1 /* 2 drbd_worker.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 drbd is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2, or (at your option) 13 any later version. 14 15 drbd is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with drbd; see the file COPYING. If not, write to 22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 24 */ 25 26 #include <linux/module.h> 27 #include <linux/drbd.h> 28 #include <linux/sched/signal.h> 29 #include <linux/wait.h> 30 #include <linux/mm.h> 31 #include <linux/memcontrol.h> 32 #include <linux/mm_inline.h> 33 #include <linux/slab.h> 34 #include <linux/random.h> 35 #include <linux/string.h> 36 #include <linux/scatterlist.h> 37 38 #include "drbd_int.h" 39 #include "drbd_protocol.h" 40 #include "drbd_req.h" 41 42 static int make_ov_request(struct drbd_device *, int); 43 static int make_resync_request(struct drbd_device *, int); 44 45 /* endio handlers: 46 * drbd_md_endio (defined here) 47 * drbd_request_endio (defined here) 48 * drbd_peer_request_endio (defined here) 49 * drbd_bm_endio (defined in drbd_bitmap.c) 50 * 51 * For all these callbacks, note the following: 52 * The callbacks will be called in irq context by the IDE drivers, 53 * and in Softirqs/Tasklets/BH context by the SCSI drivers. 54 * Try to get the locking right :) 55 * 56 */ 57 58 /* used for synchronous meta data and bitmap IO 59 * submitted by drbd_md_sync_page_io() 60 */ 61 void drbd_md_endio(struct bio *bio) 62 { 63 struct drbd_device *device; 64 65 device = bio->bi_private; 66 device->md_io.error = bio->bi_error; 67 68 /* We grabbed an extra reference in _drbd_md_sync_page_io() to be able 69 * to timeout on the lower level device, and eventually detach from it. 70 * If this io completion runs after that timeout expired, this 71 * drbd_md_put_buffer() may allow us to finally try and re-attach. 72 * During normal operation, this only puts that extra reference 73 * down to 1 again. 74 * Make sure we first drop the reference, and only then signal 75 * completion, or we may (in drbd_al_read_log()) cycle so fast into the 76 * next drbd_md_sync_page_io(), that we trigger the 77 * ASSERT(atomic_read(&device->md_io_in_use) == 1) there. 78 */ 79 drbd_md_put_buffer(device); 80 device->md_io.done = 1; 81 wake_up(&device->misc_wait); 82 bio_put(bio); 83 if (device->ldev) /* special case: drbd_md_read() during drbd_adm_attach() */ 84 put_ldev(device); 85 } 86 87 /* reads on behalf of the partner, 88 * "submitted" by the receiver 89 */ 90 static void drbd_endio_read_sec_final(struct drbd_peer_request *peer_req) __releases(local) 91 { 92 unsigned long flags = 0; 93 struct drbd_peer_device *peer_device = peer_req->peer_device; 94 struct drbd_device *device = peer_device->device; 95 96 spin_lock_irqsave(&device->resource->req_lock, flags); 97 device->read_cnt += peer_req->i.size >> 9; 98 list_del(&peer_req->w.list); 99 if (list_empty(&device->read_ee)) 100 wake_up(&device->ee_wait); 101 if (test_bit(__EE_WAS_ERROR, &peer_req->flags)) 102 __drbd_chk_io_error(device, DRBD_READ_ERROR); 103 spin_unlock_irqrestore(&device->resource->req_lock, flags); 104 105 drbd_queue_work(&peer_device->connection->sender_work, &peer_req->w); 106 put_ldev(device); 107 } 108 109 /* writes on behalf of the partner, or resync writes, 110 * "submitted" by the receiver, final stage. */ 111 void drbd_endio_write_sec_final(struct drbd_peer_request *peer_req) __releases(local) 112 { 113 unsigned long flags = 0; 114 struct drbd_peer_device *peer_device = peer_req->peer_device; 115 struct drbd_device *device = peer_device->device; 116 struct drbd_connection *connection = peer_device->connection; 117 struct drbd_interval i; 118 int do_wake; 119 u64 block_id; 120 int do_al_complete_io; 121 122 /* after we moved peer_req to done_ee, 123 * we may no longer access it, 124 * it may be freed/reused already! 125 * (as soon as we release the req_lock) */ 126 i = peer_req->i; 127 do_al_complete_io = peer_req->flags & EE_CALL_AL_COMPLETE_IO; 128 block_id = peer_req->block_id; 129 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 130 131 spin_lock_irqsave(&device->resource->req_lock, flags); 132 device->writ_cnt += peer_req->i.size >> 9; 133 list_move_tail(&peer_req->w.list, &device->done_ee); 134 135 /* 136 * Do not remove from the write_requests tree here: we did not send the 137 * Ack yet and did not wake possibly waiting conflicting requests. 138 * Removed from the tree from "drbd_process_done_ee" within the 139 * appropriate dw.cb (e_end_block/e_end_resync_block) or from 140 * _drbd_clear_done_ee. 141 */ 142 143 do_wake = list_empty(block_id == ID_SYNCER ? &device->sync_ee : &device->active_ee); 144 145 /* FIXME do we want to detach for failed REQ_DISCARD? 