xref: /linux/drivers/block/loop.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 
78 #include <asm/uaccess.h>
79 
80 static DEFINE_MUTEX(loop_mutex);
81 static LIST_HEAD(loop_devices);
82 static DEFINE_MUTEX(loop_devices_mutex);
83 
84 static int max_part;
85 static int part_shift;
86 
87 /*
88  * Transfer functions
89  */
90 static int transfer_none(struct loop_device *lo, int cmd,
91 			 struct page *raw_page, unsigned raw_off,
92 			 struct page *loop_page, unsigned loop_off,
93 			 int size, sector_t real_block)
94 {
95 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
97 
98 	if (cmd == READ)
99 		memcpy(loop_buf, raw_buf, size);
100 	else
101 		memcpy(raw_buf, loop_buf, size);
102 
103 	kunmap_atomic(raw_buf, KM_USER0);
104 	kunmap_atomic(loop_buf, KM_USER1);
105 	cond_resched();
106 	return 0;
107 }
108 
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 			struct page *raw_page, unsigned raw_off,
111 			struct page *loop_page, unsigned loop_off,
112 			int size, sector_t real_block)
113 {
114 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 	char *in, *out, *key;
117 	int i, keysize;
118 
119 	if (cmd == READ) {
120 		in = raw_buf;
121 		out = loop_buf;
122 	} else {
123 		in = loop_buf;
124 		out = raw_buf;
125 	}
126 
127 	key = lo->lo_encrypt_key;
128 	keysize = lo->lo_encrypt_key_size;
129 	for (i = 0; i < size; i++)
130 		*out++ = *in++ ^ key[(i & 511) % keysize];
131 
132 	kunmap_atomic(raw_buf, KM_USER0);
133 	kunmap_atomic(loop_buf, KM_USER1);
134 	cond_resched();
135 	return 0;
136 }
137 
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
139 {
140 	if (unlikely(info->lo_encrypt_key_size <= 0))
141 		return -EINVAL;
142 	return 0;
143 }
144 
145 static struct loop_func_table none_funcs = {
146 	.number = LO_CRYPT_NONE,
147 	.transfer = transfer_none,
148 };
149 
150 static struct loop_func_table xor_funcs = {
151 	.number = LO_CRYPT_XOR,
152 	.transfer = transfer_xor,
153 	.init = xor_init
154 };
155 
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 	&none_funcs,
159 	&xor_funcs
160 };
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	loff_t size, offset, loopsize;
165 
166 	/* Compute loopsize in bytes */
167 	size = i_size_read(file->f_mapping->host);
168 	offset = lo->lo_offset;
169 	loopsize = size - offset;
170 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 		loopsize = lo->lo_sizelimit;
172 
173 	/*
174 	 * Unfortunately, if we want to do I/O on the device,
175 	 * the number of 512-byte sectors has to fit into a sector_t.
176 	 */
177 	return loopsize >> 9;
178 }
179 
180 static int
181 figure_loop_size(struct loop_device *lo)
182 {
183 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 	sector_t x = (sector_t)size;
185 
186 	if (unlikely((loff_t)x != size))
187 		return -EFBIG;
188 
189 	set_capacity(lo->lo_disk, x);
190 	return 0;
191 }
192 
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 	       struct page *rpage, unsigned roffs,
196 	       struct page *lpage, unsigned loffs,
197 	       int size, sector_t rblock)
198 {
199 	if (unlikely(!lo->transfer))
200 		return 0;
201 
202 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
203 }
204 
205 /**
206  * do_lo_send_aops - helper for writing data to a loop device
207  *
208  * This is the fast version for backing filesystems which implement the address
209  * space operations write_begin and write_end.
210  */
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 		loff_t pos, struct page *unused)
213 {
214 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 	struct address_space *mapping = file->f_mapping;
216 	pgoff_t index;
217 	unsigned offset, bv_offs;
218 	int len, ret;
219 
220 	mutex_lock(&mapping->host->i_mutex);
221 	index = pos >> PAGE_CACHE_SHIFT;
222 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 	bv_offs = bvec->bv_offset;
224 	len = bvec->bv_len;
225 	while (len > 0) {
226 		sector_t IV;
227 		unsigned size, copied;
228 		int transfer_result;
229 		struct page *page;
230 		void *fsdata;
231 
232 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 		size = PAGE_CACHE_SIZE - offset;
234 		if (size > len)
235 			size = len;
236 
237 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 							&page, &fsdata);
239 		if (ret)
240 			goto fail;
241 
242 		file_update_time(file);
243 
244 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
245 				bvec->bv_page, bv_offs, size, IV);
246 		copied = size;
247 		if (unlikely(transfer_result))
248 			copied = 0;
249 
250 		ret = pagecache_write_end(file, mapping, pos, size, copied,
251 							page, fsdata);
252 		if (ret < 0 || ret != copied)
253 			goto fail;
254 
255 		if (unlikely(transfer_result))
256 			goto fail;
257 
258 		bv_offs += copied;
259 		len -= copied;
260 		offset = 0;
261 		index++;
262 		pos += copied;
263 	}
264 	ret = 0;
265 out:
266 	mutex_unlock(&mapping->host->i_mutex);
267 	return ret;
268 fail:
269 	ret = -1;
270 	goto out;
271 }
272 
273 /**
274  * __do_lo_send_write - helper for writing data to a loop device
275  *
276  * This helper just factors out common code between do_lo_send_direct_write()
277  * and do_lo_send_write().
278  */
279 static int __do_lo_send_write(struct file *file,
280 		u8 *buf, const int len, loff_t pos)
281 {
282 	ssize_t bw;
283 	mm_segment_t old_fs = get_fs();
284 
285 	set_fs(get_ds());
286 	bw = file->f_op->write(file, buf, len, &pos);
287 	set_fs(old_fs);
288 	if (likely(bw == len))
289 		return 0;
290 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
291 			(unsigned long long)pos, len);
292 	if (bw >= 0)
293 		bw = -EIO;
294 	return bw;
295 }
296 
297 /**
298  * do_lo_send_direct_write - helper for writing data to a loop device
299  *
300  * This is the fast, non-transforming version for backing filesystems which do
301  * not implement the address space operations write_begin and write_end.
