1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_func_table; 49 50 struct loop_device { 51 int lo_number; 52 loff_t lo_offset; 53 loff_t lo_sizelimit; 54 int lo_flags; 55 char lo_file_name[LO_NAME_SIZE]; 56 57 struct file * lo_backing_file; 58 struct block_device *lo_device; 59 60 gfp_t old_gfp_mask; 61 62 spinlock_t lo_lock; 63 int lo_state; 64 spinlock_t lo_work_lock; 65 struct workqueue_struct *workqueue; 66 struct work_struct rootcg_work; 67 struct list_head rootcg_cmd_list; 68 struct list_head idle_worker_list; 69 struct rb_root worker_tree; 70 struct timer_list timer; 71 bool use_dio; 72 bool sysfs_inited; 73 74 struct request_queue *lo_queue; 75 struct blk_mq_tag_set tag_set; 76 struct gendisk *lo_disk; 77 struct mutex lo_mutex; 78 bool idr_visible; 79 }; 80 81 struct loop_cmd { 82 struct list_head list_entry; 83 bool use_aio; /* use AIO interface to handle I/O */ 84 atomic_t ref; /* only for aio */ 85 long ret; 86 struct kiocb iocb; 87 struct bio_vec *bvec; 88 struct cgroup_subsys_state *blkcg_css; 89 struct cgroup_subsys_state *memcg_css; 90 }; 91 92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 93 #define LOOP_DEFAULT_HW_Q_DEPTH 128 94 95 static DEFINE_IDR(loop_index_idr); 96 static DEFINE_MUTEX(loop_ctl_mutex); 97 static DEFINE_MUTEX(loop_validate_mutex); 98 99 /** 100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 101 * 102 * @lo: struct loop_device 103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 104 * 105 * Returns 0 on success, -EINTR otherwise. 106 * 107 * Since loop_validate_file() traverses on other "struct loop_device" if 108 * is_loop_device() is true, we need a global lock for serializing concurrent 109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 110 */ 111 static int loop_global_lock_killable(struct loop_device *lo, bool global) 112 { 113 int err; 114 115 if (global) { 116 err = mutex_lock_killable(&loop_validate_mutex); 117 if (err) 118 return err; 119 } 120 err = mutex_lock_killable(&lo->lo_mutex); 121 if (err && global) 122 mutex_unlock(&loop_validate_mutex); 123 return err; 124 } 125 126 /** 127 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 128 * 129 * @lo: struct loop_device 130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 131 */ 132 static void loop_global_unlock(struct loop_device *lo, bool global) 133 { 134 mutex_unlock(&lo->lo_mutex); 135 if (global) 136 mutex_unlock(&loop_validate_mutex); 137 } 138 139 static int max_part; 140 static int part_shift; 141 142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 143 { 144 loff_t loopsize; 145 146 /* Compute loopsize in bytes */ 147 loopsize = i_size_read(file->f_mapping->host); 148 if (offset > 0) 149 loopsize -= offset; 150 /* offset is beyond i_size, weird but possible */ 151 if (loopsize < 0) 152 return 0; 153 154 if (sizelimit > 0 && sizelimit < loopsize) 155 loopsize = sizelimit; 156 /* 157 * Unfortunately, if we want to do I/O on the device, 158 * the number of 512-byte sectors has to fit into a sector_t. 159 */ 160 return loopsize >> 9; 161 } 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 166 } 167 168 static void __loop_update_dio(struct loop_device *lo, bool dio) 169 { 170 struct file *file = lo->lo_backing_file; 171 struct address_space *mapping = file->f_mapping; 172 struct inode *inode = mapping->host; 173 unsigned short sb_bsize = 0; 174 unsigned dio_align = 0; 175 bool use_dio; 176 177 if (inode->i_sb->s_bdev) { 178 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 179 dio_align = sb_bsize - 1; 180 } 181 182 /* 183 * We support direct I/O only if lo_offset is aligned with the 184 * logical I/O size of backing device, and the logical block 185 * size of loop is bigger than the backing device's. 186 * 187 * TODO: the above condition may be loosed in the future, and 188 * direct I/O may be switched runtime at that time because most 189 * of requests in sane applications should be PAGE_SIZE aligned 190 */ 191 if (dio) { 192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 193 !(lo->lo_offset & dio_align) && 194 (file->f_mode & FMODE_CAN_ODIRECT)) 195 use_dio = true; 196 else 197 use_dio = false; 198 } else { 199 use_dio = false; 200 } 201 202 if (lo->use_dio == use_dio) 203 return; 204 205 /* flush dirty pages before changing direct IO */ 206 vfs_fsync(file, 0); 207 208 /* 209 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 210 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 211 * will get updated by ioctl(LOOP_GET_STATUS) 212 */ 213 if (lo->lo_state == Lo_bound) 214 blk_mq_freeze_queue(lo->lo_queue); 215 lo->use_dio = use_dio; 216 if (use_dio) { 217 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 218 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 219 } else { 220 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 221 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 222 } 223 if (lo->lo_state == Lo_bound) 224 blk_mq_unfreeze_queue(lo->lo_queue); 225 } 226 227 /** 228 * loop_set_size() - sets device size and notifies userspace 229 * @lo: struct loop_device to set the size for 230 * @size: new size of the loop device 231 * 232 * Callers must validate that the size passed into this function fits into 233 * a sector_t, eg using loop_validate_size() 234 */ 235 static void loop_set_size(struct loop_device *lo, loff_t size) 236 { 237 if (!set_capacity_and_notify(lo->lo_disk, size)) 238 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 239 } 240 241 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 242 { 243 struct iov_iter i; 244 ssize_t bw; 245 246 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len); 247 248 file_start_write(file); 249 bw = vfs_iter_write(file, &i, ppos, 0); 250 file_end_write(file); 251 252 if (likely(bw == bvec->bv_len)) 253 return 0; 254 255 printk_ratelimited(KERN_ERR 256 "loop: Write error at byte offset %llu, length %i.\n", 257 (unsigned long long)*ppos, bvec->bv_len); 258 if (bw >= 0) 259 bw = -EIO; 260 return bw; 261 } 262 263 static int lo_write_simple(struct loop_device *lo, struct request *rq, 264 loff_t pos) 265 { 266 struct bio_vec bvec; 267 struct req_iterator iter; 268 int ret = 0; 269 270 rq_for_each_segment(bvec, rq, iter) { 271 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 272 if (ret < 0) 273 break; 274 cond_resched(); 275 } 276 277 return ret; 278 } 279 280 static int lo_read_simple(struct loop_device *lo, struct request *rq, 281 loff_t pos) 282 { 283 struct bio_vec bvec; 284 struct req_iterator iter; 285 struct iov_iter i; 286 ssize_t len; 287 288 rq_for_each_segment(bvec, rq, iter) { 289 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len); 290 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 291 if (len < 0) 292 return len; 293 294 flush_dcache_page(bvec.bv_page); 295 296 if (len != bvec.bv_len) { 297 struct bio *bio; 298 299 __rq_for_each_bio(bio, rq) 300 zero_fill_bio(bio); 301 break; 302 } 303 cond_resched(); 304 } 305 306 return 0; 307 } 308 309 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 310 int mode) 311 { 312 /* 313 * We use fallocate to manipulate the space mappings used by the image 314 * a.k.a. discard/zerorange. 