146 * ((peer_req->flags & (EE_WAS_ERROR|EE_IS_TRIM)) == EE_WAS_ERROR) */ 147 if (peer_req->flags & EE_WAS_ERROR) 148 __drbd_chk_io_error(device, DRBD_WRITE_ERROR); 149 150 if (connection->cstate >= C_WF_REPORT_PARAMS) { 151 kref_get(&device->kref); /* put is in drbd_send_acks_wf() */ 152 if (!queue_work(connection->ack_sender, &peer_device->send_acks_work)) 153 kref_put(&device->kref, drbd_destroy_device); 154 } 155 spin_unlock_irqrestore(&device->resource->req_lock, flags); 156 157 if (block_id == ID_SYNCER) 158 drbd_rs_complete_io(device, i.sector); 159 160 if (do_wake) 161 wake_up(&device->ee_wait); 162 163 if (do_al_complete_io) 164 drbd_al_complete_io(device, &i); 165 166 put_ldev(device); 167 } 168 169 /* writes on behalf of the partner, or resync writes, 170 * "submitted" by the receiver. 171 */ 172 void drbd_peer_request_endio(struct bio *bio) 173 { 174 struct drbd_peer_request *peer_req = bio->bi_private; 175 struct drbd_device *device = peer_req->peer_device->device; 176 bool is_write = bio_data_dir(bio) == WRITE; 177 bool is_discard = !!(bio_op(bio) == REQ_OP_DISCARD); 178 179 if (bio->bi_error && __ratelimit(&drbd_ratelimit_state)) 180 drbd_warn(device, "%s: error=%d s=%llus\n", 181 is_write ? (is_discard ? "discard" : "write") 182 : "read", bio->bi_error, 183 (unsigned long long)peer_req->i.sector); 184 185 if (bio->bi_error) 186 set_bit(__EE_WAS_ERROR, &peer_req->flags); 187 188 bio_put(bio); /* no need for the bio anymore */ 189 if (atomic_dec_and_test(&peer_req->pending_bios)) { 190 if (is_write) 191 drbd_endio_write_sec_final(peer_req); 192 else 193 drbd_endio_read_sec_final(peer_req); 194 } 195 } 196 197 void drbd_panic_after_delayed_completion_of_aborted_request(struct drbd_device *device) 198 { 199 panic("drbd%u %s/%u potential random memory corruption caused by delayed completion of aborted local request\n", 200 device->minor, device->resource->name, device->vnr); 201 } 202 203 /* read, readA or write requests on R_PRIMARY coming from drbd_make_request 204 */ 205 void drbd_request_endio(struct bio *bio) 206 { 207 unsigned long flags; 208 struct drbd_request *req = bio->bi_private; 209 struct drbd_device *device = req->device; 210 struct bio_and_error m; 211 enum drbd_req_event what; 212 213 /* If this request was aborted locally before, 214 * but now was completed "successfully", 215 * chances are that this caused arbitrary data corruption. 216 * 217 * "aborting" requests, or force-detaching the disk, is intended for 218 * completely blocked/hung local backing devices which do no longer 219 * complete requests at all, not even do error completions. In this 220 * situation, usually a hard-reset and failover is the only way out. 221 * 222 * By "aborting", basically faking a local error-completion, 223 * we allow for a more graceful swichover by cleanly migrating services. 224 * Still the affected node has to be rebooted "soon". 225 * 226 * By completing these requests, we allow the upper layers to re-use 227 * the associated data pages. 228 * 229 * If later the local backing device "recovers", and now DMAs some data 230 * from disk into the original request pages, in the best case it will 231 * just put random data into unused pages; but typically it will corrupt 232 * meanwhile completely unrelated data, causing all sorts of damage. 233 * 234 * Which means delayed successful completion, 235 * especially for READ requests, 236 * is a reason to panic(). 237 * 238 * We assume that a delayed *error* completion is OK, 239 * though we still will complain noisily about it. 240 */ 241 if (unlikely(req->rq_state & RQ_LOCAL_ABORTED)) { 242 if (__ratelimit(&drbd_ratelimit_state)) 243 drbd_emerg(device, "delayed completion of aborted local request; disk-timeout may be too aggressive\n"); 244 245 if (!bio->bi_error) 246 drbd_panic_after_delayed_completion_of_aborted_request(device); 247 } 248 249 /* to avoid recursion in __req_mod */ 250 if (unlikely(bio->bi_error)) { 251 switch (bio_op(bio)) { 252 case REQ_OP_DISCARD: 253 if (bio->bi_error == -EOPNOTSUPP) 254 what = DISCARD_COMPLETED_NOTSUPP; 255 else 256 what = DISCARD_COMPLETED_WITH_ERROR; 257 break; 258 case REQ_OP_READ: 259 if (bio->bi_opf & REQ_RAHEAD) 260 what = READ_AHEAD_COMPLETED_WITH_ERROR; 261 else 262 what = READ_COMPLETED_WITH_ERROR; 263 break; 264 default: 265 what = WRITE_COMPLETED_WITH_ERROR; 266 break; 267 } 268 } else { 269 what = COMPLETED_OK; 270 } 271 272 bio_put(req->private_bio); 273 req->private_bio = ERR_PTR(bio->bi_error); 274 275 /* not req_mod(), we need irqsave here! */ 276 spin_lock_irqsave(&device->resource->req_lock, flags); 277 __req_mod(req, what, &m); 278 spin_unlock_irqrestore(&device->resource->req_lock, flags); 