302  * It uses the write file operation which should be present on all writeable
303  * filesystems.
304  */
305 static int do_lo_send_direct_write(struct loop_device *lo,
306 		struct bio_vec *bvec, loff_t pos, struct page *page)
307 {
308 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
309 			kmap(bvec->bv_page) + bvec->bv_offset,
310 			bvec->bv_len, pos);
311 	kunmap(bvec->bv_page);
312 	cond_resched();
313 	return bw;
314 }
315 
316 /**
317  * do_lo_send_write - helper for writing data to a loop device
318  *
319  * This is the slow, transforming version for filesystems which do not
320  * implement the address space operations write_begin and write_end.  It
321  * uses the write file operation which should be present on all writeable
322  * filesystems.
323  *
324  * Using fops->write is slower than using aops->{prepare,commit}_write in the
325  * transforming case because we need to double buffer the data as we cannot do
326  * the transformations in place as we do not have direct access to the
327  * destination pages of the backing file.
328  */
329 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
330 		loff_t pos, struct page *page)
331 {
332 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
333 			bvec->bv_offset, bvec->bv_len, pos >> 9);
334 	if (likely(!ret))
335 		return __do_lo_send_write(lo->lo_backing_file,
336 				page_address(page), bvec->bv_len,
337 				pos);
338 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
339 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
340 	if (ret > 0)
341 		ret = -EIO;
342 	return ret;
343 }
344 
345 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
346 {
347 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
348 			struct page *page);
349 	struct bio_vec *bvec;
350 	struct page *page = NULL;
351 	int i, ret = 0;
352 
353 	do_lo_send = do_lo_send_aops;
354 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
355 		do_lo_send = do_lo_send_direct_write;
356 		if (lo->transfer != transfer_none) {
357 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
358 			if (unlikely(!page))
359 				goto fail;
360 			kmap(page);
361 			do_lo_send = do_lo_send_write;
362 		}
363 	}
364 	bio_for_each_segment(bvec, bio, i) {
365 		ret = do_lo_send(lo, bvec, pos, page);
366 		if (ret < 0)
367 			break;
368 		pos += bvec->bv_len;
369 	}
370 	if (page) {
371 		kunmap(page);
372 		__free_page(page);
373 	}
374 out:
375 	return ret;
376 fail:
377 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
378 	ret = -ENOMEM;
379 	goto out;
380 }
381 
382 struct lo_read_data {
383 	struct loop_device *lo;
384 	struct page *page;
385 	unsigned offset;
386 	int bsize;
387 };
388 
389 static int
390 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
391 		struct splice_desc *sd)
392 {
393 	struct lo_read_data *p = sd->u.data;
394 	struct loop_device *lo = p->lo;
395 	struct page *page = buf->page;
396 	sector_t IV;
397 	int size, ret;
398 
399 	ret = buf->ops->confirm(pipe, buf);
400 	if (unlikely(ret))
401 		return ret;
402 
403 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
404 							(buf->offset >> 9);
405 	size = sd->len;
406 	if (size > p->bsize)
407 		size = p->bsize;
408 
409 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
410 		printk(KERN_ERR "loop: transfer error block %ld\n",
411 		       page->index);
412 		size = -EINVAL;
413 	}
414 
415 	flush_dcache_page(p->page);
416 
417 	if (size > 0)
418 		p->offset += size;
419 
420 	return size;
421 }
422 
423 static int
424 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
425 {
426 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
427 }
428 
429 static int
430 do_lo_receive(struct loop_device *lo,
431 	      struct bio_vec *bvec, int bsize, loff_t pos)
432 {
433 	struct lo_read_data cookie;
434 	struct splice_desc sd;
435 	struct file *file;
436 	long retval;
437 
438 	cookie.lo = lo;
439 	cookie.page = bvec->bv_page;
440 	cookie.offset = bvec->bv_offset;
441 	cookie.bsize = bsize;
442 
443 	sd.len = 0;
444 	sd.total_len = bvec->bv_len;
445 	sd.flags = 0;
446 	sd.pos = pos;
447 	sd.u.data = &cookie;
448 
449 	file = lo->lo_backing_file;
450 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
451 
452 	if (retval < 0)
453 		return retval;
454 
455 	return 0;
456 }
457 
458 static int
459 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
460 {
461 	struct bio_vec *bvec;
462 	int i, ret = 0;
463 
464 	bio_for_each_segment(bvec, bio, i) {
465 		ret = do_lo_receive(lo, bvec, bsize, pos);
466 		if (ret < 0)
467 			break;
468 		pos += bvec->bv_len;
469 	}
470 	return ret;
471 }
472 
473 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
474 {
475 	loff_t pos;
476 	int ret;
477 
478 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
479 
480 	if (bio_rw(bio) == WRITE) {
481 		bool barrier = !!(bio->bi_rw & REQ_HARDBARRIER);
482 		struct file *file = lo->lo_backing_file;
483 
484 		if (barrier) {
485 			if (unlikely(!file->f_op->fsync)) {
486 				ret = -EOPNOTSUPP;
487 				goto out;
488 			}
489 
490 			ret = vfs_fsync(file, 0);
491 			if (unlikely(ret)) {
492 				ret = -EIO;
493 				goto out;
494 			}
495 		}
496 
497 		ret = lo_send(lo, bio, pos);
498 
499 		if (barrier && !ret) {
500 			ret = vfs_fsync(file, 0);