315 */ 316 struct file *file = lo->lo_backing_file; 317 int ret; 318 319 mode |= FALLOC_FL_KEEP_SIZE; 320 321 if (!bdev_max_discard_sectors(lo->lo_device)) 322 return -EOPNOTSUPP; 323 324 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 325 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 326 return -EIO; 327 return ret; 328 } 329 330 static int lo_req_flush(struct loop_device *lo, struct request *rq) 331 { 332 int ret = vfs_fsync(lo->lo_backing_file, 0); 333 if (unlikely(ret && ret != -EINVAL)) 334 ret = -EIO; 335 336 return ret; 337 } 338 339 static void lo_complete_rq(struct request *rq) 340 { 341 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 342 blk_status_t ret = BLK_STS_OK; 343 344 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 345 req_op(rq) != REQ_OP_READ) { 346 if (cmd->ret < 0) 347 ret = errno_to_blk_status(cmd->ret); 348 goto end_io; 349 } 350 351 /* 352 * Short READ - if we got some data, advance our request and 353 * retry it. If we got no data, end the rest with EIO. 354 */ 355 if (cmd->ret) { 356 blk_update_request(rq, BLK_STS_OK, cmd->ret); 357 cmd->ret = 0; 358 blk_mq_requeue_request(rq, true); 359 } else { 360 if (cmd->use_aio) { 361 struct bio *bio = rq->bio; 362 363 while (bio) { 364 zero_fill_bio(bio); 365 bio = bio->bi_next; 366 } 367 } 368 ret = BLK_STS_IOERR; 369 end_io: 370 blk_mq_end_request(rq, ret); 371 } 372 } 373 374 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 375 { 376 struct request *rq = blk_mq_rq_from_pdu(cmd); 377 378 if (!atomic_dec_and_test(&cmd->ref)) 379 return; 380 kfree(cmd->bvec); 381 cmd->bvec = NULL; 382 if (likely(!blk_should_fake_timeout(rq->q))) 383 blk_mq_complete_request(rq); 384 } 385 386 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 387 { 388 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 389 390 cmd->ret = ret; 391 lo_rw_aio_do_completion(cmd); 392 } 393 394 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 395 loff_t pos, int rw) 396 { 397 struct iov_iter iter; 398 struct req_iterator rq_iter; 399 struct bio_vec *bvec; 400 struct request *rq = blk_mq_rq_from_pdu(cmd); 401 struct bio *bio = rq->bio; 402 struct file *file = lo->lo_backing_file; 403 struct bio_vec tmp; 404 unsigned int offset; 405 int nr_bvec = 0; 406 int ret; 407 408 rq_for_each_bvec(tmp, rq, rq_iter) 409 nr_bvec++; 410 411 if (rq->bio != rq->biotail) { 412 413 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 414 GFP_NOIO); 415 if (!bvec) 416 return -EIO; 417 cmd->bvec = bvec; 418 419 /* 420 * The bios of the request may be started from the middle of 421 * the 'bvec' because of bio splitting, so we can't directly 422 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 423 * API will take care of all details for us. 424 */ 425 rq_for_each_bvec(tmp, rq, rq_iter) { 426 *bvec = tmp; 427 bvec++; 428 } 429 bvec = cmd->bvec; 430 offset = 0; 431 } else { 432 /* 433 * Same here, this bio may be started from the middle of the 434 * 'bvec' because of bio splitting, so offset from the bvec 435 * must be passed to iov iterator 436 */ 437 offset = bio->bi_iter.bi_bvec_done; 438 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 439 } 440 atomic_set(&cmd->ref, 2); 441 442 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 443 iter.iov_offset = offset; 444 445 cmd->iocb.ki_pos = pos; 446 cmd->iocb.ki_filp = file; 447 cmd->iocb.ki_complete = lo_rw_aio_complete; 448 cmd->iocb.ki_flags = IOCB_DIRECT; 449 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 450 451 if (rw == ITER_SOURCE) 452 ret = call_write_iter(file, &cmd->iocb, &iter); 453 else 454 ret = call_read_iter(file, &cmd->iocb, &iter); 455 456 lo_rw_aio_do_completion(cmd); 457 458 if (ret != -EIOCBQUEUED) 459 lo_rw_aio_complete(&cmd->iocb, ret); 460 return 0; 461 } 462 463 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 464 { 465 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 466 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 467 468 /* 469 * lo_write_simple and lo_read_simple should have been covered 470 * by io submit style function like lo_rw_aio(), one blocker 471 * is that lo_read_simple() need to call flush_dcache_page after 472 * the page is written from kernel, and it isn't easy to handle 473 * this in io submit style function which submits all segments 474 * of the req at one time. And direct read IO doesn't need to 475 * run flush_dcache_page(). 476 */ 477 switch (req_op(rq)) { 478 case REQ_OP_FLUSH: 479 return lo_req_flush(lo, rq); 480 case REQ_OP_WRITE_ZEROES: 481 /* 482 * If the caller doesn't want deallocation, call zeroout to 483 * write zeroes the range. Otherwise, punch them out. 484 */ 485 return lo_fallocate(lo, rq, pos, 486 (rq->cmd_flags & REQ_NOUNMAP) ? 487 FALLOC_FL_ZERO_RANGE : 488 FALLOC_FL_PUNCH_HOLE); 489 case REQ_OP_DISCARD: 490 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 491 case REQ_OP_WRITE: 492 if (cmd->use_aio) 493 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 494 else 495 return lo_write_simple(lo, rq, pos); 496 case REQ_OP_READ: 497 if (cmd->use_aio) 498 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 499 else 500 return lo_read_simple(lo, rq, pos); 501 default: 502 WARN_ON_ONCE(1); 503 return -EIO; 504 } 505 } 506 507 static inline void loop_update_dio(struct loop_device *lo) 508 { 509 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 510 lo->use_dio); 511 } 512 513 static void loop_reread_partitions(struct loop_device *lo) 514 { 515 int rc; 516 517 mutex_lock(&lo->lo_disk->open_mutex); 518 rc = bdev_disk_changed(lo->lo_disk, false); 519 mutex_unlock(&lo->lo_disk->open_mutex); 520 if (rc) 521 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 522 __func__, lo->lo_number, lo->lo_file_name, rc); 523 } 524 525 static inline int is_loop_device(struct file *file) 526 { 527 struct inode *i = file->f_mapping->host; 528 529 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 530 } 531 532 static int loop_validate_file(struct file *file, struct block_device *bdev) 533 { 534 struct inode *inode = file->f_mapping->host; 535 struct file *f = file; 536 537 /* Avoid recursion */ 538 while (is_loop_device(f)) { 539 struct loop_device *l; 540 541 lockdep_assert_held(&loop_validate_mutex); 542 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 543 return -EBADF; 544 545 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 546 if (l->lo_state != Lo_bound) 547 return -EINVAL; 548 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 549 rmb(); 550 f = l->lo_backing_file; 551 } 552 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 553 return -EINVAL; 554 return 0; 555 } 556 557 /* 558 * loop_change_fd switched the backing store of a loopback device to 559 * a new file. This is useful for operating system installers to free up 560 * the original file and in High Availability environments to switch to 561 * an alternative location for the content in case of server meltdown. 562 * This can only work if the loop device is used read-only, and if the 563 * new backing store is the same size and type as the old backing store. 564 */ 565 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 566 unsigned int arg) 567 { 568 struct file *file = fget(arg); 569 struct file *old_file; 570 int error; 571 bool partscan; 572 bool is_loop; 573 574 if (!file) 575 return -EBADF; 576 577 /* suppress uevents while reconfiguring the device */ 578 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 579 580 is_loop = is_loop_device(file); 581 error = loop_global_lock_killable(lo, is_loop); 582 if (error) 583 goto out_putf; 584 error = -ENXIO; 585 if (lo->lo_state != Lo_bound) 586 goto out_err; 587 588 /* the loop device has to be read-only */ 589 error = -EINVAL; 590 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 591 goto out_err; 592 593 error = loop_validate_file(file, bdev); 594 if (error) 595 goto out_err; 596 597 old_file = lo->lo_backing_file; 598 599 error = -EINVAL; 600 601 /* size of the new backing store needs to be the same */ 602 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 603 goto out_err; 604 605 /* and ... switch */ 606 disk_force_media_change(lo->lo_disk); 607 blk_mq_freeze_queue(lo->lo_queue); 608 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 609 lo->lo_backing_file = file; 610 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 611 mapping_set_gfp_mask(file->f_mapping, 612 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 613 loop_update_dio(lo); 614 blk_mq_unfreeze_queue(lo->lo_queue); 615 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 616 loop_global_unlock(lo, is_loop); 617 618 /* 619 * Flush loop_validate_file() before fput(), for l->lo_backing_file 620 * might be pointing at old_file which might be the last reference. 621 */ 622 if (!is_loop) { 623 mutex_lock(&loop_validate_mutex); 624 mutex_unlock(&loop_validate_mutex); 625 } 626 /* 627 * We must drop file reference outside of lo_mutex as dropping 628 * the file ref can take open_mutex which creates circular locking 629 * dependency. 