279 put_ldev(device); 280 281 if (m.bio) 282 complete_master_bio(device, &m); 283 } 284 285 void drbd_csum_ee(struct crypto_ahash *tfm, struct drbd_peer_request *peer_req, void *digest) 286 { 287 AHASH_REQUEST_ON_STACK(req, tfm); 288 struct scatterlist sg; 289 struct page *page = peer_req->pages; 290 struct page *tmp; 291 unsigned len; 292 293 ahash_request_set_tfm(req, tfm); 294 ahash_request_set_callback(req, 0, NULL, NULL); 295 296 sg_init_table(&sg, 1); 297 crypto_ahash_init(req); 298 299 while ((tmp = page_chain_next(page))) { 300 /* all but the last page will be fully used */ 301 sg_set_page(&sg, page, PAGE_SIZE, 0); 302 ahash_request_set_crypt(req, &sg, NULL, sg.length); 303 crypto_ahash_update(req); 304 page = tmp; 305 } 306 /* and now the last, possibly only partially used page */ 307 len = peer_req->i.size & (PAGE_SIZE - 1); 308 sg_set_page(&sg, page, len ?: PAGE_SIZE, 0); 309 ahash_request_set_crypt(req, &sg, digest, sg.length); 310 crypto_ahash_finup(req); 311 ahash_request_zero(req); 312 } 313 314 void drbd_csum_bio(struct crypto_ahash *tfm, struct bio *bio, void *digest) 315 { 316 AHASH_REQUEST_ON_STACK(req, tfm); 317 struct scatterlist sg; 318 struct bio_vec bvec; 319 struct bvec_iter iter; 320 321 ahash_request_set_tfm(req, tfm); 322 ahash_request_set_callback(req, 0, NULL, NULL); 323 324 sg_init_table(&sg, 1); 325 crypto_ahash_init(req); 326 327 bio_for_each_segment(bvec, bio, iter) { 328 sg_set_page(&sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset); 329 ahash_request_set_crypt(req, &sg, NULL, sg.length); 330 crypto_ahash_update(req); 331 /* REQ_OP_WRITE_SAME has only one segment, 332 * checksum the payload only once. */ 333 if (bio_op(bio) == REQ_OP_WRITE_SAME) 334 break; 335 } 336 ahash_request_set_crypt(req, NULL, digest, 0); 337 crypto_ahash_final(req); 338 ahash_request_zero(req); 339 } 340 341 /* MAYBE merge common code with w_e_end_ov_req */ 342 static int w_e_send_csum(struct drbd_work *w, int cancel) 343 { 344 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 345 struct drbd_peer_device *peer_device = peer_req->peer_device; 346 struct drbd_device *device = peer_device->device; 347 int digest_size; 348 void *digest; 349 int err = 0; 350 351 if (unlikely(cancel)) 352 goto out; 353 354 if (unlikely((peer_req->flags & EE_WAS_ERROR) != 0)) 355 goto out; 356 357 digest_size = crypto_ahash_digestsize(peer_device->connection->csums_tfm); 358 digest = kmalloc(digest_size, GFP_NOIO); 359 if (digest) { 360 sector_t sector = peer_req->i.sector; 361 unsigned int size = peer_req->i.size; 362 drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest); 363 /* Free peer_req and pages before send. 364 * In case we block on congestion, we could otherwise run into 365 * some distributed deadlock, if the other side blocks on 366 * congestion as well, because our receiver blocks in 367 * drbd_alloc_pages due to pp_in_use > max_buffers. */ 368 drbd_free_peer_req(device, peer_req); 369 peer_req = NULL; 370 inc_rs_pending(device); 371 err = drbd_send_drequest_csum(peer_device, sector, size, 372 digest, digest_size, 373 P_CSUM_RS_REQUEST); 374 kfree(digest); 375 } else { 376 drbd_err(device, "kmalloc() of digest failed.\n"); 377 err = -ENOMEM; 378 } 379 380 out: 381 if (peer_req) 382 drbd_free_peer_req(device, peer_req); 383 384 if (unlikely(err)) 385 drbd_err(device, "drbd_send_drequest(..., csum) failed\n"); 386 return err; 387 } 388 389 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 390 391 static int read_for_csum(struct drbd_peer_device *peer_device, sector_t sector, int size) 392 { 393 struct drbd_device *device = peer_device->device; 394 struct drbd_peer_request *peer_req; 395 396 if (!get_ldev(device)) 397 return -EIO; 398 399 /* GFP_TRY, because if there is no memory available right now, this may 400 * be rescheduled for later. It is "only" background resync, after all. */ 401 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER /* unused */, sector, 402 size, size, GFP_TRY); 403 if (!peer_req) 404 goto defer; 405 406 peer_req->w.cb = w_e_send_csum; 407 spin_lock_irq(&device->resource->req_lock); 408 list_add_tail(&peer_req->w.list, &device->read_ee); 409 spin_unlock_irq(&device->resource->req_lock); 410 411 atomic_add(size >> 9, &device->rs_sect_ev); 412 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, 413 DRBD_FAULT_RS_RD) == 0) 414 return 0; 415 416 /* If it failed because of ENOMEM, retry should help. If it failed 417 * because bio_add_page failed (probably broken lower level driver), 418 * retry may or may not help. 419 * If it does not, you may need to force disconnect. */ 420 spin_lock_irq(&device->resource->req_lock); 421 list_del(&peer_req->w.list); 