501 			if (unlikely(ret))
502 				ret = -EIO;
503 		}
504 	} else
505 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
506 
507 out:
508 	return ret;
509 }
510 
511 /*
512  * Add bio to back of pending list
513  */
514 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
515 {
516 	bio_list_add(&lo->lo_bio_list, bio);
517 }
518 
519 /*
520  * Grab first pending buffer
521  */
522 static struct bio *loop_get_bio(struct loop_device *lo)
523 {
524 	return bio_list_pop(&lo->lo_bio_list);
525 }
526 
527 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
528 {
529 	struct loop_device *lo = q->queuedata;
530 	int rw = bio_rw(old_bio);
531 
532 	if (rw == READA)
533 		rw = READ;
534 
535 	BUG_ON(!lo || (rw != READ && rw != WRITE));
536 
537 	spin_lock_irq(&lo->lo_lock);
538 	if (lo->lo_state != Lo_bound)
539 		goto out;
540 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
541 		goto out;
542 	loop_add_bio(lo, old_bio);
543 	wake_up(&lo->lo_event);
544 	spin_unlock_irq(&lo->lo_lock);
545 	return 0;
546 
547 out:
548 	spin_unlock_irq(&lo->lo_lock);
549 	bio_io_error(old_bio);
550 	return 0;
551 }
552 
553 /*
554  * kick off io on the underlying address space
555  */
556 static void loop_unplug(struct request_queue *q)
557 {
558 	struct loop_device *lo = q->queuedata;
559 
560 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
561 	blk_run_address_space(lo->lo_backing_file->f_mapping);
562 }
563 
564 struct switch_request {
565 	struct file *file;
566 	struct completion wait;
567 };
568 
569 static void do_loop_switch(struct loop_device *, struct switch_request *);
570 
571 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
572 {
573 	if (unlikely(!bio->bi_bdev)) {
574 		do_loop_switch(lo, bio->bi_private);
575 		bio_put(bio);
576 	} else {
577 		int ret = do_bio_filebacked(lo, bio);
578 		bio_endio(bio, ret);
579 	}
580 }
581 
582 /*
583  * worker thread that handles reads/writes to file backed loop devices,
584  * to avoid blocking in our make_request_fn. it also does loop decrypting
585  * on reads for block backed loop, as that is too heavy to do from
586  * b_end_io context where irqs may be disabled.
587  *
588  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
589  * calling kthread_stop().  Therefore once kthread_should_stop() is
590  * true, make_request will not place any more requests.  Therefore
591  * once kthread_should_stop() is true and lo_bio is NULL, we are
592  * done with the loop.
593  */
594 static int loop_thread(void *data)
595 {
596 	struct loop_device *lo = data;
597 	struct bio *bio;
598 
599 	set_user_nice(current, -20);
600 
601 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
602 
603 		wait_event_interruptible(lo->lo_event,
604 				!bio_list_empty(&lo->lo_bio_list) ||
605 				kthread_should_stop());
606 
607 		if (bio_list_empty(&lo->lo_bio_list))
608 			continue;
609 		spin_lock_irq(&lo->lo_lock);
610 		bio = loop_get_bio(lo);
611 		spin_unlock_irq(&lo->lo_lock);
612 
613 		BUG_ON(!bio);
614 		loop_handle_bio(lo, bio);
615 	}
616 
617 	return 0;
618 }
619 
620 /*
621  * loop_switch performs the hard work of switching a backing store.
622  * First it needs to flush existing IO, it does this by sending a magic
623  * BIO down the pipe. The completion of this BIO does the actual switch.
624  */
625 static int loop_switch(struct loop_device *lo, struct file *file)
626 {
627 	struct switch_request w;
628 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
629 	if (!bio)
630 		return -ENOMEM;
631 	init_completion(&w.wait);
632 	w.file = file;
633 	bio->bi_private = &w;
634 	bio->bi_bdev = NULL;
635 	loop_make_request(lo->lo_queue, bio);
636 	wait_for_completion(&w.wait);
637 	return 0;
638 }
639 
640 /*
641  * Helper to flush the IOs in loop, but keeping loop thread running
642  */
643 static int loop_flush(struct loop_device *lo)
644 {
645 	/* loop not yet configured, no running thread, nothing to flush */
646 	if (!lo->lo_thread)
647 		return 0;
648 
649 	return loop_switch(lo, NULL);
650 }
651 
652 /*
653  * Do the actual switch; called from the BIO completion routine
654  */
655 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
656 {
657 	struct file *file = p->file;
658 	struct file *old_file = lo->lo_backing_file;
659 	struct address_space *mapping;
660 
661 	/* if no new file, only flush of queued bios requested */
662 	if (!file)
663 		goto out;
664 
665 	mapping = file->f_mapping;
666 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
667 	lo->lo_backing_file = file;
668 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
669 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
670 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
671 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
672 out:
673 	complete(&p->wait);
674 }
675 
676 
677 /*
678  * loop_change_fd switched the backing store of a loopback device to
679  * a new file. This is useful for operating system installers to free up
680  * the original file and in High Availability environments to switch to
681  * an alternative location for the content in case of server meltdown.
682  * This can only work if the loop device is used read-only, and if the
683  * new backing store is the same size and type as the old backing store.