630 */ 631 fput(old_file); 632 if (partscan) 633 loop_reread_partitions(lo); 634 635 error = 0; 636 done: 637 /* enable and uncork uevent now that we are done */ 638 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 639 return error; 640 641 out_err: 642 loop_global_unlock(lo, is_loop); 643 out_putf: 644 fput(file); 645 goto done; 646 } 647 648 /* loop sysfs attributes */ 649 650 static ssize_t loop_attr_show(struct device *dev, char *page, 651 ssize_t (*callback)(struct loop_device *, char *)) 652 { 653 struct gendisk *disk = dev_to_disk(dev); 654 struct loop_device *lo = disk->private_data; 655 656 return callback(lo, page); 657 } 658 659 #define LOOP_ATTR_RO(_name) \ 660 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 661 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 662 struct device_attribute *attr, char *b) \ 663 { \ 664 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 665 } \ 666 static struct device_attribute loop_attr_##_name = \ 667 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 668 669 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 670 { 671 ssize_t ret; 672 char *p = NULL; 673 674 spin_lock_irq(&lo->lo_lock); 675 if (lo->lo_backing_file) 676 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 677 spin_unlock_irq(&lo->lo_lock); 678 679 if (IS_ERR_OR_NULL(p)) 680 ret = PTR_ERR(p); 681 else { 682 ret = strlen(p); 683 memmove(buf, p, ret); 684 buf[ret++] = '\n'; 685 buf[ret] = 0; 686 } 687 688 return ret; 689 } 690 691 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 692 { 693 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 694 } 695 696 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 697 { 698 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 699 } 700 701 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 702 { 703 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 704 705 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 706 } 707 708 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 709 { 710 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 711 712 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 713 } 714 715 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 716 { 717 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 718 719 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 720 } 721 722 LOOP_ATTR_RO(backing_file); 723 LOOP_ATTR_RO(offset); 724 LOOP_ATTR_RO(sizelimit); 725 LOOP_ATTR_RO(autoclear); 726 LOOP_ATTR_RO(partscan); 727 LOOP_ATTR_RO(dio); 728 729 static struct attribute *loop_attrs[] = { 730 &loop_attr_backing_file.attr, 731 &loop_attr_offset.attr, 732 &loop_attr_sizelimit.attr, 733 &loop_attr_autoclear.attr, 734 &loop_attr_partscan.attr, 735 &loop_attr_dio.attr, 736 NULL, 737 }; 738 739 static struct attribute_group loop_attribute_group = { 740 .name = "loop", 741 .attrs= loop_attrs, 742 }; 743 744 static void loop_sysfs_init(struct loop_device *lo) 745 { 746 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 747 &loop_attribute_group); 748 } 749 750 static void loop_sysfs_exit(struct loop_device *lo) 751 { 752 if (lo->sysfs_inited) 753 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 754 &loop_attribute_group); 755 } 756 757 static void loop_config_discard(struct loop_device *lo) 758 { 759 struct file *file = lo->lo_backing_file; 760 struct inode *inode = file->f_mapping->host; 761 struct request_queue *q = lo->lo_queue; 762 u32 granularity, max_discard_sectors; 763 764 /* 765 * If the backing device is a block device, mirror its zeroing 766 * capability. Set the discard sectors to the block device's zeroing 767 * capabilities because loop discards result in blkdev_issue_zeroout(), 768 * not blkdev_issue_discard(). This maintains consistent behavior with 769 * file-backed loop devices: discarded regions read back as zero. 770 */ 771 if (S_ISBLK(inode->i_mode)) { 772 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 773 774 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 775 granularity = bdev_discard_granularity(I_BDEV(inode)) ?: 776 queue_physical_block_size(backingq); 777 778 /* 779 * We use punch hole to reclaim the free space used by the 780 * image a.k.a. discard. 781 */ 782 } else if (!file->f_op->fallocate) { 783 max_discard_sectors = 0; 784 granularity = 0; 785 786 } else { 787 struct kstatfs sbuf; 788 789 max_discard_sectors = UINT_MAX >> 9; 790 if (!vfs_statfs(&file->f_path, &sbuf)) 791 granularity = sbuf.f_bsize; 792 else 793 max_discard_sectors = 0; 794 } 795 796 if (max_discard_sectors) { 797 q->limits.discard_granularity = granularity; 798 blk_queue_max_discard_sectors(q, max_discard_sectors); 799 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 800 } else { 801 q->limits.discard_granularity = 0; 802 blk_queue_max_discard_sectors(q, 0); 803 blk_queue_max_write_zeroes_sectors(q, 0); 804 } 805 } 806 807 struct loop_worker { 808 struct rb_node rb_node; 809 struct work_struct work; 810 struct list_head cmd_list; 811 struct list_head idle_list; 812 struct loop_device *lo; 813 struct cgroup_subsys_state *blkcg_css; 814 unsigned long last_ran_at; 815 }; 816 817 static void loop_workfn(struct work_struct *work); 818 819 #ifdef CONFIG_BLK_CGROUP 820 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 821 { 822 return !css || css == blkcg_root_css; 823 } 824 #else 825 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 826 { 827 return !css; 828 } 829 #endif 830 831 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 832 { 833 struct rb_node **node, *parent = NULL; 834 struct loop_worker *cur_worker, *worker = NULL; 835 struct work_struct *work; 836 struct list_head *cmd_list; 837 838 spin_lock_irq(&lo->lo_work_lock); 839 840 if (queue_on_root_worker(cmd->blkcg_css)) 841 goto queue_work; 842 843 node = &lo->worker_tree.rb_node; 844 845 while (*node) { 846 parent = *node; 847 cur_worker = container_of(*node, struct loop_worker, rb_node); 848 if (cur_worker->blkcg_css == cmd->blkcg_css) { 849 worker = cur_worker; 850 break; 851 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 852 node = &(*node)->rb_left; 853 } else { 854 node = &(*node)->rb_right; 855 } 856 } 857 if (worker) 858 goto queue_work; 859 860 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 861 /* 862 * In the event we cannot allocate a worker, just queue on the 863 * rootcg worker and issue the I/O as the rootcg 864 */ 865 if (!worker) { 866 cmd->blkcg_css = NULL; 867 if (cmd->memcg_css) 868 css_put(cmd->memcg_css); 869 cmd->memcg_css = NULL; 870 goto queue_work; 871 } 872 873 worker->blkcg_css = cmd->blkcg_css; 874 css_get(worker->blkcg_css); 875 INIT_WORK(&worker->work, loop_workfn); 876 INIT_LIST_HEAD(&worker->cmd_list); 877 INIT_LIST_HEAD(&worker->idle_list); 878 worker->lo = lo; 879 rb_link_node(&worker->rb_node, parent, node); 880 rb_insert_color(&worker->rb_node, &lo->worker_tree); 881 queue_work: 882 if (worker) { 883 /* 884 * We need to remove from the idle list here while 885 * holding the lock so that the idle timer doesn't 886 * free the worker 887 */ 888 if (!list_empty(&worker->idle_list)) 889 list_del_init(&worker->idle_list); 890 work = &worker->work; 891 cmd_list = &worker->cmd_list; 892 } else { 893 work = &lo->rootcg_work; 894 cmd_list = &lo->rootcg_cmd_list; 895 } 896 list_add_tail(&cmd->list_entry, cmd_list); 897 queue_work(lo->workqueue, work); 898 spin_unlock_irq(&lo->lo_work_lock); 899 } 900 901 static void loop_set_timer(struct loop_device *lo) 902 { 903 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 904 } 905 906 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 907 { 908 struct loop_worker *pos, *worker; 909 910 spin_lock_irq(&lo->lo_work_lock); 911 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 912 idle_list) { 913 if (!delete_all && 914 time_is_after_jiffies(worker->last_ran_at + 915 LOOP_IDLE_WORKER_TIMEOUT)) 916 break; 917 list_del(&worker->idle_list); 918 rb_erase(&worker->rb_node, &lo->worker_tree); 919 css_put(worker->blkcg_css); 920 kfree(worker); 921 } 922 if (!list_empty(&lo->idle_worker_list)) 923 loop_set_timer(lo); 924 spin_unlock_irq(&lo->lo_work_lock); 925 } 926 927 static void loop_free_idle_workers_timer(struct timer_list *timer) 928 { 929 struct loop_device *lo = container_of(timer, struct loop_device, timer); 930 931 return loop_free_idle_workers(lo, false); 932 } 933 934 static void loop_update_rotational(struct loop_device *lo) 935 { 936 struct file *file = lo->lo_backing_file; 937 struct inode *file_inode = file->f_mapping->host; 938 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 939 struct request_queue *q = lo->lo_queue; 940 bool nonrot = true; 941 942 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 943 if (file_bdev) 944 nonrot = bdev_nonrot(file_bdev); 945 946 if (nonrot) 947 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 948 else 949 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 950 } 951 952 /** 953 * loop_set_status_from_info - configure device from loop_info 954 * @lo: struct loop_device to configure 955 * @info: struct loop_info64 to configure the device with 956 * 957 * Configures the loop device parameters according to the passed 958 * in loop_info64 configuration. 