422 spin_unlock_irq(&device->resource->req_lock); 423 424 drbd_free_peer_req(device, peer_req); 425 defer: 426 put_ldev(device); 427 return -EAGAIN; 428 } 429 430 int w_resync_timer(struct drbd_work *w, int cancel) 431 { 432 struct drbd_device *device = 433 container_of(w, struct drbd_device, resync_work); 434 435 switch (device->state.conn) { 436 case C_VERIFY_S: 437 make_ov_request(device, cancel); 438 break; 439 case C_SYNC_TARGET: 440 make_resync_request(device, cancel); 441 break; 442 } 443 444 return 0; 445 } 446 447 void resync_timer_fn(unsigned long data) 448 { 449 struct drbd_device *device = (struct drbd_device *) data; 450 451 drbd_queue_work_if_unqueued( 452 &first_peer_device(device)->connection->sender_work, 453 &device->resync_work); 454 } 455 456 static void fifo_set(struct fifo_buffer *fb, int value) 457 { 458 int i; 459 460 for (i = 0; i < fb->size; i++) 461 fb->values[i] = value; 462 } 463 464 static int fifo_push(struct fifo_buffer *fb, int value) 465 { 466 int ov; 467 468 ov = fb->values[fb->head_index]; 469 fb->values[fb->head_index++] = value; 470 471 if (fb->head_index >= fb->size) 472 fb->head_index = 0; 473 474 return ov; 475 } 476 477 static void fifo_add_val(struct fifo_buffer *fb, int value) 478 { 479 int i; 480 481 for (i = 0; i < fb->size; i++) 482 fb->values[i] += value; 483 } 484 485 struct fifo_buffer *fifo_alloc(int fifo_size) 486 { 487 struct fifo_buffer *fb; 488 489 fb = kzalloc(sizeof(struct fifo_buffer) + sizeof(int) * fifo_size, GFP_NOIO); 490 if (!fb) 491 return NULL; 492 493 fb->head_index = 0; 494 fb->size = fifo_size; 495 fb->total = 0; 496 497 return fb; 498 } 499 500 static int drbd_rs_controller(struct drbd_device *device, unsigned int sect_in) 501 { 502 struct disk_conf *dc; 503 unsigned int want; /* The number of sectors we want in-flight */ 504 int req_sect; /* Number of sectors to request in this turn */ 505 int correction; /* Number of sectors more we need in-flight */ 506 int cps; /* correction per invocation of drbd_rs_controller() */ 507 int steps; /* Number of time steps to plan ahead */ 508 int curr_corr; 509 int max_sect; 510 struct fifo_buffer *plan; 511 512 dc = rcu_dereference(device->ldev->disk_conf); 513 plan = rcu_dereference(device->rs_plan_s); 514 515 steps = plan->size; /* (dc->c_plan_ahead * 10 * SLEEP_TIME) / HZ; */ 516 517 if (device->rs_in_flight + sect_in == 0) { /* At start of resync */ 518 want = ((dc->resync_rate * 2 * SLEEP_TIME) / HZ) * steps; 519 } else { /* normal path */ 520 want = dc->c_fill_target ? dc->c_fill_target : 521 sect_in * dc->c_delay_target * HZ / (SLEEP_TIME * 10); 522 } 523 524 correction = want - device->rs_in_flight - plan->total; 525 526 /* Plan ahead */ 527 cps = correction / steps; 528 fifo_add_val(plan, cps); 529 plan->total += cps * steps; 530 531 /* What we do in this step */ 532 curr_corr = fifo_push(plan, 0); 533 plan->total -= curr_corr; 534 535 req_sect = sect_in + curr_corr; 536 if (req_sect < 0) 537 req_sect = 0; 538 539 max_sect = (dc->c_max_rate * 2 * SLEEP_TIME) / HZ; 540 if (req_sect > max_sect) 541 req_sect = max_sect; 542 543 /* 544 drbd_warn(device, "si=%u if=%d wa=%u co=%d st=%d cps=%d pl=%d cc=%d rs=%d\n", 545 sect_in, device->rs_in_flight, want, correction, 546 steps, cps, device->rs_planed, curr_corr, req_sect); 547 */ 548 549 return req_sect; 550 } 551 552 static int drbd_rs_number_requests(struct drbd_device *device) 553 { 554 unsigned int sect_in; /* Number of sectors that came in since the last turn */ 555 int number, mxb; 556 557 sect_in = atomic_xchg(&device->rs_sect_in, 0); 558 device->rs_in_flight -= sect_in; 559 560 rcu_read_lock(); 561 mxb = drbd_get_max_buffers(device) / 2; 562 if (rcu_dereference(device->rs_plan_s)->size) { 563 number = drbd_rs_controller(device, sect_in) >> (BM_BLOCK_SHIFT - 9); 564 device->c_sync_rate = number * HZ * (BM_BLOCK_SIZE / 1024) / SLEEP_TIME; 565 } else { 566 device->c_sync_rate = rcu_dereference(device->ldev->disk_conf)->resync_rate; 567 number = SLEEP_TIME * device->c_sync_rate / ((BM_BLOCK_SIZE / 1024) * HZ); 568 } 569 rcu_read_unlock(); 570 571 /* Don't have more than "max-buffers"/2 in-flight. 