684  */
685 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
686 			  unsigned int arg)
687 {
688 	struct file	*file, *old_file;
689 	struct inode	*inode;
690 	int		error;
691 
692 	error = -ENXIO;
693 	if (lo->lo_state != Lo_bound)
694 		goto out;
695 
696 	/* the loop device has to be read-only */
697 	error = -EINVAL;
698 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
699 		goto out;
700 
701 	error = -EBADF;
702 	file = fget(arg);
703 	if (!file)
704 		goto out;
705 
706 	inode = file->f_mapping->host;
707 	old_file = lo->lo_backing_file;
708 
709 	error = -EINVAL;
710 
711 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
712 		goto out_putf;
713 
714 	/* size of the new backing store needs to be the same */
715 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
716 		goto out_putf;
717 
718 	/* and ... switch */
719 	error = loop_switch(lo, file);
720 	if (error)
721 		goto out_putf;
722 
723 	fput(old_file);
724 	if (max_part > 0)
725 		ioctl_by_bdev(bdev, BLKRRPART, 0);
726 	return 0;
727 
728  out_putf:
729 	fput(file);
730  out:
731 	return error;
732 }
733 
734 static inline int is_loop_device(struct file *file)
735 {
736 	struct inode *i = file->f_mapping->host;
737 
738 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
739 }
740 
741 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
742 		       struct block_device *bdev, unsigned int arg)
743 {
744 	struct file	*file, *f;
745 	struct inode	*inode;
746 	struct address_space *mapping;
747 	unsigned lo_blocksize;
748 	int		lo_flags = 0;
749 	int		error;
750 	loff_t		size;
751 
752 	/* This is safe, since we have a reference from open(). */
753 	__module_get(THIS_MODULE);
754 
755 	error = -EBADF;
756 	file = fget(arg);
757 	if (!file)
758 		goto out;
759 
760 	error = -EBUSY;
761 	if (lo->lo_state != Lo_unbound)
762 		goto out_putf;
763 
764 	/* Avoid recursion */
765 	f = file;
766 	while (is_loop_device(f)) {
767 		struct loop_device *l;
768 
769 		if (f->f_mapping->host->i_bdev == bdev)
770 			goto out_putf;
771 
772 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
773 		if (l->lo_state == Lo_unbound) {
774 			error = -EINVAL;
775 			goto out_putf;
776 		}
777 		f = l->lo_backing_file;
778 	}
779 
780 	mapping = file->f_mapping;
781 	inode = mapping->host;
782 
783 	if (!(file->f_mode & FMODE_WRITE))
784 		lo_flags |= LO_FLAGS_READ_ONLY;
785 
786 	error = -EINVAL;
787 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
788 		const struct address_space_operations *aops = mapping->a_ops;
789 
790 		if (aops->write_begin)
791 			lo_flags |= LO_FLAGS_USE_AOPS;
792 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
793 			lo_flags |= LO_FLAGS_READ_ONLY;
794 
795 		lo_blocksize = S_ISBLK(inode->i_mode) ?
796 			inode->i_bdev->bd_block_size : PAGE_SIZE;
797 
798 		error = 0;
799 	} else {
800 		goto out_putf;
801 	}
802 
803 	size = get_loop_size(lo, file);
804 
805 	if ((loff_t)(sector_t)size != size) {
806 		error = -EFBIG;
807 		goto out_putf;
808 	}
809 
810 	if (!(mode & FMODE_WRITE))
811 		lo_flags |= LO_FLAGS_READ_ONLY;
812 
813 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
814 
815 	lo->lo_blocksize = lo_blocksize;
816 	lo->lo_device = bdev;
817 	lo->lo_flags = lo_flags;
818 	lo->lo_backing_file = file;
819 	lo->transfer = transfer_none;
820 	lo->ioctl = NULL;
821 	lo->lo_sizelimit = 0;
822 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
823 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
824 
825 	bio_list_init(&lo->lo_bio_list);
826 
827 	/*
828 	 * set queue make_request_fn, and add limits based on lower level
829 	 * device
830 	 */
831 	blk_queue_make_request(lo->lo_queue, loop_make_request);
832 	lo->lo_queue->queuedata = lo;
833 	lo->lo_queue->unplug_fn = loop_unplug;
834 
835 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
836 		blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN);
837 
838 	set_capacity(lo->lo_disk, size);
839 	bd_set_size(bdev, size << 9);
840 	/* let user-space know about the new size */
841 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
842 
843 	set_blocksize(bdev, lo_blocksize);
844 
845 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
846 						lo->lo_number);
847 	if (IS_ERR(lo->lo_thread)) {
848 		error = PTR_ERR(lo->lo_thread);
849 		goto out_clr;
850 	}
851 	lo->lo_state = Lo_bound;
852 	wake_up_process(lo->lo_thread);
853 	if (max_part > 0)
854 		ioctl_by_bdev(bdev, BLKRRPART, 0);
855 	return 0;
856 
857 out_clr:
858 	lo->lo_thread = NULL;
859 	lo->lo_device = NULL;
860 	lo->lo_backing_file = NULL;
861 	lo->lo_flags = 0;
862 	set_capacity(lo->lo_disk, 0);
863 	invalidate_bdev(bdev);
864 	bd_set_size(bdev, 0);
865 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
866 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
867 	lo->lo_state = Lo_unbound;
868  out_putf:
869 	fput(file);
870  out:
871 	/* This is safe: open() is still holding a reference. */
872 	module_put(THIS_MODULE);
873 	return error;
874 }
875 
876 static int
877 loop_release_xfer(struct loop_device *lo)
878 {
879 	int err = 0;
880 	struct loop_func_table *xfer = lo->lo_encryption;
881 
882 	if (xfer) {
883 		if (xfer->release)
884 			err = xfer->release(lo);
885 		lo->transfer = NULL;
886 		lo->lo_encryption = NULL;
887 		module_put(xfer->owner);
888 	}
889 	return err;
890 }
891 
892 static int
893 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
894 	       const struct loop_info64 *i)
895 {
896 	int err = 0;
897 
898 	if (xfer) {
899 		struct module *owner = xfer->owner;
900 
901 		if (!try_module_get(owner))
902 			return -EINVAL;
903 		if (xfer->init)
904 			err = xfer->init(lo, i);
905 		if (err)
906 			module_put(owner);
907 		else
908 			lo->lo_encryption = xfer;
909 	}
910 	return err;
911 }
912 
913 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
914 {
915 	struct file *filp = lo->lo_backing_file;
916 	gfp_t gfp = lo->old_gfp_mask;
917 
918 	if (lo->lo_state != Lo_bound)
919 		return -ENXIO;
920 
921 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
922 		return -EBUSY;
923 
924 	if (filp == NULL)
925 		return -EINVAL;
926 
927 	spin_lock_irq(&lo->lo_lock);
928 	lo->lo_state = Lo_rundown;
929 	spin_unlock_irq(&lo->lo_lock);
930 
931 	kthread_stop(lo->lo_thread);
932 
933 	lo->lo_queue->unplug_fn = NULL;
934 	lo->lo_backing_file = NULL;
935 
936 	loop_release_xfer(lo);
937 	lo->transfer = NULL;
938 	lo->ioctl = NULL;
939 	lo->lo_device = NULL;
940 	lo->lo_encryption = NULL;
941 	lo->lo_offset = 0;
942 	lo->lo_sizelimit = 0;
943 	lo->lo_encrypt_key_size = 0;
944 	lo->lo_flags = 0;
945 	lo->lo_thread = NULL;
946 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
947 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
948 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
949 	if (bdev)
950 		invalidate_bdev(bdev);
951 	set_capacity(lo->lo_disk, 0);
952 	if (bdev) {
953 		bd_set_size(bdev, 0);
954 		/* let user-space know about this change */
955 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
956 	}
957 	mapping_set_gfp_mask(filp->f_mapping, gfp);
958 	lo->lo_state = Lo_unbound;
959 	/* This is safe: open() is still holding a reference. */
960 	module_put(THIS_MODULE);
961 	if (max_part > 0 && bdev)
962 		ioctl_by_bdev(bdev, BLKRRPART, 0);
963 	mutex_unlock(&lo->lo_ctl_mutex);
964 	/*
965 	 * Need not hold lo_ctl_mutex to fput backing file.
