lo_state = Lo_bound; 1164 if (part_shift) 1165 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1166 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1167 if (partscan) 1168 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1169 1170 /* Grab the block_device to prevent its destruction after we 1171 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1172 */ 1173 bdgrab(bdev); 1174 mutex_unlock(&loop_ctl_mutex); 1175 if (partscan) 1176 loop_reread_partitions(lo, bdev); 1177 if (!(mode & FMODE_EXCL)) 1178 bd_abort_claiming(bdev, loop_configure); 1179 return 0; 1180 1181 out_unlock: 1182 mutex_unlock(&loop_ctl_mutex); 1183 out_bdev: 1184 if (!(mode & FMODE_EXCL)) 1185 bd_abort_claiming(bdev, loop_configure); 1186 out_putf: 1187 fput(file); 1188 out: 1189 /* This is safe: open() is still holding a reference. */ 1190 module_put(THIS_MODULE); 1191 return error; 1192 } 1193 1194 static int __loop_clr_fd(struct loop_device *lo, bool release) 1195 { 1196 struct file *filp = NULL; 1197 gfp_t gfp = lo->old_gfp_mask; 1198 struct block_device *bdev = lo->lo_device; 1199 int err = 0; 1200 bool partscan = false; 1201 int lo_number; 1202 1203 mutex_lock(&loop_ctl_mutex); 1204 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1205 err = -ENXIO; 1206 goto out_unlock; 1207 } 1208 1209 filp = lo->lo_backing_file; 1210 if (filp == NULL) { 1211 err = -EINVAL; 1212 goto out_unlock; 1213 } 1214 1215 /* freeze request queue during the transition */ 1216 blk_mq_freeze_queue(lo->lo_queue); 1217 1218 spin_lock_irq(&lo->lo_lock); 1219 lo->lo_backing_file = NULL; 1220 spin_unlock_irq(&lo->lo_lock); 1221 1222 loop_release_xfer(lo); 1223 lo->transfer = NULL; 1224 lo->ioctl = NULL; 1225 lo->lo_device = NULL; 1226 lo->lo_encryption = NULL; 1227 lo->lo_offset = 0; 1228 lo->lo_sizelimit = 0; 1229 lo->lo_encrypt_key_size = 0; 1230 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1231 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1232 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1233 blk_queue_logical_block_size(lo->lo_queue, 512); 1234 blk_queue_physical_block_size(lo->lo_queue, 512); 1235 blk_queue_io_min(lo->lo_queue, 512); 1236 if (bdev) { 1237 bdput(bdev); 1238 invalidate_bdev(bdev); 1239 bdev->bd_inode->i_mapping->wb_err = 0; 1240 } 1241 set_capacity(lo->lo_disk, 0); 1242 loop_sysfs_exit(lo); 1243 if (bdev) { 1244 /* let user-space know about this change */ 1245 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1246 } 1247 mapping_set_gfp_mask(filp->f_mapping, gfp); 1248 /* This is safe: open() is still holding a reference. */ 1249 module_put(THIS_MODULE); 1250 blk_mq_unfreeze_queue(lo->lo_queue); 1251 1252 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1253 lo_number = lo->lo_number; 1254 loop_unprepare_queue(lo); 1255 out_unlock: 1256 mutex_unlock(&loop_ctl_mutex); 1257 if (partscan) { 1258 /* 1259 * bd_mutex has been held already in release path, so don't 1260 * acquire it if this function is called in such case. 1261 * 1262 * If the reread partition isn't from release path, lo_refcnt 1263 * must be at least one and it can only become zero when the 1264 * current holder is released. 1265 */ 1266 if (!release) 1267 mutex_lock(&bdev->bd_mutex); 1268 err = bdev_disk_changed(bdev, false); 1269 if (!release) 1270 mutex_unlock(&bdev->bd_mutex); 1271 if (err) 1272 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1273 __func__, lo_number, err); 1274 /* Device is gone, no point in returning error */ 1275 err = 0; 1276 } 1277 1278 /* 1279 * lo->lo_state is set to Lo_unbound here after above partscan has 1280 * finished. 1281 * 1282 * There cannot be anybody else entering __loop_clr_fd() as 1283 * lo->lo_backing_file is already cleared and Lo_rundown state 1284 * protects us from all the other places trying to change the 'lo' 1285 * device. 1286 */ 1287 mutex_lock(&loop_ctl_mutex); 1288 lo->lo_flags = 0; 1289 if (!part_shift) 1290 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1291 lo->lo_state = Lo_unbound; 1292 mutex_unlock(&loop_ctl_mutex); 1293 1294 /* 1295 * Need not hold loop_ctl_mutex to fput backing file. 1296 * Calling fput holding loop_ctl_mutex triggers a circular 1297 * lock dependency possibility warning as fput can take 1298 * bd_mutex which is usually taken before loop_ctl_mutex. 