572 * Otherwise we may cause the remote site to stall on drbd_alloc_pages(), 573 * potentially causing a distributed deadlock on congestion during 574 * online-verify or (checksum-based) resync, if max-buffers, 575 * socket buffer sizes and resync rate settings are mis-configured. */ 576 577 /* note that "number" is in units of "BM_BLOCK_SIZE" (which is 4k), 578 * mxb (as used here, and in drbd_alloc_pages on the peer) is 579 * "number of pages" (typically also 4k), 580 * but "rs_in_flight" is in "sectors" (512 Byte). */ 581 if (mxb - device->rs_in_flight/8 < number) 582 number = mxb - device->rs_in_flight/8; 583 584 return number; 585 } 586 587 static int make_resync_request(struct drbd_device *const device, int cancel) 588 { 589 struct drbd_peer_device *const peer_device = first_peer_device(device); 590 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 591 unsigned long bit; 592 sector_t sector; 593 const sector_t capacity = drbd_get_capacity(device->this_bdev); 594 int max_bio_size; 595 int number, rollback_i, size; 596 int align, requeue = 0; 597 int i = 0; 598 int discard_granularity = 0; 599 600 if (unlikely(cancel)) 601 return 0; 602 603 if (device->rs_total == 0) { 604 /* empty resync? */ 605 drbd_resync_finished(device); 606 return 0; 607 } 608 609 if (!get_ldev(device)) { 610 /* Since we only need to access device->rsync a 611 get_ldev_if_state(device,D_FAILED) would be sufficient, but 612 to continue resync with a broken disk makes no sense at 613 all */ 614 drbd_err(device, "Disk broke down during resync!\n"); 615 return 0; 616 } 617 618 if (connection->agreed_features & DRBD_FF_THIN_RESYNC) { 619 rcu_read_lock(); 620 discard_granularity = rcu_dereference(device->ldev->disk_conf)->rs_discard_granularity; 621 rcu_read_unlock(); 622 } 623 624 max_bio_size = queue_max_hw_sectors(device->rq_queue) << 9; 625 number = drbd_rs_number_requests(device); 626 if (number <= 0) 627 goto requeue; 628 629 for (i = 0; i < number; i++) { 630 /* Stop generating RS requests when half of the send buffer is filled, 631 * but notify TCP that we'd like to have more space. */ 632 mutex_lock(&connection->data.mutex); 633 if (connection->data.socket) { 634 struct sock *sk = connection->data.socket->sk; 635 int queued = sk->sk_wmem_queued; 636 int sndbuf = sk->sk_sndbuf; 637 if (queued > sndbuf / 2) { 638 requeue = 1; 639 if (sk->sk_socket) 640 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 641 } 642 } else 643 requeue = 1; 644 mutex_unlock(&connection->data.mutex); 645 if (requeue) 646 goto requeue; 647 648 next_sector: 649 size = BM_BLOCK_SIZE; 650 bit = drbd_bm_find_next(device, device->bm_resync_fo); 651 652 if (bit == DRBD_END_OF_BITMAP) { 653 device->bm_resync_fo = drbd_bm_bits(device); 654 put_ldev(device); 655 return 0; 656 } 657 658 sector = BM_BIT_TO_SECT(bit); 659 660 if (drbd_try_rs_begin_io(device, sector)) { 661 device->bm_resync_fo = bit; 662 goto requeue; 663 } 664 device->bm_resync_fo = bit + 1; 665 666 if (unlikely(drbd_bm_test_bit(device, bit) == 0)) { 667 drbd_rs_complete_io(device, sector); 668 goto next_sector; 669 } 670 671 #if DRBD_MAX_BIO_SIZE > BM_BLOCK_SIZE 672 /* try to find some adjacent bits. 673 * we stop if we have already the maximum req size. 674 * 675 * Additionally always align bigger requests, in order to 676 * be prepared for all stripe sizes of software RAIDs. 677 */ 678 align = 1; 679 rollback_i = i; 680 while (i < number) { 681 if (size + BM_BLOCK_SIZE > max_bio_size) 682 break; 683 684 /* Be always aligned */ 685 if (sector & ((1<<(align+3))-1)) 686 break; 687 688 if (discard_granularity && size == discard_granularity) 689 break; 690 691 /* do not cross extent boundaries */ 692 if (((bit+1) & BM_BLOCKS_PER_BM_EXT_MASK) == 0) 693 break; 694 /* now, is it actually dirty, after all? 695 * caution, drbd_bm_test_bit is tri-state for some 696 * obscure reason; ( b == 0 ) would get the out-of-band 697 * only accidentally right because of the "oddly sized" 698 * adjustment below */ 699 if (drbd_bm_test_bit(device, bit+1) != 1) 700 break; 701 bit++; 702 size += BM_BLOCK_SIZE; 703 if ((BM_BLOCK_SIZE << align) <= size) 704 align++; 705 i++; 706 } 707 /* if we merged some, 708 * reset the offset to start the next drbd_bm_find_next from */ 709 if (size > BM_BLOCK_SIZE) 710 device->bm_resync_fo = bit + 1; 711 #endif 712 713 /* adjust very last sectors, in case we are oddly sized */ 714 if (sector + (size>>9) > capacity) 715 size = (capacity-sector)<<9; 716 717 if (device->use_csums) { 718 switch (read_for_csum(peer_device, sector, size)) { 719 case -EIO: /* Disk failure */ 720 put_ldev(device); 721 return -EIO; 722 case -EAGAIN: /* allocation failed, or ldev busy */ 723 drbd_rs_complete_io(device, sector); 724 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 725 i = rollback_i; 726 goto requeue; 727 case 0: 728 /* everything ok */ 729 break; 730 default: 731 BUG(); 732 } 733 } else { 734 int err; 735 736 inc_rs_pending(device); 737 err = drbd_send_drequest(peer_device, 738 size == discard_granularity ? P_RS_THIN_REQ : P_RS_DATA_REQUEST, 739 sector, size, ID_SYNCER); 740 if (err) { 741 drbd_err(device, "drbd_send_drequest() failed, aborting...