966 	 * Calling fput holding lo_ctl_mutex triggers a circular
967 	 * lock dependency possibility warning as fput can take
968 	 * bd_mutex which is usually taken before lo_ctl_mutex.
969 	 */
970 	fput(filp);
971 	return 0;
972 }
973 
974 static int
975 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
976 {
977 	int err;
978 	struct loop_func_table *xfer;
979 	uid_t uid = current_uid();
980 
981 	if (lo->lo_encrypt_key_size &&
982 	    lo->lo_key_owner != uid &&
983 	    !capable(CAP_SYS_ADMIN))
984 		return -EPERM;
985 	if (lo->lo_state != Lo_bound)
986 		return -ENXIO;
987 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
988 		return -EINVAL;
989 
990 	err = loop_release_xfer(lo);
991 	if (err)
992 		return err;
993 
994 	if (info->lo_encrypt_type) {
995 		unsigned int type = info->lo_encrypt_type;
996 
997 		if (type >= MAX_LO_CRYPT)
998 			return -EINVAL;
999 		xfer = xfer_funcs[type];
1000 		if (xfer == NULL)
1001 			return -EINVAL;
1002 	} else
1003 		xfer = NULL;
1004 
1005 	err = loop_init_xfer(lo, xfer, info);
1006 	if (err)
1007 		return err;
1008 
1009 	if (lo->lo_offset != info->lo_offset ||
1010 	    lo->lo_sizelimit != info->lo_sizelimit) {
1011 		lo->lo_offset = info->lo_offset;
1012 		lo->lo_sizelimit = info->lo_sizelimit;
1013 		if (figure_loop_size(lo))
1014 			return -EFBIG;
1015 	}
1016 
1017 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1018 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1019 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1020 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1021 
1022 	if (!xfer)
1023 		xfer = &none_funcs;
1024 	lo->transfer = xfer->transfer;
1025 	lo->ioctl = xfer->ioctl;
1026 
1027 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1028 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1029 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1030 
1031 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1032 	lo->lo_init[0] = info->lo_init[0];
1033 	lo->lo_init[1] = info->lo_init[1];
1034 	if (info->lo_encrypt_key_size) {
1035 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1036 		       info->lo_encrypt_key_size);
1037 		lo->lo_key_owner = uid;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static int
1044 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1045 {
1046 	struct file *file = lo->lo_backing_file;
1047 	struct kstat stat;
1048 	int error;
1049 
1050 	if (lo->lo_state != Lo_bound)
1051 		return -ENXIO;
1052 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1053 	if (error)
1054 		return error;
1055 	memset(info, 0, sizeof(*info));
1056 	info->lo_number = lo->lo_number;
1057 	info->lo_device = huge_encode_dev(stat.dev);
1058 	info->lo_inode = stat.ino;
1059 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1060 	info->lo_offset = lo->lo_offset;
1061 	info->lo_sizelimit = lo->lo_sizelimit;
1062 	info->lo_flags = lo->lo_flags;
1063 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1064 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1065 	info->lo_encrypt_type =
1066 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1067 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1068 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1069 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1070 		       lo->lo_encrypt_key_size);
1071 	}
1072 	return 0;
1073 }
1074 
1075 static void
1076 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1077 {
1078 	memset(info64, 0, sizeof(*info64));
1079 	info64->lo_number = info->lo_number;
1080 	info64->lo_device = info->lo_device;
1081 	info64->lo_inode = info->lo_inode;
1082 	info64->lo_rdevice = info->lo_rdevice;
1083 	info64->lo_offset = info->lo_offset;
1084 	info64->lo_sizelimit = 0;
1085 	info64->lo_encrypt_type = info->lo_encrypt_type;
1086 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1087 	info64->lo_flags = info->lo_flags;
1088 	info64->lo_init[0] = info->lo_init[0];
1089 	info64->lo_init[1] = info->lo_init[1];
1090 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1091 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1092 	else
1093 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1094 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1095 }
1096 
1097 static int
1098 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1099 {
1100 	memset(info, 0, sizeof(*info));
1101 	info->lo_number = info64->lo_number;
1102 	info->lo_device = info64->lo_device;
1103 	info->lo_inode = info64->lo_inode;
1104 	info->lo_rdevice = info64->lo_rdevice;
1105 	info->lo_offset = info64->lo_offset;
1106 	info->lo_encrypt_type = info64->lo_encrypt_type;
1107 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1108 	info->lo_flags = info64->lo_flags;
1109 	info->lo_init[0] = info64->lo_init[0];
1110 	info->lo_init[1] = info64->lo_init[1];
1111 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1112 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1113 	else
1114 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1115 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1116 
1117 	/* error in case values were truncated */