1299 */ 1300 if (filp) 1301 fput(filp); 1302 return err; 1303 } 1304 1305 static int loop_clr_fd(struct loop_device *lo) 1306 { 1307 int err; 1308 1309 err = mutex_lock_killable(&loop_ctl_mutex); 1310 if (err) 1311 return err; 1312 if (lo->lo_state != Lo_bound) { 1313 mutex_unlock(&loop_ctl_mutex); 1314 return -ENXIO; 1315 } 1316 /* 1317 * If we've explicitly asked to tear down the loop device, 1318 * and it has an elevated reference count, set it for auto-teardown when 1319 * the last reference goes away. This stops $!~#$@ udev from 1320 * preventing teardown because it decided that it needs to run blkid on 1321 * the loopback device whenever they appear. xfstests is notorious for 1322 * failing tests because blkid via udev races with a losetup 1323 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1324 * command to fail with EBUSY. 1325 */ 1326 if (atomic_read(&lo->lo_refcnt) > 1) { 1327 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1328 mutex_unlock(&loop_ctl_mutex); 1329 return 0; 1330 } 1331 lo->lo_state = Lo_rundown; 1332 mutex_unlock(&loop_ctl_mutex); 1333 1334 return __loop_clr_fd(lo, false); 1335 } 1336 1337 static int 1338 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1339 { 1340 int err; 1341 struct block_device *bdev; 1342 kuid_t uid = current_uid(); 1343 int prev_lo_flags; 1344 bool partscan = false; 1345 bool size_changed = false; 1346 1347 err = mutex_lock_killable(&loop_ctl_mutex); 1348 if (err) 1349 return err; 1350 if (lo->lo_encrypt_key_size && 1351 !uid_eq(lo->lo_key_owner, uid) && 1352 !capable(CAP_SYS_ADMIN)) { 1353 err = -EPERM; 1354 goto out_unlock; 1355 } 1356 if (lo->lo_state != Lo_bound) { 1357 err = -ENXIO; 1358 goto out_unlock; 1359 } 1360 1361 if (lo->lo_offset != info->lo_offset || 1362 lo->lo_sizelimit != info->lo_sizelimit) { 1363 size_changed = true; 1364 sync_blockdev(lo->lo_device); 1365 invalidate_bdev(lo->lo_device); 1366 } 1367 1368 /* I/O need to be drained during transfer transition */ 1369 blk_mq_freeze_queue(lo->lo_queue); 1370 1371 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1372 /* If any pages were dirtied after invalidate_bdev(), try again */ 1373 err = -EAGAIN; 1374 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1375 __func__, lo->lo_number, lo->lo_file_name, 1376 lo->lo_device->bd_inode->i_mapping->nrpages); 1377 goto out_unfreeze; 1378 } 1379 1380 prev_lo_flags = lo->lo_flags; 1381 1382 err = loop_set_status_from_info(lo, info); 1383 if (err) 1384 goto out_unfreeze; 1385 1386 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1387 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1388 /* For those flags, use the previous values instead */ 1389 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1390 /* For flags that can't be cleared, use previous values too */ 1391 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1392 1393 if (size_changed) { 1394 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1395 lo->lo_backing_file); 1396 loop_set_size(lo, new_size); 1397 } 1398 1399 loop_config_discard(lo); 1400 1401 /* update dio if lo_offset or transfer is changed */ 1402 __loop_update_dio(lo, lo->use_dio); 1403 1404 out_unfreeze: 1405 blk_mq_unfreeze_queue(lo->lo_queue); 1406 1407 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1408 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1409 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1410 bdev = lo->lo_device; 1411 partscan = true; 1412 } 1413 out_unlock: 1414 mutex_unlock(&loop_ctl_mutex); 1415 if (partscan) 1416 loop_reread_partitions(lo, bdev); 1417 1418 return err; 1419 } 1420 1421 static int 1422 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1423 { 1424 struct path path; 1425 struct kstat stat; 1426 int ret; 1427 1428 ret = mutex_lock_killable(&loop_ctl_mutex); 1429 if (ret) 1430 return ret; 1431 if (lo->lo_state != Lo_bound) { 1432 mutex_unlock(&loop_ctl_mutex); 1433 return -ENXIO; 1434 } 1435 1436 memset(info, 0, sizeof(*info)); 1437 info->lo_number = lo->lo_number; 1438 info->lo_offset = lo->lo_offset; 1439 info->lo_sizelimit = lo->lo_sizelimit; 1440 info->lo_flags = lo->lo_flags; 1441 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1442 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1443 info->lo_encrypt_type = 1444 lo->lo_encryption ? lo->lo_encryption->number : 0; 1445 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1446 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1447 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1448 