\n"); 742 dec_rs_pending(device); 743 put_ldev(device); 744 return err; 745 } 746 } 747 } 748 749 if (device->bm_resync_fo >= drbd_bm_bits(device)) { 750 /* last syncer _request_ was sent, 751 * but the P_RS_DATA_REPLY not yet received. sync will end (and 752 * next sync group will resume), as soon as we receive the last 753 * resync data block, and the last bit is cleared. 754 * until then resync "work" is "inactive" ... 755 */ 756 put_ldev(device); 757 return 0; 758 } 759 760 requeue: 761 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9)); 762 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME); 763 put_ldev(device); 764 return 0; 765 } 766 767 static int make_ov_request(struct drbd_device *device, int cancel) 768 { 769 int number, i, size; 770 sector_t sector; 771 const sector_t capacity = drbd_get_capacity(device->this_bdev); 772 bool stop_sector_reached = false; 773 774 if (unlikely(cancel)) 775 return 1; 776 777 number = drbd_rs_number_requests(device); 778 779 sector = device->ov_position; 780 for (i = 0; i < number; i++) { 781 if (sector >= capacity) 782 return 1; 783 784 /* We check for "finished" only in the reply path: 785 * w_e_end_ov_reply(). 786 * We need to send at least one request out. */ 787 stop_sector_reached = i > 0 788 && verify_can_do_stop_sector(device) 789 && sector >= device->ov_stop_sector; 790 if (stop_sector_reached) 791 break; 792 793 size = BM_BLOCK_SIZE; 794 795 if (drbd_try_rs_begin_io(device, sector)) { 796 device->ov_position = sector; 797 goto requeue; 798 } 799 800 if (sector + (size>>9) > capacity) 801 size = (capacity-sector)<<9; 802 803 inc_rs_pending(device); 804 if (drbd_send_ov_request(first_peer_device(device), sector, size)) { 805 dec_rs_pending(device); 806 return 0; 807 } 808 sector += BM_SECT_PER_BIT; 809 } 810 device->ov_position = sector; 811 812 requeue: 813 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9)); 814 if (i == 0 || !stop_sector_reached) 815 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME); 816 return 1; 817 } 818 819 int w_ov_finished(struct drbd_work *w, int cancel) 820 { 821 struct drbd_device_work *dw = 822 container_of(w, struct drbd_device_work, w); 823 struct drbd_device *device = dw->device; 824 kfree(dw); 825 ov_out_of_sync_print(device); 826 drbd_resync_finished(device); 827 828 return 0; 829 } 830 831 static int w_resync_finished(struct drbd_work *w, int cancel) 832 { 833 struct drbd_device_work *dw = 834 container_of(w, struct drbd_device_work, w); 835 struct drbd_device *device = dw->device; 836 kfree(dw); 837 838 drbd_resync_finished(device); 839 840 return 0; 841 } 842 843 static void ping_peer(struct drbd_device *device) 844 { 845 struct drbd_connection *connection = first_peer_device(device)->connection; 846 847 clear_bit(GOT_PING_ACK, &connection->flags); 848 request_ping(connection); 849 wait_event(connection->ping_wait, 850 test_bit(GOT_PING_ACK, &connection->flags) || device->state.conn < C_CONNECTED); 851 } 852 853 int drbd_resync_finished(struct drbd_device *device) 854 { 855 struct drbd_connection *connection = first_peer_device(device)->connection; 856 unsigned long db, dt, dbdt; 857 unsigned long n_oos; 858 union drbd_state os, ns; 859 struct drbd_device_work *dw; 860 char *khelper_cmd = NULL; 861 int verify_done = 0; 862 863 /* Remove all elements from the resync LRU. Since future actions 864 * might set bits in the (main) bitmap, then the entries in the 865 * resync LRU would be wrong. */ 866 if (drbd_rs_del_all(device)) { 867 /* In case this is not possible now, most probably because 868 * there are P_RS_DATA_REPLY Packets lingering on the worker's 869 * queue (or even the read operations for those packets 870 * is not finished by now). Retry in 100ms. */ 871 872 schedule_timeout_interruptible(HZ / 10); 873 dw = kmalloc(sizeof(struct drbd_device_work), GFP_ATOMIC); 874 if (dw) { 875 dw->w.cb = w_resync_finished; 876 dw->device = device; 877 drbd_queue_work(&connection->sender_work, &dw->w); 878 return 1; 879 } 880 drbd_err(device, "Warn failed to drbd_rs_del_all() and to kmalloc(dw).\n"); 881 } 882 883 dt = (jiffies - device->rs_start - device->rs_paused) / HZ; 884 if (dt <= 0) 885 dt = 1; 886 887 db = device->rs_total; 888 /* adjust for verify start and stop sectors, respective reached position */ 889 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 890 db -= device->ov_left; 891 892 dbdt = Bit2KB(db/dt); 893 device->rs_paused /= HZ; 894 895 if (!get_ldev(device)) 896 goto out; 897 898 ping_peer(device); 899 900 spin_lock_irq(&device->resource->req_lock); 901 os = drbd_read_state(device); 902 903 verify_done = (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T); 904 905 /* This protects us against multiple calls (that can happen in the presence 906 of application IO), and against connectivity loss just before we arrive here. */ 907 if (os.conn <= C_CONNECTED) 908 goto out_unlock; 909 910 ns = os; 911 ns.conn = C_CONNECTED; 912 913 drbd_info(device, "%s done (total %lu sec; paused %lu sec; %lu K/sec)\n", 914 verify_done ? "Online verify" : "Resync", 915 dt + device->rs_paused, device->rs_paused, dbdt); 916 917 n_oos = drbd_bm_total_weight(device); 918 919 if (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) { 920 if (n_oos) { 921 drbd_alert(device, "Online verify found %lu %dk block out of sync!