1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/block/floppy.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 1993, 1994 Alain Knaff 7 * Copyright (C) 1998 Alan Cox 8 */ 9 10 /* 11 * 02.12.91 - Changed to static variables to indicate need for reset 12 * and recalibrate. This makes some things easier (output_byte reset 13 * checking etc), and means less interrupt jumping in case of errors, 14 * so the code is hopefully easier to understand. 15 */ 16 17 /* 18 * This file is certainly a mess. I've tried my best to get it working, 19 * but I don't like programming floppies, and I have only one anyway. 20 * Urgel. I should check for more errors, and do more graceful error 21 * recovery. Seems there are problems with several drives. I've tried to 22 * correct them. No promises. 23 */ 24 25 /* 26 * As with hd.c, all routines within this file can (and will) be called 27 * by interrupts, so extreme caution is needed. A hardware interrupt 28 * handler may not sleep, or a kernel panic will happen. Thus I cannot 29 * call "floppy-on" directly, but have to set a special timer interrupt 30 * etc. 31 */ 32 33 /* 34 * 28.02.92 - made track-buffering routines, based on the routines written 35 * by entropy@wintermute.wpi.edu (Lawrence Foard). Linus. 36 */ 37 38 /* 39 * Automatic floppy-detection and formatting written by Werner Almesberger 40 * (almesber@nessie.cs.id.ethz.ch), who also corrected some problems with 41 * the floppy-change signal detection. 42 */ 43 44 /* 45 * 1992/7/22 -- Hennus Bergman: Added better error reporting, fixed 46 * FDC data overrun bug, added some preliminary stuff for vertical 47 * recording support. 48 * 49 * 1992/9/17: Added DMA allocation & DMA functions. -- hhb. 50 * 51 * TODO: Errors are still not counted properly. 52 */ 53 54 /* 1992/9/20 55 * Modifications for ``Sector Shifting'' by Rob Hooft (hooft@chem.ruu.nl) 56 * modeled after the freeware MS-DOS program fdformat/88 V1.8 by 57 * Christoph H. Hochst\"atter. 58 * I have fixed the shift values to the ones I always use. Maybe a new 59 * ioctl() should be created to be able to modify them. 60 * There is a bug in the driver that makes it impossible to format a 61 * floppy as the first thing after bootup. 62 */ 63 64 /* 65 * 1993/4/29 -- Linus -- cleaned up the timer handling in the kernel, and 66 * this helped the floppy driver as well. Much cleaner, and still seems to 67 * work. 68 */ 69 70 /* 1994/6/24 --bbroad-- added the floppy table entries and made 71 * minor modifications to allow 2.88 floppies to be run. 72 */ 73 74 /* 1994/7/13 -- Paul Vojta -- modified the probing code to allow three or more 75 * disk types. 76 */ 77 78 /* 79 * 1994/8/8 -- Alain Knaff -- Switched to fdpatch driver: Support for bigger 80 * format bug fixes, but unfortunately some new bugs too... 81 */ 82 83 /* 1994/9/17 -- Koen Holtman -- added logging of physical floppy write 84 * errors to allow safe writing by specialized programs. 85 */ 86 87 /* 1995/4/24 -- Dan Fandrich -- added support for Commodore 1581 3.5" disks 88 * by defining bit 1 of the "stretch" parameter to mean put sectors on the 89 * opposite side of the disk, leaving the sector IDs alone (i.e. Commodore's 90 * drives are "upside-down"). 91 */ 92 93 /* 94 * 1995/8/26 -- Andreas Busse -- added Mips support. 95 */ 96 97 /* 98 * 1995/10/18 -- Ralf Baechle -- Portability cleanup; move machine dependent 99 * features to asm/floppy.h. 100 */ 101 102 /* 103 * 1998/1/21 -- Richard Gooch <rgooch@atnf.csiro.au> -- devfs support 104 */ 105 106 /* 107 * 1998/05/07 -- Russell King -- More portability cleanups; moved definition of 108 * interrupt and dma channel to asm/floppy.h. Cleaned up some formatting & 109 * use of '0' for NULL. 110 */ 111 112 /* 113 * 1998/06/07 -- Alan Cox -- Merged the 2.0.34 fixes for resource allocation 114 * failures. 115 */ 116 117 /* 118 * 1998/09/20 -- David Weinehall -- Added slow-down code for buggy PS/2-drives. 119 */ 120 121 /* 122 * 1999/08/13 -- Paul Slootman -- floppy stopped working on Alpha after 24 123 * days, 6 hours, 32 minutes and 32 seconds (i.e. MAXINT jiffies; ints were 124 * being used to store jiffies, which are unsigned longs). 125 */ 126 127 /* 128 * 2000/08/28 -- Arnaldo Carvalho de Melo <acme@conectiva.com.br> 129 * - get rid of check_region 130 * - s/suser/capable/ 131 */ 132 133 /* 134 * 2001/08/26 -- Paul Gortmaker - fix insmod oops on machines with no 135 * floppy controller (lingering task on list after module is gone... boom.) 136 */ 137 138 /* 139 * 2002/02/07 -- Anton Altaparmakov - Fix io ports reservation to correct range 140 * (0x3f2-0x3f5, 0x3f7). This fix is a bit of a hack but the proper fix 141 * requires many non-obvious changes in arch dependent code. 142 */ 143 144 /* 2003/07/28 -- Daniele Bellucci <bellucda@tiscali.it>. 145 * Better audit of register_blkdev. 146 */ 147 148 #undef FLOPPY_SILENT_DCL_CLEAR 149 150 #define REALLY_SLOW_IO 151 152 #define DEBUGT 2 153 154 #define DPRINT(format, args...) \ 155 pr_info("floppy%d: " format, current_drive, ##args) 156 157 #define DCL_DEBUG /* debug disk change line */ 158 #ifdef DCL_DEBUG 159 #define debug_dcl(test, fmt, args...) \ 160 do { if ((test) & FD_DEBUG) DPRINT(fmt, ##args); } while (0) 161 #else 162 #define debug_dcl(test, fmt, args...) \ 163 do { if (0) DPRINT(fmt, ##args); } while (0) 164 #endif 165 166 /* do print messages for unexpected interrupts */ 167 static int print_unex = 1; 168 #include <linux/module.h> 169 #include <linux/sched.h> 170 #include <linux/fs.h> 171 #include <linux/kernel.h> 172 #include <linux/timer.h> 173 #include <linux/workqueue.h> 174 #include <linux/fdreg.h> 175 #include <linux/fd.h> 176 #include <linux/hdreg.h> 177 #include <linux/errno.h> 178 #include <linux/slab.h> 179 #include <linux/mm.h> 180 #include <linux/bio.h> 181 #include <linux/string.h> 182 #include <linux/jiffies.h> 183 #include <linux/fcntl.h> 184 #include <linux/delay.h> 185 #include <linux/mc146818rtc.h> /* CMOS defines */ 186 #include <linux/ioport.h> 187 #include <linux/interrupt.h> 188 #include <linux/init.h> 189 #include <linux/platform_device.h> 190 #include <linux/mod_devicetable.h> 191 #include <linux/mutex.h> 192 #include <linux/io.h> 193 #include <linux/uaccess.h> 194 #include <linux/async.h> 195 #include <linux/compat.h> 196 197 /* 198 * PS/2 floppies have much slower step rates than regular floppies. 199 * It's been recommended that take about 1/4 of the default speed 200 * in some more extreme cases. 201 */ 202 static DEFINE_MUTEX(floppy_mutex); 203 static int slow_floppy; 204 205 #include <asm/dma.h> 206 #include <asm/irq.h> 207 208 static int FLOPPY_IRQ = 6; 209 static int FLOPPY_DMA = 2; 210 static int can_use_virtual_dma = 2; 211 /* ======= 212 * can use virtual DMA: 213 * 0 = use of virtual DMA disallowed by config 214 * 1 = use of virtual DMA prescribed by config 215 * 2 = no virtual DMA preference configured. By default try hard DMA, 216 * but fall back on virtual DMA when not enough memory available 217 */ 218 219 static int use_virtual_dma; 220 /* ======= 221 * use virtual DMA 222 * 0 using hard DMA 223 * 1 using virtual DMA 224 * This variable is set to virtual when a DMA mem problem arises, and 225 * reset back in floppy_grab_irq_and_dma. 226 * It is not safe to reset it in other circumstances, because the floppy 227 * driver may have several buffers in use at once, and we do currently not 228 * record each buffers capabilities 229 */ 230 231 static DEFINE_SPINLOCK(floppy_lock); 232 233 static unsigned short virtual_dma_port = 0x3f0; 234 irqreturn_t floppy_interrupt(int irq, void *dev_id); 235 static int set_dor(int fdc, char mask, char data); 236 237 #define K_64 0x10000 /* 64KB */ 238 239 /* the following is the mask of allowed drives. By default units 2 and 240 * 3 of both floppy controllers are disabled, because switching on the 241 * motor of these drives causes system hangs on some PCI computers. drive 242 * 0 is the low bit (0x1), and drive 7 is the high bit (0x80). Bits are on if 243 * a drive is allowed. 244 * 245 * NOTE: This must come before we include the arch floppy header because 246 * some ports reference this variable from there. -DaveM 247 */ 248 249 static int allowed_drive_mask = 0x33; 250 251 #include <asm/floppy.h> 252 253 static int irqdma_allocated; 254 255 #include <linux/blk-mq.h> 256 #include <linux/blkpg.h> 257 #include <linux/cdrom.h> /* for the compatibility eject ioctl */ 258 #include <linux/completion.h> 259 260 static LIST_HEAD(floppy_reqs); 261 static struct request *current_req; 262 static int set_next_request(void); 263 264 #ifndef fd_get_dma_residue 265 #define fd_get_dma_residue() get_dma_residue(FLOPPY_DMA) 266 #endif 267 268 /* Dma Memory related stuff */ 269 270 #ifndef fd_dma_mem_free 271 #define fd_dma_mem_free(addr, size) free_pages(addr, get_order(size)) 272 #endif 273 274 #ifndef fd_dma_mem_alloc 275 #define fd_dma_mem_alloc(size) __get_dma_pages(GFP_KERNEL, get_order(size)) 276 #endif 277 278 #ifndef fd_cacheflush 279 #define fd_cacheflush(addr, size) /* nothing... */ 280 #endif 281 282 static inline void fallback_on_nodma_alloc(char **addr, size_t l) 283 { 284 #ifdef FLOPPY_CAN_FALLBACK_ON_NODMA 285 if (*addr) 286 return; /* we have the memory */ 287 if (can_use_virtual_dma != 2) 288 return; /* no fallback allowed */ 289 pr_info("DMA memory shortage. Temporarily falling back on virtual DMA\n"); 290 *addr = (char *)nodma_mem_alloc(l); 291 #else 292 return; 293 #endif 294 } 295 296 /* End dma memory related stuff */ 297 298 static unsigned long fake_change; 299 static bool initialized; 300 301 #define ITYPE(x) (((x) >> 2) & 0x1f) 302 #define TOMINOR(x) ((x & 3) | ((x & 4) << 5)) 303 #define UNIT(x) ((x) & 0x03) /* drive on fdc */ 304 #define FDC(x) (((x) & 0x04) >> 2) /* fdc of drive */ 305 /* reverse mapping from unit and fdc to drive */ 306 #define REVDRIVE(fdc, unit) ((unit) + ((fdc) << 2)) 307 308 #define PH_HEAD(floppy, head) (((((floppy)->stretch & 2) >> 1) ^ head) << 2) 309 #define STRETCH(floppy) ((floppy)->stretch & FD_STRETCH) 310 311 /* read/write commands */ 312 #define COMMAND 0 313 #define DR_SELECT 1 314 #define TRACK 2 315 #define HEAD 3 316 #define SECTOR 4 317 #define SIZECODE 5 318 #define SECT_PER_TRACK 6 319 #define GAP 7 320 #define SIZECODE2 8 321 #define NR_RW 9 322 323 /* format commands */ 324 #define F_SIZECODE 2 325 #define F_SECT_PER_TRACK 3 326 #define F_GAP 4 327 #define F_FILL 5 328 #define NR_F 6 329 330 /* 331 * Maximum disk size (in kilobytes). 332 * This default is used whenever the current disk size is unknown. 333 * [Now it is rather a minimum] 334 */ 335 #define MAX_DISK_SIZE 4 /* 3984 */ 336 337 /* 338 * globals used by 'result()' 339 */ 340 static unsigned char reply_buffer[FD_RAW_REPLY_SIZE]; 341 static int inr; /* size of reply buffer, when called from interrupt */ 342 #define ST0 0 343 #define ST1 1 344 #define ST2 2 345 #define ST3 0 /* result of GETSTATUS */ 346 #define R_TRACK 3 347 #define R_HEAD 4 348 #define R_SECTOR 5 349 #define R_SIZECODE 6 350 351 #define SEL_DLY (2 * HZ / 100) 352 353 /* 354 * this struct defines the different floppy drive types. 355 */ 356 static struct { 357 struct floppy_drive_params params; 358 const char *name; /* name printed while booting */ 359 } default_drive_params[] = { 360 /* NOTE: the time values in jiffies should be in msec! 361 CMOS drive type 362 | Maximum data rate supported by drive type 363 | | Head load time, msec 364 | | | Head unload time, msec (not used) 365 | | | | Step rate interval, usec 366 | | | | | Time needed for spinup time (jiffies) 367 | | | | | | Timeout for spinning down (jiffies) 368 | | | | | | | Spindown offset (where disk stops) 369 | | | | | | | | Select delay 370 | | | | | | | | | RPS 371 | | | | | | | | | | Max number of tracks 372 | | | | | | | | | | | Interrupt timeout 373 | | | | | | | | | | | | Max nonintlv. sectors 374 | | | | | | | | | | | | | -Max Errors- flags */ 375 {{0, 500, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 80, 3*HZ, 20, {3,1,2,0,2}, 0, 376 0, { 7, 4, 8, 2, 1, 5, 3,10}, 3*HZ/2, 0 }, "unknown" }, 377 378 {{1, 300, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 40, 3*HZ, 17, {3,1,2,0,2}, 0, 379 0, { 1, 0, 0, 0, 0, 0, 0, 0}, 3*HZ/2, 1 }, "360K PC" }, /*5 1/4 360 KB PC*/ 380 381 {{2, 500, 16, 16, 6000, 4*HZ/10, 3*HZ, 14, SEL_DLY, 6, 83, 3*HZ, 17, {3,1,2,0,2}, 0, 382 0, { 2, 5, 6,23,10,20,12, 0}, 3*HZ/2, 2 }, "1.2M" }, /*5 1/4 HD AT*/ 383 384 {{3, 250, 16, 16, 3000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0, 385 0, { 4,22,21,30, 3, 0, 0, 0}, 3*HZ/2, 4 }, "720k" }, /*3 1/2 DD*/ 386 387 {{4, 500, 16, 16, 4000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0, 388 0, { 7, 4,25,22,31,21,29,11}, 3*HZ/2, 7 }, "1.44M" }, /*3 1/2 HD*/ 389 390 {{5, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0, 391 0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M AMI BIOS" }, /*3 1/2 ED*/ 392 393 {{6, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0, 394 0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M" } /*3 1/2 ED*/ 395 /* | --autodetected formats--- | | | 396 * read_track | | Name printed when booting 397 * | Native format 398 * Frequency of disk change checks */ 399 }; 400 401 static struct floppy_drive_params drive_params[N_DRIVE]; 402 static struct floppy_drive_struct drive_state[N_DRIVE]; 403 static struct floppy_write_errors write_errors[N_DRIVE]; 404 static struct timer_list motor_off_timer[N_DRIVE]; 405 static struct gendisk *disks[N_DRIVE]; 406 static struct blk_mq_tag_set tag_sets[N_DRIVE]; 407 static struct block_device *opened_bdev[N_DRIVE]; 408 static DEFINE_MUTEX(open_lock); 409 static struct floppy_raw_cmd *raw_cmd, default_raw_cmd; 410 411 /* 412 * This struct defines the different floppy types. 413 * 414 * Bit 0 of 'stretch' tells if the tracks need to be doubled for some 415 * types (e.g. 360kB diskette in 1.2MB drive, etc.). Bit 1 of 'stretch' 416 * tells if the disk is in Commodore 1581 format, which means side 0 sectors 417 * are located on side 1 of the disk but with a side 0 ID, and vice-versa. 418 * This is the same as the Sharp MZ-80 5.25" CP/M disk format, except that the 419 * 1581's logical side 0 is on physical side 1, whereas the Sharp's logical 420 * side 0 is on physical side 0 (but with the misnamed sector IDs). 421 * 'stretch' should probably be renamed to something more general, like 422 * 'options'. 423 * 424 * Bits 2 through 9 of 'stretch' tell the number of the first sector. 425 * The LSB (bit 2) is flipped. For most disks, the first sector 426 * is 1 (represented by 0x00<<2). For some CP/M and music sampler 427 * disks (such as Ensoniq EPS 16plus) it is 0 (represented as 0x01<<2). 428 * For Amstrad CPC disks it is 0xC1 (represented as 0xC0<<2). 429 * 430 * Other parameters should be self-explanatory (see also setfdprm(8)). 431 */ 432 /* 433 Size 434 | Sectors per track 435 | | Head 436 | | | Tracks 437 | | | | Stretch 438 | | | | | Gap 1 size 439 | | | | | | Data rate, | 0x40 for perp 440 | | | | | | | Spec1 (stepping rate, head unload 441 | | | | | | | | /fmt gap (gap2) */ 442 static struct floppy_struct floppy_type[32] = { 443 { 0, 0,0, 0,0,0x00,0x00,0x00,0x00,NULL }, /* 0 no testing */ 444 { 720, 9,2,40,0,0x2A,0x02,0xDF,0x50,"d360" }, /* 1 360KB PC */ 445 { 2400,15,2,80,0,0x1B,0x00,0xDF,0x54,"h1200" }, /* 2 1.2MB AT */ 446 { 720, 9,1,80,0,0x2A,0x02,0xDF,0x50,"D360" }, /* 3 360KB SS 3.5" */ 447 { 1440, 9,2,80,0,0x2A,0x02,0xDF,0x50,"D720" }, /* 4 720KB 3.5" */ 448 { 720, 9,2,40,1,0x23,0x01,0xDF,0x50,"h360" }, /* 5 360KB AT */ 449 { 1440, 9,2,80,0,0x23,0x01,0xDF,0x50,"h720" }, /* 6 720KB AT */ 450 { 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,"H1440" }, /* 7 1.44MB 3.5" */ 451 { 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"E2880" }, /* 8 2.88MB 3.5" */ 452 { 6240,39,2,80,0,0x1B,0x43,0xAF,0x28,"E3120" }, /* 9 3.12MB 3.5" */ 453 454 { 2880,18,2,80,0,0x25,0x00,0xDF,0x02,"h1440" }, /* 10 1.44MB 5.25" */ 455 { 3360,21,2,80,0,0x1C,0x00,0xCF,0x0C,"H1680" }, /* 11 1.68MB 3.5" */ 456 { 820,10,2,41,1,0x25,0x01,0xDF,0x2E,"h410" }, /* 12 410KB 5.25" */ 457 { 1640,10,2,82,0,0x25,0x02,0xDF,0x2E,"H820" }, /* 13 820KB 3.5" */ 458 { 2952,18,2,82,0,0x25,0x00,0xDF,0x02,"h1476" }, /* 14 1.48MB 5.25" */ 459 { 3444,21,2,82,0,0x25,0x00,0xDF,0x0C,"H1722" }, /* 15 1.72MB 3.5" */ 460 { 840,10,2,42,1,0x25,0x01,0xDF,0x2E,"h420" }, /* 16 420KB 5.25" */ 461 { 1660,10,2,83,0,0x25,0x02,0xDF,0x2E,"H830" }, /* 17 830KB 3.5" */ 462 { 2988,18,2,83,0,0x25,0x00,0xDF,0x02,"h1494" }, /* 18 1.49MB 5.25" */ 463 { 3486,21,2,83,0,0x25,0x00,0xDF,0x0C,"H1743" }, /* 19 1.74 MB 3.5" */ 464 465 { 1760,11,2,80,0,0x1C,0x09,0xCF,0x00,"h880" }, /* 20 880KB 5.25" */ 466 { 2080,13,2,80,0,0x1C,0x01,0xCF,0x00,"D1040" }, /* 21 1.04MB 3.5" */ 467 { 2240,14,2,80,0,0x1C,0x19,0xCF,0x00,"D1120" }, /* 22 1.12MB 3.5" */ 468 { 3200,20,2,80,0,0x1C,0x20,0xCF,0x2C,"h1600" }, /* 23 1.6MB 5.25" */ 469 { 3520,22,2,80,0,0x1C,0x08,0xCF,0x2e,"H1760" }, /* 24 1.76MB 3.5" */ 470 { 3840,24,2,80,0,0x1C,0x20,0xCF,0x00,"H1920" }, /* 25 1.92MB 3.5" */ 471 { 6400,40,2,80,0,0x25,0x5B,0xCF,0x00,"E3200" }, /* 26 3.20MB 3.5" */ 472 { 7040,44,2,80,0,0x25,0x5B,0xCF,0x00,"E3520" }, /* 27 3.52MB 3.5" */ 473 { 7680,48,2,80,0,0x25,0x63,0xCF,0x00,"E3840" }, /* 28 3.84MB 3.5" */ 474 { 3680,23,2,80,0,0x1C,0x10,0xCF,0x00,"H1840" }, /* 29 1.84MB 3.5" */ 475 476 { 1600,10,2,80,0,0x25,0x02,0xDF,0x2E,"D800" }, /* 30 800KB 3.5" */ 477 { 3200,20,2,80,0,0x1C,0x00,0xCF,0x2C,"H1600" }, /* 31 1.6MB 3.5" */ 478 }; 479 480 #define SECTSIZE (_FD_SECTSIZE(*floppy)) 481 482 /* Auto-detection: Disk type used until the next media change occurs. */ 483 static struct floppy_struct *current_type[N_DRIVE]; 484 485 /* 486 * User-provided type information. current_type points to 487 * the respective entry of this array. 488 */ 489 static struct floppy_struct user_params[N_DRIVE]; 490 491 static sector_t floppy_sizes[256]; 492 493 static char floppy_device_name[] = "floppy"; 494 495 /* 496 * The driver is trying to determine the correct media format 497 * while probing is set. rw_interrupt() clears it after a 498 * successful access. 499 */ 500 static int probing; 501 502 /* Synchronization of FDC access. */ 503 #define FD_COMMAND_NONE -1 504 #define FD_COMMAND_ERROR 2 505 #define FD_COMMAND_OKAY 3 506 507 static volatile int command_status = FD_COMMAND_NONE; 508 static unsigned long fdc_busy; 509 static DECLARE_WAIT_QUEUE_HEAD(fdc_wait); 510 static DECLARE_WAIT_QUEUE_HEAD(command_done); 511 512 /* Errors during formatting are counted here. */ 513 static int format_errors; 514 515 /* Format request descriptor. */ 516 static struct format_descr format_req; 517 518 /* 519 * Rate is 0 for 500kb/s, 1 for 300kbps, 2 for 250kbps 520 * Spec1 is 0xSH, where S is stepping rate (F=1ms, E=2ms, D=3ms etc), 521 * H is head unload time (1=16ms, 2=32ms, etc) 522 */ 523 524 /* 525 * Track buffer 526 * Because these are written to by the DMA controller, they must 527 * not contain a 64k byte boundary crossing, or data will be 528 * corrupted/lost. 529 */ 530 static char *floppy_track_buffer; 531 static int max_buffer_sectors; 532 533 static int *errors; 534 typedef void (*done_f)(int); 535 static const struct cont_t { 536 void (*interrupt)(void); 537 /* this is called after the interrupt of the 538 * main command */ 539 void (*redo)(void); /* this is called to retry the operation */ 540 void (*error)(void); /* this is called to tally an error */ 541 done_f done; /* this is called to say if the operation has 542 * succeeded/failed */ 543 } *cont; 544 545 static void floppy_ready(void); 546 static void floppy_start(void); 547 static void process_fd_request(void); 548 static void recalibrate_floppy(void); 549 static void floppy_shutdown(struct work_struct *); 550 551 static int floppy_request_regions(int); 552 static void floppy_release_regions(int); 553 static int floppy_grab_irq_and_dma(void); 554 static void floppy_release_irq_and_dma(void); 555 556 /* 557 * The "reset" variable should be tested whenever an interrupt is scheduled, 558 * after the commands have been sent. This is to ensure that the driver doesn't 559 * get wedged when the interrupt doesn't come because of a failed command. 