lo->lo_encrypt_key_size); 1449 } 1450 1451 /* Drop loop_ctl_mutex while we call into the filesystem. */ 1452 path = lo->lo_backing_file->f_path; 1453 path_get(&path); 1454 mutex_unlock(&loop_ctl_mutex); 1455 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1456 if (!ret) { 1457 info->lo_device = huge_encode_dev(stat.dev); 1458 info->lo_inode = stat.ino; 1459 info->lo_rdevice = huge_encode_dev(stat.rdev); 1460 } 1461 path_put(&path); 1462 return ret; 1463 } 1464 1465 static void 1466 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1467 { 1468 memset(info64, 0, sizeof(*info64)); 1469 info64->lo_number = info->lo_number; 1470 info64->lo_device = info->lo_device; 1471 info64->lo_inode = info->lo_inode; 1472 info64->lo_rdevice = info->lo_rdevice; 1473 info64->lo_offset = info->lo_offset; 1474 info64->lo_sizelimit = 0; 1475 info64->lo_encrypt_type = info->lo_encrypt_type; 1476 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1477 info64->lo_flags = info->lo_flags; 1478 info64->lo_init[0] = info->lo_init[0]; 1479 info64->lo_init[1] = info->lo_init[1]; 1480 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1481 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1482 else 1483 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1484 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1485 } 1486 1487 static int 1488 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1489 { 1490 memset(info, 0, sizeof(*info)); 1491 info->lo_number = info64->lo_number; 1492 info->lo_device = info64->lo_device; 1493 info->lo_inode = info64->lo_inode; 1494 info->lo_rdevice = info64->lo_rdevice; 1495 info->lo_offset = info64->lo_offset; 1496 info->lo_encrypt_type = info64->lo_encrypt_type; 1497 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1498 info->lo_flags = info64->lo_flags; 1499 info->lo_init[0] = info64->lo_init[0]; 1500 info->lo_init[1] = info64->lo_init[1]; 1501 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1502 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1503 else 1504 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1505 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1506 1507 /* error in case values were truncated */ 1508 if (info->lo_device != info64->lo_device || 1509 info->lo_rdevice != info64->lo_rdevice || 1510 info->lo_inode != info64->lo_inode || 1511 info->lo_offset != info64->lo_offset) 1512 return -EOVERFLOW; 1513 1514 return 0; 1515 } 1516 1517 static int 1518 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1519 { 1520 struct loop_info info; 1521 struct loop_info64 info64; 1522 1523 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1524 return -EFAULT; 1525 loop_info64_from_old(&info, &info64); 1526 return loop_set_status(lo, &info64); 1527 } 1528 1529 static int 1530 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1531 { 1532 struct loop_info64 info64; 1533 1534 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1535 return -EFAULT; 1536 return loop_set_status(lo, &info64); 1537 } 1538 1539 static int 1540 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1541 struct loop_info info; 1542 struct loop_info64 info64; 1543 int err; 1544 1545 if (!arg) 1546 return -EINVAL; 1547 err = loop_get_status(lo, &info64); 1548 if (!err) 1549 err = loop_info64_to_old(&info64, &info); 1550 if (!err && copy_to_user(arg, &info, sizeof(info))) 1551 err = -EFAULT; 1552 1553 return err; 1554 } 1555 1556 static int 1557 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1558 struct loop_info64 info64; 1559 int err; 1560 1561 if (!arg) 1562 return -EINVAL; 1563 err = loop_get_status(lo, &info64); 1564 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1565 err = -EFAULT; 1566 1567 return err; 1568 } 1569 1570 static int loop_set_capacity(struct loop_device *lo) 1571 { 1572 loff_t size; 1573 1574 if (unlikely(lo->lo_state != Lo_bound)) 1575 return -ENXIO; 1576 1577 size = get_loop_size(lo, lo->lo_backing_file); 1578 loop_set_size(lo, size); 1579 1580 return 0; 1581 } 1582 1583 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1584 { 1585 int error = -ENXIO; 1586 if (lo->lo_state != Lo_bound) 1587 goto out; 1588 1589 __loop_update_dio(lo, !!arg); 1590 if (lo->use_dio == !!arg) 1591 return 0; 1592 error = -EINVAL; 1593 out: 1594 return error; 1595 } 1596 1597 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1598 { 1599 int err = 0; 