\n", 922 n_oos, Bit2KB(1)); 923 khelper_cmd = "out-of-sync"; 924 } 925 } else { 926 D_ASSERT(device, (n_oos - device->rs_failed) == 0); 927 928 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) 929 khelper_cmd = "after-resync-target"; 930 931 if (device->use_csums && device->rs_total) { 932 const unsigned long s = device->rs_same_csum; 933 const unsigned long t = device->rs_total; 934 const int ratio = 935 (t == 0) ? 0 : 936 (t < 100000) ? ((s*100)/t) : (s/(t/100)); 937 drbd_info(device, "%u %% had equal checksums, eliminated: %luK; " 938 "transferred %luK total %luK\n", 939 ratio, 940 Bit2KB(device->rs_same_csum), 941 Bit2KB(device->rs_total - device->rs_same_csum), 942 Bit2KB(device->rs_total)); 943 } 944 } 945 946 if (device->rs_failed) { 947 drbd_info(device, " %lu failed blocks\n", device->rs_failed); 948 949 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) { 950 ns.disk = D_INCONSISTENT; 951 ns.pdsk = D_UP_TO_DATE; 952 } else { 953 ns.disk = D_UP_TO_DATE; 954 ns.pdsk = D_INCONSISTENT; 955 } 956 } else { 957 ns.disk = D_UP_TO_DATE; 958 ns.pdsk = D_UP_TO_DATE; 959 960 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) { 961 if (device->p_uuid) { 962 int i; 963 for (i = UI_BITMAP ; i <= UI_HISTORY_END ; i++) 964 _drbd_uuid_set(device, i, device->p_uuid[i]); 965 drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_CURRENT]); 966 _drbd_uuid_set(device, UI_CURRENT, device->p_uuid[UI_CURRENT]); 967 } else { 968 drbd_err(device, "device->p_uuid is NULL! BUG\n"); 969 } 970 } 971 972 if (!(os.conn == C_VERIFY_S || os.conn == C_VERIFY_T)) { 973 /* for verify runs, we don't update uuids here, 974 * so there would be nothing to report. */ 975 drbd_uuid_set_bm(device, 0UL); 976 drbd_print_uuids(device, "updated UUIDs"); 977 if (device->p_uuid) { 978 /* Now the two UUID sets are equal, update what we 979 * know of the peer. */ 980 int i; 981 for (i = UI_CURRENT ; i <= UI_HISTORY_END ; i++) 982 device->p_uuid[i] = device->ldev->md.uuid[i]; 983 } 984 } 985 } 986 987 _drbd_set_state(device, ns, CS_VERBOSE, NULL); 988 out_unlock: 989 spin_unlock_irq(&device->resource->req_lock); 990 991 /* If we have been sync source, and have an effective fencing-policy, 992 * once *all* volumes are back in sync, call "unfence". */ 993 if (os.conn == C_SYNC_SOURCE) { 994 enum drbd_disk_state disk_state = D_MASK; 995 enum drbd_disk_state pdsk_state = D_MASK; 996 enum drbd_fencing_p fp = FP_DONT_CARE; 997 998 rcu_read_lock(); 999 fp = rcu_dereference(device->ldev->disk_conf)->fencing; 1000 if (fp != FP_DONT_CARE) { 1001 struct drbd_peer_device *peer_device; 1002 int vnr; 1003 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1004 struct drbd_device *device = peer_device->device; 1005 disk_state = min_t(enum drbd_disk_state, disk_state, device->state.disk); 1006 pdsk_state = min_t(enum drbd_disk_state, pdsk_state, device->state.pdsk); 1007 } 1008 } 1009 rcu_read_unlock(); 1010 if (disk_state == D_UP_TO_DATE && pdsk_state == D_UP_TO_DATE) 1011 conn_khelper(connection, "unfence-peer"); 1012 } 1013 1014 put_ldev(device); 1015 out: 1016 device->rs_total = 0; 1017 device->rs_failed = 0; 1018 device->rs_paused = 0; 1019 1020 /* reset start sector, if we reached end of device */ 1021 if (verify_done && device->ov_left == 0) 1022 device->ov_start_sector = 0; 1023 1024 drbd_md_sync(device); 1025 1026 if (khelper_cmd) 1027 drbd_khelper(device, khelper_cmd); 1028 1029 return 1; 1030 } 1031 1032 /* helper */ 1033 static void move_to_net_ee_or_free(struct drbd_device *device, struct drbd_peer_request *peer_req) 1034 { 1035 if (drbd_peer_req_has_active_page(peer_req)) { 1036 /* This might happen if sendpage() has not finished */ 1037 int i = (peer_req->i.size + PAGE_SIZE -1) >> PAGE_SHIFT; 1038 atomic_add(i, &device->pp_in_use_by_net); 1039 atomic_sub(i, &device->pp_in_use); 1040 spin_lock_irq(&device->resource->req_lock); 1041 list_add_tail(&peer_req->w.list, &device->net_ee); 1042 spin_unlock_irq(&device->resource->req_lock); 1043 wake_up(&drbd_pp_wait); 1044 } else 1045 drbd_free_peer_req(device, peer_req); 1046 } 1047 1048 /** 1049 * w_e_end_data_req() - Worker callback, to send a P_DATA_REPLY packet in response to a P_DATA_REQUEST 1050 * @w: work object. 