560 * reset doesn't need to be tested before sending commands, because 561 * output_byte is automatically disabled when reset is set. 562 */ 563 static void reset_fdc(void); 564 565 /* 566 * These are global variables, as that's the easiest way to give 567 * information to interrupts. They are the data used for the current 568 * request. 569 */ 570 #define NO_TRACK -1 571 #define NEED_1_RECAL -2 572 #define NEED_2_RECAL -3 573 574 static atomic_t usage_count = ATOMIC_INIT(0); 575 576 /* buffer related variables */ 577 static int buffer_track = -1; 578 static int buffer_drive = -1; 579 static int buffer_min = -1; 580 static int buffer_max = -1; 581 582 /* fdc related variables, should end up in a struct */ 583 static struct floppy_fdc_state fdc_state[N_FDC]; 584 static int current_fdc; /* current fdc */ 585 586 static struct workqueue_struct *floppy_wq; 587 588 static struct floppy_struct *_floppy = floppy_type; 589 static unsigned char current_drive; 590 static long current_count_sectors; 591 static unsigned char fsector_t; /* sector in track */ 592 static unsigned char in_sector_offset; /* offset within physical sector, 593 * expressed in units of 512 bytes */ 594 595 static inline unsigned char fdc_inb(int fdc, int reg) 596 { 597 return fd_inb(fdc_state[fdc].address, reg); 598 } 599 600 static inline void fdc_outb(unsigned char value, int fdc, int reg) 601 { 602 fd_outb(value, fdc_state[fdc].address, reg); 603 } 604 605 static inline bool drive_no_geom(int drive) 606 { 607 return !current_type[drive] && !ITYPE(drive_state[drive].fd_device); 608 } 609 610 #ifndef fd_eject 611 static inline int fd_eject(int drive) 612 { 613 return -EINVAL; 614 } 615 #endif 616 617 /* 618 * Debugging 619 * ========= 620 */ 621 #ifdef DEBUGT 622 static long unsigned debugtimer; 623 624 static inline void set_debugt(void) 625 { 626 debugtimer = jiffies; 627 } 628 629 static inline void debugt(const char *func, const char *msg) 630 { 631 if (drive_params[current_drive].flags & DEBUGT) 632 pr_info("%s:%s dtime=%lu\n", func, msg, jiffies - debugtimer); 633 } 634 #else 635 static inline void set_debugt(void) { } 636 static inline void debugt(const char *func, const char *msg) { } 637 #endif /* DEBUGT */ 638 639 640 static DECLARE_DELAYED_WORK(fd_timeout, floppy_shutdown); 641 static const char *timeout_message; 642 643 static void is_alive(const char *func, const char *message) 644 { 645 /* this routine checks whether the floppy driver is "alive" */ 646 if (test_bit(0, &fdc_busy) && command_status < 2 && 647 !delayed_work_pending(&fd_timeout)) { 648 DPRINT("%s: timeout handler died. %s\n", func, message); 649 } 650 } 651 652 static void (*do_floppy)(void) = NULL; 653 654 #define OLOGSIZE 20 655 656 static void (*lasthandler)(void); 657 static unsigned long interruptjiffies; 658 static unsigned long resultjiffies; 659 static int resultsize; 660 static unsigned long lastredo; 661 662 static struct output_log { 663 unsigned char data; 664 unsigned char status; 665 unsigned long jiffies; 666 } output_log[OLOGSIZE]; 667 668 static int output_log_pos; 669 670 #define MAXTIMEOUT -2 671 672 static void __reschedule_timeout(int drive, const char *message) 673 { 674 unsigned long delay; 675 676 if (drive < 0 || drive >= N_DRIVE) { 677 delay = 20UL * HZ; 678 drive = 0; 679 } else 680 delay = drive_params[drive].timeout; 681 682 mod_delayed_work(floppy_wq, &fd_timeout, delay); 683 if (drive_params[drive].flags & FD_DEBUG) 684 DPRINT("reschedule timeout %s\n", message); 685 timeout_message = message; 686 } 687 688 static void reschedule_timeout(int drive, const char *message) 689 { 690 unsigned long flags; 691 692 spin_lock_irqsave(&floppy_lock, flags); 693 __reschedule_timeout(drive, message); 694 spin_unlock_irqrestore(&floppy_lock, flags); 695 } 696 697 #define INFBOUND(a, b) (a) = max_t(int, a, b) 698 #define SUPBOUND(a, b) (a) = min_t(int, a, b) 699 700 /* 701 * Bottom half floppy driver. 702 * ========================== 703 * 704 * This part of the file contains the code talking directly to the hardware, 705 * and also the main service loop (seek-configure-spinup-command) 706 */ 707 708 /* 709 * disk change. 710 * This routine is responsible for maintaining the FD_DISK_CHANGE flag, 711 * and the last_checked date. 712 * 713 * last_checked is the date of the last check which showed 'no disk change' 714 * FD_DISK_CHANGE is set under two conditions: 715 * 1. The floppy has been changed after some i/o to that floppy already 716 * took place. 717 * 2. No floppy disk is in the drive. This is done in order to ensure that 718 * requests are quickly flushed in case there is no disk in the drive. It 719 * follows that FD_DISK_CHANGE can only be cleared if there is a disk in 720 * the drive. 721 * 722 * For 1., maxblock is observed. Maxblock is 0 if no i/o has taken place yet. 723 * For 2., FD_DISK_NEWCHANGE is watched. FD_DISK_NEWCHANGE is cleared on 724 * each seek. If a disk is present, the disk change line should also be 725 * cleared on each seek. Thus, if FD_DISK_NEWCHANGE is clear, but the disk 726 * change line is set, this means either that no disk is in the drive, or 727 * that it has been removed since the last seek. 728 * 729 * This means that we really have a third possibility too: 730 * The floppy has been changed after the last seek. 731 */ 732 733 static int disk_change(int drive) 734 { 735 int fdc = FDC(drive); 736 737 if (time_before(jiffies, drive_state[drive].select_date + drive_params[drive].select_delay)) 738 DPRINT("WARNING disk change called early\n"); 739 if (!(fdc_state[fdc].dor & (0x10 << UNIT(drive))) || 740 (fdc_state[fdc].dor & 3) != UNIT(drive) || fdc != FDC(drive)) { 741 DPRINT("probing disk change on unselected drive\n"); 742 DPRINT("drive=%d fdc=%d dor=%x\n", drive, FDC(drive), 743 (unsigned int)fdc_state[fdc].dor); 744 } 745 746 debug_dcl(drive_params[drive].flags, 747 "checking disk change line for drive %d\n", drive); 748 debug_dcl(drive_params[drive].flags, "jiffies=%lu\n", jiffies); 749 debug_dcl(drive_params[drive].flags, "disk change line=%x\n", 750 fdc_inb(fdc, FD_DIR) & 0x80); 751 debug_dcl(drive_params[drive].flags, "flags=%lx\n", 752 drive_state[drive].flags); 753 754 if (drive_params[drive].flags & FD_BROKEN_DCL) 755 return test_bit(FD_DISK_CHANGED_BIT, 756 &drive_state[drive].flags); 757 if ((fdc_inb(fdc, FD_DIR) ^ drive_params[drive].flags) & 0x80) { 758 set_bit(FD_VERIFY_BIT, &drive_state[drive].flags); 759 /* verify write protection */ 760 761 if (drive_state[drive].maxblock) /* mark it changed */ 762 set_bit(FD_DISK_CHANGED_BIT, 763 &drive_state[drive].flags); 764 765 /* invalidate its geometry */ 766 if (drive_state[drive].keep_data >= 0) { 767 if ((drive_params[drive].flags & FTD_MSG) && 768 current_type[drive] != NULL) 769 DPRINT("Disk type is undefined after disk change\n"); 770 current_type[drive] = NULL; 771 floppy_sizes[TOMINOR(drive)] = MAX_DISK_SIZE << 1; 772 } 773 774 return 1; 775 } else { 776 drive_state[drive].last_checked = jiffies; 777 clear_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[drive].flags); 778 } 779 return 0; 780 } 781 782 static inline int is_selected(int dor, int unit) 783 { 784 return ((dor & (0x10 << unit)) && (dor & 3) == unit); 785 } 786 787 static bool is_ready_state(int status) 788 { 789 int state = status & (STATUS_READY | STATUS_DIR | STATUS_DMA); 790 return state == STATUS_READY; 791 } 792 793 static int set_dor(int fdc, char mask, char data) 794 { 795 unsigned char unit; 796 unsigned char drive; 797 unsigned char newdor; 798 unsigned char olddor; 799 800 if (fdc_state[fdc].address == -1) 801 return -1; 802 803 olddor = fdc_state[fdc].dor; 804 newdor = (olddor & mask) | data; 805 if (newdor != olddor) { 806 unit = olddor & 0x3; 807 if (is_selected(olddor, unit) && !is_selected(newdor, unit)) { 808 drive = REVDRIVE(fdc, unit); 809 debug_dcl(drive_params[drive].flags, 810 "calling disk change from set_dor\n"); 811 disk_change(drive); 812 } 813 fdc_state[fdc].dor = newdor; 814 fdc_outb(newdor, fdc, FD_DOR); 815 816 unit = newdor & 0x3; 817 if (!is_selected(olddor, unit) && is_selected(newdor, unit)) { 818 drive = REVDRIVE(fdc, unit); 819 drive_state[drive].select_date = jiffies; 820 } 821 } 822 return olddor; 823 } 824 825 static void twaddle(int fdc, int drive) 826 { 827 if (drive_params[drive].select_delay) 828 return; 829 fdc_outb(fdc_state[fdc].dor & ~(0x10 << UNIT(drive)), 830 fdc, FD_DOR); 831 fdc_outb(fdc_state[fdc].dor, fdc, FD_DOR); 832 drive_state[drive].select_date = jiffies; 833 } 834 835 /* 836 * Reset all driver information about the specified fdc. 837 * This is needed after a reset, and after a raw command. 838 */ 839 static void reset_fdc_info(int fdc, int mode) 840 { 841 int drive; 842 843 fdc_state[fdc].spec1 = fdc_state[fdc].spec2 = -1; 844 fdc_state[fdc].need_configure = 1; 845 fdc_state[fdc].perp_mode = 1; 846 fdc_state[fdc].rawcmd = 0; 847 for (drive = 0; drive < N_DRIVE; drive++) 848 if (FDC(drive) == fdc && 849 (mode || drive_state[drive].track != NEED_1_RECAL)) 850 drive_state[drive].track = NEED_2_RECAL; 851 } 852 853 /* 854 * selects the fdc and drive, and enables the fdc's input/dma. 855 * Both current_drive and current_fdc are changed to match the new drive. 856 */ 857 static void set_fdc(int drive) 858 { 859 unsigned int fdc; 860 861 if (drive < 0 || drive >= N_DRIVE) { 862 pr_info("bad drive value %d\n", drive); 863 return; 864 } 865 866 fdc = FDC(drive); 867 if (fdc >= N_FDC) { 868 pr_info("bad fdc value\n"); 869 return; 870 } 871 872 set_dor(fdc, ~0, 8); 873 #if N_FDC > 1 874 set_dor(1 - fdc, ~8, 0); 875 #endif 876 if (fdc_state[fdc].rawcmd == 2) 877 reset_fdc_info(fdc, 1); 878 if (fdc_inb(fdc, FD_STATUS) != STATUS_READY) 879 fdc_state[fdc].reset = 1; 880 881 current_drive = drive; 882 current_fdc = fdc; 883 } 884 885 /* 886 * locks the driver. 887 * Both current_drive and current_fdc are changed to match the new drive. 888 */ 889 static int lock_fdc(int drive) 890 { 891 if (WARN(atomic_read(&usage_count) == 0, 892 "Trying to lock fdc while usage count=0\n")) 893 return -1; 894 895 if (wait_event_interruptible(fdc_wait, !test_and_set_bit(0, &fdc_busy))) 896 return -EINTR; 897 898 command_status = FD_COMMAND_NONE; 899 900 reschedule_timeout(drive, "lock fdc"); 901 set_fdc(drive); 902 return 0; 903 } 904 905 /* unlocks the driver */ 906 static void unlock_fdc(void) 907 { 908 if (!test_bit(0, &fdc_busy)) 909 DPRINT("FDC access conflict!\n"); 910 911 raw_cmd = NULL; 912 command_status = FD_COMMAND_NONE; 913 cancel_delayed_work(&fd_timeout); 914 do_floppy = NULL; 915 cont = NULL; 916 clear_bit(0, &fdc_busy); 917 wake_up(&fdc_wait); 918 } 919 920 /* switches the motor off after a given timeout */ 921 static void motor_off_callback(struct timer_list *t) 922 { 923 unsigned long nr = t - motor_off_timer; 924 unsigned char mask = ~(0x10 << UNIT(nr)); 925 926 if (WARN_ON_ONCE(nr >= N_DRIVE)) 927 return; 928 929 set_dor(FDC(nr), mask, 0); 930 } 931 932 /* schedules motor off */ 933 static void floppy_off(unsigned int drive) 934 { 935 unsigned long volatile delta; 936 int fdc = FDC(drive); 937 938 if (!(fdc_state[fdc].dor & (0x10 << UNIT(drive)))) 939 return; 940 941 del_timer(motor_off_timer + drive); 942 943 /* make spindle stop in a position which minimizes spinup time 944 * next time */ 945 if (drive_params[drive].rps) { 946 delta = jiffies - drive_state[drive].first_read_date + HZ - 947 drive_params[drive].spindown_offset; 948 delta = ((delta * drive_params[drive].rps) % HZ) / drive_params[drive].rps; 949 motor_off_timer[drive].expires = 950 jiffies + drive_params[drive].spindown - delta; 951 } 952 add_timer(motor_off_timer + drive); 953 } 954 955 /* 956 * cycle through all N_DRIVE floppy drives, for disk change testing. 957 * stopping at current drive. This is done before any long operation, to 958 * be sure to have up to date disk change information. 959 */ 960 static void scandrives(void) 961 { 962 int i; 963 int drive; 964 int saved_drive; 965 966 if (drive_params[current_drive].select_delay) 967 return; 968 969 saved_drive = current_drive; 970 for (i = 0; i < N_DRIVE; i++) { 971 drive = (saved_drive + i + 1) % N_DRIVE; 972 if (drive_state[drive].fd_ref == 0 || drive_params[drive].select_delay != 0) 973 continue; /* skip closed drives */ 974 set_fdc(drive); 975 if (!(set_dor(current_fdc, ~3, UNIT(drive) | (0x10 << UNIT(drive))) & 976 (0x10 << UNIT(drive)))) 977 /* switch the motor off again, if it was off to 978 * begin with */ 979 set_dor(current_fdc, ~(0x10 << UNIT(drive)), 0); 980 } 981 set_fdc(saved_drive); 982 } 983 984 static void empty(void) 985 { 986 } 987 988 static void (*floppy_work_fn)(void); 989 990 static void floppy_work_workfn(struct work_struct *work) 991 { 992 floppy_work_fn(); 993 } 994 995 static DECLARE_WORK(floppy_work, floppy_work_workfn); 996 997 static void schedule_bh(void (*handler)(void)) 998 { 999 WARN_ON(work_pending(&floppy_work)); 1000 1001 floppy_work_fn = handler; 1002 queue_work(floppy_wq, &floppy_work); 1003 } 1004 1005 static void (*fd_timer_fn)(void) = NULL; 1006 1007 static void fd_timer_workfn(struct work_struct *work) 1008 { 1009 fd_timer_fn(); 1010 } 1011 1012 static DECLARE_DELAYED_WORK(fd_timer, fd_timer_workfn); 1013 1014 static void cancel_activity(void) 1015 { 1016 do_floppy = NULL; 1017 cancel_delayed_work_sync(&fd_timer); 1018 cancel_work_sync(&floppy_work); 1019 } 1020 1021 /* this function makes sure that the disk stays in the drive during the 1022 * transfer */ 1023 static void fd_watchdog(void) 1024 { 1025 debug_dcl(drive_params[current_drive].flags, 1026 "calling disk change from watchdog\n"); 1027 1028 if (disk_change(current_drive)) { 1029 DPRINT("disk removed during i/o\n"); 1030 cancel_activity(); 1031 cont->done(0); 1032 reset_fdc(); 1033 } else { 1034 cancel_delayed_work(&fd_timer); 1035 fd_timer_fn = fd_watchdog; 1036 queue_delayed_work(floppy_wq, &fd_timer, HZ / 10); 1037 } 1038 } 1039 1040 static void main_command_interrupt(void) 1041 { 1042 cancel_delayed_work(&fd_timer); 1043 cont->interrupt(); 1044 } 1045 1046 /* waits for a delay (spinup or select) to pass */ 1047 static int fd_wait_for_completion(unsigned long expires, 1048 void (*function)(void)) 1049 { 1050 if (fdc_state[current_fdc].reset) { 1051 reset_fdc(); /* do the reset during sleep to win time 1052 * if we don't need to sleep, it's a good 1053 * occasion anyways */ 1054 return 1; 1055 } 1056 1057 if (time_before(jiffies, expires)) { 1058 cancel_delayed_work(&fd_timer); 1059 fd_timer_fn = function; 1060 queue_delayed_work(floppy_wq, &fd_timer, expires - jiffies); 1061 return 1; 1062 } 1063 return 0; 1064 } 1065 1066 static void setup_DMA(void) 1067 { 1068 unsigned long f; 1069 1070 if (raw_cmd->length == 0) { 1071 print_hex_dump(KERN_INFO, "zero dma transfer size: ", 1072 DUMP_PREFIX_NONE, 16, 1, 1073 raw_cmd->fullcmd, raw_cmd->cmd_count, false); 1074 cont->done(0); 1075 fdc_state[current_fdc].reset = 1; 1076 return; 1077 } 1078 if (((unsigned long)raw_cmd->kernel_data) % 512) { 1079 pr_info("non aligned address: %p\n", raw_cmd->kernel_data); 1080 cont->done(0); 1081 fdc_state[current_fdc].reset = 1; 1082 return; 1083 } 1084 f = claim_dma_lock(); 1085 fd_disable_dma(); 1086 #ifdef fd_dma_setup 1087 if (fd_dma_setup(raw_cmd->kernel_data, raw_cmd->length, 1088 (raw_cmd->flags & FD_RAW_READ) ? 1089 DMA_MODE_READ : DMA_MODE_WRITE, 1090 fdc_state[current_fdc].address) < 0) { 1091 release_dma_lock(f); 1092 cont->done(0); 1093 fdc_state[current_fdc].reset = 1; 1094 return; 1095 } 1096 release_dma_lock(f); 1097 #else 1098 fd_clear_dma_ff(); 1099 fd_cacheflush(raw_cmd->kernel_data, raw_cmd->length); 1100 fd_set_dma_mode((raw_cmd->flags & FD_RAW_READ) ? 1101 DMA_MODE_READ : DMA_MODE_WRITE); 1102 fd_set_dma_addr(raw_cmd->kernel_data); 1103 fd_set_dma_count(raw_cmd->length); 1104 virtual_dma_port = fdc_state[current_fdc].address; 1105 fd_enable_dma(); 1106 release_dma_lock(f); 1107 #endif 1108 } 1109 1110 static void show_floppy(int fdc); 1111 1112 /* waits until the fdc becomes ready */ 1113 static int wait_til_ready(int fdc) 1114 { 1115 int status; 1116 int counter; 1117 1118 if (fdc_state[fdc].reset) 1119 return -1; 1120 for (counter = 0; counter < 10000; counter++) { 1121 status = fdc_inb(fdc, FD_STATUS); 1122 if (status & STATUS_READY) 1123 return status; 1124 } 1125 if (initialized) { 1126 DPRINT("Getstatus times out (%x) on fdc %d\n", status, fdc); 1127 show_floppy(fdc); 1128 } 1129 fdc_state[fdc].reset = 1; 1130 return -1; 1131 } 1132 1133 /* sends a command byte to the fdc */ 1134 static int output_byte(int fdc, char byte) 1135 { 1136 int status = wait_til_ready(fdc); 1137 1138 if (status < 0) 1139 return -1; 1140 1141 if (is_ready_state(status)) { 1142 fdc_outb(byte, fdc, FD_DATA); 1143 output_log[output_log_pos].data = byte; 1144 output_log[output_log_pos].status = status; 1145 output_log[output_log_pos].jiffies = jiffies; 1146 output_log_pos = (output_log_pos + 1) % OLOGSIZE; 1147 return 0; 1148 } 1149 fdc_state[fdc].reset = 1; 1150 if (initialized) { 1151 DPRINT("Unable to send byte %x to FDC. Fdc=%x Status=%x\n", 1152 byte, fdc, status); 1153 show_floppy(fdc); 1154 } 1155 return -1; 1156 } 1157 1158 /* gets the response from the fdc */ 1159 static int result(int fdc) 1160 { 1161 int i; 1162 int status = 0; 1163 1164 for (i = 0; i < FD_RAW_REPLY_SIZE; i++) { 1165 status = wait_til_ready(fdc); 1166 if (status < 0) 1167 break; 1168 status &= STATUS_DIR | STATUS_READY | STATUS_BUSY | STATUS_DMA; 1169 if ((status & ~STATUS_BUSY) == STATUS_READY) { 1170 resultjiffies = jiffies; 1171 resultsize = i; 1172 return i; 1173 } 1174 if (status == (STATUS_DIR | STATUS_READY | STATUS_BUSY)) 1175 reply_buffer[i] = fdc_inb(fdc, FD_DATA); 1176 else 1177 break; 1178 } 1179 if (initialized) { 1180 DPRINT("get result error. Fdc=%d Last status=%x Read bytes=%d\n", 1181 fdc, status, i); 1182 show_floppy(fdc); 1183 } 1184 fdc_state[fdc].reset = 1; 1185 return -1; 1186 } 1187 1188 #define MORE_OUTPUT -2 1189 /* does the fdc need more output? */ 1190 static int need_more_output(int fdc) 1191 { 1192 int status = wait_til_ready(fdc); 1193 1194 if (status < 0) 1195 return -1; 1196 1197 if (is_ready_state(status)) 1198 return MORE_OUTPUT; 1199 1200 return result(fdc); 1201 } 1202 1203 /* Set perpendicular mode as required, based on data rate, if supported. 1204 * 82077 Now tested. 1Mbps data rate only possible with 82077-1. 1205 */ 1206 static void perpendicular_mode(int fdc) 1207 { 1208 unsigned char perp_mode; 1209 1210 if (raw_cmd->rate & 0x40) { 1211 switch (raw_cmd->rate & 3) { 1212 case 0: 1213 perp_mode = 2; 1214 break; 1215 case 3: 1216 perp_mode = 3; 1217 break; 1218 default: 1219 DPRINT("Invalid data rate for perpendicular mode!