1600 1601 if (lo->lo_state != Lo_bound) 1602 return -ENXIO; 1603 1604 err = loop_validate_block_size(arg); 1605 if (err) 1606 return err; 1607 1608 if (lo->lo_queue->limits.logical_block_size == arg) 1609 return 0; 1610 1611 sync_blockdev(lo->lo_device); 1612 invalidate_bdev(lo->lo_device); 1613 1614 blk_mq_freeze_queue(lo->lo_queue); 1615 1616 /* invalidate_bdev should have truncated all the pages */ 1617 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1618 err = -EAGAIN; 1619 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1620 __func__, lo->lo_number, lo->lo_file_name, 1621 lo->lo_device->bd_inode->i_mapping->nrpages); 1622 goto out_unfreeze; 1623 } 1624 1625 blk_queue_logical_block_size(lo->lo_queue, arg); 1626 blk_queue_physical_block_size(lo->lo_queue, arg); 1627 blk_queue_io_min(lo->lo_queue, arg); 1628 loop_update_dio(lo); 1629 out_unfreeze: 1630 blk_mq_unfreeze_queue(lo->lo_queue); 1631 1632 return err; 1633 } 1634 1635 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1636 unsigned long arg) 1637 { 1638 int err; 1639 1640 err = mutex_lock_killable(&loop_ctl_mutex); 1641 if (err) 1642 return err; 1643 switch (cmd) { 1644 case LOOP_SET_CAPACITY: 1645 err = loop_set_capacity(lo); 1646 break; 1647 case LOOP_SET_DIRECT_IO: 1648 err = loop_set_dio(lo, arg); 1649 break; 1650 case LOOP_SET_BLOCK_SIZE: 1651 err = loop_set_block_size(lo, arg); 1652 break; 1653 default: 1654 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1655 } 1656 mutex_unlock(&loop_ctl_mutex); 1657 return err; 1658 } 1659 1660 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1661 unsigned int cmd, unsigned long arg) 1662 { 1663 struct loop_device *lo = bdev->bd_disk->private_data; 1664 void __user *argp = (void __user *) arg; 1665 int err; 1666 1667 switch (cmd) { 1668 case LOOP_SET_FD: { 1669 /* 1670 * Legacy case - pass in a zeroed out struct loop_config with 1671 * only the file descriptor set , which corresponds with the 1672 * default parameters we'd have used otherwise. 1673 */ 1674 struct loop_config config; 1675 1676 memset(&config, 0, sizeof(config)); 1677 config.fd = arg; 1678 1679 return loop_configure(lo, mode, bdev, &config); 1680 } 1681 case LOOP_CONFIGURE: { 1682 struct loop_config config; 1683 1684 if (copy_from_user(&config, argp, sizeof(config))) 1685 return -EFAULT; 1686 1687 return loop_configure(lo, mode, bdev, &config); 1688 } 1689 case LOOP_CHANGE_FD: 1690 return loop_change_fd(lo, bdev, arg); 1691 case LOOP_CLR_FD: 1692 return loop_clr_fd(lo); 1693 case LOOP_SET_STATUS: 1694 err = -EPERM; 1695 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1696 err = loop_set_status_old(lo, argp); 1697 } 1698 break; 1699 case LOOP_GET_STATUS: 1700 return loop_get_status_old(lo, argp); 1701 case LOOP_SET_STATUS64: 1702 err = -EPERM; 1703 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1704 err = loop_set_status64(lo, argp); 1705 } 1706 break; 1707 case LOOP_GET_STATUS64: 1708 return loop_get_status64(lo, argp); 1709 case LOOP_SET_CAPACITY: 1710 case LOOP_SET_DIRECT_IO: 1711 case LOOP_SET_BLOCK_SIZE: 1712 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1713 return -EPERM; 1714 fallthrough; 1715 default: 1716 err = lo_simple_ioctl(lo, cmd, arg); 1717 break; 1718 } 1719 1720 return err; 1721 } 1722 1723 #ifdef CONFIG_COMPAT 1724 struct compat_loop_info { 1725 compat_int_t lo_number; /* ioctl r/o */ 1726 compat_dev_t lo_device; /* ioctl r/o */ 1727 compat_ulong_t lo_inode; /* ioctl r/o */ 1728 compat_dev_t lo_rdevice; /* ioctl r/o */ 1729 compat_int_t lo_offset; 1730 compat_int_t lo_encrypt_type; 1731 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1732 compat_int_t lo_flags; /* ioctl r/o */ 1733 char lo_name[LO_NAME_SIZE]; 1734 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1735 compat_ulong_t lo_init[2]; 1736 char reserved[4]; 1737 }; 1738 1739 /* 1740 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1741 * - noinlined to reduce stack space usage in main part of driver 1742 */ 1743 static noinline int 1744 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1745 struct loop_info64 *info64) 1746 { 1747 struct compat_loop_info info; 1748 1749 if (copy_from_user(&info, arg, sizeof(info))) 1750 return -EFAULT; 1751 1752 memset(info64, 0, sizeof(*info64)); 1753 info64->lo_number = info.lo_number; 1754 info64->lo_device = info.lo_device; 1755 info64->lo_inode = info.lo_inode; 1756 