959 */ 960 static int 961 loop_set_status_from_info(struct loop_device *lo, 962 const struct loop_info64 *info) 963 { 964 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 965 return -EINVAL; 966 967 switch (info->lo_encrypt_type) { 968 case LO_CRYPT_NONE: 969 break; 970 case LO_CRYPT_XOR: 971 pr_warn("support for the xor transformation has been removed.\n"); 972 return -EINVAL; 973 case LO_CRYPT_CRYPTOAPI: 974 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 975 return -EINVAL; 976 default: 977 return -EINVAL; 978 } 979 980 /* Avoid assigning overflow values */ 981 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 982 return -EOVERFLOW; 983 984 lo->lo_offset = info->lo_offset; 985 lo->lo_sizelimit = info->lo_sizelimit; 986 987 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 988 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 989 lo->lo_flags = info->lo_flags; 990 return 0; 991 } 992 993 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 994 struct block_device *bdev, 995 const struct loop_config *config) 996 { 997 struct file *file = fget(config->fd); 998 struct inode *inode; 999 struct address_space *mapping; 1000 int error; 1001 loff_t size; 1002 bool partscan; 1003 unsigned short bsize; 1004 bool is_loop; 1005 1006 if (!file) 1007 return -EBADF; 1008 is_loop = is_loop_device(file); 1009 1010 /* This is safe, since we have a reference from open(). */ 1011 __module_get(THIS_MODULE); 1012 1013 /* 1014 * If we don't hold exclusive handle for the device, upgrade to it 1015 * here to avoid changing device under exclusive owner. 1016 */ 1017 if (!(mode & BLK_OPEN_EXCL)) { 1018 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1019 if (error) 1020 goto out_putf; 1021 } 1022 1023 error = loop_global_lock_killable(lo, is_loop); 1024 if (error) 1025 goto out_bdev; 1026 1027 error = -EBUSY; 1028 if (lo->lo_state != Lo_unbound) 1029 goto out_unlock; 1030 1031 error = loop_validate_file(file, bdev); 1032 if (error) 1033 goto out_unlock; 1034 1035 mapping = file->f_mapping; 1036 inode = mapping->host; 1037 1038 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1039 error = -EINVAL; 1040 goto out_unlock; 1041 } 1042 1043 if (config->block_size) { 1044 error = blk_validate_block_size(config->block_size); 1045 if (error) 1046 goto out_unlock; 1047 } 1048 1049 error = loop_set_status_from_info(lo, &config->info); 1050 if (error) 1051 goto out_unlock; 1052 1053 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1054 !file->f_op->write_iter) 1055 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1056 1057 if (!lo->workqueue) { 1058 lo->workqueue = alloc_workqueue("loop%d", 1059 WQ_UNBOUND | WQ_FREEZABLE, 1060 0, lo->lo_number); 1061 if (!lo->workqueue) { 1062 error = -ENOMEM; 1063 goto out_unlock; 1064 } 1065 } 1066 1067 /* suppress uevents while reconfiguring the device */ 1068 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1069 1070 disk_force_media_change(lo->lo_disk); 1071 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1072 1073 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1074 lo->lo_device = bdev; 1075 lo->lo_backing_file = file; 1076 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1077 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1078 1079 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1080 blk_queue_write_cache(lo->lo_queue, true, false); 1081 1082 if (config->block_size) 1083 bsize = config->block_size; 1084 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1085 /* In case of direct I/O, match underlying block size */ 1086 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1087 else 1088 bsize = 512; 1089 1090 blk_queue_logical_block_size(lo->lo_queue, bsize); 1091 blk_queue_physical_block_size(lo->lo_queue, bsize); 1092 blk_queue_io_min(lo->lo_queue, bsize); 1093 1094 loop_config_discard(lo); 1095 loop_update_rotational(lo); 1096 loop_update_dio(lo); 1097 loop_sysfs_init(lo); 1098 1099 size = get_loop_size(lo, file); 1100 loop_set_size(lo, size); 1101 1102 /* Order wrt reading lo_state in loop_validate_file(). */ 1103 wmb(); 1104 1105 lo->lo_state = Lo_bound; 1106 if (part_shift) 1107 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1108 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1109 if (partscan) 1110 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1111 1112 /* enable and uncork uevent now that we are done */ 1113 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1114 1115 loop_global_unlock(lo, is_loop); 1116 if (partscan) 1117 loop_reread_partitions(lo); 1118 1119 if (!(mode & BLK_OPEN_EXCL)) 1120 bd_abort_claiming(bdev, loop_configure); 1121 1122 return 0; 1123 1124 out_unlock: 1125 loop_global_unlock(lo, is_loop); 1126 out_bdev: 1127 if (!(mode & BLK_OPEN_EXCL)) 1128 bd_abort_claiming(bdev, loop_configure); 1129 out_putf: 1130 fput(file); 1131 /* This is safe: open() is still holding a reference. */ 1132 module_put(THIS_MODULE); 1133 return error; 1134 } 1135 1136 static void __loop_clr_fd(struct loop_device *lo, bool release) 1137 { 1138 struct file *filp; 1139 gfp_t gfp = lo->old_gfp_mask; 1140 1141 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags)) 1142 blk_queue_write_cache(lo->lo_queue, false, false); 1143 1144 /* 1145 * Freeze the request queue when unbinding on a live file descriptor and 1146 * thus an open device. When called from ->release we are guaranteed 1147 * that there is no I/O in progress already. 1148 */ 1149 if (!release) 1150 blk_mq_freeze_queue(lo->lo_queue); 1151 1152 spin_lock_irq(&lo->lo_lock); 1153 filp = lo->lo_backing_file; 1154 lo->lo_backing_file = NULL; 1155 spin_unlock_irq(&lo->lo_lock); 1156 1157 lo->lo_device = NULL; 1158 lo->lo_offset = 0; 1159 lo->lo_sizelimit = 0; 1160 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1161 blk_queue_logical_block_size(lo->lo_queue, 512); 1162 blk_queue_physical_block_size(lo->lo_queue, 512); 1163 blk_queue_io_min(lo->lo_queue, 512); 1164 invalidate_disk(lo->lo_disk); 1165 loop_sysfs_exit(lo); 1166 /* let user-space know about this change */ 1167 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1168 mapping_set_gfp_mask(filp->f_mapping, gfp); 1169 /* This is safe: open() is still holding a reference. */ 1170 module_put(THIS_MODULE); 1171 if (!release) 1172 blk_mq_unfreeze_queue(lo->lo_queue); 1173 1174 disk_force_media_change(lo->lo_disk); 1175 1176 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1177 int err; 1178 1179 /* 1180 * open_mutex has been held already in release path, so don't 1181 * acquire it if this function is called in such case. 1182 * 1183 * If the reread partition isn't from release path, lo_refcnt 1184 * must be at least one and it can only become zero when the 1185 * current holder is released. 