\n"); 1220 cont->done(0); 1221 fdc_state[fdc].reset = 1; 1222 /* 1223 * convenient way to return to 1224 * redo without too much hassle 1225 * (deep stack et al.) 1226 */ 1227 return; 1228 } 1229 } else 1230 perp_mode = 0; 1231 1232 if (fdc_state[fdc].perp_mode == perp_mode) 1233 return; 1234 if (fdc_state[fdc].version >= FDC_82077_ORIG) { 1235 output_byte(fdc, FD_PERPENDICULAR); 1236 output_byte(fdc, perp_mode); 1237 fdc_state[fdc].perp_mode = perp_mode; 1238 } else if (perp_mode) { 1239 DPRINT("perpendicular mode not supported by this FDC.\n"); 1240 } 1241 } /* perpendicular_mode */ 1242 1243 static int fifo_depth = 0xa; 1244 static int no_fifo; 1245 1246 static int fdc_configure(int fdc) 1247 { 1248 /* Turn on FIFO */ 1249 output_byte(fdc, FD_CONFIGURE); 1250 if (need_more_output(fdc) != MORE_OUTPUT) 1251 return 0; 1252 output_byte(fdc, 0); 1253 output_byte(fdc, 0x10 | (no_fifo & 0x20) | (fifo_depth & 0xf)); 1254 output_byte(fdc, 0); /* pre-compensation from track 0 upwards */ 1255 return 1; 1256 } 1257 1258 #define NOMINAL_DTR 500 1259 1260 /* Issue a "SPECIFY" command to set the step rate time, head unload time, 1261 * head load time, and DMA disable flag to values needed by floppy. 1262 * 1263 * The value "dtr" is the data transfer rate in Kbps. It is needed 1264 * to account for the data rate-based scaling done by the 82072 and 82077 1265 * FDC types. This parameter is ignored for other types of FDCs (i.e. 1266 * 8272a). 1267 * 1268 * Note that changing the data transfer rate has a (probably deleterious) 1269 * effect on the parameters subject to scaling for 82072/82077 FDCs, so 1270 * fdc_specify is called again after each data transfer rate 1271 * change. 1272 * 1273 * srt: 1000 to 16000 in microseconds 1274 * hut: 16 to 240 milliseconds 1275 * hlt: 2 to 254 milliseconds 1276 * 1277 * These values are rounded up to the next highest available delay time. 1278 */ 1279 static void fdc_specify(int fdc, int drive) 1280 { 1281 unsigned char spec1; 1282 unsigned char spec2; 1283 unsigned long srt; 1284 unsigned long hlt; 1285 unsigned long hut; 1286 unsigned long dtr = NOMINAL_DTR; 1287 unsigned long scale_dtr = NOMINAL_DTR; 1288 int hlt_max_code = 0x7f; 1289 int hut_max_code = 0xf; 1290 1291 if (fdc_state[fdc].need_configure && 1292 fdc_state[fdc].version >= FDC_82072A) { 1293 fdc_configure(fdc); 1294 fdc_state[fdc].need_configure = 0; 1295 } 1296 1297 switch (raw_cmd->rate & 0x03) { 1298 case 3: 1299 dtr = 1000; 1300 break; 1301 case 1: 1302 dtr = 300; 1303 if (fdc_state[fdc].version >= FDC_82078) { 1304 /* chose the default rate table, not the one 1305 * where 1 = 2 Mbps */ 1306 output_byte(fdc, FD_DRIVESPEC); 1307 if (need_more_output(fdc) == MORE_OUTPUT) { 1308 output_byte(fdc, UNIT(drive)); 1309 output_byte(fdc, 0xc0); 1310 } 1311 } 1312 break; 1313 case 2: 1314 dtr = 250; 1315 break; 1316 } 1317 1318 if (fdc_state[fdc].version >= FDC_82072) { 1319 scale_dtr = dtr; 1320 hlt_max_code = 0x00; /* 0==256msec*dtr0/dtr (not linear!) */ 1321 hut_max_code = 0x0; /* 0==256msec*dtr0/dtr (not linear!) */ 1322 } 1323 1324 /* Convert step rate from microseconds to milliseconds and 4 bits */ 1325 srt = 16 - DIV_ROUND_UP(drive_params[drive].srt * scale_dtr / 1000, 1326 NOMINAL_DTR); 1327 if (slow_floppy) 1328 srt = srt / 4; 1329 1330 SUPBOUND(srt, 0xf); 1331 INFBOUND(srt, 0); 1332 1333 hlt = DIV_ROUND_UP(drive_params[drive].hlt * scale_dtr / 2, 1334 NOMINAL_DTR); 1335 if (hlt < 0x01) 1336 hlt = 0x01; 1337 else if (hlt > 0x7f) 1338 hlt = hlt_max_code; 1339 1340 hut = DIV_ROUND_UP(drive_params[drive].hut * scale_dtr / 16, 1341 NOMINAL_DTR); 1342 if (hut < 0x1) 1343 hut = 0x1; 1344 else if (hut > 0xf) 1345 hut = hut_max_code; 1346 1347 spec1 = (srt << 4) | hut; 1348 spec2 = (hlt << 1) | (use_virtual_dma & 1); 1349 1350 /* If these parameters did not change, just return with success */ 1351 if (fdc_state[fdc].spec1 != spec1 || 1352 fdc_state[fdc].spec2 != spec2) { 1353 /* Go ahead and set spec1 and spec2 */ 1354 output_byte(fdc, FD_SPECIFY); 1355 output_byte(fdc, fdc_state[fdc].spec1 = spec1); 1356 output_byte(fdc, fdc_state[fdc].spec2 = spec2); 1357 } 1358 } /* fdc_specify */ 1359 1360 /* Set the FDC's data transfer rate on behalf of the specified drive. 1361 * NOTE: with 82072/82077 FDCs, changing the data rate requires a reissue 1362 * of the specify command (i.e. using the fdc_specify function). 1363 */ 1364 static int fdc_dtr(void) 1365 { 1366 /* If data rate not already set to desired value, set it. */ 1367 if ((raw_cmd->rate & 3) == fdc_state[current_fdc].dtr) 1368 return 0; 1369 1370 /* Set dtr */ 1371 fdc_outb(raw_cmd->rate & 3, current_fdc, FD_DCR); 1372 1373 /* TODO: some FDC/drive combinations (C&T 82C711 with TEAC 1.2MB) 1374 * need a stabilization period of several milliseconds to be 1375 * enforced after data rate changes before R/W operations. 1376 * Pause 5 msec to avoid trouble. (Needs to be 2 jiffies) 1377 */ 1378 fdc_state[current_fdc].dtr = raw_cmd->rate & 3; 1379 return fd_wait_for_completion(jiffies + 2UL * HZ / 100, floppy_ready); 1380 } /* fdc_dtr */ 1381 1382 static void tell_sector(void) 1383 { 1384 pr_cont(": track %d, head %d, sector %d, size %d", 1385 reply_buffer[R_TRACK], reply_buffer[R_HEAD], 1386 reply_buffer[R_SECTOR], 1387 reply_buffer[R_SIZECODE]); 1388 } /* tell_sector */ 1389 1390 static void print_errors(void) 1391 { 1392 DPRINT(""); 1393 if (reply_buffer[ST0] & ST0_ECE) { 1394 pr_cont("Recalibrate failed!"); 1395 } else if (reply_buffer[ST2] & ST2_CRC) { 1396 pr_cont("data CRC error"); 1397 tell_sector(); 1398 } else if (reply_buffer[ST1] & ST1_CRC) { 1399 pr_cont("CRC error"); 1400 tell_sector(); 1401 } else if ((reply_buffer[ST1] & (ST1_MAM | ST1_ND)) || 1402 (reply_buffer[ST2] & ST2_MAM)) { 1403 if (!probing) { 1404 pr_cont("sector not found"); 1405 tell_sector(); 1406 } else 1407 pr_cont("probe failed..."); 1408 } else if (reply_buffer[ST2] & ST2_WC) { /* seek error */ 1409 pr_cont("wrong cylinder"); 1410 } else if (reply_buffer[ST2] & ST2_BC) { /* cylinder marked as bad */ 1411 pr_cont("bad cylinder"); 1412 } else { 1413 pr_cont("unknown error. ST[0..2] are: 0x%x 0x%x 0x%x", 1414 reply_buffer[ST0], reply_buffer[ST1], 1415 reply_buffer[ST2]); 1416 tell_sector(); 1417 } 1418 pr_cont("\n"); 1419 } 1420 1421 /* 1422 * OK, this error interpreting routine is called after a 1423 * DMA read/write has succeeded 1424 * or failed, so we check the results, and copy any buffers. 1425 * hhb: Added better error reporting. 1426 * ak: Made this into a separate routine. 1427 */ 1428 static int interpret_errors(void) 1429 { 1430 char bad; 1431 1432 if (inr != 7) { 1433 DPRINT("-- FDC reply error\n"); 1434 fdc_state[current_fdc].reset = 1; 1435 return 1; 1436 } 1437 1438 /* check IC to find cause of interrupt */ 1439 switch (reply_buffer[ST0] & ST0_INTR) { 1440 case 0x40: /* error occurred during command execution */ 1441 if (reply_buffer[ST1] & ST1_EOC) 1442 return 0; /* occurs with pseudo-DMA */ 1443 bad = 1; 1444 if (reply_buffer[ST1] & ST1_WP) { 1445 DPRINT("Drive is write protected\n"); 1446 clear_bit(FD_DISK_WRITABLE_BIT, 1447 &drive_state[current_drive].flags); 1448 cont->done(0); 1449 bad = 2; 1450 } else if (reply_buffer[ST1] & ST1_ND) { 1451 set_bit(FD_NEED_TWADDLE_BIT, 1452 &drive_state[current_drive].flags); 1453 } else if (reply_buffer[ST1] & ST1_OR) { 1454 if (drive_params[current_drive].flags & FTD_MSG) 1455 DPRINT("Over/Underrun - retrying\n"); 1456 bad = 0; 1457 } else if (*errors >= drive_params[current_drive].max_errors.reporting) { 1458 print_errors(); 1459 } 1460 if (reply_buffer[ST2] & ST2_WC || reply_buffer[ST2] & ST2_BC) 1461 /* wrong cylinder => recal */ 1462 drive_state[current_drive].track = NEED_2_RECAL; 1463 return bad; 1464 case 0x80: /* invalid command given */ 1465 DPRINT("Invalid FDC command given!\n"); 1466 cont->done(0); 1467 return 2; 1468 case 0xc0: 1469 DPRINT("Abnormal termination caused by polling\n"); 1470 cont->error(); 1471 return 2; 1472 default: /* (0) Normal command termination */ 1473 return 0; 1474 } 1475 } 1476 1477 /* 1478 * This routine is called when everything should be correctly set up 1479 * for the transfer (i.e. floppy motor is on, the correct floppy is 1480 * selected, and the head is sitting on the right track). 1481 */ 1482 static void setup_rw_floppy(void) 1483 { 1484 int i; 1485 int r; 1486 int flags; 1487 unsigned long ready_date; 1488 void (*function)(void); 1489 1490 flags = raw_cmd->flags; 1491 if (flags & (FD_RAW_READ | FD_RAW_WRITE)) 1492 flags |= FD_RAW_INTR; 1493 1494 if ((flags & FD_RAW_SPIN) && !(flags & FD_RAW_NO_MOTOR)) { 1495 ready_date = drive_state[current_drive].spinup_date + drive_params[current_drive].spinup; 1496 /* If spinup will take a long time, rerun scandrives 1497 * again just before spinup completion. Beware that 1498 * after scandrives, we must again wait for selection. 1499 */ 1500 if (time_after(ready_date, jiffies + drive_params[current_drive].select_delay)) { 1501 ready_date -= drive_params[current_drive].select_delay; 1502 function = floppy_start; 1503 } else 1504 function = setup_rw_floppy; 1505 1506 /* wait until the floppy is spinning fast enough */ 1507 if (fd_wait_for_completion(ready_date, function)) 1508 return; 1509 } 1510 if ((flags & FD_RAW_READ) || (flags & FD_RAW_WRITE)) 1511 setup_DMA(); 1512 1513 if (flags & FD_RAW_INTR) 1514 do_floppy = main_command_interrupt; 1515 1516 r = 0; 1517 for (i = 0; i < raw_cmd->cmd_count; i++) 1518 r |= output_byte(current_fdc, raw_cmd->fullcmd[i]); 1519 1520 debugt(__func__, "rw_command"); 1521 1522 if (r) { 1523 cont->error(); 1524 reset_fdc(); 1525 return; 1526 } 1527 1528 if (!(flags & FD_RAW_INTR)) { 1529 inr = result(current_fdc); 1530 cont->interrupt(); 1531 } else if (flags & FD_RAW_NEED_DISK) 1532 fd_watchdog(); 1533 } 1534 1535 static int blind_seek; 1536 1537 /* 1538 * This is the routine called after every seek (or recalibrate) interrupt 1539 * from the floppy controller. 1540 */ 1541 static void seek_interrupt(void) 1542 { 1543 debugt(__func__, ""); 1544 if (inr != 2 || (reply_buffer[ST0] & 0xF8) != 0x20) { 1545 DPRINT("seek failed\n"); 1546 drive_state[current_drive].track = NEED_2_RECAL; 1547 cont->error(); 1548 cont->redo(); 1549 return; 1550 } 1551 if (drive_state[current_drive].track >= 0 && 1552 drive_state[current_drive].track != reply_buffer[ST1] && 1553 !blind_seek) { 1554 debug_dcl(drive_params[current_drive].flags, 1555 "clearing NEWCHANGE flag because of effective seek\n"); 1556 debug_dcl(drive_params[current_drive].flags, "jiffies=%lu\n", 1557 jiffies); 1558 clear_bit(FD_DISK_NEWCHANGE_BIT, 1559 &drive_state[current_drive].flags); 1560 /* effective seek */ 1561 drive_state[current_drive].select_date = jiffies; 1562 } 1563 drive_state[current_drive].track = reply_buffer[ST1]; 1564 floppy_ready(); 1565 } 1566 1567 static void check_wp(int fdc, int drive) 1568 { 1569 if (test_bit(FD_VERIFY_BIT, &drive_state[drive].flags)) { 1570 /* check write protection */ 1571 output_byte(fdc, FD_GETSTATUS); 1572 output_byte(fdc, UNIT(drive)); 1573 if (result(fdc) != 1) { 1574 fdc_state[fdc].reset = 1; 1575 return; 1576 } 1577 clear_bit(FD_VERIFY_BIT, &drive_state[drive].flags); 1578 clear_bit(FD_NEED_TWADDLE_BIT, 1579 &drive_state[drive].flags); 1580 debug_dcl(drive_params[drive].flags, 1581 "checking whether disk is write protected\n"); 1582 debug_dcl(drive_params[drive].flags, "wp=%x\n", 1583 reply_buffer[ST3] & 0x40); 1584 if (!(reply_buffer[ST3] & 0x40)) 1585 set_bit(FD_DISK_WRITABLE_BIT, 1586 &drive_state[drive].flags); 1587 else 1588 clear_bit(FD_DISK_WRITABLE_BIT, 1589 &drive_state[drive].flags); 1590 } 1591 } 1592 1593 static void seek_floppy(void) 1594 { 1595 int track; 1596 1597 blind_seek = 0; 1598 1599 debug_dcl(drive_params[current_drive].flags, 1600 "calling disk change from %s\n", __func__); 1601 1602 if (!test_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags) && 1603 disk_change(current_drive) && (raw_cmd->flags & FD_RAW_NEED_DISK)) { 1604 /* the media changed flag should be cleared after the seek. 1605 * If it isn't, this means that there is really no disk in 1606 * the drive. 1607 */ 1608 set_bit(FD_DISK_CHANGED_BIT, 1609 &drive_state[current_drive].flags); 1610 cont->done(0); 1611 cont->redo(); 1612 return; 1613 } 1614 if (drive_state[current_drive].track <= NEED_1_RECAL) { 1615 recalibrate_floppy(); 1616 return; 1617 } else if (test_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags) && 1618 (raw_cmd->flags & FD_RAW_NEED_DISK) && 1619 (drive_state[current_drive].track <= NO_TRACK || drive_state[current_drive].track == raw_cmd->track)) { 1620 /* we seek to clear the media-changed condition. Does anybody 1621 * know a more elegant way, which works on all drives? */ 1622 if (raw_cmd->track) 1623 track = raw_cmd->track - 1; 1624 else { 1625 if (drive_params[current_drive].flags & FD_SILENT_DCL_CLEAR) { 1626 set_dor(current_fdc, ~(0x10 << UNIT(current_drive)), 0); 1627 blind_seek = 1; 1628 raw_cmd->flags |= FD_RAW_NEED_SEEK; 1629 } 1630 track = 1; 1631 } 1632 } else { 1633 check_wp(current_fdc, current_drive); 1634 if (raw_cmd->track != drive_state[current_drive].track && 1635 (raw_cmd->flags & FD_RAW_NEED_SEEK)) 1636 track = raw_cmd->track; 1637 else { 1638 setup_rw_floppy(); 1639 return; 1640 } 1641 } 1642 1643 do_floppy = seek_interrupt; 1644 output_byte(current_fdc, FD_SEEK); 1645 output_byte(current_fdc, UNIT(current_drive)); 1646 if (output_byte(current_fdc, track) < 0) { 1647 reset_fdc(); 1648 return; 1649 } 1650 debugt(__func__, ""); 1651 } 1652 1653 static void recal_interrupt(void) 1654 { 1655 debugt(__func__, ""); 1656 if (inr != 2) 1657 fdc_state[current_fdc].reset = 1; 1658 else if (reply_buffer[ST0] & ST0_ECE) { 1659 switch (drive_state[current_drive].track) { 1660 case NEED_1_RECAL: 1661 debugt(__func__, "need 1 recal"); 1662 /* after a second recalibrate, we still haven't 1663 * reached track 0. Probably no drive. Raise an 1664 * error, as failing immediately might upset 1665 * computers possessed by the Devil :-) */ 1666 cont->error(); 1667 cont->redo(); 1668 return; 1669 case NEED_2_RECAL: 1670 debugt(__func__, "need 2 recal"); 1671 /* If we already did a recalibrate, 1672 * and we are not at track 0, this 1673 * means we have moved. (The only way 1674 * not to move at recalibration is to 1675 * be already at track 0.) Clear the 1676 * new change flag */ 1677 debug_dcl(drive_params[current_drive].flags, 1678 "clearing NEWCHANGE flag because of second recalibrate\n"); 1679 1680 clear_bit(FD_DISK_NEWCHANGE_BIT, 1681 &drive_state[current_drive].flags); 1682 drive_state[current_drive].select_date = jiffies; 1683 fallthrough; 1684 default: 1685 debugt(__func__, "default"); 1686 /* Recalibrate moves the head by at 1687 * most 80 steps. If after one 1688 * recalibrate we don't have reached 1689 * track 0, this might mean that we 1690 * started beyond track 80. Try 1691 * again. */ 1692 drive_state[current_drive].track = NEED_1_RECAL; 1693 break; 1694 } 1695 } else 1696 drive_state[current_drive].track = reply_buffer[ST1]; 1697 floppy_ready(); 1698 } 1699 1700 static void print_result(char *message, int inr) 1701 { 1702 int i; 1703 1704 DPRINT("%s ", message); 1705 if (inr >= 0) 1706 for (i = 0; i < inr; i++) 1707 pr_cont("repl[%d]=%x ", i, reply_buffer[i]); 1708 pr_cont("\n"); 1709 } 1710 1711 /* interrupt handler. Note that this can be called externally on the Sparc */ 1712 irqreturn_t floppy_interrupt(int irq, void *dev_id) 1713 { 1714 int do_print; 1715 unsigned long f; 1716 void (*handler)(void) = do_floppy; 1717 1718 lasthandler = handler; 1719 interruptjiffies = jiffies; 1720 1721 f = claim_dma_lock(); 1722 fd_disable_dma(); 1723 release_dma_lock(f); 1724 1725 do_floppy = NULL; 1726 if (current_fdc >= N_FDC || fdc_state[current_fdc].address == -1) { 1727 /* we don't even know which FDC is the culprit */ 1728 pr_info("DOR0=%x\n", fdc_state[0].dor); 1729 pr_info("floppy interrupt on bizarre fdc %d\n", current_fdc); 1730 pr_info("handler=%ps\n", handler); 1731 is_alive(__func__, "bizarre fdc"); 1732 return IRQ_NONE; 1733 } 1734 1735 fdc_state[current_fdc].reset = 0; 1736 /* We have to clear the reset flag here, because apparently on boxes 1737 * with level triggered interrupts (PS/2, Sparc, ...), it is needed to 1738 * emit SENSEI's to clear the interrupt line. And fdc_state[fdc].reset 1739 * blocks the emission of the SENSEI's. 1740 * It is OK to emit floppy commands because we are in an interrupt 1741 * handler here, and thus we have to fear no interference of other 1742 * activity. 1743 */ 1744 1745 do_print = !handler && print_unex && initialized; 1746 1747 inr = result(current_fdc); 1748 if (do_print) 1749 print_result("unexpected interrupt", inr); 1750 if (inr == 0) { 1751 int max_sensei = 4; 1752 do { 1753 output_byte(current_fdc, FD_SENSEI); 1754 inr = result(current_fdc); 1755 if (do_print) 1756 print_result("sensei", inr); 1757 max_sensei--; 1758 } while ((reply_buffer[ST0] & 0x83) != UNIT(current_drive) && 1759 inr == 2 && max_sensei); 1760 } 1761 if (!handler) { 1762 fdc_state[current_fdc].reset = 1; 1763 return IRQ_NONE; 1764 } 1765 schedule_bh(handler); 1766 is_alive(__func__, "normal interrupt end"); 1767 1768 /* FIXME! Was it really for us? */ 1769 return IRQ_HANDLED; 1770 } 1771 1772 static void recalibrate_floppy(void) 1773 { 1774 debugt(__func__, ""); 1775 do_floppy = recal_interrupt; 1776 output_byte(current_fdc, FD_RECALIBRATE); 1777 if (output_byte(current_fdc, UNIT(current_drive)) < 0) 1778 reset_fdc(); 1779 } 1780 1781 /* 1782 * Must do 4 FD_SENSEIs after reset because of ``drive polling''. 1783 */ 1784 static void reset_interrupt(void) 1785 { 1786 debugt(__func__, ""); 1787 result(current_fdc); /* get the status ready for set_fdc */ 1788 if (fdc_state[current_fdc].reset) { 1789 pr_info("reset set in interrupt, calling %ps\n", cont->error); 1790 cont->error(); /* a reset just after a reset. BAD! */ 1791 } 1792 cont->redo(); 1793 } 1794 1795 /* 1796 * reset is done by pulling bit 2 of DOR low for a while (old FDCs), 1797 * or by setting the self clearing bit 7 of STATUS (newer FDCs). 1798 * This WILL trigger an interrupt, causing the handlers in the current 1799 * cont's ->redo() to be called via reset_interrupt(). 