info64->lo_rdevice = info.lo_rdevice; 1757 info64->lo_offset = info.lo_offset; 1758 info64->lo_sizelimit = 0; 1759 info64->lo_encrypt_type = info.lo_encrypt_type; 1760 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1761 info64->lo_flags = info.lo_flags; 1762 info64->lo_init[0] = info.lo_init[0]; 1763 info64->lo_init[1] = info.lo_init[1]; 1764 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1765 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1766 else 1767 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1768 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1769 return 0; 1770 } 1771 1772 /* 1773 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1774 * - noinlined to reduce stack space usage in main part of driver 1775 */ 1776 static noinline int 1777 loop_info64_to_compat(const struct loop_info64 *info64, 1778 struct compat_loop_info __user *arg) 1779 { 1780 struct compat_loop_info info; 1781 1782 memset(&info, 0, sizeof(info)); 1783 info.lo_number = info64->lo_number; 1784 info.lo_device = info64->lo_device; 1785 info.lo_inode = info64->lo_inode; 1786 info.lo_rdevice = info64->lo_rdevice; 1787 info.lo_offset = info64->lo_offset; 1788 info.lo_encrypt_type = info64->lo_encrypt_type; 1789 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1790 info.lo_flags = info64->lo_flags; 1791 info.lo_init[0] = info64->lo_init[0]; 1792 info.lo_init[1] = info64->lo_init[1]; 1793 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1794 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1795 else 1796 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1797 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1798 1799 /* error in case values were truncated */ 1800 if (info.lo_device != info64->lo_device || 1801 info.lo_rdevice != info64->lo_rdevice || 1802 info.lo_inode != info64->lo_inode || 1803 info.lo_offset != info64->lo_offset || 1804 info.lo_init[0] != info64->lo_init[0] || 1805 info.lo_init[1] != info64->lo_init[1]) 1806 return -EOVERFLOW; 1807 1808 if (copy_to_user(arg, &info, sizeof(info))) 1809 return -EFAULT; 1810 return 0; 1811 } 1812 1813 static int 1814 loop_set_status_compat(struct loop_device *lo, 1815 const struct compat_loop_info __user *arg) 1816 { 1817 struct loop_info64 info64; 1818 int ret; 1819 1820 ret = loop_info64_from_compat(arg, &info64); 1821 if (ret < 0) 1822 return ret; 1823 return loop_set_status(lo, &info64); 1824 } 1825 1826 static int 1827 loop_get_status_compat(struct loop_device *lo, 1828 struct compat_loop_info __user *arg) 1829 { 1830 struct loop_info64 info64; 1831 int err; 1832 1833 if (!arg) 1834 return -EINVAL; 1835 err = loop_get_status(lo, &info64); 1836 if (!err) 1837 err = loop_info64_to_compat(&info64, arg); 1838 return err; 1839 } 1840 1841 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1842 unsigned int cmd, unsigned long arg) 1843 { 1844 struct loop_device *lo = bdev->bd_disk->private_data; 1845 int err; 1846 1847 switch(cmd) { 1848 case LOOP_SET_STATUS: 1849 err = loop_set_status_compat(lo, 1850 (const struct compat_loop_info __user *)arg); 1851 break; 1852 case LOOP_GET_STATUS: 1853 err = loop_get_status_compat(lo, 1854 (struct compat_loop_info __user *)arg); 1855 break; 1856 case LOOP_SET_CAPACITY: 1857 case LOOP_CLR_FD: 1858 case LOOP_GET_STATUS64: 1859 case LOOP_SET_STATUS64: 1860 case LOOP_CONFIGURE: 1861 arg = (unsigned long) compat_ptr(arg); 1862 fallthrough; 1863 case LOOP_SET_FD: 1864 case LOOP_CHANGE_FD: 1865 case LOOP_SET_BLOCK_SIZE: 1866 case LOOP_SET_DIRECT_IO: 1867 err = lo_ioctl(bdev, mode, cmd, arg); 1868 break; 1869 default: 1870 err = -ENOIOCTLCMD; 1871 break; 1872 } 1873 return err; 1874 } 1875 #endif 1876 1877 static int lo_open(struct block_device *bdev, fmode_t mode) 1878 { 1879 struct loop_device *lo; 1880 int err; 1881 1882 err = mutex_lock_killable(&loop_ctl_mutex); 1883 if (err) 1884 return err; 1885 lo = bdev->bd_disk->private_data; 1886 if (!lo) { 1887 err = -ENXIO; 1888 goto out; 1889 } 1890 1891 atomic_inc(&lo->lo_refcnt); 1892 out: 1893 mutex_unlock(&loop_ctl_mutex); 1894 return err; 1895 } 1896 1897 static void lo_release(struct gendisk *disk, fmode_t mode) 1898 { 1899 struct loop_device *lo; 1900 1901 mutex_lock(&loop_ctl_mutex); 1902 lo = disk->private_data; 1903 if (atomic_dec_return(&lo->lo_refcnt)) 1904 goto out_unlock; 1905 1906 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1907 if (lo->lo_state != Lo_bound) 1908 goto out_unlock; 1909 lo->lo_state = Lo_rundown; 1910 mutex_unlock(&loop_ctl_mutex); 1911 /* 1912 * In autoclear mode, stop the loop thread 1913 * and remove configuration after last close. 