1186 */ 1187 if (!release) 1188 mutex_lock(&lo->lo_disk->open_mutex); 1189 err = bdev_disk_changed(lo->lo_disk, false); 1190 if (!release) 1191 mutex_unlock(&lo->lo_disk->open_mutex); 1192 if (err) 1193 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1194 __func__, lo->lo_number, err); 1195 /* Device is gone, no point in returning error */ 1196 } 1197 1198 /* 1199 * lo->lo_state is set to Lo_unbound here after above partscan has 1200 * finished. There cannot be anybody else entering __loop_clr_fd() as 1201 * Lo_rundown state protects us from all the other places trying to 1202 * change the 'lo' device. 1203 */ 1204 lo->lo_flags = 0; 1205 if (!part_shift) 1206 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1207 mutex_lock(&lo->lo_mutex); 1208 lo->lo_state = Lo_unbound; 1209 mutex_unlock(&lo->lo_mutex); 1210 1211 /* 1212 * Need not hold lo_mutex to fput backing file. Calling fput holding 1213 * lo_mutex triggers a circular lock dependency possibility warning as 1214 * fput can take open_mutex which is usually taken before lo_mutex. 1215 */ 1216 fput(filp); 1217 } 1218 1219 static int loop_clr_fd(struct loop_device *lo) 1220 { 1221 int err; 1222 1223 /* 1224 * Since lo_ioctl() is called without locks held, it is possible that 1225 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1226 * 1227 * Therefore, use global lock when setting Lo_rundown state in order to 1228 * make sure that loop_validate_file() will fail if the "struct file" 1229 * which loop_configure()/loop_change_fd() found via fget() was this 1230 * loop device. 1231 */ 1232 err = loop_global_lock_killable(lo, true); 1233 if (err) 1234 return err; 1235 if (lo->lo_state != Lo_bound) { 1236 loop_global_unlock(lo, true); 1237 return -ENXIO; 1238 } 1239 /* 1240 * If we've explicitly asked to tear down the loop device, 1241 * and it has an elevated reference count, set it for auto-teardown when 1242 * the last reference goes away. This stops $!~#$@ udev from 1243 * preventing teardown because it decided that it needs to run blkid on 1244 * the loopback device whenever they appear. xfstests is notorious for 1245 * failing tests because blkid via udev races with a losetup 1246 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1247 * command to fail with EBUSY. 1248 */ 1249 if (disk_openers(lo->lo_disk) > 1) { 1250 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1251 loop_global_unlock(lo, true); 1252 return 0; 1253 } 1254 lo->lo_state = Lo_rundown; 1255 loop_global_unlock(lo, true); 1256 1257 __loop_clr_fd(lo, false); 1258 return 0; 1259 } 1260 1261 static int 1262 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1263 { 1264 int err; 1265 int prev_lo_flags; 1266 bool partscan = false; 1267 bool size_changed = false; 1268 1269 err = mutex_lock_killable(&lo->lo_mutex); 1270 if (err) 1271 return err; 1272 if (lo->lo_state != Lo_bound) { 1273 err = -ENXIO; 1274 goto out_unlock; 1275 } 1276 1277 if (lo->lo_offset != info->lo_offset || 1278 lo->lo_sizelimit != info->lo_sizelimit) { 1279 size_changed = true; 1280 sync_blockdev(lo->lo_device); 1281 invalidate_bdev(lo->lo_device); 1282 } 1283 1284 /* I/O need to be drained during transfer transition */ 1285 blk_mq_freeze_queue(lo->lo_queue); 1286 1287 prev_lo_flags = lo->lo_flags; 1288 1289 err = loop_set_status_from_info(lo, info); 1290 if (err) 1291 goto out_unfreeze; 1292 1293 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1294 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1295 /* For those flags, use the previous values instead */ 1296 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1297 /* For flags that can't be cleared, use previous values too */ 1298 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1299 1300 if (size_changed) { 1301 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1302 lo->lo_backing_file); 1303 loop_set_size(lo, new_size); 1304 } 1305 1306 loop_config_discard(lo); 1307 1308 /* update dio if lo_offset or transfer is changed */ 1309 __loop_update_dio(lo, lo->use_dio); 1310 1311 out_unfreeze: 1312 blk_mq_unfreeze_queue(lo->lo_queue); 1313 1314 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1315 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1316 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1317 partscan = true; 1318 } 1319 out_unlock: 1320 mutex_unlock(&lo->lo_mutex); 1321 if (partscan) 1322 loop_reread_partitions(lo); 1323 1324 return err; 1325 } 1326 1327 static int 1328 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1329 { 1330 struct path path; 1331 struct kstat stat; 1332 int ret; 1333 1334 ret = mutex_lock_killable(&lo->lo_mutex); 1335 if (ret) 1336 return ret; 1337 if (lo->lo_state != Lo_bound) { 1338 mutex_unlock(&lo->lo_mutex); 1339 return -ENXIO; 1340 } 1341 1342 memset(info, 0, sizeof(*info)); 1343 info->lo_number = lo->lo_number; 1344 info->lo_offset = lo->lo_offset; 1345 info->lo_sizelimit = lo->lo_sizelimit; 1346 info->lo_flags = lo->lo_flags; 1347 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1348 1349 /* Drop lo_mutex while we call into the filesystem. */ 1350 path = lo->lo_backing_file->f_path; 1351 path_get(&path); 1352 mutex_unlock(&lo->lo_mutex); 1353 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1354 if (!ret) { 1355 info->lo_device = huge_encode_dev(stat.dev); 1356 info->lo_inode = stat.ino; 1357 info->lo_rdevice = huge_encode_dev(stat.rdev); 1358 } 1359 path_put(&path); 1360 return ret; 1361 } 1362 1363 static void 1364 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1365 { 1366 memset(info64, 0, sizeof(*info64)); 1367 info64->lo_number = info->lo_number; 1368 info64->lo_device = info->lo_device; 1369 info64->lo_inode = info->lo_inode; 1370 info64->lo_rdevice = info->lo_rdevice; 1371 info64->lo_offset = info->lo_offset; 1372 info64->lo_sizelimit = 0; 1373 info64->lo_flags = info->lo_flags; 1374 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1375 } 1376 1377 static int 1378 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1379 { 1380 memset(info, 0, sizeof(*info)); 1381 info->lo_number = info64->lo_number; 1382 info->lo_device = info64->lo_device; 1383 info->lo_inode = info64->lo_inode; 1384 info->lo_rdevice = info64->lo_rdevice; 1385 info->lo_offset = info64->lo_offset; 1386 info->lo_flags = info64->lo_flags; 1387 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1388 1389 /* error in case values were truncated */ 1390 if (info->lo_device != info64->lo_device || 1391 info->lo_rdevice != info64->lo_rdevice || 1392 info->lo_inode != info64->lo_inode || 1393 info->lo_offset != info64->lo_offset) 1394 return -EOVERFLOW; 1395 1396 return 0; 1397 } 1398 1399 static int 1400 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1401 { 1402 struct loop_info info; 1403 struct loop_info64 info64; 1404 1405 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1406 return -EFAULT; 1407 loop_info64_from_old(&info, &info64); 1408 return loop_set_status(lo, &info64); 1409 } 1410 1411 static int 1412 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1413 { 1414 struct loop_info64 info64; 1415 1416 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1417 return -EFAULT; 1418 return loop_set_status(lo, &info64); 1419 } 1420 1421 static int 1422 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1423 struct loop_info info; 1424 struct loop_info64 info64; 1425 int err; 1426 1427 if (!arg) 1428 return -EINVAL; 1429 err = loop_get_status(lo, &info64); 1430 if (!err) 1431 err = loop_info64_to_old(&info64, &info); 1432 if (!err && copy_to_user(arg, &info, sizeof(info))) 1433 err = -EFAULT; 1434 1435 return err; 1436 } 1437 1438 static int 1439 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1440 struct loop_info64 info64; 1441 int err; 1442 1443 if (!arg) 1444 return -EINVAL; 1445 err = loop_get_status(lo, &info64); 1446 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1447 err = -EFAULT; 1448 1449 return err; 1450 } 1451 1452 static int loop_set_capacity(struct loop_device *lo) 1453 { 1454 loff_t size; 1455 1456 if (unlikely(lo->lo_state != Lo_bound)) 1457 return -ENXIO; 1458 1459 size = get_loop_size(lo, lo->lo_backing_file); 1460 loop_set_size(lo, size); 1461 1462 return 0; 1463 } 1464 1465 