1800 */ 1801 static void reset_fdc(void) 1802 { 1803 unsigned long flags; 1804 1805 do_floppy = reset_interrupt; 1806 fdc_state[current_fdc].reset = 0; 1807 reset_fdc_info(current_fdc, 0); 1808 1809 /* Pseudo-DMA may intercept 'reset finished' interrupt. */ 1810 /* Irrelevant for systems with true DMA (i386). */ 1811 1812 flags = claim_dma_lock(); 1813 fd_disable_dma(); 1814 release_dma_lock(flags); 1815 1816 if (fdc_state[current_fdc].version >= FDC_82072A) 1817 fdc_outb(0x80 | (fdc_state[current_fdc].dtr & 3), 1818 current_fdc, FD_STATUS); 1819 else { 1820 fdc_outb(fdc_state[current_fdc].dor & ~0x04, current_fdc, FD_DOR); 1821 udelay(FD_RESET_DELAY); 1822 fdc_outb(fdc_state[current_fdc].dor, current_fdc, FD_DOR); 1823 } 1824 } 1825 1826 static void show_floppy(int fdc) 1827 { 1828 int i; 1829 1830 pr_info("\n"); 1831 pr_info("floppy driver state\n"); 1832 pr_info("-------------------\n"); 1833 pr_info("now=%lu last interrupt=%lu diff=%lu last called handler=%ps\n", 1834 jiffies, interruptjiffies, jiffies - interruptjiffies, 1835 lasthandler); 1836 1837 pr_info("timeout_message=%s\n", timeout_message); 1838 pr_info("last output bytes:\n"); 1839 for (i = 0; i < OLOGSIZE; i++) 1840 pr_info("%2x %2x %lu\n", 1841 output_log[(i + output_log_pos) % OLOGSIZE].data, 1842 output_log[(i + output_log_pos) % OLOGSIZE].status, 1843 output_log[(i + output_log_pos) % OLOGSIZE].jiffies); 1844 pr_info("last result at %lu\n", resultjiffies); 1845 pr_info("last redo_fd_request at %lu\n", lastredo); 1846 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, 1847 reply_buffer, resultsize, true); 1848 1849 pr_info("status=%x\n", fdc_inb(fdc, FD_STATUS)); 1850 pr_info("fdc_busy=%lu\n", fdc_busy); 1851 if (do_floppy) 1852 pr_info("do_floppy=%ps\n", do_floppy); 1853 if (work_pending(&floppy_work)) 1854 pr_info("floppy_work.func=%ps\n", floppy_work.func); 1855 if (delayed_work_pending(&fd_timer)) 1856 pr_info("delayed work.function=%p expires=%ld\n", 1857 fd_timer.work.func, 1858 fd_timer.timer.expires - jiffies); 1859 if (delayed_work_pending(&fd_timeout)) 1860 pr_info("timer_function=%p expires=%ld\n", 1861 fd_timeout.work.func, 1862 fd_timeout.timer.expires - jiffies); 1863 1864 pr_info("cont=%p\n", cont); 1865 pr_info("current_req=%p\n", current_req); 1866 pr_info("command_status=%d\n", command_status); 1867 pr_info("\n"); 1868 } 1869 1870 static void floppy_shutdown(struct work_struct *arg) 1871 { 1872 unsigned long flags; 1873 1874 if (initialized) 1875 show_floppy(current_fdc); 1876 cancel_activity(); 1877 1878 flags = claim_dma_lock(); 1879 fd_disable_dma(); 1880 release_dma_lock(flags); 1881 1882 /* avoid dma going to a random drive after shutdown */ 1883 1884 if (initialized) 1885 DPRINT("floppy timeout called\n"); 1886 fdc_state[current_fdc].reset = 1; 1887 if (cont) { 1888 cont->done(0); 1889 cont->redo(); /* this will recall reset when needed */ 1890 } else { 1891 pr_info("no cont in shutdown!\n"); 1892 process_fd_request(); 1893 } 1894 is_alive(__func__, ""); 1895 } 1896 1897 /* start motor, check media-changed condition and write protection */ 1898 static int start_motor(void (*function)(void)) 1899 { 1900 int mask; 1901 int data; 1902 1903 mask = 0xfc; 1904 data = UNIT(current_drive); 1905 if (!(raw_cmd->flags & FD_RAW_NO_MOTOR)) { 1906 if (!(fdc_state[current_fdc].dor & (0x10 << UNIT(current_drive)))) { 1907 set_debugt(); 1908 /* no read since this drive is running */ 1909 drive_state[current_drive].first_read_date = 0; 1910 /* note motor start time if motor is not yet running */ 1911 drive_state[current_drive].spinup_date = jiffies; 1912 data |= (0x10 << UNIT(current_drive)); 1913 } 1914 } else if (fdc_state[current_fdc].dor & (0x10 << UNIT(current_drive))) 1915 mask &= ~(0x10 << UNIT(current_drive)); 1916 1917 /* starts motor and selects floppy */ 1918 del_timer(motor_off_timer + current_drive); 1919 set_dor(current_fdc, mask, data); 1920 1921 /* wait_for_completion also schedules reset if needed. */ 1922 return fd_wait_for_completion(drive_state[current_drive].select_date + drive_params[current_drive].select_delay, 1923 function); 1924 } 1925 1926 static void floppy_ready(void) 1927 { 1928 if (fdc_state[current_fdc].reset) { 1929 reset_fdc(); 1930 return; 1931 } 1932 if (start_motor(floppy_ready)) 1933 return; 1934 if (fdc_dtr()) 1935 return; 1936 1937 debug_dcl(drive_params[current_drive].flags, 1938 "calling disk change from floppy_ready\n"); 1939 if (!(raw_cmd->flags & FD_RAW_NO_MOTOR) && 1940 disk_change(current_drive) && !drive_params[current_drive].select_delay) 1941 twaddle(current_fdc, current_drive); /* this clears the dcl on certain 1942 * drive/controller combinations */ 1943 1944 #ifdef fd_chose_dma_mode 1945 if ((raw_cmd->flags & FD_RAW_READ) || (raw_cmd->flags & FD_RAW_WRITE)) { 1946 unsigned long flags = claim_dma_lock(); 1947 fd_chose_dma_mode(raw_cmd->kernel_data, raw_cmd->length); 1948 release_dma_lock(flags); 1949 } 1950 #endif 1951 1952 if (raw_cmd->flags & (FD_RAW_NEED_SEEK | FD_RAW_NEED_DISK)) { 1953 perpendicular_mode(current_fdc); 1954 fdc_specify(current_fdc, current_drive); /* must be done here because of hut, hlt ... */ 1955 seek_floppy(); 1956 } else { 1957 if ((raw_cmd->flags & FD_RAW_READ) || 1958 (raw_cmd->flags & FD_RAW_WRITE)) 1959 fdc_specify(current_fdc, current_drive); 1960 setup_rw_floppy(); 1961 } 1962 } 1963 1964 static void floppy_start(void) 1965 { 1966 reschedule_timeout(current_drive, "floppy start"); 1967 1968 scandrives(); 1969 debug_dcl(drive_params[current_drive].flags, 1970 "setting NEWCHANGE in floppy_start\n"); 1971 set_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags); 1972 floppy_ready(); 1973 } 1974 1975 /* 1976 * ======================================================================== 1977 * here ends the bottom half. Exported routines are: 1978 * floppy_start, floppy_off, floppy_ready, lock_fdc, unlock_fdc, set_fdc, 1979 * start_motor, reset_fdc, reset_fdc_info, interpret_errors. 1980 * Initialization also uses output_byte, result, set_dor, floppy_interrupt 1981 * and set_dor. 1982 * ======================================================================== 1983 */ 1984 /* 1985 * General purpose continuations. 1986 * ============================== 1987 */ 1988 1989 static void do_wakeup(void) 1990 { 1991 reschedule_timeout(MAXTIMEOUT, "do wakeup"); 1992 cont = NULL; 1993 command_status += 2; 1994 wake_up(&command_done); 1995 } 1996 1997 static const struct cont_t wakeup_cont = { 1998 .interrupt = empty, 1999 .redo = do_wakeup, 2000 .error = empty, 2001 .done = (done_f)empty 2002 }; 2003 2004 static const struct cont_t intr_cont = { 2005 .interrupt = empty, 2006 .redo = process_fd_request, 2007 .error = empty, 2008 .done = (done_f)empty 2009 }; 2010 2011 /* schedules handler, waiting for completion. May be interrupted, will then 2012 * return -EINTR, in which case the driver will automatically be unlocked. 2013 */ 2014 static int wait_til_done(void (*handler)(void), bool interruptible) 2015 { 2016 int ret; 2017 2018 schedule_bh(handler); 2019 2020 if (interruptible) 2021 wait_event_interruptible(command_done, command_status >= 2); 2022 else 2023 wait_event(command_done, command_status >= 2); 2024 2025 if (command_status < 2) { 2026 cancel_activity(); 2027 cont = &intr_cont; 2028 reset_fdc(); 2029 return -EINTR; 2030 } 2031 2032 if (fdc_state[current_fdc].reset) 2033 command_status = FD_COMMAND_ERROR; 2034 if (command_status == FD_COMMAND_OKAY) 2035 ret = 0; 2036 else 2037 ret = -EIO; 2038 command_status = FD_COMMAND_NONE; 2039 return ret; 2040 } 2041 2042 static void generic_done(int result) 2043 { 2044 command_status = result; 2045 cont = &wakeup_cont; 2046 } 2047 2048 static void generic_success(void) 2049 { 2050 cont->done(1); 2051 } 2052 2053 static void generic_failure(void) 2054 { 2055 cont->done(0); 2056 } 2057 2058 static void success_and_wakeup(void) 2059 { 2060 generic_success(); 2061 cont->redo(); 2062 } 2063 2064 /* 2065 * formatting and rw support. 2066 * ========================== 2067 */ 2068 2069 static int next_valid_format(int drive) 2070 { 2071 int probed_format; 2072 2073 probed_format = drive_state[drive].probed_format; 2074 while (1) { 2075 if (probed_format >= FD_AUTODETECT_SIZE || 2076 !drive_params[drive].autodetect[probed_format]) { 2077 drive_state[drive].probed_format = 0; 2078 return 1; 2079 } 2080 if (floppy_type[drive_params[drive].autodetect[probed_format]].sect) { 2081 drive_state[drive].probed_format = probed_format; 2082 return 0; 2083 } 2084 probed_format++; 2085 } 2086 } 2087 2088 static void bad_flp_intr(void) 2089 { 2090 int err_count; 2091 2092 if (probing) { 2093 drive_state[current_drive].probed_format++; 2094 if (!next_valid_format(current_drive)) 2095 return; 2096 } 2097 err_count = ++(*errors); 2098 INFBOUND(write_errors[current_drive].badness, err_count); 2099 if (err_count > drive_params[current_drive].max_errors.abort) 2100 cont->done(0); 2101 if (err_count > drive_params[current_drive].max_errors.reset) 2102 fdc_state[current_fdc].reset = 1; 2103 else if (err_count > drive_params[current_drive].max_errors.recal) 2104 drive_state[current_drive].track = NEED_2_RECAL; 2105 } 2106 2107 static void set_floppy(int drive) 2108 { 2109 int type = ITYPE(drive_state[drive].fd_device); 2110 2111 if (type) 2112 _floppy = floppy_type + type; 2113 else 2114 _floppy = current_type[drive]; 2115 } 2116 2117 /* 2118 * formatting support. 2119 * =================== 2120 */ 2121 static void format_interrupt(void) 2122 { 2123 switch (interpret_errors()) { 2124 case 1: 2125 cont->error(); 2126 case 2: 2127 break; 2128 case 0: 2129 cont->done(1); 2130 } 2131 cont->redo(); 2132 } 2133 2134 #define FM_MODE(x, y) ((y) & ~(((x)->rate & 0x80) >> 1)) 2135 #define CT(x) ((x) | 0xc0) 2136 2137 static void setup_format_params(int track) 2138 { 2139 int n; 2140 int il; 2141 int count; 2142 int head_shift; 2143 int track_shift; 2144 struct fparm { 2145 unsigned char track, head, sect, size; 2146 } *here = (struct fparm *)floppy_track_buffer; 2147 2148 raw_cmd = &default_raw_cmd; 2149 raw_cmd->track = track; 2150 2151 raw_cmd->flags = (FD_RAW_WRITE | FD_RAW_INTR | FD_RAW_SPIN | 2152 FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK); 2153 raw_cmd->rate = _floppy->rate & 0x43; 2154 raw_cmd->cmd_count = NR_F; 2155 raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_FORMAT); 2156 raw_cmd->cmd[DR_SELECT] = UNIT(current_drive) + PH_HEAD(_floppy, format_req.head); 2157 raw_cmd->cmd[F_SIZECODE] = FD_SIZECODE(_floppy); 2158 raw_cmd->cmd[F_SECT_PER_TRACK] = _floppy->sect << 2 >> raw_cmd->cmd[F_SIZECODE]; 2159 raw_cmd->cmd[F_GAP] = _floppy->fmt_gap; 2160 raw_cmd->cmd[F_FILL] = FD_FILL_BYTE; 2161 2162 raw_cmd->kernel_data = floppy_track_buffer; 2163 raw_cmd->length = 4 * raw_cmd->cmd[F_SECT_PER_TRACK]; 2164 2165 if (!raw_cmd->cmd[F_SECT_PER_TRACK]) 2166 return; 2167 2168 /* allow for about 30ms for data transport per track */ 2169 head_shift = (raw_cmd->cmd[F_SECT_PER_TRACK] + 5) / 6; 2170 2171 /* a ``cylinder'' is two tracks plus a little stepping time */ 2172 track_shift = 2 * head_shift + 3; 2173 2174 /* position of logical sector 1 on this track */ 2175 n = (track_shift * format_req.track + head_shift * format_req.head) 2176 % raw_cmd->cmd[F_SECT_PER_TRACK]; 2177 2178 /* determine interleave */ 2179 il = 1; 2180 if (_floppy->fmt_gap < 0x22) 2181 il++; 2182 2183 /* initialize field */ 2184 for (count = 0; count < raw_cmd->cmd[F_SECT_PER_TRACK]; ++count) { 2185 here[count].track = format_req.track; 2186 here[count].head = format_req.head; 2187 here[count].sect = 0; 2188 here[count].size = raw_cmd->cmd[F_SIZECODE]; 2189 } 2190 /* place logical sectors */ 2191 for (count = 1; count <= raw_cmd->cmd[F_SECT_PER_TRACK]; ++count) { 2192 here[n].sect = count; 2193 n = (n + il) % raw_cmd->cmd[F_SECT_PER_TRACK]; 2194 if (here[n].sect) { /* sector busy, find next free sector */ 2195 ++n; 2196 if (n >= raw_cmd->cmd[F_SECT_PER_TRACK]) { 2197 n -= raw_cmd->cmd[F_SECT_PER_TRACK]; 2198 while (here[n].sect) 2199 ++n; 2200 } 2201 } 2202 } 2203 if (_floppy->stretch & FD_SECTBASEMASK) { 2204 for (count = 0; count < raw_cmd->cmd[F_SECT_PER_TRACK]; count++) 2205 here[count].sect += FD_SECTBASE(_floppy) - 1; 2206 } 2207 } 2208 2209 static void redo_format(void) 2210 { 2211 buffer_track = -1; 2212 setup_format_params(format_req.track << STRETCH(_floppy)); 2213 floppy_start(); 2214 debugt(__func__, "queue format request"); 2215 } 2216 2217 static const struct cont_t format_cont = { 2218 .interrupt = format_interrupt, 2219 .redo = redo_format, 2220 .error = bad_flp_intr, 2221 .done = generic_done 2222 }; 2223 2224 static int do_format(int drive, struct format_descr *tmp_format_req) 2225 { 2226 int ret; 2227 2228 if (lock_fdc(drive)) 2229 return -EINTR; 2230 2231 set_floppy(drive); 2232 if (!_floppy || 2233 _floppy->track > drive_params[current_drive].tracks || 2234 tmp_format_req->track >= _floppy->track || 2235 tmp_format_req->head >= _floppy->head || 2236 (_floppy->sect << 2) % (1 << FD_SIZECODE(_floppy)) || 2237 !_floppy->fmt_gap) { 2238 process_fd_request(); 2239 return -EINVAL; 2240 } 2241 format_req = *tmp_format_req; 2242 format_errors = 0; 2243 cont = &format_cont; 2244 errors = &format_errors; 2245 ret = wait_til_done(redo_format, true); 2246 if (ret == -EINTR) 2247 return -EINTR; 2248 process_fd_request(); 2249 return ret; 2250 } 2251 2252 /* 2253 * Buffer read/write and support 2254 * ============================= 2255 */ 2256 2257 static void floppy_end_request(struct request *req, blk_status_t error) 2258 { 2259 unsigned int nr_sectors = current_count_sectors; 2260 unsigned int drive = (unsigned long)req->rq_disk->private_data; 2261 2262 /* current_count_sectors can be zero if transfer failed */ 2263 if (error) 2264 nr_sectors = blk_rq_cur_sectors(req); 2265 if (blk_update_request(req, error, nr_sectors << 9)) 2266 return; 2267 __blk_mq_end_request(req, error); 2268 2269 /* We're done with the request */ 2270 floppy_off(drive); 2271 current_req = NULL; 2272 } 2273 2274 /* new request_done. Can handle physical sectors which are smaller than a 2275 * logical buffer */ 2276 static void request_done(int uptodate) 2277 { 2278 struct request *req = current_req; 2279 int block; 2280 char msg[sizeof("request done ") + sizeof(int) * 3]; 2281 2282 probing = 0; 2283 snprintf(msg, sizeof(msg), "request done %d", uptodate); 2284 reschedule_timeout(MAXTIMEOUT, msg); 2285 2286 if (!req) { 2287 pr_info("floppy.c: no request in request_done\n"); 2288 return; 2289 } 2290 2291 if (uptodate) { 2292 /* maintain values for invalidation on geometry 2293 * change */ 2294 block = current_count_sectors + blk_rq_pos(req); 2295 INFBOUND(drive_state[current_drive].maxblock, block); 2296 if (block > _floppy->sect) 2297 drive_state[current_drive].maxtrack = 1; 2298 2299 floppy_end_request(req, 0); 2300 } else { 2301 if (rq_data_dir(req) == WRITE) { 2302 /* record write error information */ 2303 write_errors[current_drive].write_errors++; 2304 if (write_errors[current_drive].write_errors == 1) { 2305 write_errors[current_drive].first_error_sector = blk_rq_pos(req); 2306 write_errors[current_drive].first_error_generation = drive_state[current_drive].generation; 2307 } 2308 write_errors[current_drive].last_error_sector = blk_rq_pos(req); 2309 write_errors[current_drive].last_error_generation = drive_state[current_drive].generation; 2310 } 2311 floppy_end_request(req, BLK_STS_IOERR); 2312 } 2313 } 2314 2315 /* Interrupt handler evaluating the result of the r/w operation */ 2316 static void rw_interrupt(void) 2317 { 2318 int eoc; 2319 int ssize; 2320 int heads; 2321 int nr_sectors; 2322 2323 if (reply_buffer[R_HEAD] >= 2) { 2324 /* some Toshiba floppy controllers occasionnally seem to 2325 * return bogus interrupts after read/write operations, which 2326 * can be recognized by a bad head number (>= 2) */ 2327 return; 2328 } 2329 2330 if (!drive_state[current_drive].first_read_date) 2331 drive_state[current_drive].first_read_date = jiffies; 2332 2333 nr_sectors = 0; 2334 ssize = DIV_ROUND_UP(1 << raw_cmd->cmd[SIZECODE], 4); 2335 2336 if (reply_buffer[ST1] & ST1_EOC) 2337 eoc = 1; 2338 else 2339 eoc = 0; 2340 2341 if (raw_cmd->cmd[COMMAND] & 0x80) 2342 heads = 2; 2343 else 2344 heads = 1; 2345 2346 nr_sectors = (((reply_buffer[R_TRACK] - raw_cmd->cmd[TRACK]) * heads + 2347 reply_buffer[R_HEAD] - raw_cmd->cmd[HEAD]) * raw_cmd->cmd[SECT_PER_TRACK] + 2348 reply_buffer[R_SECTOR] - raw_cmd->cmd[SECTOR] + eoc) << raw_cmd->cmd[SIZECODE] >> 2; 2349 2350 if (nr_sectors / ssize > 2351 DIV_ROUND_UP(in_sector_offset + current_count_sectors, ssize)) { 2352 DPRINT("long rw: %x instead of %lx\n", 2353 nr_sectors, current_count_sectors); 2354 pr_info("rs=%d s=%d\n", reply_buffer[R_SECTOR], 2355 raw_cmd->cmd[SECTOR]); 2356 pr_info("rh=%d h=%d\n", reply_buffer[R_HEAD], 2357 raw_cmd->cmd[HEAD]); 2358 pr_info("rt=%d t=%d\n", reply_buffer[R_TRACK], 2359 raw_cmd->cmd[TRACK]); 2360 pr_info("heads=%d eoc=%d\n", heads, eoc); 2361 pr_info("spt=%d st=%d ss=%d\n", 2362 raw_cmd->cmd[SECT_PER_TRACK], fsector_t, ssize); 2363 pr_info("in_sector_offset=%d\n", in_sector_offset); 2364 } 2365 2366 nr_sectors -= in_sector_offset; 2367 INFBOUND(nr_sectors, 0); 2368 SUPBOUND(current_count_sectors, nr_sectors); 2369 2370 switch (interpret_errors()) { 2371 case 2: 2372 cont->redo(); 2373 return; 2374 case 1: 2375 if (!current_count_sectors) { 2376 cont->error(); 2377 cont->redo(); 2378 return; 2379 } 2380 break; 2381 case 0: 2382 if (!current_count_sectors) { 2383 cont->redo(); 2384 return; 2385 } 2386 current_type[current_drive] = _floppy; 2387 floppy_sizes[TOMINOR(current_drive)] = _floppy->size; 2388 break; 2389 } 2390 2391 if (probing) { 2392 if (drive_params[current_drive].flags & FTD_MSG) 2393 DPRINT("Auto-detected floppy type %s in fd%d\n", 2394 _floppy->name, current_drive); 2395 current_type[current_drive] = _floppy; 2396 floppy_sizes[TOMINOR(current_drive)] = _floppy->size; 2397 probing = 0; 2398 } 2399 2400 if (CT(raw_cmd->cmd[COMMAND]) != FD_READ || 2401 raw_cmd->kernel_data == bio_data(current_req->bio)) { 2402 /* transfer directly from buffer */ 2403 cont->done(1); 2404 } else if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) { 2405 buffer_track = raw_cmd->track; 2406 buffer_drive = current_drive; 2407 INFBOUND(buffer_max, nr_sectors + fsector_t); 2408 } 2409 cont->redo(); 2410 } 2411 2412 /* Compute maximal contiguous buffer size. */ 2413 static int buffer_chain_size(void) 2414 { 2415 struct bio_vec bv; 2416 int size; 2417 struct req_iterator iter; 2418 char *base; 2419 2420 base = bio_data(current_req->bio); 2421 size = 0; 2422 2423 rq_for_each_segment(bv, current_req, iter) { 2424 if (page_address(bv.bv_page) + bv.bv_offset != base + size) 2425 break; 2426 2427 size += bv.bv_len; 2428 } 2429 2430 return size >> 9; 2431 } 2432 2433 /* Compute the maximal transfer size */ 2434 static int transfer_size(int ssize, int max_sector, int max_size) 2435 { 2436 SUPBOUND(max_sector, fsector_t + max_size); 2437 2438 /* alignment */ 2439 max_sector -= (max_sector % _floppy->sect) % ssize; 2440 2441 /* transfer size, beginning not aligned */ 2442 current_count_sectors = max_sector - fsector_t; 2443 2444 return max_sector; 2445 } 2446 2447 /* 2448 * Move data from/to the track buffer to/from the buffer cache. 