1914 */ 1915 __loop_clr_fd(lo, true); 1916 return; 1917 } else if (lo->lo_state == Lo_bound) { 1918 /* 1919 * Otherwise keep thread (if running) and config, 1920 * but flush possible ongoing bios in thread. 1921 */ 1922 blk_mq_freeze_queue(lo->lo_queue); 1923 blk_mq_unfreeze_queue(lo->lo_queue); 1924 } 1925 1926 out_unlock: 1927 mutex_unlock(&loop_ctl_mutex); 1928 } 1929 1930 static const struct block_device_operations lo_fops = { 1931 .owner = THIS_MODULE, 1932 .open = lo_open, 1933 .release = lo_release, 1934 .ioctl = lo_ioctl, 1935 #ifdef CONFIG_COMPAT 1936 .compat_ioctl = lo_compat_ioctl, 1937 #endif 1938 }; 1939 1940 /* 1941 * And now the modules code and kernel interface. 1942 */ 1943 static int max_loop; 1944 module_param(max_loop, int, 0444); 1945 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1946 module_param(max_part, int, 0444); 1947 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1948 MODULE_LICENSE("GPL"); 1949 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1950 1951 int loop_register_transfer(struct loop_func_table *funcs) 1952 { 1953 unsigned int n = funcs->number; 1954 1955 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1956 return -EINVAL; 1957 xfer_funcs[n] = funcs; 1958 return 0; 1959 } 1960 1961 static int unregister_transfer_cb(int id, void *ptr, void *data) 1962 { 1963 struct loop_device *lo = ptr; 1964 struct loop_func_table *xfer = data; 1965 1966 mutex_lock(&loop_ctl_mutex); 1967 if (lo->lo_encryption == xfer) 1968 loop_release_xfer(lo); 1969 mutex_unlock(&loop_ctl_mutex); 1970 return 0; 1971 } 1972 1973 int loop_unregister_transfer(int number) 1974 { 1975 unsigned int n = number; 1976 struct loop_func_table *xfer; 1977 1978 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1979 return -EINVAL; 1980 1981 xfer_funcs[n] = NULL; 1982 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1983 return 0; 1984 } 1985 1986 EXPORT_SYMBOL(loop_register_transfer); 1987 EXPORT_SYMBOL(loop_unregister_transfer); 1988 1989 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1990 const struct blk_mq_queue_data *bd) 1991 { 1992 struct request *rq = bd->rq; 1993 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1994 struct loop_device *lo = rq->q->queuedata; 1995 1996 blk_mq_start_request(rq); 1997 1998 if (lo->lo_state != Lo_bound) 1999 return BLK_STS_IOERR; 2000 2001 switch (req_op(rq)) { 2002 case REQ_OP_FLUSH: 2003 case REQ_OP_DISCARD: 2004 case REQ_OP_WRITE_ZEROES: 2005 cmd->use_aio = false; 2006 break; 2007 default: 2008 cmd->use_aio = lo->use_dio; 2009 break; 2010 } 2011 2012 /* always use the first bio's css */ 2013 #ifdef CONFIG_BLK_CGROUP 2014 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 2015 cmd->css = &bio_blkcg(rq->bio)->css; 2016 css_get(cmd->css); 2017 } else 2018 #endif 2019 cmd->css = NULL; 2020 kthread_queue_work(&lo->worker, &cmd->work); 2021 2022 return BLK_STS_OK; 2023 } 2024 2025 static void loop_handle_cmd(struct loop_cmd *cmd) 2026 { 2027 struct request *rq = blk_mq_rq_from_pdu(cmd); 2028 const bool write = op_is_write(req_op(rq)); 2029 struct loop_device *lo = rq->q->queuedata; 2030 int ret = 0; 2031 2032 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 2033 ret = -EIO; 2034 goto failed; 2035 } 2036 2037 ret = do_req_filebacked(lo, rq); 2038 failed: 2039 /* complete non-aio request */ 2040 if (!cmd->use_aio || ret) { 2041 if (ret == -EOPNOTSUPP) 2042 cmd->ret = ret; 2043 else 2044 cmd->ret = ret ? -EIO : 0; 2045 if (likely(!blk_should_fake_timeout(rq->q))) 2046 blk_mq_complete_request(rq); 2047 } 2048 } 2049 2050 static void loop_queue_work(struct kthread_work *work) 2051 { 2052 struct loop_cmd *cmd = 2053 container_of(work, struct loop_cmd, work); 2054 2055 loop_handle_cmd(cmd); 2056 } 2057 2058 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 2059 unsigned int hctx_idx, unsigned int numa_node) 2060 { 2061 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2062 2063 kthread_init_work(&cmd->work, loop_queue_work); 2064 return 0; 2065 } 2066 2067 static const struct blk_mq_ops loop_mq_ops = { 2068 .queue_rq = loop_queue_rq, 2069 .init_request = loop_init_request, 2070 .complete = lo_complete_rq, 2071 }; 