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1466 { 1467 int error = -ENXIO; 1468 if (lo->lo_state != Lo_bound) 1469 goto out; 1470 1471 __loop_update_dio(lo, !!arg); 1472 if (lo->use_dio == !!arg) 1473 return 0; 1474 error = -EINVAL; 1475 out: 1476 return error; 1477 } 1478 1479 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1480 { 1481 int err = 0; 1482 1483 if (lo->lo_state != Lo_bound) 1484 return -ENXIO; 1485 1486 err = blk_validate_block_size(arg); 1487 if (err) 1488 return err; 1489 1490 if (lo->lo_queue->limits.logical_block_size == arg) 1491 return 0; 1492 1493 sync_blockdev(lo->lo_device); 1494 invalidate_bdev(lo->lo_device); 1495 1496 blk_mq_freeze_queue(lo->lo_queue); 1497 blk_queue_logical_block_size(lo->lo_queue, arg); 1498 blk_queue_physical_block_size(lo->lo_queue, arg); 1499 blk_queue_io_min(lo->lo_queue, arg); 1500 loop_update_dio(lo); 1501 blk_mq_unfreeze_queue(lo->lo_queue); 1502 1503 return err; 1504 } 1505 1506 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1507 unsigned long arg) 1508 { 1509 int err; 1510 1511 err = mutex_lock_killable(&lo->lo_mutex); 1512 if (err) 1513 return err; 1514 switch (cmd) { 1515 case LOOP_SET_CAPACITY: 1516 err = loop_set_capacity(lo); 1517 break; 1518 case LOOP_SET_DIRECT_IO: 1519 err = loop_set_dio(lo, arg); 1520 break; 1521 case LOOP_SET_BLOCK_SIZE: 1522 err = loop_set_block_size(lo, arg); 1523 break; 1524 default: 1525 err = -EINVAL; 1526 } 1527 mutex_unlock(&lo->lo_mutex); 1528 return err; 1529 } 1530 1531 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1532 unsigned int cmd, unsigned long arg) 1533 { 1534 struct loop_device *lo = bdev->bd_disk->private_data; 1535 void __user *argp = (void __user *) arg; 1536 int err; 1537 1538 switch (cmd) { 1539 case LOOP_SET_FD: { 1540 /* 1541 * Legacy case - pass in a zeroed out struct loop_config with 1542 * only the file descriptor set , which corresponds with the 1543 * default parameters we'd have used otherwise. 1544 */ 1545 struct loop_config config; 1546 1547 memset(&config, 0, sizeof(config)); 1548 config.fd = arg; 1549 1550 return loop_configure(lo, mode, bdev, &config); 1551 } 1552 case LOOP_CONFIGURE: { 1553 struct loop_config config; 1554 1555 if (copy_from_user(&config, argp, sizeof(config))) 1556 return -EFAULT; 1557 1558 return loop_configure(lo, mode, bdev, &config); 1559 } 1560 case LOOP_CHANGE_FD: 1561 return loop_change_fd(lo, bdev, arg); 1562 case LOOP_CLR_FD: 1563 return loop_clr_fd(lo); 1564 case LOOP_SET_STATUS: 1565 err = -EPERM; 1566 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1567 err = loop_set_status_old(lo, argp); 1568 break; 1569 case LOOP_GET_STATUS: 1570 return loop_get_status_old(lo, argp); 1571 case LOOP_SET_STATUS64: 1572 err = -EPERM; 1573 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1574 err = loop_set_status64(lo, argp); 1575 break; 1576 case LOOP_GET_STATUS64: 1577 return loop_get_status64(lo, argp); 1578 case LOOP_SET_CAPACITY: 1579 case LOOP_SET_DIRECT_IO: 1580 case LOOP_SET_BLOCK_SIZE: 1581 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1582 return -EPERM; 1583 fallthrough; 1584 default: 1585 err = lo_simple_ioctl(lo, cmd, arg); 1586 break; 1587 } 1588 1589 return err; 1590 } 1591 1592 #ifdef CONFIG_COMPAT 1593 struct compat_loop_info { 1594 compat_int_t lo_number; /* ioctl r/o */ 1595 compat_dev_t lo_device; /* ioctl r/o */ 1596 compat_ulong_t lo_inode; /* ioctl r/o */ 1597 compat_dev_t lo_rdevice; /* ioctl r/o */ 1598 compat_int_t lo_offset; 1599 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1600 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1601 compat_int_t lo_flags; /* ioctl r/o */ 1602 char lo_name[LO_NAME_SIZE]; 1603 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1604 compat_ulong_t lo_init[2]; 1605 char reserved[4]; 1606 }; 1607 1608 /* 1609 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1610 * - noinlined to reduce stack space usage in main part of driver 1611 */ 1612 static noinline int 1613 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1614 struct loop_info64 *info64) 1615 { 1616 struct compat_loop_info info; 1617 1618 if (copy_from_user(&info, arg, sizeof(info))) 1619 return -EFAULT; 1620 1621 memset(info64, 0, sizeof(*info64)); 1622 info64->lo_number = info.lo_number; 1623 info64->lo_device = info.lo_device; 1624 info64->lo_inode = info.lo_inode; 1625 info64->lo_rdevice = info.lo_rdevice; 1626 info64->lo_offset = info.lo_offset; 1627 info64->lo_sizelimit = 0; 1628 info64->lo_flags = info.lo_flags; 1629 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1630 return 0; 1631 } 1632 1633 /* 1634 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1635 * - noinlined to reduce stack space usage in main part of driver 1636 */ 1637 static noinline int 1638 loop_info64_to_compat(const struct loop_info64 *info64, 1639 struct compat_loop_info __user *arg) 1640 { 1641 struct compat_loop_info info; 1642 1643 memset(&info, 0, sizeof(info)); 1644 info.lo_number = info64->lo_number; 1645 info.lo_device = info64->lo_device; 1646 info.lo_inode = info64->lo_inode; 1647 info.lo_rdevice = info64->lo_rdevice; 1648 info.lo_offset = info64->lo_offset; 1649 info.lo_flags = info64->lo_flags; 1650 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1651 1652 /* error in case values were truncated */ 1653 if (info.lo_device != info64->lo_device || 1654 info.lo_rdevice != info64->lo_rdevice || 1655 info.lo_inode != info64->lo_inode || 1656 info.lo_offset != info64->lo_offset) 1657 return -EOVERFLOW; 1658 1659 if (copy_to_user(arg, &info, sizeof(info))) 1660 return -EFAULT; 1661 return 0; 1662 } 1663 1664 static int 1665 loop_set_status_compat(struct loop_device *lo, 1666 const struct compat_loop_info __user *arg) 1667 { 1668 struct loop_info64 info64; 1669 int ret; 1670 1671 ret = loop_info64_from_compat(arg, &info64); 1672 if (ret < 0) 1673 return ret; 1674 return loop_set_status(lo, &info64); 1675 } 1676 1677 static int 1678 loop_get_status_compat(struct loop_device *lo, 1679 struct compat_loop_info __user *arg) 1680 { 1681 struct loop_info64 info64; 1682 int err; 1683 1684 if (!arg) 1685 return -EINVAL; 1686 err = loop_get_status(lo, &info64); 1687 if (!err) 1688 err = loop_info64_to_compat(&info64, arg); 1689 return err; 1690 } 1691 1692 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1693 unsigned int cmd, unsigned long arg) 1694 { 1695 struct loop_device *lo = bdev->bd_disk->private_data; 1696 int err; 1697 1698 switch(cmd) { 1699 case LOOP_SET_STATUS: 1700 err = loop_set_status_compat(lo, 1701 (const struct compat_loop_info __user *)arg); 1702 break; 1703 case LOOP_GET_STATUS: 1704 err = loop_get_status_compat(lo, 1705 (struct compat_loop_info __user *)arg); 1706 break; 1707 case LOOP_SET_CAPACITY: 1708 case LOOP_CLR_FD: 1709 case LOOP_GET_STATUS64: 1710 case LOOP_SET_STATUS64: 1711 case LOOP_CONFIGURE: 1712 arg = (unsigned long) compat_ptr(arg); 1713 fallthrough; 1714 case LOOP_SET_FD: 1715 case LOOP_CHANGE_FD: 1716 case LOOP_SET_BLOCK_SIZE: 1717 case LOOP_SET_DIRECT_IO: 1718 err = lo_ioctl(bdev, mode, cmd, arg); 1719 break; 1720 default: 1721 err = -ENOIOCTLCMD; 1722 break; 1723 } 1724 return err; 1725 } 1726 #endif 1727 1728 static void lo_release(struct gendisk *disk) 1729 { 1730 struct loop_device *lo = disk->private_data; 1731 1732 if (disk_openers(disk) > 0) 1733 return; 1734 1735 mutex_lock(&lo->lo_mutex); 1736 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) { 1737 lo->lo_state = Lo_rundown; 1738 mutex_unlock(&lo->lo_mutex); 1739 /* 1740 * In autoclear mode, stop the loop thread 1741 * and remove configuration after last close. 1742 */ 1743 __loop_clr_fd(lo, true); 1744 return; 1745 } 1746 mutex_unlock(&lo->lo_mutex); 1747 } 1748 1749 static void lo_free_disk(struct gendisk *disk) 1750 { 1751 struct loop_device *lo = disk->private_data; 1752 1753 if (lo->workqueue) 1754 destroy_workqueue(lo->workqueue); 1755 loop_free_idle_workers(lo, true); 1756 timer_shutdown_sync(&lo->timer); 1757 mutex_destroy(&lo->lo_mutex); 1758 kfree(lo); 1759 } 1760 1761 static const struct block_device_operations lo_fops = { 1762 .owner = THIS_MODULE, 1763 .release = lo_release, 1764 .ioctl = lo_ioctl, 1765 #ifdef CONFIG_COMPAT 1766 .compat_ioctl = lo_compat_ioctl, 1767 #endif 1768 .free_disk = lo_free_disk, 1769 }; 1770 1771 /* 1772 * And now the modules code and kernel interface. 