2449 */ 2450 static void copy_buffer(int ssize, int max_sector, int max_sector_2) 2451 { 2452 int remaining; /* number of transferred 512-byte sectors */ 2453 struct bio_vec bv; 2454 char *buffer; 2455 char *dma_buffer; 2456 int size; 2457 struct req_iterator iter; 2458 2459 max_sector = transfer_size(ssize, 2460 min(max_sector, max_sector_2), 2461 blk_rq_sectors(current_req)); 2462 2463 if (current_count_sectors <= 0 && CT(raw_cmd->cmd[COMMAND]) == FD_WRITE && 2464 buffer_max > fsector_t + blk_rq_sectors(current_req)) 2465 current_count_sectors = min_t(int, buffer_max - fsector_t, 2466 blk_rq_sectors(current_req)); 2467 2468 remaining = current_count_sectors << 9; 2469 if (remaining > blk_rq_bytes(current_req) && CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) { 2470 DPRINT("in copy buffer\n"); 2471 pr_info("current_count_sectors=%ld\n", current_count_sectors); 2472 pr_info("remaining=%d\n", remaining >> 9); 2473 pr_info("current_req->nr_sectors=%u\n", 2474 blk_rq_sectors(current_req)); 2475 pr_info("current_req->current_nr_sectors=%u\n", 2476 blk_rq_cur_sectors(current_req)); 2477 pr_info("max_sector=%d\n", max_sector); 2478 pr_info("ssize=%d\n", ssize); 2479 } 2480 2481 buffer_max = max(max_sector, buffer_max); 2482 2483 dma_buffer = floppy_track_buffer + ((fsector_t - buffer_min) << 9); 2484 2485 size = blk_rq_cur_bytes(current_req); 2486 2487 rq_for_each_segment(bv, current_req, iter) { 2488 if (!remaining) 2489 break; 2490 2491 size = bv.bv_len; 2492 SUPBOUND(size, remaining); 2493 2494 buffer = page_address(bv.bv_page) + bv.bv_offset; 2495 if (dma_buffer + size > 2496 floppy_track_buffer + (max_buffer_sectors << 10) || 2497 dma_buffer < floppy_track_buffer) { 2498 DPRINT("buffer overrun in copy buffer %d\n", 2499 (int)((floppy_track_buffer - dma_buffer) >> 9)); 2500 pr_info("fsector_t=%d buffer_min=%d\n", 2501 fsector_t, buffer_min); 2502 pr_info("current_count_sectors=%ld\n", 2503 current_count_sectors); 2504 if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) 2505 pr_info("read\n"); 2506 if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) 2507 pr_info("write\n"); 2508 break; 2509 } 2510 if (((unsigned long)buffer) % 512) 2511 DPRINT("%p buffer not aligned\n", buffer); 2512 2513 if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) 2514 memcpy(buffer, dma_buffer, size); 2515 else 2516 memcpy(dma_buffer, buffer, size); 2517 2518 remaining -= size; 2519 dma_buffer += size; 2520 } 2521 if (remaining) { 2522 if (remaining > 0) 2523 max_sector -= remaining >> 9; 2524 DPRINT("weirdness: remaining %d\n", remaining >> 9); 2525 } 2526 } 2527 2528 /* work around a bug in pseudo DMA 2529 * (on some FDCs) pseudo DMA does not stop when the CPU stops 2530 * sending data. Hence we need a different way to signal the 2531 * transfer length: We use raw_cmd->cmd[SECT_PER_TRACK]. Unfortunately, this 2532 * does not work with MT, hence we can only transfer one head at 2533 * a time 2534 */ 2535 static void virtualdmabug_workaround(void) 2536 { 2537 int hard_sectors; 2538 int end_sector; 2539 2540 if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) { 2541 raw_cmd->cmd[COMMAND] &= ~0x80; /* switch off multiple track mode */ 2542 2543 hard_sectors = raw_cmd->length >> (7 + raw_cmd->cmd[SIZECODE]); 2544 end_sector = raw_cmd->cmd[SECTOR] + hard_sectors - 1; 2545 if (end_sector > raw_cmd->cmd[SECT_PER_TRACK]) { 2546 pr_info("too many sectors %d > %d\n", 2547 end_sector, raw_cmd->cmd[SECT_PER_TRACK]); 2548 return; 2549 } 2550 raw_cmd->cmd[SECT_PER_TRACK] = end_sector; 2551 /* make sure raw_cmd->cmd[SECT_PER_TRACK] 2552 * points to end of transfer */ 2553 } 2554 } 2555 2556 /* 2557 * Formulate a read/write request. 2558 * this routine decides where to load the data (directly to buffer, or to 2559 * tmp floppy area), how much data to load (the size of the buffer, the whole 2560 * track, or a single sector) 2561 * All floppy_track_buffer handling goes in here. If we ever add track buffer 2562 * allocation on the fly, it should be done here. No other part should need 2563 * modification. 2564 */ 2565 2566 static int make_raw_rw_request(void) 2567 { 2568 int aligned_sector_t; 2569 int max_sector; 2570 int max_size; 2571 int tracksize; 2572 int ssize; 2573 2574 if (WARN(max_buffer_sectors == 0, "VFS: Block I/O scheduled on unopened device\n")) 2575 return 0; 2576 2577 set_fdc((long)current_req->rq_disk->private_data); 2578 2579 raw_cmd = &default_raw_cmd; 2580 raw_cmd->flags = FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK; 2581 raw_cmd->cmd_count = NR_RW; 2582 if (rq_data_dir(current_req) == READ) { 2583 raw_cmd->flags |= FD_RAW_READ; 2584 raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_READ); 2585 } else if (rq_data_dir(current_req) == WRITE) { 2586 raw_cmd->flags |= FD_RAW_WRITE; 2587 raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_WRITE); 2588 } else { 2589 DPRINT("%s: unknown command\n", __func__); 2590 return 0; 2591 } 2592 2593 max_sector = _floppy->sect * _floppy->head; 2594 2595 raw_cmd->cmd[TRACK] = (int)blk_rq_pos(current_req) / max_sector; 2596 fsector_t = (int)blk_rq_pos(current_req) % max_sector; 2597 if (_floppy->track && raw_cmd->cmd[TRACK] >= _floppy->track) { 2598 if (blk_rq_cur_sectors(current_req) & 1) { 2599 current_count_sectors = 1; 2600 return 1; 2601 } else 2602 return 0; 2603 } 2604 raw_cmd->cmd[HEAD] = fsector_t / _floppy->sect; 2605 2606 if (((_floppy->stretch & (FD_SWAPSIDES | FD_SECTBASEMASK)) || 2607 test_bit(FD_NEED_TWADDLE_BIT, &drive_state[current_drive].flags)) && 2608 fsector_t < _floppy->sect) 2609 max_sector = _floppy->sect; 2610 2611 /* 2M disks have phantom sectors on the first track */ 2612 if ((_floppy->rate & FD_2M) && (!raw_cmd->cmd[TRACK]) && (!raw_cmd->cmd[HEAD])) { 2613 max_sector = 2 * _floppy->sect / 3; 2614 if (fsector_t >= max_sector) { 2615 current_count_sectors = 2616 min_t(int, _floppy->sect - fsector_t, 2617 blk_rq_sectors(current_req)); 2618 return 1; 2619 } 2620 raw_cmd->cmd[SIZECODE] = 2; 2621 } else 2622 raw_cmd->cmd[SIZECODE] = FD_SIZECODE(_floppy); 2623 raw_cmd->rate = _floppy->rate & 0x43; 2624 if ((_floppy->rate & FD_2M) && 2625 (raw_cmd->cmd[TRACK] || raw_cmd->cmd[HEAD]) && raw_cmd->rate == 2) 2626 raw_cmd->rate = 1; 2627 2628 if (raw_cmd->cmd[SIZECODE]) 2629 raw_cmd->cmd[SIZECODE2] = 0xff; 2630 else 2631 raw_cmd->cmd[SIZECODE2] = 0x80; 2632 raw_cmd->track = raw_cmd->cmd[TRACK] << STRETCH(_floppy); 2633 raw_cmd->cmd[DR_SELECT] = UNIT(current_drive) + PH_HEAD(_floppy, raw_cmd->cmd[HEAD]); 2634 raw_cmd->cmd[GAP] = _floppy->gap; 2635 ssize = DIV_ROUND_UP(1 << raw_cmd->cmd[SIZECODE], 4); 2636 raw_cmd->cmd[SECT_PER_TRACK] = _floppy->sect << 2 >> raw_cmd->cmd[SIZECODE]; 2637 raw_cmd->cmd[SECTOR] = ((fsector_t % _floppy->sect) << 2 >> raw_cmd->cmd[SIZECODE]) + 2638 FD_SECTBASE(_floppy); 2639 2640 /* tracksize describes the size which can be filled up with sectors 2641 * of size ssize. 2642 */ 2643 tracksize = _floppy->sect - _floppy->sect % ssize; 2644 if (tracksize < _floppy->sect) { 2645 raw_cmd->cmd[SECT_PER_TRACK]++; 2646 if (tracksize <= fsector_t % _floppy->sect) 2647 raw_cmd->cmd[SECTOR]--; 2648 2649 /* if we are beyond tracksize, fill up using smaller sectors */ 2650 while (tracksize <= fsector_t % _floppy->sect) { 2651 while (tracksize + ssize > _floppy->sect) { 2652 raw_cmd->cmd[SIZECODE]--; 2653 ssize >>= 1; 2654 } 2655 raw_cmd->cmd[SECTOR]++; 2656 raw_cmd->cmd[SECT_PER_TRACK]++; 2657 tracksize += ssize; 2658 } 2659 max_sector = raw_cmd->cmd[HEAD] * _floppy->sect + tracksize; 2660 } else if (!raw_cmd->cmd[TRACK] && !raw_cmd->cmd[HEAD] && !(_floppy->rate & FD_2M) && probing) { 2661 max_sector = _floppy->sect; 2662 } else if (!raw_cmd->cmd[HEAD] && CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) { 2663 /* for virtual DMA bug workaround */ 2664 max_sector = _floppy->sect; 2665 } 2666 2667 in_sector_offset = (fsector_t % _floppy->sect) % ssize; 2668 aligned_sector_t = fsector_t - in_sector_offset; 2669 max_size = blk_rq_sectors(current_req); 2670 if ((raw_cmd->track == buffer_track) && 2671 (current_drive == buffer_drive) && 2672 (fsector_t >= buffer_min) && (fsector_t < buffer_max)) { 2673 /* data already in track buffer */ 2674 if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) { 2675 copy_buffer(1, max_sector, buffer_max); 2676 return 1; 2677 } 2678 } else if (in_sector_offset || blk_rq_sectors(current_req) < ssize) { 2679 if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) { 2680 unsigned int sectors; 2681 2682 sectors = fsector_t + blk_rq_sectors(current_req); 2683 if (sectors > ssize && sectors < ssize + ssize) 2684 max_size = ssize + ssize; 2685 else 2686 max_size = ssize; 2687 } 2688 raw_cmd->flags &= ~FD_RAW_WRITE; 2689 raw_cmd->flags |= FD_RAW_READ; 2690 raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_READ); 2691 } else if ((unsigned long)bio_data(current_req->bio) < MAX_DMA_ADDRESS) { 2692 unsigned long dma_limit; 2693 int direct, indirect; 2694 2695 indirect = 2696 transfer_size(ssize, max_sector, 2697 max_buffer_sectors * 2) - fsector_t; 2698 2699 /* 2700 * Do NOT use minimum() here---MAX_DMA_ADDRESS is 64 bits wide 2701 * on a 64 bit machine! 2702 */ 2703 max_size = buffer_chain_size(); 2704 dma_limit = (MAX_DMA_ADDRESS - 2705 ((unsigned long)bio_data(current_req->bio))) >> 9; 2706 if ((unsigned long)max_size > dma_limit) 2707 max_size = dma_limit; 2708 /* 64 kb boundaries */ 2709 if (CROSS_64KB(bio_data(current_req->bio), max_size << 9)) 2710 max_size = (K_64 - 2711 ((unsigned long)bio_data(current_req->bio)) % 2712 K_64) >> 9; 2713 direct = transfer_size(ssize, max_sector, max_size) - fsector_t; 2714 /* 2715 * We try to read tracks, but if we get too many errors, we 2716 * go back to reading just one sector at a time. 2717 * 2718 * This means we should be able to read a sector even if there 2719 * are other bad sectors on this track. 2720 */ 2721 if (!direct || 2722 (indirect * 2 > direct * 3 && 2723 *errors < drive_params[current_drive].max_errors.read_track && 2724 ((!probing || 2725 (drive_params[current_drive].read_track & (1 << drive_state[current_drive].probed_format)))))) { 2726 max_size = blk_rq_sectors(current_req); 2727 } else { 2728 raw_cmd->kernel_data = bio_data(current_req->bio); 2729 raw_cmd->length = current_count_sectors << 9; 2730 if (raw_cmd->length == 0) { 2731 DPRINT("%s: zero dma transfer attempted\n", __func__); 2732 DPRINT("indirect=%d direct=%d fsector_t=%d\n", 2733 indirect, direct, fsector_t); 2734 return 0; 2735 } 2736 virtualdmabug_workaround(); 2737 return 2; 2738 } 2739 } 2740 2741 if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) 2742 max_size = max_sector; /* unbounded */ 2743 2744 /* claim buffer track if needed */ 2745 if (buffer_track != raw_cmd->track || /* bad track */ 2746 buffer_drive != current_drive || /* bad drive */ 2747 fsector_t > buffer_max || 2748 fsector_t < buffer_min || 2749 ((CT(raw_cmd->cmd[COMMAND]) == FD_READ || 2750 (!in_sector_offset && blk_rq_sectors(current_req) >= ssize)) && 2751 max_sector > 2 * max_buffer_sectors + buffer_min && 2752 max_size + fsector_t > 2 * max_buffer_sectors + buffer_min)) { 2753 /* not enough space */ 2754 buffer_track = -1; 2755 buffer_drive = current_drive; 2756 buffer_max = buffer_min = aligned_sector_t; 2757 } 2758 raw_cmd->kernel_data = floppy_track_buffer + 2759 ((aligned_sector_t - buffer_min) << 9); 2760 2761 if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) { 2762 /* copy write buffer to track buffer. 2763 * if we get here, we know that the write 2764 * is either aligned or the data already in the buffer 2765 * (buffer will be overwritten) */ 2766 if (in_sector_offset && buffer_track == -1) 2767 DPRINT("internal error offset !=0 on write\n"); 2768 buffer_track = raw_cmd->track; 2769 buffer_drive = current_drive; 2770 copy_buffer(ssize, max_sector, 2771 2 * max_buffer_sectors + buffer_min); 2772 } else 2773 transfer_size(ssize, max_sector, 2774 2 * max_buffer_sectors + buffer_min - 2775 aligned_sector_t); 2776 2777 /* round up current_count_sectors to get dma xfer size */ 2778 raw_cmd->length = in_sector_offset + current_count_sectors; 2779 raw_cmd->length = ((raw_cmd->length - 1) | (ssize - 1)) + 1; 2780 raw_cmd->length <<= 9; 2781 if ((raw_cmd->length < current_count_sectors << 9) || 2782 (raw_cmd->kernel_data != bio_data(current_req->bio) && 2783 CT(raw_cmd->cmd[COMMAND]) == FD_WRITE && 2784 (aligned_sector_t + (raw_cmd->length >> 9) > buffer_max || 2785 aligned_sector_t < buffer_min)) || 2786 raw_cmd->length % (128 << raw_cmd->cmd[SIZECODE]) || 2787 raw_cmd->length <= 0 || current_count_sectors <= 0) { 2788 DPRINT("fractionary current count b=%lx s=%lx\n", 2789 raw_cmd->length, current_count_sectors); 2790 if (raw_cmd->kernel_data != bio_data(current_req->bio)) 2791 pr_info("addr=%d, length=%ld\n", 2792 (int)((raw_cmd->kernel_data - 2793 floppy_track_buffer) >> 9), 2794 current_count_sectors); 2795 pr_info("st=%d ast=%d mse=%d msi=%d\n", 2796 fsector_t, aligned_sector_t, max_sector, max_size); 2797 pr_info("ssize=%x SIZECODE=%d\n", ssize, raw_cmd->cmd[SIZECODE]); 2798 pr_info("command=%x SECTOR=%d HEAD=%d, TRACK=%d\n", 2799 raw_cmd->cmd[COMMAND], raw_cmd->cmd[SECTOR], 2800 raw_cmd->cmd[HEAD], raw_cmd->cmd[TRACK]); 2801 pr_info("buffer drive=%d\n", buffer_drive); 2802 pr_info("buffer track=%d\n", buffer_track); 2803 pr_info("buffer_min=%d\n", buffer_min); 2804 pr_info("buffer_max=%d\n", buffer_max); 2805 return 0; 2806 } 2807 2808 if (raw_cmd->kernel_data != bio_data(current_req->bio)) { 2809 if (raw_cmd->kernel_data < floppy_track_buffer || 2810 current_count_sectors < 0 || 2811 raw_cmd->length < 0 || 2812 raw_cmd->kernel_data + raw_cmd->length > 2813 floppy_track_buffer + (max_buffer_sectors << 10)) { 2814 DPRINT("buffer overrun in schedule dma\n"); 2815 pr_info("fsector_t=%d buffer_min=%d current_count=%ld\n", 2816 fsector_t, buffer_min, raw_cmd->length >> 9); 2817 pr_info("current_count_sectors=%ld\n", 2818 current_count_sectors); 2819 if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) 2820 pr_info("read\n"); 2821 if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) 2822 pr_info("write\n"); 2823 return 0; 2824 } 2825 } else if (raw_cmd->length > blk_rq_bytes(current_req) || 2826 current_count_sectors > blk_rq_sectors(current_req)) { 2827 DPRINT("buffer overrun in direct transfer\n"); 2828 return 0; 2829 } else if (raw_cmd->length < current_count_sectors << 9) { 2830 DPRINT("more sectors than bytes\n"); 2831 pr_info("bytes=%ld\n", raw_cmd->length >> 9); 2832 pr_info("sectors=%ld\n", current_count_sectors); 2833 } 2834 if (raw_cmd->length == 0) { 2835 DPRINT("zero dma transfer attempted from make_raw_request\n"); 2836 return 0; 2837 } 2838 2839 virtualdmabug_workaround(); 2840 return 2; 2841 } 2842 2843 static int set_next_request(void) 2844 { 2845 current_req = list_first_entry_or_null(&floppy_reqs, struct request, 2846 queuelist); 2847 if (current_req) { 2848 current_req->error_count = 0; 2849 list_del_init(¤t_req->queuelist); 2850 } 2851 return current_req != NULL; 2852 } 2853 2854 /* Starts or continues processing request. Will automatically unlock the 2855 * driver at end of request. 2856 */ 2857 static void redo_fd_request(void) 2858 { 2859 int drive; 2860 int tmp; 2861 2862 lastredo = jiffies; 2863 if (current_drive < N_DRIVE) 2864 floppy_off(current_drive); 2865 2866 do_request: 2867 if (!current_req) { 2868 int pending; 2869 2870 spin_lock_irq(&floppy_lock); 2871 pending = set_next_request(); 2872 spin_unlock_irq(&floppy_lock); 2873 if (!pending) { 2874 do_floppy = NULL; 2875 unlock_fdc(); 2876 return; 2877 } 2878 } 2879 drive = (long)current_req->rq_disk->private_data; 2880 set_fdc(drive); 2881 reschedule_timeout(current_drive, "redo fd request"); 2882 2883 set_floppy(drive); 2884 raw_cmd = &default_raw_cmd; 2885 raw_cmd->flags = 0; 2886 if (start_motor(redo_fd_request)) 2887 return; 2888 2889 disk_change(current_drive); 2890 if (test_bit(current_drive, &fake_change) || 2891 test_bit(FD_DISK_CHANGED_BIT, &drive_state[current_drive].flags)) { 2892 DPRINT("disk absent or changed during operation\n"); 2893 request_done(0); 2894 goto do_request; 2895 } 2896 if (!_floppy) { /* Autodetection */ 2897 if (!probing) { 2898 drive_state[current_drive].probed_format = 0; 2899 if (next_valid_format(current_drive)) { 2900 DPRINT("no autodetectable formats\n"); 2901 _floppy = NULL; 2902 request_done(0); 2903 goto do_request; 2904 } 2905 } 2906 probing = 1; 2907 _floppy = floppy_type + drive_params[current_drive].autodetect[drive_state[current_drive].probed_format]; 2908 } else 2909 probing = 0; 2910 errors = &(current_req->error_count); 2911 tmp = make_raw_rw_request(); 2912 if (tmp < 2) { 2913 request_done(tmp); 2914 goto do_request; 2915 } 2916 2917 if (test_bit(FD_NEED_TWADDLE_BIT, &drive_state[current_drive].flags)) 2918 twaddle(current_fdc, current_drive); 2919 schedule_bh(floppy_start); 2920 debugt(__func__, "queue fd request"); 2921 return; 2922 } 2923 2924 static const struct cont_t rw_cont = { 2925 .interrupt = rw_interrupt, 2926 .redo = redo_fd_request, 2927 .error = bad_flp_intr, 2928 .done = request_done 2929 }; 2930 2931 /* schedule the request and automatically unlock the driver on completion */ 2932 static void process_fd_request(void) 2933 { 2934 cont = &rw_cont; 2935 schedule_bh(redo_fd_request); 2936 } 2937 2938 static blk_status_t floppy_queue_rq(struct blk_mq_hw_ctx *hctx, 2939 const struct blk_mq_queue_data *bd) 2940 { 2941 blk_mq_start_request(bd->rq); 2942 2943 if (WARN(max_buffer_sectors == 0, 2944 "VFS: %s called on non-open device\n", __func__)) 2945 return BLK_STS_IOERR; 2946 2947 if (WARN(atomic_read(&usage_count) == 0, 2948 "warning: usage count=0, current_req=%p sect=%ld flags=%llx\n", 2949 current_req, (long)blk_rq_pos(current_req), 2950 (unsigned long long) current_req->cmd_flags)) 2951 return BLK_STS_IOERR; 2952 2953 if (test_and_set_bit(0, &fdc_busy)) { 2954 /* fdc busy, this new request will be treated when the 2955 current one is done */ 2956 is_alive(__func__, "old request running"); 2957 return BLK_STS_RESOURCE; 2958 } 2959 2960 spin_lock_irq(&floppy_lock); 2961 list_add_tail(&bd->rq->queuelist, &floppy_reqs); 2962 spin_unlock_irq(&floppy_lock); 2963 2964 command_status = FD_COMMAND_NONE; 2965 __reschedule_timeout(MAXTIMEOUT, "fd_request"); 2966 set_fdc(0); 2967 process_fd_request(); 2968 is_alive(__func__, ""); 2969 return BLK_STS_OK; 2970 } 2971 2972 static const struct cont_t poll_cont = { 2973 .interrupt = success_and_wakeup, 2974 .redo = floppy_ready, 2975 .error = generic_failure, 2976 .done = generic_done 2977 }; 2978 2979 static int poll_drive(bool interruptible, int flag) 2980 { 2981 /* no auto-sense, just clear dcl */ 2982 raw_cmd = &default_raw_cmd; 2983 raw_cmd->flags = flag; 2984 raw_cmd->track = 0; 2985 raw_cmd->cmd_count = 0; 2986 cont = &poll_cont; 2987 debug_dcl(drive_params[current_drive].flags, 2988 "setting NEWCHANGE in poll_drive\n"); 2989 set_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags); 2990 2991 return wait_til_done(floppy_ready, interruptible); 2992 } 2993 2994 /* 2995 * User triggered reset 2996 * ==================== 2997 */ 2998 2999 static void reset_intr(void) 3000 { 3001 pr_info("weird, reset interrupt called\n"); 3002 } 3003 3004 static const struct cont_t reset_cont = { 3005 .interrupt = reset_intr, 3006 .redo = success_and_wakeup, 3007 .error = generic_failure, 3008 .done = generic_done 3009 }; 3010 3011 /* 3012 * Resets the FDC connected to drive <drive>. 3013 * Both current_drive and current_fdc are changed to match the new drive. 3014 */ 3015 static int user_reset_fdc(int drive, int arg, bool interruptible) 3016 { 3017 int ret; 3018 3019 if (lock_fdc(drive)) 3020 return -EINTR; 3021 3022 if (arg == FD_RESET_ALWAYS) 3023 fdc_state[current_fdc].reset = 1; 3024 if (fdc_state[current_fdc].reset) { 3025 /* note: reset_fdc will take care of unlocking the driver 3026 * on completion. 