2072 2073 static int loop_add(struct loop_device **l, int i) 2074 { 2075 struct loop_device *lo; 2076 struct gendisk *disk; 2077 int err; 2078 2079 err = -ENOMEM; 2080 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2081 if (!lo) 2082 goto out; 2083 2084 lo->lo_state = Lo_unbound; 2085 2086 /* allocate id, if @id >= 0, we're requesting that specific id */ 2087 if (i >= 0) { 2088 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2089 if (err == -ENOSPC) 2090 err = -EEXIST; 2091 } else { 2092 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2093 } 2094 if (err < 0) 2095 goto out_free_dev; 2096 i = err; 2097 2098 err = -ENOMEM; 2099 lo->tag_set.ops = &loop_mq_ops; 2100 lo->tag_set.nr_hw_queues = 1; 2101 lo->tag_set.queue_depth = 128; 2102 lo->tag_set.numa_node = NUMA_NO_NODE; 2103 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2104 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING; 2105 lo->tag_set.driver_data = lo; 2106 2107 err = blk_mq_alloc_tag_set(&lo->tag_set); 2108 if (err) 2109 goto out_free_idr; 2110 2111 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 2112 if (IS_ERR(lo->lo_queue)) { 2113 err = PTR_ERR(lo->lo_queue); 2114 goto out_cleanup_tags; 2115 } 2116 lo->lo_queue->queuedata = lo; 2117 2118 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2119 2120 /* 2121 * By default, we do buffer IO, so it doesn't make sense to enable 2122 * merge because the I/O submitted to backing file is handled page by 2123 * page. For directio mode, merge does help to dispatch bigger request 2124 * to underlayer disk. We will enable merge once directio is enabled. 2125 */ 2126 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2127 2128 err = -ENOMEM; 2129 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2130 if (!disk) 2131 goto out_free_queue; 2132 2133 /* 2134 * Disable partition scanning by default. The in-kernel partition 2135 * scanning can be requested individually per-device during its 2136 * setup. Userspace can always add and remove partitions from all 2137 * devices. The needed partition minors are allocated from the 2138 * extended minor space, the main loop device numbers will continue 2139 * to match the loop minors, regardless of the number of partitions 2140 * used. 2141 * 2142 * If max_part is given, partition scanning is globally enabled for 2143 * all loop devices. The minors for the main loop devices will be 2144 * multiples of max_part. 2145 * 2146 * Note: Global-for-all-devices, set-only-at-init, read-only module 2147 * parameteters like 'max_loop' and 'max_part' make things needlessly 2148 * complicated, are too static, inflexible and may surprise 2149 * userspace tools. Parameters like this in general should be avoided. 2150 */ 2151 if (!part_shift) 2152 disk->flags |= GENHD_FL_NO_PART_SCAN; 2153 disk->flags |= GENHD_FL_EXT_DEVT; 2154 atomic_set(&lo->lo_refcnt, 0); 2155 lo->lo_number = i; 2156 spin_lock_init(&lo->lo_lock); 2157 disk->major = LOOP_MAJOR; 2158 disk->first_minor = i << part_shift; 2159 disk->fops = &lo_fops; 2160 disk->private_data = lo; 2161 disk->queue = lo->lo_queue; 2162 sprintf(disk->disk_name, "loop%d", i); 2163 add_disk(disk); 2164 *l = lo; 2165 return lo->lo_number; 2166 2167 out_free_queue: 2168 blk_cleanup_queue(lo->lo_queue); 2169 out_cleanup_tags: 2170 blk_mq_free_tag_set(&lo->tag_set); 2171 out_free_idr: 2172 idr_remove(&loop_index_idr, i); 2173 out_free_dev: 2174 kfree(lo); 2175 out: 2176 return err; 2177 } 2178 2179 static void loop_remove(struct loop_device *lo) 2180 { 2181 del_gendisk(lo->lo_disk); 2182 blk_cleanup_queue(lo->lo_queue); 2183 blk_mq_free_tag_set(&lo->tag_set); 2184 put_disk(lo->lo_disk); 2185 kfree(lo); 2186 } 2187 2188 static int find_free_cb(int id, void *ptr, void *data) 2189 { 2190 struct loop_device *lo = ptr; 2191 struct loop_device **l = data; 2192 2193 if (lo->lo_state == Lo_unbound) { 2194 *l = lo; 2195 return 1; 2196 } 2197 return 0; 2198 } 2199 2200 static int loop_lookup(struct loop_device **l, int i) 2201 { 2202 struct loop_device *lo; 2203 int ret = -ENODEV; 2204 2205 if (i < 0) { 2206 int err; 2207 2208 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2209 if (err == 1) { 2210 *l = lo; 2211 ret = lo->lo_number; 2212 } 2213 goto out; 2214 } 2215 2216 /* lookup and return a specific i */ 2217 lo = idr_find(&loop_index_idr, i); 2218 if (lo) { 2219 *l = lo; 2220 ret = lo->lo_number; 2221 } 2222 