1118 	if (info->lo_device != info64->lo_device ||
1119 	    info->lo_rdevice != info64->lo_rdevice ||
1120 	    info->lo_inode != info64->lo_inode ||
1121 	    info->lo_offset != info64->lo_offset)
1122 		return -EOVERFLOW;
1123 
1124 	return 0;
1125 }
1126 
1127 static int
1128 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1129 {
1130 	struct loop_info info;
1131 	struct loop_info64 info64;
1132 
1133 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1134 		return -EFAULT;
1135 	loop_info64_from_old(&info, &info64);
1136 	return loop_set_status(lo, &info64);
1137 }
1138 
1139 static int
1140 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1141 {
1142 	struct loop_info64 info64;
1143 
1144 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1145 		return -EFAULT;
1146 	return loop_set_status(lo, &info64);
1147 }
1148 
1149 static int
1150 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1151 	struct loop_info info;
1152 	struct loop_info64 info64;
1153 	int err = 0;
1154 
1155 	if (!arg)
1156 		err = -EINVAL;
1157 	if (!err)
1158 		err = loop_get_status(lo, &info64);
1159 	if (!err)
1160 		err = loop_info64_to_old(&info64, &info);
1161 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1162 		err = -EFAULT;
1163 
1164 	return err;
1165 }
1166 
1167 static int
1168 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1169 	struct loop_info64 info64;
1170 	int err = 0;
1171 
1172 	if (!arg)
1173 		err = -EINVAL;
1174 	if (!err)
1175 		err = loop_get_status(lo, &info64);
1176 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1177 		err = -EFAULT;
1178 
1179 	return err;
1180 }
1181 
1182 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1183 {
1184 	int err;
1185 	sector_t sec;
1186 	loff_t sz;
1187 
1188 	err = -ENXIO;
1189 	if (unlikely(lo->lo_state != Lo_bound))
1190 		goto out;
1191 	err = figure_loop_size(lo);
1192 	if (unlikely(err))
1193 		goto out;
1194 	sec = get_capacity(lo->lo_disk);
1195 	/* the width of sector_t may be narrow for bit-shift */
1196 	sz = sec;
1197 	sz <<= 9;
1198 	mutex_lock(&bdev->bd_mutex);
1199 	bd_set_size(bdev, sz);
1200 	/* let user-space know about the new size */
1201 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1202 	mutex_unlock(&bdev->bd_mutex);
1203 
1204  out:
1205 	return err;
1206 }
1207 
1208 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1209 	unsigned int cmd, unsigned long arg)
1210 {
1211 	struct loop_device *lo = bdev->bd_disk->private_data;
1212 	int err;
1213 
1214 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1215 	switch (cmd) {
1216 	case LOOP_SET_FD:
1217 		err = loop_set_fd(lo, mode, bdev, arg);
1218 		break;
1219 	case LOOP_CHANGE_FD:
1220 		err = loop_change_fd(lo, bdev, arg);
1221 		break;
1222 	case LOOP_CLR_FD:
1223 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1224 		err = loop_clr_fd(lo, bdev);
1225 		if (!err)
1226 			goto out_unlocked;
1227 		break;
1228 	case LOOP_SET_STATUS:
1229 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1230 		break;
1231 	case LOOP_GET_STATUS:
1232 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1233 		break;
1234 	case LOOP_SET_STATUS64:
1235 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1236 		break;
1237 	case LOOP_GET_STATUS64:
1238 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1239 		break;
1240 	case LOOP_SET_CAPACITY:
1241 		err = -EPERM;
1242 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1243 			err = loop_set_capacity(lo, bdev);
1244 		break;
1245 	default:
1246 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1247 	}
1248 	mutex_unlock(&lo->lo_ctl_mutex);
1249 
1250 out_unlocked:
1251 	return err;
1252 }
1253 
1254 #ifdef CONFIG_COMPAT
1255 struct compat_loop_info {
1256 	compat_int_t	lo_number;      /* ioctl r/o */
1257 	compat_dev_t	lo_device;      /* ioctl r/o */
1258 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1259 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1260 	compat_int_t	lo_offset;
1261 	compat_int_t	lo_encrypt_type;
1262 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1263 	compat_int_t	lo_flags;       /* ioctl r/o */
1264 	char		lo_name[LO_NAME_SIZE];
1265 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1266 	compat_ulong_t	lo_init[2];
1267 	char		reserved[4];
1268 };
1269 
1270 /*
1271  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1272  * - noinlined to reduce stack space usage in main part of driver
1273  */
1274 static noinline int
1275 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1276 			struct loop_info64 *info64)
1277 {
1278 	struct compat_loop_info info;
1279 
1280 	if (copy_from_user(&info, arg, sizeof(info)))
1281 		return -EFAULT;
1282 
1283 	memset(info64, 0, sizeof(*info64));
1284 	info64->lo_number = info.lo_number;
1285 	info64->lo_device = info.lo_device;
1286 	info64->lo_inode = info.lo_inode;
1287 	info64->lo_rdevice = info.lo_rdevice;
1288 	info64->lo_offset = info.lo_offset;
1289 	info64->lo_sizelimit = 0;
1290 	info64->lo_encrypt_type = info.lo_encrypt_type;
1291 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1292 	info64->lo_flags = info.lo_flags;