1773 */ 1774 1775 /* 1776 * If max_loop is specified, create that many devices upfront. 1777 * This also becomes a hard limit. If max_loop is not specified, 1778 * the default isn't a hard limit (as before commit 85c50197716c 1779 * changed the default value from 0 for max_loop=0 reasons), just 1780 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1781 * init time. Loop devices can be requested on-demand with the 1782 * /dev/loop-control interface, or be instantiated by accessing 1783 * a 'dead' device node. 1784 */ 1785 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1786 1787 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1788 static bool max_loop_specified; 1789 1790 static int max_loop_param_set_int(const char *val, 1791 const struct kernel_param *kp) 1792 { 1793 int ret; 1794 1795 ret = param_set_int(val, kp); 1796 if (ret < 0) 1797 return ret; 1798 1799 max_loop_specified = true; 1800 return 0; 1801 } 1802 1803 static const struct kernel_param_ops max_loop_param_ops = { 1804 .set = max_loop_param_set_int, 1805 .get = param_get_int, 1806 }; 1807 1808 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1809 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1810 #else 1811 module_param(max_loop, int, 0444); 1812 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1813 #endif 1814 1815 module_param(max_part, int, 0444); 1816 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1817 1818 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1819 1820 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1821 { 1822 int qd, ret; 1823 1824 ret = kstrtoint(s, 0, &qd); 1825 if (ret < 0) 1826 return ret; 1827 if (qd < 1) 1828 return -EINVAL; 1829 hw_queue_depth = qd; 1830 return 0; 1831 } 1832 1833 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1834 .set = loop_set_hw_queue_depth, 1835 .get = param_get_int, 1836 }; 1837 1838 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1839 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1840 1841 MODULE_LICENSE("GPL"); 1842 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1843 1844 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1845 const struct blk_mq_queue_data *bd) 1846 { 1847 struct request *rq = bd->rq; 1848 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1849 struct loop_device *lo = rq->q->queuedata; 1850 1851 blk_mq_start_request(rq); 1852 1853 if (lo->lo_state != Lo_bound) 1854 return BLK_STS_IOERR; 1855 1856 switch (req_op(rq)) { 1857 case REQ_OP_FLUSH: 1858 case REQ_OP_DISCARD: 1859 case REQ_OP_WRITE_ZEROES: 1860 cmd->use_aio = false; 1861 break; 1862 default: 1863 cmd->use_aio = lo->use_dio; 1864 break; 1865 } 1866 1867 /* always use the first bio's css */ 1868 cmd->blkcg_css = NULL; 1869 cmd->memcg_css = NULL; 1870 #ifdef CONFIG_BLK_CGROUP 1871 if (rq->bio) { 1872 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1873 #ifdef CONFIG_MEMCG 1874 if (cmd->blkcg_css) { 1875 cmd->memcg_css = 1876 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1877 &memory_cgrp_subsys); 1878 } 1879 #endif 1880 } 1881 #endif 1882 loop_queue_work(lo, cmd); 1883 1884 return BLK_STS_OK; 1885 } 1886 1887 static void loop_handle_cmd(struct loop_cmd *cmd) 1888 { 1889 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1890 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1891 struct request *rq = blk_mq_rq_from_pdu(cmd); 1892 const bool write = op_is_write(req_op(rq)); 1893 struct loop_device *lo = rq->q->queuedata; 1894 int ret = 0; 1895 struct mem_cgroup *old_memcg = NULL; 1896 const bool use_aio = cmd->use_aio; 1897 1898 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1899 ret = -EIO; 1900 goto failed; 1901 } 1902 1903 if (cmd_blkcg_css) 1904 kthread_associate_blkcg(cmd_blkcg_css); 1905 if (cmd_memcg_css) 1906 old_memcg = set_active_memcg( 1907 mem_cgroup_from_css(cmd_memcg_css)); 1908 1909 /* 1910 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1911 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1912 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1913 * not yet been completed. 1914 */ 1915 ret = do_req_filebacked(lo, rq); 1916 1917 if (cmd_blkcg_css) 1918 kthread_associate_blkcg(NULL); 1919 1920 if (cmd_memcg_css) { 1921 set_active_memcg(old_memcg); 1922 css_put(cmd_memcg_css); 1923 } 1924 failed: 1925 /* complete non-aio request */ 1926 if (!use_aio || ret) { 1927 if (ret == -EOPNOTSUPP) 1928 cmd->ret = ret; 1929 else 1930 cmd->ret = ret ? -EIO : 0; 1931 if (likely(!blk_should_fake_timeout(rq->q))) 1932 blk_mq_complete_request(rq); 1933 } 1934 } 1935 1936 static void loop_process_work(struct loop_worker *worker, 1937 struct list_head *cmd_list, struct loop_device *lo) 1938 { 1939 int orig_flags = current->flags; 1940 struct loop_cmd *cmd; 1941 1942 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1943 spin_lock_irq(&lo->lo_work_lock); 1944 while (!list_empty(cmd_list)) { 1945 cmd = container_of( 1946 cmd_list->next, struct loop_cmd, list_entry); 1947 list_del(cmd_list->next); 1948 spin_unlock_irq(&lo->lo_work_lock); 1949 1950 loop_handle_cmd(cmd); 1951 cond_resched(); 1952 1953 spin_lock_irq(&lo->lo_work_lock); 1954 } 1955 1956 /* 1957 * We only add to the idle list if there are no pending cmds 1958 * *and* the worker will not run again which ensures that it 1959 * is safe to free any worker on the idle list 1960 */ 1961 if (worker && !work_pending(&worker->work)) { 1962 worker->last_ran_at = jiffies; 1963 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1964 loop_set_timer(lo); 1965 } 1966 spin_unlock_irq(&lo->lo_work_lock); 1967 current->flags = orig_flags; 1968 } 1969 1970 static void loop_workfn(struct work_struct *work) 1971 { 1972 struct loop_worker *worker = 1973 container_of(work, struct loop_worker, work); 1974 loop_process_work(worker, &worker->cmd_list, worker->lo); 1975 } 1976 1977 static void loop_rootcg_workfn(struct work_struct *work) 1978 { 1979 struct loop_device *lo = 1980 container_of(work, struct loop_device, rootcg_work); 1981 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1982 } 1983 1984 static const struct blk_mq_ops loop_mq_ops = { 1985 .queue_rq = loop_queue_rq, 1986 .complete = lo_complete_rq, 1987 }; 1988 1989 static int loop_add(int i) 1990 { 1991 struct loop_device *lo; 1992 struct gendisk *disk; 1993 int err; 1994 1995 err = -ENOMEM; 1996 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1997 if (!lo) 1998 goto out; 1999 lo->worker_tree = RB_ROOT; 2000 INIT_LIST_HEAD(&lo->idle_worker_list); 2001 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2002 lo->lo_state = Lo_unbound; 2003 2004 err = mutex_lock_killable(&loop_ctl_mutex); 2005 if (err) 2006 goto out_free_dev; 2007 2008 /* allocate id, if @id >= 0, we're requesting that specific id */ 2009 if (i >= 0) { 2010 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2011 if (err == -ENOSPC) 2012 err = -EEXIST; 2013 } else { 2014 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2015 } 2016 mutex_unlock(&loop_ctl_mutex); 2017 if (err < 0) 2018 goto out_free_dev; 2019 i = err; 2020 2021 lo->tag_set.ops = &loop_mq_ops; 2022 lo->tag_set.nr_hw_queues = 1; 2023 lo->tag_set.queue_depth = hw_queue_depth; 2024 lo->tag_set.numa_node = NUMA_NO_NODE; 2025 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2026 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 2027 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2028 lo->tag_set.driver_data = lo; 2029 2030 err = blk_mq_alloc_tag_set(&lo->tag_set); 2031 if (err) 2032 goto out_free_idr; 2033 2034 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo); 2035 if (IS_ERR(disk)) { 2036 err = PTR_ERR(disk); 2037 goto out_cleanup_tags; 2038 } 2039 lo->lo_queue = lo->lo_disk->queue; 2040 2041 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2042 2043 /* 2044 * By default, we do buffer IO, so it doesn't make sense to enable 2045 * merge because the I/O submitted to backing file is handled page by 2046 * page. For directio mode, merge does help to dispatch bigger request 2047 * to underlayer disk. We will enable merge once directio is enabled. 