out: 2223 return ret; 2224 } 2225 2226 static void loop_probe(dev_t dev) 2227 { 2228 int idx = MINOR(dev) >> part_shift; 2229 struct loop_device *lo; 2230 2231 if (max_loop && idx >= max_loop) 2232 return; 2233 2234 mutex_lock(&loop_ctl_mutex); 2235 if (loop_lookup(&lo, idx) < 0) 2236 loop_add(&lo, idx); 2237 mutex_unlock(&loop_ctl_mutex); 2238 } 2239 2240 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2241 unsigned long parm) 2242 { 2243 struct loop_device *lo; 2244 int ret; 2245 2246 ret = mutex_lock_killable(&loop_ctl_mutex); 2247 if (ret) 2248 return ret; 2249 2250 ret = -ENOSYS; 2251 switch (cmd) { 2252 case LOOP_CTL_ADD: 2253 ret = loop_lookup(&lo, parm); 2254 if (ret >= 0) { 2255 ret = -EEXIST; 2256 break; 2257 } 2258 ret = loop_add(&lo, parm); 2259 break; 2260 case LOOP_CTL_REMOVE: 2261 ret = loop_lookup(&lo, parm); 2262 if (ret < 0) 2263 break; 2264 if (lo->lo_state != Lo_unbound) { 2265 ret = -EBUSY; 2266 break; 2267 } 2268 if (atomic_read(&lo->lo_refcnt) > 0) { 2269 ret = -EBUSY; 2270 break; 2271 } 2272 lo->lo_disk->private_data = NULL; 2273 idr_remove(&loop_index_idr, lo->lo_number); 2274 loop_remove(lo); 2275 break; 2276 case LOOP_CTL_GET_FREE: 2277 ret = loop_lookup(&lo, -1); 2278 if (ret >= 0) 2279 break; 2280 ret = loop_add(&lo, -1); 2281 } 2282 mutex_unlock(&loop_ctl_mutex); 2283 2284 return ret; 2285 } 2286 2287 static const struct file_operations loop_ctl_fops = { 2288 .open = nonseekable_open, 2289 .unlocked_ioctl = loop_control_ioctl, 2290 .compat_ioctl = loop_control_ioctl, 2291 .owner = THIS_MODULE, 2292 .llseek = noop_llseek, 2293 }; 2294 2295 static struct miscdevice loop_misc = { 2296 .minor = LOOP_CTRL_MINOR, 2297 .name = "loop-control", 2298 .fops = &loop_ctl_fops, 2299 }; 2300 2301 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2302 MODULE_ALIAS("devname:loop-control"); 2303 2304 static int __init loop_init(void) 2305 { 2306 int i, nr; 2307 struct loop_device *lo; 2308 int err; 2309 2310 part_shift = 0; 2311 if (max_part > 0) { 2312 part_shift = fls(max_part); 2313 2314 /* 2315 * Adjust max_part according to part_shift as it is exported 2316 * to user space so that user can decide correct minor number 2317 * if [s]he want to create more devices. 2318 * 2319 * Note that -1 is required because partition 0 is reserved 2320 * for the whole disk. 2321 */ 2322 max_part = (1UL << part_shift) - 1; 2323 } 2324 2325 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2326 err = -EINVAL; 2327 goto err_out; 2328 } 2329 2330 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2331 err = -EINVAL; 2332 goto err_out; 2333 } 2334 2335 /* 2336 * If max_loop is specified, create that many devices upfront. 2337 * This also becomes a hard limit. If max_loop is not specified, 2338 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2339 * init time. Loop devices can be requested on-demand with the 2340 * /dev/loop-control interface, or be instantiated by accessing 2341 * a 'dead' device node. 2342 */ 2343 if (max_loop) 2344 nr = max_loop; 2345 else 2346 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2347 2348 err = misc_register(&loop_misc); 2349 if (err < 0) 2350 goto err_out; 2351 2352 2353 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2354 err = -EIO; 2355 goto misc_out; 2356 } 2357 2358 /* pre-create number of devices given by config or max_loop */ 2359 mutex_lock(&loop_ctl_mutex); 2360 for (i = 0; i < nr; i++) 2361 loop_add(&lo, i); 2362 mutex_unlock(&loop_ctl_mutex); 2363 2364 printk(KERN_INFO "loop: module loaded\n"); 2365 return 0; 2366 2367 misc_out: 2368 misc_deregister(&loop_misc); 2369 err_out: 2370 return err; 2371 } 2372 2373 static int loop_exit_cb(int id, void *ptr, void *data) 2374 { 2375 struct loop_device *lo = ptr; 2376 2377 loop_remove(lo); 2378 return 0; 2379 } 2380 2381 static void __exit loop_exit(void) 2382 { 2383 mutex_lock(&loop_ctl_mutex); 2384 2385 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2386 idr_destroy(&loop_index_idr); 2387 2388 unregister_blkdev(LOOP_MAJOR, "loop"); 2389 2390 misc_deregister(&loop_misc); 2391 2392 mutex_unlock(&loop_ctl_mutex); 2393 } 2394 2395 module_init(loop_init); 2396 module_exit(loop_exit); 2397 2398 #ifndef MODULE 2399 static int __init max_loop_setup(char *str) 2400 { 2401 max_loop = simple_strtol(str, NULL, 0); 2402 return 1; 2403 } 2404 2405 __setup("max_loop=", max_loop_setup); 2406 #endif 2407