1293 	info64->lo_init[0] = info.lo_init[0];
1294 	info64->lo_init[1] = info.lo_init[1];
1295 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1296 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1297 	else
1298 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1299 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1300 	return 0;
1301 }
1302 
1303 /*
1304  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1305  * - noinlined to reduce stack space usage in main part of driver
1306  */
1307 static noinline int
1308 loop_info64_to_compat(const struct loop_info64 *info64,
1309 		      struct compat_loop_info __user *arg)
1310 {
1311 	struct compat_loop_info info;
1312 
1313 	memset(&info, 0, sizeof(info));
1314 	info.lo_number = info64->lo_number;
1315 	info.lo_device = info64->lo_device;
1316 	info.lo_inode = info64->lo_inode;
1317 	info.lo_rdevice = info64->lo_rdevice;
1318 	info.lo_offset = info64->lo_offset;
1319 	info.lo_encrypt_type = info64->lo_encrypt_type;
1320 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1321 	info.lo_flags = info64->lo_flags;
1322 	info.lo_init[0] = info64->lo_init[0];
1323 	info.lo_init[1] = info64->lo_init[1];
1324 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1325 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1326 	else
1327 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1328 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1329 
1330 	/* error in case values were truncated */
1331 	if (info.lo_device != info64->lo_device ||
1332 	    info.lo_rdevice != info64->lo_rdevice ||
1333 	    info.lo_inode != info64->lo_inode ||
1334 	    info.lo_offset != info64->lo_offset ||
1335 	    info.lo_init[0] != info64->lo_init[0] ||
1336 	    info.lo_init[1] != info64->lo_init[1])
1337 		return -EOVERFLOW;
1338 
1339 	if (copy_to_user(arg, &info, sizeof(info)))
1340 		return -EFAULT;
1341 	return 0;
1342 }
1343 
1344 static int
1345 loop_set_status_compat(struct loop_device *lo,
1346 		       const struct compat_loop_info __user *arg)
1347 {
1348 	struct loop_info64 info64;
1349 	int ret;
1350 
1351 	ret = loop_info64_from_compat(arg, &info64);
1352 	if (ret < 0)
1353 		return ret;
1354 	return loop_set_status(lo, &info64);
1355 }
1356 
1357 static int
1358 loop_get_status_compat(struct loop_device *lo,
1359 		       struct compat_loop_info __user *arg)
1360 {
1361 	struct loop_info64 info64;
1362 	int err = 0;
1363 
1364 	if (!arg)
1365 		err = -EINVAL;
1366 	if (!err)
1367 		err = loop_get_status(lo, &info64);
1368 	if (!err)
1369 		err = loop_info64_to_compat(&info64, arg);
1370 	return err;
1371 }
1372 
1373 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1374 			   unsigned int cmd, unsigned long arg)
1375 {
1376 	struct loop_device *lo = bdev->bd_disk->private_data;
1377 	int err;
1378 
1379 	switch(cmd) {
1380 	case LOOP_SET_STATUS:
1381 		mutex_lock(&lo->lo_ctl_mutex);
1382 		err = loop_set_status_compat(
1383 			lo, (const struct compat_loop_info __user *) arg);
1384 		mutex_unlock(&lo->lo_ctl_mutex);
1385 		break;
1386 	case LOOP_GET_STATUS:
1387 		mutex_lock(&lo->lo_ctl_mutex);
1388 		err = loop_get_status_compat(
1389 			lo, (struct compat_loop_info __user *) arg);
1390 		mutex_unlock(&lo->lo_ctl_mutex);
1391 		break;
1392 	case LOOP_SET_CAPACITY:
1393 	case LOOP_CLR_FD:
1394 	case LOOP_GET_STATUS64:
1395 	case LOOP_SET_STATUS64:
1396 		arg = (unsigned long) compat_ptr(arg);
1397 	case LOOP_SET_FD:
1398 	case LOOP_CHANGE_FD:
1399 		err = lo_ioctl(bdev, mode, cmd, arg);
1400 		break;
1401 	default:
1402 		err = -ENOIOCTLCMD;
1403 		break;
1404 	}
1405 	return err;
1406 }
1407 #endif
1408 
1409 static int lo_open(struct block_device *bdev, fmode_t mode)
1410 {
1411 	struct loop_device *lo = bdev->bd_disk->private_data;
1412 
1413 	mutex_lock(&loop_mutex);
1414 	mutex_lock(&lo->lo_ctl_mutex);
1415 	lo->lo_refcnt++;
1416 	mutex_unlock(&lo->lo_ctl_mutex);
1417 	mutex_unlock(&loop_mutex);
1418 
1419 	return 0;
1420 }
1421 
1422 static int lo_release(struct gendisk *disk, fmode_t mode)
1423 {
1424 	struct loop_device *lo = disk->private_data;
1425 	int err;
1426 
1427 	mutex_lock(&loop_mutex);
1428 	mutex_lock(&lo->lo_ctl_mutex);
1429 
1430 	if (--lo->lo_refcnt)
1431 		goto out;
1432 
1433 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1434 		/*
1435 		 * In autoclear mode, stop the loop thread
1436 		 * and remove configuration after last close.
1437 		 */
1438 		err = loop_clr_fd(lo, NULL);
1439 		if (!err)
1440 			goto out_unlocked;
1441 	} else {
1442 		/*
1443 		 * Otherwise keep thread (if running) and config,
1444 		 * but flush possible ongoing bios in thread.
1445 		 */
1446 		loop_flush(lo);
1447 	}
1448 
1449 out:
1450 	mutex_unlock(&lo->lo_ctl_mutex);
1451 out_unlocked:
1452 	mutex_unlock(&loop_mutex);
1453 	return 0;
1454 }
1455 
1456 static const struct block_device_operations lo_fops = {
1457 	.owner =	THIS_MODULE,
1458 	.open =		lo_open,
1459 	.release =	lo_release,
1460 	.ioctl =	lo_ioctl,
1461 #ifdef CONFIG_COMPAT
1462 	.compat_ioctl =	lo_compat_ioctl,
1463 #endif
1464 };
1465 
1466 /*
1467  * And now the modules code and kernel interface.