2048 */ 2049 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2050 2051 /* 2052 * Disable partition scanning by default. The in-kernel partition 2053 * scanning can be requested individually per-device during its 2054 * setup. Userspace can always add and remove partitions from all 2055 * devices. The needed partition minors are allocated from the 2056 * extended minor space, the main loop device numbers will continue 2057 * to match the loop minors, regardless of the number of partitions 2058 * used. 2059 * 2060 * If max_part is given, partition scanning is globally enabled for 2061 * all loop devices. The minors for the main loop devices will be 2062 * multiples of max_part. 2063 * 2064 * Note: Global-for-all-devices, set-only-at-init, read-only module 2065 * parameteters like 'max_loop' and 'max_part' make things needlessly 2066 * complicated, are too static, inflexible and may surprise 2067 * userspace tools. Parameters like this in general should be avoided. 2068 */ 2069 if (!part_shift) 2070 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2071 mutex_init(&lo->lo_mutex); 2072 lo->lo_number = i; 2073 spin_lock_init(&lo->lo_lock); 2074 spin_lock_init(&lo->lo_work_lock); 2075 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2076 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2077 disk->major = LOOP_MAJOR; 2078 disk->first_minor = i << part_shift; 2079 disk->minors = 1 << part_shift; 2080 disk->fops = &lo_fops; 2081 disk->private_data = lo; 2082 disk->queue = lo->lo_queue; 2083 disk->events = DISK_EVENT_MEDIA_CHANGE; 2084 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2085 sprintf(disk->disk_name, "loop%d", i); 2086 /* Make this loop device reachable from pathname. */ 2087 err = add_disk(disk); 2088 if (err) 2089 goto out_cleanup_disk; 2090 2091 /* Show this loop device. */ 2092 mutex_lock(&loop_ctl_mutex); 2093 lo->idr_visible = true; 2094 mutex_unlock(&loop_ctl_mutex); 2095 2096 return i; 2097 2098 out_cleanup_disk: 2099 put_disk(disk); 2100 out_cleanup_tags: 2101 blk_mq_free_tag_set(&lo->tag_set); 2102 out_free_idr: 2103 mutex_lock(&loop_ctl_mutex); 2104 idr_remove(&loop_index_idr, i); 2105 mutex_unlock(&loop_ctl_mutex); 2106 out_free_dev: 2107 kfree(lo); 2108 out: 2109 return err; 2110 } 2111 2112 static void loop_remove(struct loop_device *lo) 2113 { 2114 /* Make this loop device unreachable from pathname. */ 2115 del_gendisk(lo->lo_disk); 2116 blk_mq_free_tag_set(&lo->tag_set); 2117 2118 mutex_lock(&loop_ctl_mutex); 2119 idr_remove(&loop_index_idr, lo->lo_number); 2120 mutex_unlock(&loop_ctl_mutex); 2121 2122 put_disk(lo->lo_disk); 2123 } 2124 2125 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2126 static void loop_probe(dev_t dev) 2127 { 2128 int idx = MINOR(dev) >> part_shift; 2129 2130 if (max_loop_specified && max_loop && idx >= max_loop) 2131 return; 2132 loop_add(idx); 2133 } 2134 #else 2135 #define loop_probe NULL 2136 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2137 2138 static int loop_control_remove(int idx) 2139 { 2140 struct loop_device *lo; 2141 int ret; 2142 2143 if (idx < 0) { 2144 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2145 return -EINVAL; 2146 } 2147 2148 /* Hide this loop device for serialization. */ 2149 ret = mutex_lock_killable(&loop_ctl_mutex); 2150 if (ret) 2151 return ret; 2152 lo = idr_find(&loop_index_idr, idx); 2153 if (!lo || !lo->idr_visible) 2154 ret = -ENODEV; 2155 else 2156 lo->idr_visible = false; 2157 mutex_unlock(&loop_ctl_mutex); 2158 if (ret) 2159 return ret; 2160 2161 /* Check whether this loop device can be removed. */ 2162 ret = mutex_lock_killable(&lo->lo_mutex); 2163 if (ret) 2164 goto mark_visible; 2165 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2166 mutex_unlock(&lo->lo_mutex); 2167 ret = -EBUSY; 2168 goto mark_visible; 2169 } 2170 /* Mark this loop device as no more bound, but not quite unbound yet */ 2171 lo->lo_state = Lo_deleting; 2172 mutex_unlock(&lo->lo_mutex); 2173 2174 loop_remove(lo); 2175 return 0; 2176 2177 mark_visible: 2178 /* Show this loop device again. */ 2179 mutex_lock(&loop_ctl_mutex); 2180 lo->idr_visible = true; 2181 mutex_unlock(&loop_ctl_mutex); 2182 return ret; 2183 } 2184 2185 static int loop_control_get_free(int idx) 2186 { 2187 struct loop_device *lo; 2188 int id, ret; 2189 2190 ret = mutex_lock_killable(&loop_ctl_mutex); 2191 if (ret) 2192 return ret; 2193 idr_for_each_entry(&loop_index_idr, lo, id) { 2194 /* Hitting a race results in creating a new loop device which is harmless. */ 2195 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2196 goto found; 2197 } 2198 mutex_unlock(&loop_ctl_mutex); 2199 return loop_add(-1); 2200 found: 2201 mutex_unlock(&loop_ctl_mutex); 2202 return id; 2203 } 2204 2205 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2206 unsigned long parm) 2207 { 2208 switch (cmd) { 2209 case LOOP_CTL_ADD: 2210 return loop_add(parm); 2211 case LOOP_CTL_REMOVE: 2212 return loop_control_remove(parm); 2213 case LOOP_CTL_GET_FREE: 2214 return loop_control_get_free(parm); 2215 default: 2216 return -ENOSYS; 2217 } 2218 } 2219 2220 static const struct file_operations loop_ctl_fops = { 2221 .open = nonseekable_open, 2222 .unlocked_ioctl = loop_control_ioctl, 2223 .compat_ioctl = loop_control_ioctl, 2224 .owner = THIS_MODULE, 2225 .llseek = noop_llseek, 2226 }; 2227 2228 static struct miscdevice loop_misc = { 2229 .minor = LOOP_CTRL_MINOR, 2230 .name = "loop-control", 2231 .fops = &loop_ctl_fops, 2232 }; 2233 2234 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2235 MODULE_ALIAS("devname:loop-control"); 2236 2237 static int __init loop_init(void) 2238 { 2239 int i; 2240 int err; 2241 2242 part_shift = 0; 2243 if (max_part > 0) { 2244 part_shift = fls(max_part); 2245 2246 /* 2247 * Adjust max_part according to part_shift as it is exported 2248 * to user space so that user can decide correct minor number 2249 * if [s]he want to create more devices. 2250 * 2251 * Note that -1 is required because partition 0 is reserved 2252 * for the whole disk. 2253 */ 2254 max_part = (1UL << part_shift) - 1; 2255 } 2256 2257 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2258 err = -EINVAL; 2259 goto err_out; 2260 } 2261 2262 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2263 err = -EINVAL; 2264 goto err_out; 2265 } 2266 2267 err = misc_register(&loop_misc); 2268 if (err < 0) 2269 goto err_out; 2270 2271 2272 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2273 err = -EIO; 2274 goto misc_out; 2275 } 2276 2277 /* pre-create number of devices given by config or max_loop */ 2278 for (i = 0; i < max_loop; i++) 2279 loop_add(i); 2280 2281 printk(KERN_INFO "loop: module loaded\n"); 2282 return 0; 2283 2284 misc_out: 2285 misc_deregister(&loop_misc); 2286 err_out: 2287 return err; 2288 } 2289 2290 static void __exit loop_exit(void) 2291 { 2292 struct loop_device *lo; 2293 int id; 2294 2295 unregister_blkdev(LOOP_MAJOR, "loop"); 2296 misc_deregister(&loop_misc); 2297 2298 /* 2299 * There is no need to use loop_ctl_mutex here, for nobody else can 2300 * access loop_index_idr when this module is unloading (unless forced 2301 * module unloading is requested). If this is not a clean unloading, 2302 * we have no means to avoid kernel crash. 2303 */ 2304 idr_for_each_entry(&loop_index_idr, lo, id) 2305 loop_remove(lo); 2306 2307 idr_destroy(&loop_index_idr); 2308 } 2309 2310 module_init(loop_init); 2311 module_exit(loop_exit); 2312 2313 #ifndef MODULE 2314 static int __init max_loop_setup(char *str) 2315 { 2316 max_loop = simple_strtol(str, NULL, 0); 2317 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2318 max_loop_specified = true; 2319 #endif 2320 return 1; 2321 } 2322 2323 __setup("max_loop=", max_loop_setup); 2324 #endif 2325