3027 */ 3028 cont = &reset_cont; 3029 ret = wait_til_done(reset_fdc, interruptible); 3030 if (ret == -EINTR) 3031 return -EINTR; 3032 } 3033 process_fd_request(); 3034 return 0; 3035 } 3036 3037 /* 3038 * Misc Ioctl's and support 3039 * ======================== 3040 */ 3041 static inline int fd_copyout(void __user *param, const void *address, 3042 unsigned long size) 3043 { 3044 return copy_to_user(param, address, size) ? -EFAULT : 0; 3045 } 3046 3047 static inline int fd_copyin(void __user *param, void *address, 3048 unsigned long size) 3049 { 3050 return copy_from_user(address, param, size) ? -EFAULT : 0; 3051 } 3052 3053 static const char *drive_name(int type, int drive) 3054 { 3055 struct floppy_struct *floppy; 3056 3057 if (type) 3058 floppy = floppy_type + type; 3059 else { 3060 if (drive_params[drive].native_format) 3061 floppy = floppy_type + drive_params[drive].native_format; 3062 else 3063 return "(null)"; 3064 } 3065 if (floppy->name) 3066 return floppy->name; 3067 else 3068 return "(null)"; 3069 } 3070 3071 /* raw commands */ 3072 static void raw_cmd_done(int flag) 3073 { 3074 int i; 3075 3076 if (!flag) { 3077 raw_cmd->flags |= FD_RAW_FAILURE; 3078 raw_cmd->flags |= FD_RAW_HARDFAILURE; 3079 } else { 3080 raw_cmd->reply_count = inr; 3081 if (raw_cmd->reply_count > FD_RAW_REPLY_SIZE) 3082 raw_cmd->reply_count = 0; 3083 for (i = 0; i < raw_cmd->reply_count; i++) 3084 raw_cmd->reply[i] = reply_buffer[i]; 3085 3086 if (raw_cmd->flags & (FD_RAW_READ | FD_RAW_WRITE)) { 3087 unsigned long flags; 3088 flags = claim_dma_lock(); 3089 raw_cmd->length = fd_get_dma_residue(); 3090 release_dma_lock(flags); 3091 } 3092 3093 if ((raw_cmd->flags & FD_RAW_SOFTFAILURE) && 3094 (!raw_cmd->reply_count || (raw_cmd->reply[0] & 0xc0))) 3095 raw_cmd->flags |= FD_RAW_FAILURE; 3096 3097 if (disk_change(current_drive)) 3098 raw_cmd->flags |= FD_RAW_DISK_CHANGE; 3099 else 3100 raw_cmd->flags &= ~FD_RAW_DISK_CHANGE; 3101 if (raw_cmd->flags & FD_RAW_NO_MOTOR_AFTER) 3102 motor_off_callback(&motor_off_timer[current_drive]); 3103 3104 if (raw_cmd->next && 3105 (!(raw_cmd->flags & FD_RAW_FAILURE) || 3106 !(raw_cmd->flags & FD_RAW_STOP_IF_FAILURE)) && 3107 ((raw_cmd->flags & FD_RAW_FAILURE) || 3108 !(raw_cmd->flags & FD_RAW_STOP_IF_SUCCESS))) { 3109 raw_cmd = raw_cmd->next; 3110 return; 3111 } 3112 } 3113 generic_done(flag); 3114 } 3115 3116 static const struct cont_t raw_cmd_cont = { 3117 .interrupt = success_and_wakeup, 3118 .redo = floppy_start, 3119 .error = generic_failure, 3120 .done = raw_cmd_done 3121 }; 3122 3123 static int raw_cmd_copyout(int cmd, void __user *param, 3124 struct floppy_raw_cmd *ptr) 3125 { 3126 int ret; 3127 3128 while (ptr) { 3129 struct floppy_raw_cmd cmd = *ptr; 3130 cmd.next = NULL; 3131 cmd.kernel_data = NULL; 3132 ret = copy_to_user(param, &cmd, sizeof(cmd)); 3133 if (ret) 3134 return -EFAULT; 3135 param += sizeof(struct floppy_raw_cmd); 3136 if ((ptr->flags & FD_RAW_READ) && ptr->buffer_length) { 3137 if (ptr->length >= 0 && 3138 ptr->length <= ptr->buffer_length) { 3139 long length = ptr->buffer_length - ptr->length; 3140 ret = fd_copyout(ptr->data, ptr->kernel_data, 3141 length); 3142 if (ret) 3143 return ret; 3144 } 3145 } 3146 ptr = ptr->next; 3147 } 3148 3149 return 0; 3150 } 3151 3152 static void raw_cmd_free(struct floppy_raw_cmd **ptr) 3153 { 3154 struct floppy_raw_cmd *next; 3155 struct floppy_raw_cmd *this; 3156 3157 this = *ptr; 3158 *ptr = NULL; 3159 while (this) { 3160 if (this->buffer_length) { 3161 fd_dma_mem_free((unsigned long)this->kernel_data, 3162 this->buffer_length); 3163 this->buffer_length = 0; 3164 } 3165 next = this->next; 3166 kfree(this); 3167 this = next; 3168 } 3169 } 3170 3171 static int raw_cmd_copyin(int cmd, void __user *param, 3172 struct floppy_raw_cmd **rcmd) 3173 { 3174 struct floppy_raw_cmd *ptr; 3175 int ret; 3176 int i; 3177 3178 *rcmd = NULL; 3179 3180 loop: 3181 ptr = kmalloc(sizeof(struct floppy_raw_cmd), GFP_KERNEL); 3182 if (!ptr) 3183 return -ENOMEM; 3184 *rcmd = ptr; 3185 ret = copy_from_user(ptr, param, sizeof(*ptr)); 3186 ptr->next = NULL; 3187 ptr->buffer_length = 0; 3188 ptr->kernel_data = NULL; 3189 if (ret) 3190 return -EFAULT; 3191 param += sizeof(struct floppy_raw_cmd); 3192 if (ptr->cmd_count > FD_RAW_CMD_FULLSIZE) 3193 return -EINVAL; 3194 3195 for (i = 0; i < FD_RAW_REPLY_SIZE; i++) 3196 ptr->reply[i] = 0; 3197 ptr->resultcode = 0; 3198 3199 if (ptr->flags & (FD_RAW_READ | FD_RAW_WRITE)) { 3200 if (ptr->length <= 0) 3201 return -EINVAL; 3202 ptr->kernel_data = (char *)fd_dma_mem_alloc(ptr->length); 3203 fallback_on_nodma_alloc(&ptr->kernel_data, ptr->length); 3204 if (!ptr->kernel_data) 3205 return -ENOMEM; 3206 ptr->buffer_length = ptr->length; 3207 } 3208 if (ptr->flags & FD_RAW_WRITE) { 3209 ret = fd_copyin(ptr->data, ptr->kernel_data, ptr->length); 3210 if (ret) 3211 return ret; 3212 } 3213 3214 if (ptr->flags & FD_RAW_MORE) { 3215 rcmd = &(ptr->next); 3216 ptr->rate &= 0x43; 3217 goto loop; 3218 } 3219 3220 return 0; 3221 } 3222 3223 static int raw_cmd_ioctl(int cmd, void __user *param) 3224 { 3225 struct floppy_raw_cmd *my_raw_cmd; 3226 int drive; 3227 int ret2; 3228 int ret; 3229 3230 if (fdc_state[current_fdc].rawcmd <= 1) 3231 fdc_state[current_fdc].rawcmd = 1; 3232 for (drive = 0; drive < N_DRIVE; drive++) { 3233 if (FDC(drive) != current_fdc) 3234 continue; 3235 if (drive == current_drive) { 3236 if (drive_state[drive].fd_ref > 1) { 3237 fdc_state[current_fdc].rawcmd = 2; 3238 break; 3239 } 3240 } else if (drive_state[drive].fd_ref) { 3241 fdc_state[current_fdc].rawcmd = 2; 3242 break; 3243 } 3244 } 3245 3246 if (fdc_state[current_fdc].reset) 3247 return -EIO; 3248 3249 ret = raw_cmd_copyin(cmd, param, &my_raw_cmd); 3250 if (ret) { 3251 raw_cmd_free(&my_raw_cmd); 3252 return ret; 3253 } 3254 3255 raw_cmd = my_raw_cmd; 3256 cont = &raw_cmd_cont; 3257 ret = wait_til_done(floppy_start, true); 3258 debug_dcl(drive_params[current_drive].flags, 3259 "calling disk change from raw_cmd ioctl\n"); 3260 3261 if (ret != -EINTR && fdc_state[current_fdc].reset) 3262 ret = -EIO; 3263 3264 drive_state[current_drive].track = NO_TRACK; 3265 3266 ret2 = raw_cmd_copyout(cmd, param, my_raw_cmd); 3267 if (!ret) 3268 ret = ret2; 3269 raw_cmd_free(&my_raw_cmd); 3270 return ret; 3271 } 3272 3273 static int invalidate_drive(struct block_device *bdev) 3274 { 3275 /* invalidate the buffer track to force a reread */ 3276 set_bit((long)bdev->bd_disk->private_data, &fake_change); 3277 process_fd_request(); 3278 check_disk_change(bdev); 3279 return 0; 3280 } 3281 3282 static int set_geometry(unsigned int cmd, struct floppy_struct *g, 3283 int drive, int type, struct block_device *bdev) 3284 { 3285 int cnt; 3286 3287 /* sanity checking for parameters. */ 3288 if ((int)g->sect <= 0 || 3289 (int)g->head <= 0 || 3290 /* check for overflow in max_sector */ 3291 (int)(g->sect * g->head) <= 0 || 3292 /* check for zero in raw_cmd->cmd[F_SECT_PER_TRACK] */ 3293 (unsigned char)((g->sect << 2) >> FD_SIZECODE(g)) == 0 || 3294 g->track <= 0 || g->track > drive_params[drive].tracks >> STRETCH(g) || 3295 /* check if reserved bits are set */ 3296 (g->stretch & ~(FD_STRETCH | FD_SWAPSIDES | FD_SECTBASEMASK)) != 0) 3297 return -EINVAL; 3298 if (type) { 3299 if (!capable(CAP_SYS_ADMIN)) 3300 return -EPERM; 3301 mutex_lock(&open_lock); 3302 if (lock_fdc(drive)) { 3303 mutex_unlock(&open_lock); 3304 return -EINTR; 3305 } 3306 floppy_type[type] = *g; 3307 floppy_type[type].name = "user format"; 3308 for (cnt = type << 2; cnt < (type << 2) + 4; cnt++) 3309 floppy_sizes[cnt] = floppy_sizes[cnt + 0x80] = 3310 floppy_type[type].size + 1; 3311 process_fd_request(); 3312 for (cnt = 0; cnt < N_DRIVE; cnt++) { 3313 struct block_device *bdev = opened_bdev[cnt]; 3314 if (!bdev || ITYPE(drive_state[cnt].fd_device) != type) 3315 continue; 3316 __invalidate_device(bdev, true); 3317 } 3318 mutex_unlock(&open_lock); 3319 } else { 3320 int oldStretch; 3321 3322 if (lock_fdc(drive)) 3323 return -EINTR; 3324 if (cmd != FDDEFPRM) { 3325 /* notice a disk change immediately, else 3326 * we lose our settings immediately*/ 3327 if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR) 3328 return -EINTR; 3329 } 3330 oldStretch = g->stretch; 3331 user_params[drive] = *g; 3332 if (buffer_drive == drive) 3333 SUPBOUND(buffer_max, user_params[drive].sect); 3334 current_type[drive] = &user_params[drive]; 3335 floppy_sizes[drive] = user_params[drive].size; 3336 if (cmd == FDDEFPRM) 3337 drive_state[current_drive].keep_data = -1; 3338 else 3339 drive_state[current_drive].keep_data = 1; 3340 /* invalidation. Invalidate only when needed, i.e. 3341 * when there are already sectors in the buffer cache 3342 * whose number will change. This is useful, because 3343 * mtools often changes the geometry of the disk after 3344 * looking at the boot block */ 3345 if (drive_state[current_drive].maxblock > user_params[drive].sect || 3346 drive_state[current_drive].maxtrack || 3347 ((user_params[drive].sect ^ oldStretch) & 3348 (FD_SWAPSIDES | FD_SECTBASEMASK))) 3349 invalidate_drive(bdev); 3350 else 3351 process_fd_request(); 3352 } 3353 return 0; 3354 } 3355 3356 /* handle obsolete ioctl's */ 3357 static unsigned int ioctl_table[] = { 3358 FDCLRPRM, 3359 FDSETPRM, 3360 FDDEFPRM, 3361 FDGETPRM, 3362 FDMSGON, 3363 FDMSGOFF, 3364 FDFMTBEG, 3365 FDFMTTRK, 3366 FDFMTEND, 3367 FDSETEMSGTRESH, 3368 FDFLUSH, 3369 FDSETMAXERRS, 3370 FDGETMAXERRS, 3371 FDGETDRVTYP, 3372 FDSETDRVPRM, 3373 FDGETDRVPRM, 3374 FDGETDRVSTAT, 3375 FDPOLLDRVSTAT, 3376 FDRESET, 3377 FDGETFDCSTAT, 3378 FDWERRORCLR, 3379 FDWERRORGET, 3380 FDRAWCMD, 3381 FDEJECT, 3382 FDTWADDLE 3383 }; 3384 3385 static int normalize_ioctl(unsigned int *cmd, int *size) 3386 { 3387 int i; 3388 3389 for (i = 0; i < ARRAY_SIZE(ioctl_table); i++) { 3390 if ((*cmd & 0xffff) == (ioctl_table[i] & 0xffff)) { 3391 *size = _IOC_SIZE(*cmd); 3392 *cmd = ioctl_table[i]; 3393 if (*size > _IOC_SIZE(*cmd)) { 3394 pr_info("ioctl not yet supported\n"); 3395 return -EFAULT; 3396 } 3397 return 0; 3398 } 3399 } 3400 return -EINVAL; 3401 } 3402 3403 static int get_floppy_geometry(int drive, int type, struct floppy_struct **g) 3404 { 3405 if (type) 3406 *g = &floppy_type[type]; 3407 else { 3408 if (lock_fdc(drive)) 3409 return -EINTR; 3410 if (poll_drive(false, 0) == -EINTR) 3411 return -EINTR; 3412 process_fd_request(); 3413 *g = current_type[drive]; 3414 } 3415 if (!*g) 3416 return -ENODEV; 3417 return 0; 3418 } 3419 3420 static int fd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 3421 { 3422 int drive = (long)bdev->bd_disk->private_data; 3423 int type = ITYPE(drive_state[drive].fd_device); 3424 struct floppy_struct *g; 3425 int ret; 3426 3427 ret = get_floppy_geometry(drive, type, &g); 3428 if (ret) 3429 return ret; 3430 3431 geo->heads = g->head; 3432 geo->sectors = g->sect; 3433 geo->cylinders = g->track; 3434 return 0; 3435 } 3436 3437 static bool valid_floppy_drive_params(const short autodetect[FD_AUTODETECT_SIZE], 3438 int native_format) 3439 { 3440 size_t floppy_type_size = ARRAY_SIZE(floppy_type); 3441 size_t i = 0; 3442 3443 for (i = 0; i < FD_AUTODETECT_SIZE; ++i) { 3444 if (autodetect[i] < 0 || 3445 autodetect[i] >= floppy_type_size) 3446 return false; 3447 } 3448 3449 if (native_format < 0 || native_format >= floppy_type_size) 3450 return false; 3451 3452 return true; 3453 } 3454 3455 static int fd_locked_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, 3456 unsigned long param) 3457 { 3458 int drive = (long)bdev->bd_disk->private_data; 3459 int type = ITYPE(drive_state[drive].fd_device); 3460 int i; 3461 int ret; 3462 int size; 3463 union inparam { 3464 struct floppy_struct g; /* geometry */ 3465 struct format_descr f; 3466 struct floppy_max_errors max_errors; 3467 struct floppy_drive_params dp; 3468 } inparam; /* parameters coming from user space */ 3469 const void *outparam; /* parameters passed back to user space */ 3470 3471 /* convert compatibility eject ioctls into floppy eject ioctl. 3472 * We do this in order to provide a means to eject floppy disks before 3473 * installing the new fdutils package */ 3474 if (cmd == CDROMEJECT || /* CD-ROM eject */ 3475 cmd == 0x6470) { /* SunOS floppy eject */ 3476 DPRINT("obsolete eject ioctl\n"); 3477 DPRINT("please use floppycontrol --eject\n"); 3478 cmd = FDEJECT; 3479 } 3480 3481 if (!((cmd & 0xff00) == 0x0200)) 3482 return -EINVAL; 3483 3484 /* convert the old style command into a new style command */ 3485 ret = normalize_ioctl(&cmd, &size); 3486 if (ret) 3487 return ret; 3488 3489 /* permission checks */ 3490 if (((cmd & 0x40) && !(mode & (FMODE_WRITE | FMODE_WRITE_IOCTL))) || 3491 ((cmd & 0x80) && !capable(CAP_SYS_ADMIN))) 3492 return -EPERM; 3493 3494 if (WARN_ON(size < 0 || size > sizeof(inparam))) 3495 return -EINVAL; 3496 3497 /* copyin */ 3498 memset(&inparam, 0, sizeof(inparam)); 3499 if (_IOC_DIR(cmd) & _IOC_WRITE) { 3500 ret = fd_copyin((void __user *)param, &inparam, size); 3501 if (ret) 3502 return ret; 3503 } 3504 3505 switch (cmd) { 3506 case FDEJECT: 3507 if (drive_state[drive].fd_ref != 1) 3508 /* somebody else has this drive open */ 3509 return -EBUSY; 3510 if (lock_fdc(drive)) 3511 return -EINTR; 3512 3513 /* do the actual eject. Fails on 3514 * non-Sparc architectures */ 3515 ret = fd_eject(UNIT(drive)); 3516 3517 set_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags); 3518 set_bit(FD_VERIFY_BIT, &drive_state[drive].flags); 3519 process_fd_request(); 3520 return ret; 3521 case FDCLRPRM: 3522 if (lock_fdc(drive)) 3523 return -EINTR; 3524 current_type[drive] = NULL; 3525 floppy_sizes[drive] = MAX_DISK_SIZE << 1; 3526 drive_state[drive].keep_data = 0; 3527 return invalidate_drive(bdev); 3528 case FDSETPRM: 3529 case FDDEFPRM: 3530 return set_geometry(cmd, &inparam.g, drive, type, bdev); 3531 case FDGETPRM: 3532 ret = get_floppy_geometry(drive, type, 3533 (struct floppy_struct **)&outparam); 3534 if (ret) 3535 return ret; 3536 memcpy(&inparam.g, outparam, 3537 offsetof(struct floppy_struct, name)); 3538 outparam = &inparam.g; 3539 break; 3540 case FDMSGON: 3541 drive_params[drive].flags |= FTD_MSG; 3542 return 0; 3543 case FDMSGOFF: 3544 drive_params[drive].flags &= ~FTD_MSG; 3545 return 0; 3546 case FDFMTBEG: 3547 if (lock_fdc(drive)) 3548 return -EINTR; 3549 if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR) 3550 return -EINTR; 3551 ret = drive_state[drive].flags; 3552 process_fd_request(); 3553 if (ret & FD_VERIFY) 3554 return -ENODEV; 3555 if (!(ret & FD_DISK_WRITABLE)) 3556 return -EROFS; 3557 return 0; 3558 case FDFMTTRK: 3559 if (drive_state[drive].fd_ref != 1) 3560 return -EBUSY; 3561 return do_format(drive, &inparam.f); 3562 case FDFMTEND: 3563 case FDFLUSH: 3564 if (lock_fdc(drive)) 3565 return -EINTR; 3566 return invalidate_drive(bdev); 3567 case FDSETEMSGTRESH: 3568 drive_params[drive].max_errors.reporting = (unsigned short)(param & 0x0f); 3569 return 0; 3570 case FDGETMAXERRS: 3571 outparam = &drive_params[drive].max_errors; 3572 break; 3573 case FDSETMAXERRS: 3574 drive_params[drive].max_errors = inparam.max_errors; 3575 break; 3576 case FDGETDRVTYP: 3577 outparam = drive_name(type, drive); 3578 SUPBOUND(size, strlen((const char *)outparam) + 1); 3579 break; 3580 case FDSETDRVPRM: 3581 if (!valid_floppy_drive_params(inparam.dp.autodetect, 3582 inparam.dp.native_format)) 3583 return -EINVAL; 3584 drive_params[drive] = inparam.dp; 3585 break; 3586 case FDGETDRVPRM: 3587 outparam = &drive_params[drive]; 3588 break; 3589 case FDPOLLDRVSTAT: 3590 if (lock_fdc(drive)) 3591 return -EINTR; 3592 if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR) 3593 return -EINTR; 3594 process_fd_request(); 3595 fallthrough; 3596 case FDGETDRVSTAT: 3597 outparam = &drive_state[drive]; 3598 break; 3599 case FDRESET: 3600 return user_reset_fdc(drive, (int)param, true); 3601 case FDGETFDCSTAT: 3602 outparam = &fdc_state[FDC(drive)]; 3603 break; 3604 case FDWERRORCLR: 3605 memset(&write_errors[drive], 0, sizeof(write_errors[drive])); 3606 return 0; 3607 case FDWERRORGET: 3608 outparam = &write_errors[drive]; 3609 break; 3610 case FDRAWCMD: 3611 if (type) 3612 return -EINVAL; 3613 if (lock_fdc(drive)) 3614 return -EINTR; 3615 set_floppy(drive); 3616 i = raw_cmd_ioctl(cmd, (void __user *)param); 3617 if (i == -EINTR) 3618 return -EINTR; 3619 process_fd_request(); 3620 return i; 3621 case FDTWADDLE: 3622 if (lock_fdc(drive)) 3623 return -EINTR; 3624 twaddle(current_fdc, current_drive); 3625 process_fd_request(); 3626 return 0; 3627 default: 3628 return -EINVAL; 3629 } 3630 3631 if (_IOC_DIR(cmd) & _IOC_READ) 3632 return fd_copyout((void __user *)param, outparam, size); 3633 3634 return 0; 3635 } 3636 3637 static int fd_ioctl(struct block_device *bdev, fmode_t mode, 3638 unsigned int cmd, unsigned long param) 3639 { 3640 int ret; 3641 3642 mutex_lock(&floppy_mutex); 3643 ret = fd_locked_ioctl(bdev, mode, cmd, param); 3644 mutex_unlock(&floppy_mutex); 3645 3646 return ret; 3647 } 3648 3649 #ifdef CONFIG_COMPAT 3650 3651 struct compat_floppy_drive_params { 3652 char cmos; 3653 compat_ulong_t max_dtr; 3654 compat_ulong_t hlt; 3655 compat_ulong_t hut; 3656 compat_ulong_t srt; 3657 compat_ulong_t spinup; 3658 compat_ulong_t spindown; 3659 unsigned char spindown_offset; 3660 unsigned char select_delay; 3661 unsigned char rps; 3662 unsigned char tracks; 3663 compat_ulong_t timeout; 3664 unsigned char interleave_sect; 3665 struct floppy_max_errors max_errors; 3666 char flags; 3667 char read_track; 3668 short autodetect[FD_AUTODETECT_SIZE]; 3669 compat_int_t checkfreq; 3670 compat_int_t native_format; 3671 }; 3672 3673 struct compat_floppy_drive_struct { 3674 signed char flags; 3675 compat_ulong_t spinup_date; 3676 compat_ulong_t select_date; 3677 compat_ulong_t first_read_date; 3678 short probed_format; 3679 short track; 3680 short maxblock; 3681 short maxtrack; 3682 compat_int_t generation; 3683 compat_int_t keep_data; 3684 compat_int_t fd_ref; 3685 compat_int_t fd_device; 3686 compat_int_t last_checked; 3687 compat_caddr_t dmabuf; 3688 compat_int_t bufblocks; 3689 }; 3690 3691 struct compat_floppy_fdc_state { 3692 compat_int_t spec1; 3693 compat_int_t spec2; 3694 compat_int_t dtr; 3695 unsigned char version; 3696 unsigned char dor; 3697 compat_ulong_t address; 3698 unsigned int rawcmd:2; 3699 unsigned int reset:1; 3700 unsigned int need_configure:1; 3701 unsigned int perp_mode:2; 3702 unsigned int has_fifo:1; 3703 unsigned int driver_version; 3704 unsigned char track[4]; 3705 }; 3706 3707 struct compat_floppy_write_errors { 3708 unsigned int write_errors; 3709 compat_ulong_t first_error_sector; 3710 compat_int_t first_error_generation; 3711 compat_ulong_t last_error_sector; 3712 compat_int_t last_error_generation; 3713 compat_uint_t badness; 3714 }; 3715 3716 #define FDSETPRM32 _IOW(2, 0x42, struct compat_floppy_struct) 3717 #define FDDEFPRM32 _IOW(2, 0x43, struct compat_floppy_struct) 3718 #define FDSETDRVPRM32 _IOW(2, 0x90, struct compat_floppy_drive_params) 3719 #define FDGETDRVPRM32 _IOR(2, 0x11, struct compat_floppy_drive_params) 3720 #define FDGETDRVSTAT32 _IOR(2, 0x12, struct compat_floppy_drive_struct) 3721 #define FDPOLLDRVSTAT32 _IOR(2, 0x13, struct compat_floppy_drive_struct) 3722 #define FDGETFDCSTAT32 _IOR(2, 0x15, struct compat_floppy_fdc_state) 3723 #define FDWERRORGET32 _IOR(2, 0x17, struct compat_floppy_write_errors) 3724 3725 static int compat_set_geometry(struct block_device *bdev, fmode_t mode, unsigned int cmd, 3726 struct compat_floppy_struct __user *arg) 3727 { 3728 struct floppy_struct v; 3729 int drive, type; 3730 int err; 3731 3732 BUILD_BUG_ON(offsetof(struct floppy_struct, name) != 3733 offsetof(struct compat_floppy_struct, name)); 3734 3735 if (!