1468  */
1469 static int max_loop;
1470 module_param(max_loop, int, 0);
1471 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1472 module_param(max_part, int, 0);
1473 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1474 MODULE_LICENSE("GPL");
1475 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1476 
1477 int loop_register_transfer(struct loop_func_table *funcs)
1478 {
1479 	unsigned int n = funcs->number;
1480 
1481 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1482 		return -EINVAL;
1483 	xfer_funcs[n] = funcs;
1484 	return 0;
1485 }
1486 
1487 int loop_unregister_transfer(int number)
1488 {
1489 	unsigned int n = number;
1490 	struct loop_device *lo;
1491 	struct loop_func_table *xfer;
1492 
1493 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1494 		return -EINVAL;
1495 
1496 	xfer_funcs[n] = NULL;
1497 
1498 	list_for_each_entry(lo, &loop_devices, lo_list) {
1499 		mutex_lock(&lo->lo_ctl_mutex);
1500 
1501 		if (lo->lo_encryption == xfer)
1502 			loop_release_xfer(lo);
1503 
1504 		mutex_unlock(&lo->lo_ctl_mutex);
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 EXPORT_SYMBOL(loop_register_transfer);
1511 EXPORT_SYMBOL(loop_unregister_transfer);
1512 
1513 static struct loop_device *loop_alloc(int i)
1514 {
1515 	struct loop_device *lo;
1516 	struct gendisk *disk;
1517 
1518 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1519 	if (!lo)
1520 		goto out;
1521 
1522 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1523 	if (!lo->lo_queue)
1524 		goto out_free_dev;
1525 
1526 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1527 	if (!disk)
1528 		goto out_free_queue;
1529 
1530 	mutex_init(&lo->lo_ctl_mutex);
1531 	lo->lo_number		= i;
1532 	lo->lo_thread		= NULL;
1533 	init_waitqueue_head(&lo->lo_event);
1534 	spin_lock_init(&lo->lo_lock);
1535 	disk->major		= LOOP_MAJOR;
1536 	disk->first_minor	= i << part_shift;
1537 	disk->fops		= &lo_fops;
1538 	disk->private_data	= lo;
1539 	disk->queue		= lo->lo_queue;
1540 	sprintf(disk->disk_name, "loop%d", i);
1541 	return lo;
1542 
1543 out_free_queue:
1544 	blk_cleanup_queue(lo->lo_queue);
1545 out_free_dev:
1546 	kfree(lo);
1547 out:
1548 	return NULL;
1549 }
1550 
1551 static void loop_free(struct loop_device *lo)
1552 {
1553 	blk_cleanup_queue(lo->lo_queue);
1554 	put_disk(lo->lo_disk);
1555 	list_del(&lo->lo_list);
1556 	kfree(lo);
1557 }
1558 
1559 static struct loop_device *loop_init_one(int i)
1560 {
1561 	struct loop_device *lo;
1562 
1563 	list_for_each_entry(lo, &loop_devices, lo_list) {
1564 		if (lo->lo_number == i)
1565 			return lo;
1566 	}
1567 
1568 	lo = loop_alloc(i);
1569 	if (lo) {
1570 		add_disk(lo->lo_disk);
1571 		list_add_tail(&lo->lo_list, &loop_devices);
1572 	}
1573 	return lo;
1574 }
1575 
1576 static void loop_del_one(struct loop_device *lo)
1577 {
1578 	del_gendisk(lo->lo_disk);
1579 	loop_free(lo);
1580 }
1581 
1582 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1583 {
1584 	struct loop_device *lo;
1585 	struct kobject *kobj;
1586 
1587 	mutex_lock(&loop_devices_mutex);
1588 	lo = loop_init_one(dev & MINORMASK);
1589 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1590 	mutex_unlock(&loop_devices_mutex);
1591 
1592 	*part = 0;
1593 	return kobj;
1594 }
1595 
1596 static int __init loop_init(void)
1597 {
1598 	int i, nr;
1599 	unsigned long range;
1600 	struct loop_device *lo, *next;
1601 
1602 	/*
1603 	 * loop module now has a feature to instantiate underlying device
1604 	 * structure on-demand, provided that there is an access dev node.
1605 	 * However, this will not work well with user space tool that doesn't
1606 	 * know about such "feature".  In order to not break any existing
1607 	 * tool, we do the following:
1608 	 *
1609 	 * (1) if max_loop is specified, create that many upfront, and this
1610 	 *     also becomes a hard limit.
1611 	 * (2) if max_loop is not specified, create 8 loop device on module
1612 	 *     load, user can further extend loop device by create dev node
1613 	 *     themselves and have kernel automatically instantiate actual
1614 	 *     device on-demand.
1615 	 */
1616 
1617 	part_shift = 0;
1618 	if (max_part > 0)
1619 		part_shift = fls(max_part);
1620 
1621 	if (max_loop > 1UL << (MINORBITS - part_shift))
1622 		return -EINVAL;
1623 
1624 	if (max_loop) {
1625 		nr = max_loop;
1626 		range = max_loop;
1627 	} else {
1628 		nr = 8;
1629 		range = 1UL << (MINORBITS - part_shift);
1630 	}
1631 
1632 	if (register_blkdev(LOOP_MAJOR, "loop"))
1633 		return -EIO;
1634 
1635 	for (i = 0; i < nr; i++) {
1636 		lo = loop_alloc(i);
1637 		if (!lo)
1638 			goto Enomem;
1639 		list_add_tail(&lo->lo_list, &loop_devices);
1640 	}
1641 
1642 	/* point of no return */
1643 
1644 	list_for_each_entry(lo, &loop_devices, lo_list)
1645 		add_disk(lo->lo_disk);
1646 
1647 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1648 				  THIS_MODULE, loop_probe, NULL, NULL);
1649 
1650 	printk(KERN_INFO "loop: module loaded\n");
1651 	return 0;
1652 
1653 Enomem:
1654 	printk(KERN_INFO "loop: out of memory\n");
1655 
1656 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1657 		loop_free(lo);
1658 
1659 	unregister_blkdev(LOOP_MAJOR, "loop");
1660 	return -ENOMEM;
1661 }
1662 
1663 static void __exit loop_exit(void)
1664 {
1665 	unsigned long range;
1666 	struct loop_device *lo, *next;
1667 
1668 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1669 
1670 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1671 		loop_del_one(lo);
1672 
1673 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1674 	unregister_blkdev(LOOP_MAJOR, "loop");
1675 }
1676 
1677 module_init(loop_init);
1678 module_exit(loop_exit);
1679 
1680 #ifndef MODULE
1681 static int __init max_loop_setup(char *str)
1682 {
1683 	max_loop = simple_strtol(str, NULL, 0);
1684 	return 1;
1685 }
1686 
1687 __setup("max_loop=", max_loop_setup);
1688 #endif
1689