(mode & (FMODE_WRITE | FMODE_WRITE_IOCTL))) 3736 return -EPERM; 3737 3738 memset(&v, 0, sizeof(struct floppy_struct)); 3739 if (copy_from_user(&v, arg, offsetof(struct floppy_struct, name))) 3740 return -EFAULT; 3741 3742 mutex_lock(&floppy_mutex); 3743 drive = (long)bdev->bd_disk->private_data; 3744 type = ITYPE(drive_state[drive].fd_device); 3745 err = set_geometry(cmd == FDSETPRM32 ? FDSETPRM : FDDEFPRM, 3746 &v, drive, type, bdev); 3747 mutex_unlock(&floppy_mutex); 3748 return err; 3749 } 3750 3751 static int compat_get_prm(int drive, 3752 struct compat_floppy_struct __user *arg) 3753 { 3754 struct compat_floppy_struct v; 3755 struct floppy_struct *p; 3756 int err; 3757 3758 memset(&v, 0, sizeof(v)); 3759 mutex_lock(&floppy_mutex); 3760 err = get_floppy_geometry(drive, ITYPE(drive_state[drive].fd_device), 3761 &p); 3762 if (err) { 3763 mutex_unlock(&floppy_mutex); 3764 return err; 3765 } 3766 memcpy(&v, p, offsetof(struct floppy_struct, name)); 3767 mutex_unlock(&floppy_mutex); 3768 if (copy_to_user(arg, &v, sizeof(struct compat_floppy_struct))) 3769 return -EFAULT; 3770 return 0; 3771 } 3772 3773 static int compat_setdrvprm(int drive, 3774 struct compat_floppy_drive_params __user *arg) 3775 { 3776 struct compat_floppy_drive_params v; 3777 3778 if (!capable(CAP_SYS_ADMIN)) 3779 return -EPERM; 3780 if (copy_from_user(&v, arg, sizeof(struct compat_floppy_drive_params))) 3781 return -EFAULT; 3782 if (!valid_floppy_drive_params(v.autodetect, v.native_format)) 3783 return -EINVAL; 3784 mutex_lock(&floppy_mutex); 3785 drive_params[drive].cmos = v.cmos; 3786 drive_params[drive].max_dtr = v.max_dtr; 3787 drive_params[drive].hlt = v.hlt; 3788 drive_params[drive].hut = v.hut; 3789 drive_params[drive].srt = v.srt; 3790 drive_params[drive].spinup = v.spinup; 3791 drive_params[drive].spindown = v.spindown; 3792 drive_params[drive].spindown_offset = v.spindown_offset; 3793 drive_params[drive].select_delay = v.select_delay; 3794 drive_params[drive].rps = v.rps; 3795 drive_params[drive].tracks = v.tracks; 3796 drive_params[drive].timeout = v.timeout; 3797 drive_params[drive].interleave_sect = v.interleave_sect; 3798 drive_params[drive].max_errors = v.max_errors; 3799 drive_params[drive].flags = v.flags; 3800 drive_params[drive].read_track = v.read_track; 3801 memcpy(drive_params[drive].autodetect, v.autodetect, 3802 sizeof(v.autodetect)); 3803 drive_params[drive].checkfreq = v.checkfreq; 3804 drive_params[drive].native_format = v.native_format; 3805 mutex_unlock(&floppy_mutex); 3806 return 0; 3807 } 3808 3809 static int compat_getdrvprm(int drive, 3810 struct compat_floppy_drive_params __user *arg) 3811 { 3812 struct compat_floppy_drive_params v; 3813 3814 memset(&v, 0, sizeof(struct compat_floppy_drive_params)); 3815 mutex_lock(&floppy_mutex); 3816 v.cmos = drive_params[drive].cmos; 3817 v.max_dtr = drive_params[drive].max_dtr; 3818 v.hlt = drive_params[drive].hlt; 3819 v.hut = drive_params[drive].hut; 3820 v.srt = drive_params[drive].srt; 3821 v.spinup = drive_params[drive].spinup; 3822 v.spindown = drive_params[drive].spindown; 3823 v.spindown_offset = drive_params[drive].spindown_offset; 3824 v.select_delay = drive_params[drive].select_delay; 3825 v.rps = drive_params[drive].rps; 3826 v.tracks = drive_params[drive].tracks; 3827 v.timeout = drive_params[drive].timeout; 3828 v.interleave_sect = drive_params[drive].interleave_sect; 3829 v.max_errors = drive_params[drive].max_errors; 3830 v.flags = drive_params[drive].flags; 3831 v.read_track = drive_params[drive].read_track; 3832 memcpy(v.autodetect, drive_params[drive].autodetect, 3833 sizeof(v.autodetect)); 3834 v.checkfreq = drive_params[drive].checkfreq; 3835 v.native_format = drive_params[drive].native_format; 3836 mutex_unlock(&floppy_mutex); 3837 3838 if (copy_to_user(arg, &v, sizeof(struct compat_floppy_drive_params))) 3839 return -EFAULT; 3840 return 0; 3841 } 3842 3843 static int compat_getdrvstat(int drive, bool poll, 3844 struct compat_floppy_drive_struct __user *arg) 3845 { 3846 struct compat_floppy_drive_struct v; 3847 3848 memset(&v, 0, sizeof(struct compat_floppy_drive_struct)); 3849 mutex_lock(&floppy_mutex); 3850 3851 if (poll) { 3852 if (lock_fdc(drive)) 3853 goto Eintr; 3854 if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR) 3855 goto Eintr; 3856 process_fd_request(); 3857 } 3858 v.spinup_date = drive_state[drive].spinup_date; 3859 v.select_date = drive_state[drive].select_date; 3860 v.first_read_date = drive_state[drive].first_read_date; 3861 v.probed_format = drive_state[drive].probed_format; 3862 v.track = drive_state[drive].track; 3863 v.maxblock = drive_state[drive].maxblock; 3864 v.maxtrack = drive_state[drive].maxtrack; 3865 v.generation = drive_state[drive].generation; 3866 v.keep_data = drive_state[drive].keep_data; 3867 v.fd_ref = drive_state[drive].fd_ref; 3868 v.fd_device = drive_state[drive].fd_device; 3869 v.last_checked = drive_state[drive].last_checked; 3870 v.dmabuf = (uintptr_t) drive_state[drive].dmabuf; 3871 v.bufblocks = drive_state[drive].bufblocks; 3872 mutex_unlock(&floppy_mutex); 3873 3874 if (copy_to_user(arg, &v, sizeof(struct compat_floppy_drive_struct))) 3875 return -EFAULT; 3876 return 0; 3877 Eintr: 3878 mutex_unlock(&floppy_mutex); 3879 return -EINTR; 3880 } 3881 3882 static int compat_getfdcstat(int drive, 3883 struct compat_floppy_fdc_state __user *arg) 3884 { 3885 struct compat_floppy_fdc_state v32; 3886 struct floppy_fdc_state v; 3887 3888 mutex_lock(&floppy_mutex); 3889 v = fdc_state[FDC(drive)]; 3890 mutex_unlock(&floppy_mutex); 3891 3892 memset(&v32, 0, sizeof(struct compat_floppy_fdc_state)); 3893 v32.spec1 = v.spec1; 3894 v32.spec2 = v.spec2; 3895 v32.dtr = v.dtr; 3896 v32.version = v.version; 3897 v32.dor = v.dor; 3898 v32.address = v.address; 3899 v32.rawcmd = v.rawcmd; 3900 v32.reset = v.reset; 3901 v32.need_configure = v.need_configure; 3902 v32.perp_mode = v.perp_mode; 3903 v32.has_fifo = v.has_fifo; 3904 v32.driver_version = v.driver_version; 3905 memcpy(v32.track, v.track, 4); 3906 if (copy_to_user(arg, &v32, sizeof(struct compat_floppy_fdc_state))) 3907 return -EFAULT; 3908 return 0; 3909 } 3910 3911 static int compat_werrorget(int drive, 3912 struct compat_floppy_write_errors __user *arg) 3913 { 3914 struct compat_floppy_write_errors v32; 3915 struct floppy_write_errors v; 3916 3917 memset(&v32, 0, sizeof(struct compat_floppy_write_errors)); 3918 mutex_lock(&floppy_mutex); 3919 v = write_errors[drive]; 3920 mutex_unlock(&floppy_mutex); 3921 v32.write_errors = v.write_errors; 3922 v32.first_error_sector = v.first_error_sector; 3923 v32.first_error_generation = v.first_error_generation; 3924 v32.last_error_sector = v.last_error_sector; 3925 v32.last_error_generation = v.last_error_generation; 3926 v32.badness = v.badness; 3927 if (copy_to_user(arg, &v32, sizeof(struct compat_floppy_write_errors))) 3928 return -EFAULT; 3929 return 0; 3930 } 3931 3932 static int fd_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, 3933 unsigned long param) 3934 { 3935 int drive = (long)bdev->bd_disk->private_data; 3936 switch (cmd) { 3937 case CDROMEJECT: /* CD-ROM eject */ 3938 case 0x6470: /* SunOS floppy eject */ 3939 3940 case FDMSGON: 3941 case FDMSGOFF: 3942 case FDSETEMSGTRESH: 3943 case FDFLUSH: 3944 case FDWERRORCLR: 3945 case FDEJECT: 3946 case FDCLRPRM: 3947 case FDFMTBEG: 3948 case FDRESET: 3949 case FDTWADDLE: 3950 return fd_ioctl(bdev, mode, cmd, param); 3951 case FDSETMAXERRS: 3952 case FDGETMAXERRS: 3953 case FDGETDRVTYP: 3954 case FDFMTEND: 3955 case FDFMTTRK: 3956 case FDRAWCMD: 3957 return fd_ioctl(bdev, mode, cmd, 3958 (unsigned long)compat_ptr(param)); 3959 case FDSETPRM32: 3960 case FDDEFPRM32: 3961 return compat_set_geometry(bdev, mode, cmd, compat_ptr(param)); 3962 case FDGETPRM32: 3963 return compat_get_prm(drive, compat_ptr(param)); 3964 case FDSETDRVPRM32: 3965 return compat_setdrvprm(drive, compat_ptr(param)); 3966 case FDGETDRVPRM32: 3967 return compat_getdrvprm(drive, compat_ptr(param)); 3968 case FDPOLLDRVSTAT32: 3969 return compat_getdrvstat(drive, true, compat_ptr(param)); 3970 case FDGETDRVSTAT32: 3971 return compat_getdrvstat(drive, false, compat_ptr(param)); 3972 case FDGETFDCSTAT32: 3973 return compat_getfdcstat(drive, compat_ptr(param)); 3974 case FDWERRORGET32: 3975 return compat_werrorget(drive, compat_ptr(param)); 3976 } 3977 return -EINVAL; 3978 } 3979 #endif 3980 3981 static void __init config_types(void) 3982 { 3983 bool has_drive = false; 3984 int drive; 3985 3986 /* read drive info out of physical CMOS */ 3987 drive = 0; 3988 if (!drive_params[drive].cmos) 3989 drive_params[drive].cmos = FLOPPY0_TYPE; 3990 drive = 1; 3991 if (!drive_params[drive].cmos) 3992 drive_params[drive].cmos = FLOPPY1_TYPE; 3993 3994 /* FIXME: additional physical CMOS drive detection should go here */ 3995 3996 for (drive = 0; drive < N_DRIVE; drive++) { 3997 unsigned int type = drive_params[drive].cmos; 3998 struct floppy_drive_params *params; 3999 const char *name = NULL; 4000 char temparea[32]; 4001 4002 if (type < ARRAY_SIZE(default_drive_params)) { 4003 params = &default_drive_params[type].params; 4004 if (type) { 4005 name = default_drive_params[type].name; 4006 allowed_drive_mask |= 1 << drive; 4007 } else 4008 allowed_drive_mask &= ~(1 << drive); 4009 } else { 4010 params = &default_drive_params[0].params; 4011 snprintf(temparea, sizeof(temparea), 4012 "unknown type %d (usb?)", type); 4013 name = temparea; 4014 } 4015 if (name) { 4016 const char *prepend; 4017 if (!has_drive) { 4018 prepend = ""; 4019 has_drive = true; 4020 pr_info("Floppy drive(s):"); 4021 } else { 4022 prepend = ","; 4023 } 4024 4025 pr_cont("%s fd%d is %s", prepend, drive, name); 4026 } 4027 drive_params[drive] = *params; 4028 } 4029 4030 if (has_drive) 4031 pr_cont("\n"); 4032 } 4033 4034 static void floppy_release(struct gendisk *disk, fmode_t mode) 4035 { 4036 int drive = (long)disk->private_data; 4037 4038 mutex_lock(&floppy_mutex); 4039 mutex_lock(&open_lock); 4040 if (!drive_state[drive].fd_ref--) { 4041 DPRINT("floppy_release with fd_ref == 0"); 4042 drive_state[drive].fd_ref = 0; 4043 } 4044 if (!drive_state[drive].fd_ref) 4045 opened_bdev[drive] = NULL; 4046 mutex_unlock(&open_lock); 4047 mutex_unlock(&floppy_mutex); 4048 } 4049 4050 /* 4051 * floppy_open check for aliasing (/dev/fd0 can be the same as 4052 * /dev/PS0 etc), and disallows simultaneous access to the same 4053 * drive with different device numbers. 4054 */ 4055 static int floppy_open(struct block_device *bdev, fmode_t mode) 4056 { 4057 int drive = (long)bdev->bd_disk->private_data; 4058 int old_dev, new_dev; 4059 int try; 4060 int res = -EBUSY; 4061 char *tmp; 4062 4063 mutex_lock(&floppy_mutex); 4064 mutex_lock(&open_lock); 4065 old_dev = drive_state[drive].fd_device; 4066 if (opened_bdev[drive] && opened_bdev[drive] != bdev) 4067 goto out2; 4068 4069 if (!drive_state[drive].fd_ref && (drive_params[drive].flags & FD_BROKEN_DCL)) { 4070 set_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags); 4071 set_bit(FD_VERIFY_BIT, &drive_state[drive].flags); 4072 } 4073 4074 drive_state[drive].fd_ref++; 4075 4076 opened_bdev[drive] = bdev; 4077 4078 res = -ENXIO; 4079 4080 if (!floppy_track_buffer) { 4081 /* if opening an ED drive, reserve a big buffer, 4082 * else reserve a small one */ 4083 if ((drive_params[drive].cmos == 6) || (drive_params[drive].cmos == 5)) 4084 try = 64; /* Only 48 actually useful */ 4085 else 4086 try = 32; /* Only 24 actually useful */ 4087 4088 tmp = (char *)fd_dma_mem_alloc(1024 * try); 4089 if (!tmp && !floppy_track_buffer) { 4090 try >>= 1; /* buffer only one side */ 4091 INFBOUND(try, 16); 4092 tmp = (char *)fd_dma_mem_alloc(1024 * try); 4093 } 4094 if (!tmp && !floppy_track_buffer) 4095 fallback_on_nodma_alloc(&tmp, 2048 * try); 4096 if (!tmp && !floppy_track_buffer) { 4097 DPRINT("Unable to allocate DMA memory\n"); 4098 goto out; 4099 } 4100 if (floppy_track_buffer) { 4101 if (tmp) 4102 fd_dma_mem_free((unsigned long)tmp, try * 1024); 4103 } else { 4104 buffer_min = buffer_max = -1; 4105 floppy_track_buffer = tmp; 4106 max_buffer_sectors = try; 4107 } 4108 } 4109 4110 new_dev = MINOR(bdev->bd_dev); 4111 drive_state[drive].fd_device = new_dev; 4112 set_capacity(disks[drive], floppy_sizes[new_dev]); 4113 if (old_dev != -1 && old_dev != new_dev) { 4114 if (buffer_drive == drive) 4115 buffer_track = -1; 4116 } 4117 4118 if (fdc_state[FDC(drive)].rawcmd == 1) 4119 fdc_state[FDC(drive)].rawcmd = 2; 4120 4121 if (!(mode & FMODE_NDELAY)) { 4122 if (mode & (FMODE_READ|FMODE_WRITE)) { 4123 drive_state[drive].last_checked = 0; 4124 clear_bit(FD_OPEN_SHOULD_FAIL_BIT, 4125 &drive_state[drive].flags); 4126 check_disk_change(bdev); 4127 if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags)) 4128 goto out; 4129 if (test_bit(FD_OPEN_SHOULD_FAIL_BIT, &drive_state[drive].flags)) 4130 goto out; 4131 } 4132 res = -EROFS; 4133 if ((mode & FMODE_WRITE) && 4134 !test_bit(FD_DISK_WRITABLE_BIT, &drive_state[drive].flags)) 4135 goto out; 4136 } 4137 mutex_unlock(&open_lock); 4138 mutex_unlock(&floppy_mutex); 4139 return 0; 4140 out: 4141 drive_state[drive].fd_ref--; 4142 4143 if (!drive_state[drive].fd_ref) 4144 opened_bdev[drive] = NULL; 4145 out2: 4146 mutex_unlock(&open_lock); 4147 mutex_unlock(&floppy_mutex); 4148 return res; 4149 } 4150 4151 /* 4152 * Check if the disk has been changed or if a change has been faked. 4153 */ 4154 static unsigned int floppy_check_events(struct gendisk *disk, 4155 unsigned int clearing) 4156 { 4157 int drive = (long)disk->private_data; 4158 4159 if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) || 4160 test_bit(FD_VERIFY_BIT, &drive_state[drive].flags)) 4161 return DISK_EVENT_MEDIA_CHANGE; 4162 4163 if (time_after(jiffies, drive_state[drive].last_checked + drive_params[drive].checkfreq)) { 4164 if (lock_fdc(drive)) 4165 return 0; 4166 poll_drive(false, 0); 4167 process_fd_request(); 4168 } 4169 4170 if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) || 4171 test_bit(FD_VERIFY_BIT, &drive_state[drive].flags) || 4172 test_bit(drive, &fake_change) || 4173 drive_no_geom(drive)) 4174 return DISK_EVENT_MEDIA_CHANGE; 4175 return 0; 4176 } 4177 4178 /* 4179 * This implements "read block 0" for floppy_revalidate(). 4180 * Needed for format autodetection, checking whether there is 4181 * a disk in the drive, and whether that disk is writable. 4182 */ 4183 4184 struct rb0_cbdata { 4185 int drive; 4186 struct completion complete; 4187 }; 4188 4189 static void floppy_rb0_cb(struct bio *bio) 4190 { 4191 struct rb0_cbdata *cbdata = (struct rb0_cbdata *)bio->bi_private; 4192 int drive = cbdata->drive; 4193 4194 if (bio->bi_status) { 4195 pr_info("floppy: error %d while reading block 0\n", 4196 bio->bi_status); 4197 set_bit(FD_OPEN_SHOULD_FAIL_BIT, &drive_state[drive].flags); 4198 } 4199 complete(&cbdata->complete); 4200 } 4201 4202 static int __floppy_read_block_0(struct block_device *bdev, int drive) 4203 { 4204 struct bio bio; 4205 struct bio_vec bio_vec; 4206 struct page *page; 4207 struct rb0_cbdata cbdata; 4208 4209 page = alloc_page(GFP_NOIO); 4210 if (!page) { 4211 process_fd_request(); 4212 return -ENOMEM; 4213 } 4214 4215 cbdata.drive = drive; 4216 4217 bio_init(&bio, &bio_vec, 1); 4218 bio_set_dev(&bio, bdev); 4219 bio_add_page(&bio, page, block_size(bdev), 0); 4220 4221 bio.bi_iter.bi_sector = 0; 4222 bio.bi_flags |= (1 << BIO_QUIET); 4223 bio.bi_private = &cbdata; 4224 bio.bi_end_io = floppy_rb0_cb; 4225 bio_set_op_attrs(&bio, REQ_OP_READ, 0); 4226 4227 init_completion(&cbdata.complete); 4228 4229 submit_bio(&bio); 4230 process_fd_request(); 4231 4232 wait_for_completion(&cbdata.complete); 4233 4234 __free_page(page); 4235 4236 return 0; 4237 } 4238 4239 /* revalidate the floppy disk, i.e. trigger format autodetection by reading 4240 * the bootblock (block 0). "Autodetection" is also needed to check whether 4241 * there is a disk in the drive at all... Thus we also do it for fixed 4242 * geometry formats */ 4243 static int floppy_revalidate(struct gendisk *disk) 4244 { 4245 int drive = (long)disk->private_data; 4246 int cf; 4247 int res = 0; 4248 4249 if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) || 4250 test_bit(FD_VERIFY_BIT, &drive_state[drive].flags) || 4251 test_bit(drive, &fake_change) || 4252 drive_no_geom(drive)) { 4253 if (WARN(atomic_read(&usage_count) == 0, 4254 "VFS: revalidate called on non-open device.\n")) 4255 return -EFAULT; 4256 4257 res = lock_fdc(drive); 4258 if (res) 4259 return res; 4260 cf = (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) || 4261 test_bit(FD_VERIFY_BIT, &drive_state[drive].flags)); 4262 if (!(cf || test_bit(drive, &fake_change) || drive_no_geom(drive))) { 4263 process_fd_request(); /*already done by another thread */ 4264 return 0; 4265 } 4266 drive_state[drive].maxblock = 0; 4267 drive_state[drive].maxtrack = 0; 4268 if (buffer_drive == drive) 4269 buffer_track = -1; 4270 clear_bit(drive, &fake_change); 4271 clear_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags); 4272 if (cf) 4273 drive_state[drive].generation++; 4274 if (drive_no_geom(drive)) { 4275 /* auto-sensing */ 4276 res = __floppy_read_block_0(opened_bdev[drive], drive); 4277 } else { 4278 if (cf) 4279 poll_drive(false, FD_RAW_NEED_DISK); 4280 process_fd_request(); 4281 } 4282 } 4283 set_capacity(disk, floppy_sizes[drive_state[drive].fd_device]); 4284 return res; 4285 } 4286 4287 static const struct block_device_operations floppy_fops = { 4288 .owner = THIS_MODULE, 4289 .open = floppy_open, 4290 .release = floppy_release, 4291 .ioctl = fd_ioctl, 4292 .getgeo = fd_getgeo, 4293 .check_events = floppy_check_events, 4294 .revalidate_disk = floppy_revalidate, 4295 #ifdef CONFIG_COMPAT 4296 .compat_ioctl = fd_compat_ioctl, 4297 #endif 4298 }; 4299 4300 /* 4301 * Floppy Driver initialization 4302 * ============================= 4303 */ 4304 4305 /* Determine the floppy disk controller type */ 4306 /* This routine was written by David C. Niemi */ 4307 static char __init get_fdc_version(int fdc) 4308 { 4309 int r; 4310 4311 output_byte(fdc, FD_DUMPREGS); /* 82072 and better know DUMPREGS */ 4312 if (fdc_state[fdc].reset) 4313 return FDC_NONE; 4314 r = result(fdc); 4315 if (r <= 0x00) 4316 return FDC_NONE; /* No FDC present ??? */ 4317 if ((r == 1) && (reply_buffer[0] == 0x80)) { 4318 pr_info("FDC %d is an 8272A\n", fdc); 4319 return FDC_8272A; /* 8272a/765 don't know DUMPREGS */ 4320 } 4321 if (r != 10) { 4322 pr_info("FDC %d init: DUMPREGS: unexpected return of %d bytes.\n", 4323 fdc, r); 4324 return FDC_UNKNOWN; 4325 } 4326 4327 if (!fdc_configure(fdc)) { 4328 pr_info("FDC %d is an 82072\n", fdc); 4329 return FDC_82072; /* 82072 doesn't know CONFIGURE */ 4330 } 4331 4332 output_byte(fdc, FD_PERPENDICULAR); 4333 if (need_more_output(fdc) == MORE_OUTPUT) { 4334 output_byte(fdc, 0); 4335 } else { 4336 pr_info("FDC %d is an 82072A\n", fdc); 4337 return FDC_82072A; /* 82072A as found on Sparcs. */ 4338 } 4339 4340 output_byte(fdc, FD_UNLOCK); 4341 r = result(fdc); 4342 if ((r == 1) && (reply_buffer[0] == 0x80)) { 4343 pr_info("FDC %d is a pre-1991 82077\n", fdc); 4344 return FDC_82077_ORIG; /* Pre-1991 82077, doesn't know 4345 * LOCK/UNLOCK */ 4346 } 4347 if ((r != 1) || (reply_buffer[0] != 0x00)) { 4348 pr_info("FDC %d init: UNLOCK: unexpected return of %d bytes.\n", 4349 fdc, r); 4350 return FDC_UNKNOWN; 4351 } 4352 output_byte(fdc, FD_PARTID); 4353 r = result(fdc); 4354 if (r != 1) { 4355 pr_info("FDC %d init: PARTID: unexpected return of %d bytes.\n", 4356 fdc, r); 4357 return FDC_UNKNOWN; 4358 } 4359 if (reply_buffer[0] == 0x80) { 4360 pr_info("FDC %d is a post-1991 82077\n", fdc); 4361 return FDC_82077; /* Revised 82077AA passes all the tests */ 4362 } 4363 switch (reply_buffer[0] >> 5) { 4364 case 0x0: 4365 /* Either a 82078-1 or a 82078SL running at 5Volt */ 4366 pr_info("FDC %d is an 82078.\n", fdc); 4367 return FDC_82078; 4368 case 0x1: 4369 pr_info("FDC %d is a 44pin 82078\n", fdc); 4370 return FDC_82078; 4371 case 0x2: 4372 pr_info("FDC %d is a S82078B\n", fdc); 4373 return FDC_S82078B; 4374 case 0x3: 4375 pr_info("FDC %d is a National Semiconductor PC87306\n", fdc); 4376 return FDC_87306; 4377 default: 4378 pr_info("FDC %d init: 82078 variant with unknown PARTID=%d.\n", 4379 fdc, reply_buffer[0] >> 5); 4380 return FDC_82078_UNKN; 4381 } 4382 } /* get_fdc_version */ 4383 4384 /* lilo configuration */ 4385 4386 static void __init floppy_set_flags(int *ints, int param, int param2) 4387 { 4388 int i; 4389 4390 for (i = 0; i < ARRAY_SIZE(default_drive_params); i++) { 4391 if (param) 4392 default_drive_params[i].params.flags |= param2; 4393 else 4394 default_drive_params[i].params.flags &= ~param2; 4395 } 4396 DPRINT("%s flag 0x%x\n", param2 ? "Setting" : "Clearing", param); 4397 } 4398 4399 static void __init daring(int *ints, int param, int param2) 4400 { 4401 int i; 4402 4403 for (i = 0; i < ARRAY_SIZE(default_drive_params); i++) { 4404 if (param) { 4405 default_drive_params[i].params.select_delay = 0; 4406 default_drive_params[i].params.flags |= 4407 FD_SILENT_DCL_CLEAR; 4408 } else { 4409 default_drive_params[i].params.select_delay = 4410 2 * HZ / 100; 4411 default_drive_params[i].params.flags &= 4412 ~FD_SILENT_DCL_CLEAR; 4413 } 4414 } 4415 DPRINT("Assuming %s floppy hardware\n", param ? "standard" : "broken"); 4416 } 4417 4418 static void __init set_cmos(int *ints, int dummy, int dummy2) 4419 { 4420 int current_drive = 0; 4421 4422 if (ints[0] != 2) { 4423 DPRINT("wrong number of parameters for CMOS\n"); 4424 return; 4425 } 4426 current_drive = ints[1]; 4427 if (current_drive < 0 || current_drive >= 8) { 4428 DPRINT("bad drive for set_cmos\n"); 4429 return; 4430 } 4431 #if N_FDC > 1 4432 if (current_drive >= 4 && !FDC2) 4433 FDC2 = 0x370; 4434 #endif 4435 drive_params[current_drive].cmos = ints[2]; 4436 DPRINT("setting CMOS code to %d\n", ints[2]); 4437 } 4438 4439 static struct param_table { 4440 const char *name; 4441 void (*fn) (int *ints, int param, int param2); 4442 int *var; 4443 int def_param; 4444 int param2; 4445 } config_params[] __initdata = { 4446 {"allowed_drive_mask", NULL, &allowed_drive_mask, 0xff, 0}, /* obsolete */ 4447 {"all_drives", NULL, &allowed_drive_mask, 0xff, 0}, /* obsolete */ 4448 {"asus_pci", NULL, &allowed_drive_mask, 0x33, 0}, 4449 {"irq", NULL, &FLOPPY_IRQ, 6, 0}, 4450 {"dma", NULL, &FLOPPY_DMA, 2, 0}, 4451 {"daring", daring, NULL, 1, 0}, 4452 #if N_FDC > 1 4453 {"two_fdc", NULL, &FDC2, 0x370, 0}, 4454 {"one_fdc", NULL, &FDC2, 0, 0}, 4455 #endif 4456 {"thinkpad", floppy_set_flags, NULL, 1, FD_INVERTED_DCL}, 4457 {"broken_dcl", floppy_set_flags, NULL, 1, FD_BROKEN_DCL}, 4458 {"messages", floppy_set_flags, NULL, 1, FTD_MSG}, 4459 {"silent_dcl_clear", floppy_set_flags, NULL, 1, FD_SILENT_DCL_CLEAR}, 4460 {"debug", floppy_set_flags, NULL, 1, FD_DEBUG}, 4461 {"nodma", NULL, &can_use_virtual_dma, 1, 0}, 4462 {"omnibook", NULL, &can_use_virtual_dma, 1, 0}, 4463 {"yesdma", NULL, &can_use_virtual_dma, 0, 0}, 4464 {"fifo_depth", NULL, &fifo_depth, 0xa, 0}, 4465 {"nofifo", NULL, &no_fifo, 0x20, 0}, 4466 {"usefifo", NULL, &no_fifo, 0, 0}, 4467 {"cmos", set_cmos, NULL, 0, 0}, 4468 {"slow", NULL, &slow_floppy, 1, 0}, 4469 {"unexpected_interrupts", NULL, &print_unex, 1, 0}, 4470 {"no_unexpected_interrupts", NULL, &print_unex, 0, 0}, 4471 {"L40SX", NULL, &print_unex, 0, 0} 4472 4473 EXTRA_FLOPPY_PARAMS 4474 }; 4475 4476 static int __init floppy_setup(char *str) 4477 { 4478 int i; 4479 int param; 4480 int ints[11]; 4481 4482 str = get_options(str, ARRAY_SIZE(ints), ints); 4483 if (str) { 4484 for (i = 0; i < ARRAY_SIZE(config_params); i++) { 4485 if (strcmp(str, config_params[i].name) == 0) { 4486 if (ints[0]) 4487 param = ints[1]; 4488 else 4489 param = config_params[i].def_param; 4490 if (config_params[i].fn) 4491 config_params[i].fn(ints, param, 4492 config_params[i]. 4493 param2); 4494 if (config_params[i].var) { 4495 DPRINT("%s=%d\n", str, param); 4496 *config_params[i].var = param; 4497 } 4498 return 1; 4499 } 4500 } 4501 } 4502 if (str) { 4503 DPRINT("unknown floppy option [%s]\n", str); 4504 4505 DPRINT("allowed options are:"); 4506 for (i = 0; i < ARRAY_SIZE(config_params); i++) 4507 pr_cont(" %s", config_params[i].name); 4508 pr_cont("\n"); 4509 } else 4510 DPRINT("botched floppy option\n"); 4511 DPRINT("Read Documentation/admin-guide/blockdev/floppy.rst\n"); 4512 return 0; 4513 } 4514 4515 static int have_no_fdc = -ENODEV; 4516 4517 static ssize_t floppy_cmos_show(struct device *dev, 4518 struct device_attribute *attr, char *buf) 4519 { 4520 struct platform_device *p = to_platform_device(dev); 4521 int drive; 4522 4523 drive = p->id; 4524 return sprintf(buf, "%X\n", drive_params[drive].cmos); 4525 } 4526 4527 static DEVICE_ATTR(cmos, 0444, floppy_cmos_show, NULL); 4528 4529 static struct attribute *floppy_dev_attrs[] = { 4530 &dev_attr_cmos.attr, 4531 NULL 4532 }; 4533 4534 ATTRIBUTE_GROUPS(floppy_dev); 4535 4536 static void floppy_device_release(struct device *dev) 4537 { 4538 } 4539 4540 static int floppy_resume(struct device *dev) 4541 { 4542 int fdc; 4543 int saved_drive; 4544 4545 saved_drive = current_drive; 4546 for (fdc = 0; fdc < N_FDC; fdc++) 4547 if (fdc_state[fdc].address != -1) 4548 user_reset_fdc(REVDRIVE(fdc, 0), FD_RESET_ALWAYS, false); 4549 set_fdc(saved_drive); 4550 return 0; 4551 } 4552 4553 static const struct dev_pm_ops floppy_pm_ops = { 4554 .resume = floppy_resume, 4555 .restore = floppy_resume, 4556 }; 4557 4558 static struct platform_driver floppy_driver = { 4559 .driver = { 4560 .name = "floppy", 4561 .pm = &floppy_pm_ops, 4562 }, 4563 }; 4564 4565 static const struct blk_mq_ops floppy_mq_ops = { 4566 .queue_rq = floppy_queue_rq, 4567 }; 4568 4569 static struct platform_device floppy_device[N_DRIVE]; 4570 4571 static bool floppy_available(int drive) 4572 { 4573 if (!(allowed_drive_mask & (1 << drive))) 4574 return false; 4575 if (fdc_state[FDC(drive)].version == FDC_NONE) 4576 return false; 4577 return true; 4578 } 4579 4580 static struct kobject *floppy_find(dev_t dev, int *part, void *data) 4581 { 4582 int drive = (*part & 3) | ((*part & 0x80) >> 5); 4583 if (drive >= N_DRIVE || !floppy_available(drive)) 4584 return NULL; 4585 if (((*part >> 2) & 0x1f) >= ARRAY_SIZE(floppy_type)) 4586 return NULL; 4587 *part = 0; 4588 return get_disk_and_module(disks[drive]); 4589 } 4590 4591 static int __init do_floppy_init(void) 4592 { 4593 int i, unit, drive, err; 4594 4595 set_debugt(); 4596 interruptjiffies = resultjiffies = jiffies; 4597 4598 #if defined(CONFIG_PPC) 4599 if (check_legacy_ioport(FDC1)) 4600 return -ENODEV; 4601 #endif 4602 4603 raw_cmd = NULL; 4604 4605 floppy_wq = alloc_ordered_workqueue("floppy", 0); 4606 if (!floppy_wq) 4607 return -ENOMEM; 4608 4609 for (drive = 0; drive < N_DRIVE; drive++) { 4610 disks[drive] = alloc_disk(1); 4611 if (!disks[drive]) { 4612 err = -ENOMEM; 4613 goto out_put_disk; 4614 } 4615 4616 disks[drive]->queue = blk_mq_init_sq_queue(&tag_sets[drive], 4617 &floppy_mq_ops, 2, 4618 BLK_MQ_F_SHOULD_MERGE); 4619 if (IS_ERR(disks[drive]->queue)) { 4620 err = PTR_ERR(disks[drive]->queue); 4621 disks[drive]->queue = NULL; 4622 goto out_put_disk; 4623 } 4624 4625 blk_queue_bounce_limit(disks[drive]->queue, BLK_BOUNCE_HIGH); 4626 blk_queue_max_hw_sectors(disks[drive]->queue, 64); 4627 disks[drive]->major = FLOPPY_MAJOR; 4628 disks[drive]->first_minor = TOMINOR(drive); 4629 disks[drive]->fops = &floppy_fops; 4630 disks[drive]->events = DISK_EVENT_MEDIA_CHANGE; 4631 sprintf(disks[drive]->disk_name, "fd%d", drive); 4632 4633 timer_setup(&motor_off_timer[drive], motor_off_callback, 0); 4634 } 4635 4636 err = register_blkdev(FLOPPY_MAJOR, "fd"); 4637 if (err) 4638 goto out_put_disk; 4639 4640 err = platform_driver_register(&floppy_driver); 4641 if (err) 4642 goto out_unreg_blkdev; 4643 4644 blk_register_region(MKDEV(FLOPPY_MAJOR, 0), 256, THIS_MODULE, 4645 floppy_find, NULL, NULL); 4646 4647 for (i = 0; i < 256; i++) 4648 if (ITYPE(i)) 4649 floppy_sizes[i] = floppy_type[ITYPE(i)].size; 4650 else 4651 floppy_sizes[i] = MAX_DISK_SIZE << 1; 4652 4653 reschedule_timeout(MAXTIMEOUT, "floppy init"); 4654 config_types(); 4655 4656 for (i = 0; i < N_FDC; i++) { 4657 memset(&fdc_state[i], 0, sizeof(*fdc_state)); 4658 fdc_state[i].dtr = -1; 4659 fdc_state[i].dor = 0x4; 4660 #if defined(__sparc__) || defined(__mc68000__) 4661 /*sparcs/sun3x don't have a DOR reset which we can fall back on to */ 4662 #ifdef __mc68000__ 4663 if (MACH_IS_SUN3X) 4664 #endif 4665 fdc_state[i].version = FDC_82072A; 4666 #endif 4667 } 4668 4669 use_virtual_dma = can_use_virtual_dma & 1; 4670 fdc_state[0].address = FDC1; 4671 if (fdc_state[0].address == -1) { 4672 cancel_delayed_work(&fd_timeout); 4673 err = -ENODEV; 4674 goto out_unreg_region; 4675 } 4676 #if N_FDC > 1 4677 fdc_state[1].address = FDC2; 4678 #endif 4679 4680 current_fdc = 0; /* reset fdc in case of unexpected interrupt */ 4681 err = floppy_grab_irq_and_dma(); 4682 if (err) { 4683 cancel_delayed_work(&fd_timeout); 4684 err = -EBUSY; 4685 goto out_unreg_region; 4686 } 4687 4688 /* initialise drive state */ 4689 for (drive = 0; drive < N_DRIVE; drive++) { 4690 memset(&drive_state[drive], 0, sizeof(drive_state[drive])); 4691 memset(&write_errors[drive], 0, sizeof(write_errors[drive])); 4692 set_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[drive].flags); 4693 set_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags); 4694 set_bit(FD_VERIFY_BIT, &drive_state[drive].flags); 4695 drive_state[drive].fd_device = -1; 4696 floppy_track_buffer = NULL; 4697 max_buffer_sectors = 0; 4698 } 4699 /* 4700 * Small 10 msec delay to let through any interrupt that 4701 * initialization might have triggered, to not 4702 * confuse detection: 4703 */ 4704 msleep(10); 4705 4706 for (i = 0; i < N_FDC; i++) { 4707 fdc_state[i].driver_version = FD_DRIVER_VERSION; 4708 for (unit = 0; unit < 4; unit++) 4709 fdc_state[i].track[unit] = 0; 4710 if (fdc_state[i].address == -1) 4711 continue; 4712 fdc_state[i].rawcmd = 2; 4713 if (user_reset_fdc(REVDRIVE(i, 0), FD_RESET_ALWAYS, false)) { 4714 /* free ioports reserved by floppy_grab_irq_and_dma() */ 4715 floppy_release_regions(i); 4716 fdc_state[i].address = -1; 4717 fdc_state[i].version = FDC_NONE; 4718 continue; 4719 } 4720 /* Try to determine the floppy controller type */ 4721 fdc_state[i].version = get_fdc_version(i); 4722 if (fdc_state[i].version == FDC_NONE) { 4723 /* free ioports reserved by floppy_grab_irq_and_dma() */ 4724 floppy_release_regions(i); 4725 fdc_state[i].address = -1; 4726 continue; 4727 } 4728 if (can_use_virtual_dma == 2 && 4729 fdc_state[i].version < FDC_82072A) 4730 can_use_virtual_dma = 0; 4731 4732 have_no_fdc = 0; 4733 /* Not all FDCs seem to be able to handle the version command 4734 * properly, so force a reset for the standard FDC clones, 4735 * to avoid interrupt garbage. 4736 */ 4737 user_reset_fdc(REVDRIVE(i, 0), FD_RESET_ALWAYS, false); 4738 } 4739 current_fdc = 0; 4740 cancel_delayed_work(&fd_timeout); 4741 current_drive = 0; 4742 initialized = true; 4743 if (have_no_fdc) { 4744 DPRINT("no floppy controllers found\n"); 4745 err = have_no_fdc; 4746 goto out_release_dma; 4747 } 4748 4749 for (drive = 0; drive < N_DRIVE; drive++) { 4750 if (!floppy_available(drive)) 4751 continue; 4752 4753 floppy_device[drive].name = floppy_device_name; 4754 floppy_device[drive].id = drive; 4755 floppy_device[drive].dev.release = floppy_device_release; 4756 floppy_device[drive].dev.groups = floppy_dev_groups; 4757 4758 err = platform_device_register(&floppy_device[drive]); 4759 if (err) 4760 goto out_remove_drives; 4761 4762 /* to be cleaned up... */ 4763 disks[drive]->private_data = (void *)(long)drive; 4764 disks[drive]->flags |= GENHD_FL_REMOVABLE; 4765 device_add_disk(&floppy_device[drive].dev, disks[drive], NULL); 4766 } 4767 4768 return 0; 4769 4770 out_remove_drives: 4771 while (drive--) { 4772 if (floppy_available(drive)) { 4773 del_gendisk(disks[drive]); 4774 platform_device_unregister(&floppy_device[drive]); 4775 } 4776 } 4777 out_release_dma: 4778 if (atomic_read(&usage_count)) 4779 floppy_release_irq_and_dma(); 4780 out_unreg_region: 4781 blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256); 4782 platform_driver_unregister(&floppy_driver); 4783 out_unreg_blkdev: 4784 unregister_blkdev(FLOPPY_MAJOR, "fd"); 4785 out_put_disk: 4786 destroy_workqueue(floppy_wq); 4787 for (drive = 0; drive < N_DRIVE; drive++) { 4788 if (!disks[drive]) 4789 break; 4790 if (disks[drive]->queue) { 4791 del_timer_sync(&motor_off_timer[drive]); 4792 blk_cleanup_queue(disks[drive]->queue); 4793 disks[drive]->queue = NULL; 4794 blk_mq_free_tag_set(&tag_sets[drive]); 4795 } 4796 put_disk(disks[drive]); 4797 } 4798 return err; 4799 } 4800 4801 #ifndef MODULE 4802 static __init void floppy_async_init(void *data, async_cookie_t cookie) 4803 { 4804 do_floppy_init(); 4805 } 4806 #endif 4807 4808 static int __init floppy_init(void) 4809 { 4810 #ifdef MODULE 4811 return do_floppy_init(); 4812 #else 4813 /* Don't hold up the bootup by the floppy initialization */ 4814 async_schedule(floppy_async_init, NULL); 4815 return 0; 4816 #endif 4817 } 4818 4819 static const struct io_region { 4820 int offset; 4821 int size; 4822 } io_regions[] = { 4823 { 2, 1 }, 4824 /* address + 3 is sometimes reserved by pnp bios for motherboard */ 4825 { 4, 2 }, 4826 /* address + 6 is reserved, and may be taken by IDE. 4827 * Unfortunately, Adaptec doesn't know this :-(, */ 4828 { 7, 1 }, 4829 }; 4830 4831 static void floppy_release_allocated_regions(int fdc, const struct io_region *p) 4832 { 4833 while (p != io_regions) { 4834 p--; 4835 release_region(fdc_state[fdc].address + p->offset, p->size); 4836 } 4837 } 4838 4839 #define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)])) 4840 4841 static int floppy_request_regions(int fdc) 4842 { 4843 const struct io_region *p; 4844 4845 for (p = io_regions; p < ARRAY_END(io_regions); p++) { 4846 if (!request_region(fdc_state[fdc].address + p->offset, 4847 p->size, "floppy")) { 4848 DPRINT("Floppy io-port 0x%04lx in use\n", 4849 fdc_state[fdc].address + p->offset); 4850 floppy_release_allocated_regions(fdc, p); 4851 return -EBUSY; 4852 } 4853 } 4854 return 0; 4855 } 4856 4857 static void floppy_release_regions(int fdc) 4858 { 4859 floppy_release_allocated_regions(fdc, ARRAY_END(io_regions)); 4860 } 4861 4862 static int floppy_grab_irq_and_dma(void) 4863 { 4864 int fdc; 4865 4866 if (atomic_inc_return(&usage_count) > 1) 4867 return 0; 4868 4869 /* 4870 * We might have scheduled a free_irq(), wait it to 4871 * drain first: 4872 */ 4873 flush_workqueue(floppy_wq); 4874 4875 if (fd_request_irq()) { 4876 DPRINT("Unable to grab IRQ%d for the floppy driver\n", 4877 FLOPPY_IRQ); 4878 atomic_dec(&usage_count); 4879 return -1; 4880 } 4881 if (fd_request_dma()) { 4882 DPRINT("Unable to grab DMA%d for the floppy driver\n", 4883 FLOPPY_DMA); 4884 if (can_use_virtual_dma & 2) 4885 use_virtual_dma = can_use_virtual_dma = 1; 4886 if (!(can_use_virtual_dma & 1)) { 4887 fd_free_irq(); 4888 atomic_dec(&usage_count); 4889 return -1; 4890 } 4891 } 4892 4893 for (fdc = 0; fdc < N_FDC; fdc++) { 4894 if (fdc_state[fdc].address != -1) { 4895 if (floppy_request_regions(fdc)) 4896 goto cleanup; 4897 } 4898 } 4899 for (fdc = 0; fdc < N_FDC; fdc++) { 4900 if (fdc_state[fdc].address != -1) { 4901 reset_fdc_info(fdc, 1); 4902 fdc_outb(fdc_state[fdc].dor, fdc, FD_DOR); 4903 } 4904 } 4905 4906 set_dor(0, ~0, 8); /* avoid immediate interrupt */ 4907 4908 for (fdc = 0; fdc < N_FDC; fdc++) 4909 if (fdc_state[fdc].address != -1) 4910 fdc_outb(fdc_state[fdc].dor, fdc, FD_DOR); 4911 /* 4912 * The driver will try and free resources and relies on us 4913 * to know if they were allocated or not. 4914 */ 4915 current_fdc = 0; 4916 irqdma_allocated = 1; 4917 return 0; 4918 cleanup: 4919 fd_free_irq(); 4920 fd_free_dma(); 4921 while (--fdc >= 0) 4922 floppy_release_regions(fdc); 4923 current_fdc = 0; 4924 atomic_dec(&usage_count); 4925 return -1; 4926 } 4927 4928 static void floppy_release_irq_and_dma(void) 4929 { 4930 int fdc; 4931 #ifndef __sparc__ 4932 int drive; 4933 #endif 4934 long tmpsize; 4935 unsigned long tmpaddr; 4936 4937 if (!atomic_dec_and_test(&usage_count)) 4938 return; 4939 4940 if (irqdma_allocated) { 4941 fd_disable_dma(); 4942 fd_free_dma(); 4943 fd_free_irq(); 4944 irqdma_allocated = 0; 4945 } 4946 set_dor(0, ~0, 8); 4947 #if N_FDC > 1 4948 set_dor(1, ~8, 0); 4949 #endif 4950 4951 if (floppy_track_buffer && max_buffer_sectors) { 4952 tmpsize = max_buffer_sectors * 1024; 4953 tmpaddr = (unsigned long)floppy_track_buffer; 4954 floppy_track_buffer = NULL; 4955 max_buffer_sectors = 0; 4956 buffer_min = buffer_max = -1; 4957 fd_dma_mem_free(tmpaddr, tmpsize); 4958 } 4959 #ifndef __sparc__ 4960 for (drive = 0; drive < N_FDC * 4; drive++) 4961 if (timer_pending(motor_off_timer + drive)) 4962 pr_info("motor off timer %d still active\n", drive); 4963 #endif 4964 4965 if (delayed_work_pending(&fd_timeout)) 4966 pr_info("floppy timer still active:%s\n", timeout_message); 4967 if (delayed_work_pending(&fd_timer)) 4968 pr_info("auxiliary floppy timer still active\n"); 4969 if (work_pending(&floppy_work)) 4970 pr_info("work still pending\n"); 4971 for (fdc = 0; fdc < N_FDC; fdc++) 4972 if (fdc_state[fdc].address != -1) 4973 floppy_release_regions(fdc); 4974 } 4975 4976 #ifdef MODULE 4977 4978 static char *floppy; 4979 4980 static void __init parse_floppy_cfg_string(char *cfg) 4981 { 4982 char *ptr; 4983 4984 while (*cfg) { 4985 ptr = cfg; 4986 while (*cfg && *cfg != ' ' && *cfg != '\t') 4987 cfg++; 4988 if (*cfg) { 4989 *cfg = '\0'; 4990 cfg++; 4991 } 4992 if (*ptr) 4993 floppy_setup(ptr); 4994 } 4995 } 4996 4997 static int __init floppy_module_init(void) 4998 { 4999 if (floppy) 5000 parse_floppy_cfg_string(floppy); 5001 return floppy_init(); 5002 } 5003 module_init(floppy_module_init); 5004 5005 static void __exit floppy_module_exit(void) 5006 { 5007 int drive; 5008 5009 blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256); 5010 unregister_blkdev(FLOPPY_MAJOR, "fd"); 5011 platform_driver_unregister(&floppy_driver); 5012 5013 destroy_workqueue(floppy_wq); 5014 5015 for (drive = 0; drive < N_DRIVE; drive++) { 5016 del_timer_sync(&motor_off_timer[drive]); 5017 5018 if (floppy_available(drive)) { 5019 del_gendisk(disks[drive]); 5020 platform_device_unregister(&floppy_device[drive]); 5021 } 5022 blk_cleanup_queue(disks[drive]->queue); 5023 blk_mq_free_tag_set(&tag_sets[drive]); 5024 5025 /* 5026 * These disks have not called add_disk(). Don't put down 5027 * queue reference in put_disk(). 5028 */ 5029 if (!(allowed_drive_mask & (1 << drive)) || 5030 fdc_state[FDC(drive)].version == FDC_NONE) 5031 disks[drive]->queue = NULL; 5032 5033 put_disk(disks[drive]); 5034 } 5035 5036 cancel_delayed_work_sync(&fd_timeout); 5037 cancel_delayed_work_sync(&fd_timer); 5038 5039 if (atomic_read(&usage_count)) 5040 floppy_release_irq_and_dma(); 5041 5042 /* eject disk, if any */ 5043 fd_eject(0); 5044 } 5045 5046 module_exit(floppy_module_exit); 5047 5048 module_param(floppy, charp, 0); 5049 module_param(FLOPPY_IRQ, int, 0); 5050 module_param(FLOPPY_DMA, int, 0); 5051 MODULE_AUTHOR("Alain L. Knaff"); 5052 MODULE_SUPPORTED_DEVICE("fd"); 5053 MODULE_LICENSE("GPL"); 5054 5055 /* This doesn't actually get used other than for module information */ 5056 static const struct pnp_device_id floppy_pnpids[] = { 5057 {"PNP0700", 0}, 5058 {} 5059 }; 5060 5061 MODULE_DEVICE_TABLE(pnp, floppy_pnpids); 5062 5063 #else 5064 5065 __setup("floppy=", floppy_setup); 5066 module_init(floppy_init) 5067 #endif 5068 5069 MODULE_ALIAS_BLOCKDEV_MAJOR(FLOPPY_MAJOR); 5070