1051 * @cancel: The connection will be closed anyways 1052 */ 1053 int w_e_end_data_req(struct drbd_work *w, int cancel) 1054 { 1055 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1056 struct drbd_peer_device *peer_device = peer_req->peer_device; 1057 struct drbd_device *device = peer_device->device; 1058 int err; 1059 1060 if (unlikely(cancel)) { 1061 drbd_free_peer_req(device, peer_req); 1062 dec_unacked(device); 1063 return 0; 1064 } 1065 1066 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1067 err = drbd_send_block(peer_device, P_DATA_REPLY, peer_req); 1068 } else { 1069 if (__ratelimit(&drbd_ratelimit_state)) 1070 drbd_err(device, "Sending NegDReply. sector=%llus.\n", 1071 (unsigned long long)peer_req->i.sector); 1072 1073 err = drbd_send_ack(peer_device, P_NEG_DREPLY, peer_req); 1074 } 1075 1076 dec_unacked(device); 1077 1078 move_to_net_ee_or_free(device, peer_req); 1079 1080 if (unlikely(err)) 1081 drbd_err(device, "drbd_send_block() failed\n"); 1082 return err; 1083 } 1084 1085 static bool all_zero(struct drbd_peer_request *peer_req) 1086 { 1087 struct page *page = peer_req->pages; 1088 unsigned int len = peer_req->i.size; 1089 1090 page_chain_for_each(page) { 1091 unsigned int l = min_t(unsigned int, len, PAGE_SIZE); 1092 unsigned int i, words = l / sizeof(long); 1093 unsigned long *d; 1094 1095 d = kmap_atomic(page); 1096 for (i = 0; i < words; i++) { 1097 if (d[i]) { 1098 kunmap_atomic(d); 1099 return false; 1100 } 1101 } 1102 kunmap_atomic(d); 1103 len -= l; 1104 } 1105 1106 return true; 1107 } 1108 1109 /** 1110 * w_e_end_rsdata_req() - Worker callback to send a P_RS_DATA_REPLY packet in response to a P_RS_DATA_REQUEST 1111 * @w: work object. 1112 * @cancel: The connection will be closed anyways 1113 */ 1114 int w_e_end_rsdata_req(struct drbd_work *w, int cancel) 1115 { 1116 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1117 struct drbd_peer_device *peer_device = peer_req->peer_device; 1118 struct drbd_device *device = peer_device->device; 1119 int err; 1120 1121 if (unlikely(cancel)) { 1122 drbd_free_peer_req(device, peer_req); 1123 dec_unacked(device); 1124 return 0; 1125 } 1126 1127 if (get_ldev_if_state(device, D_FAILED)) { 1128 drbd_rs_complete_io(device, peer_req->i.sector); 1129 put_ldev(device); 1130 } 1131 1132 if (device->state.conn == C_AHEAD) { 1133 err = drbd_send_ack(peer_device, P_RS_CANCEL, peer_req); 1134 } else if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1135 if (likely(device->state.pdsk >= D_INCONSISTENT)) { 1136 inc_rs_pending(device); 1137 if (peer_req->flags & EE_RS_THIN_REQ && all_zero(peer_req)) 1138 err = drbd_send_rs_deallocated(peer_device, peer_req); 1139 else 1140 err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req); 1141 } else { 1142 if (__ratelimit(&drbd_ratelimit_state)) 1143 drbd_err(device, "Not sending RSDataReply, " 1144 "partner DISKLESS!\n"); 1145 err = 0; 1146 } 1147 } else { 1148 if (__ratelimit(&drbd_ratelimit_state)) 1149 drbd_err(device, "Sending NegRSDReply. sector %llus.\n", 1150 (unsigned long long)peer_req->i.sector); 1151 1152 err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req); 1153 1154 /* update resync data with failure */ 1155 drbd_rs_failed_io(device, peer_req->i.sector, peer_req->i.size); 1156 } 1157 1158 dec_unacked(device); 1159 1160 move_to_net_ee_or_free(device, peer_req); 1161 1162 if (unlikely(err)) 1163 drbd_err(device, "drbd_send_block() failed\n"); 1164 return err; 1165 } 1166 1167 int w_e_end_csum_rs_req(struct drbd_work *w, int cancel) 1168 { 1169 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1170 struct drbd_peer_device *peer_device = peer_req->peer_device; 1171 struct drbd_device *device = peer_device->device; 1172 struct digest_info *di; 1173 int digest_size; 1174 void *digest = NULL; 1175 int err, eq = 0; 1176 1177 if (unlikely(cancel)) { 1178 drbd_free_peer_req(device, peer_req); 1179 dec_unacked(device); 1180 return 0; 1181 } 1182 1183 if (get_ldev(device)) { 1184 drbd_rs_complete_io(device, peer_req->i.sector); 1185 put_ldev(device); 1186 } 1187 1188 di = peer_req->digest; 1189 1190 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1191 /* quick hack to try to avoid a race against reconfiguration. 1192 * a real fix would be much more involved, 1193 * introducing more locking mechanisms */ 1194 if (peer_device->connection->csums_tfm) { 1195 digest_size = crypto_ahash_digestsize(peer_device->connection->csums_tfm); 1196 D_ASSERT(device, digest_size == di->digest_size); 1197 digest = kmalloc(digest_size, GFP_NOIO); 1198 } 1199 if (digest) { 1200 drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest); 1201 eq = !memcmp(digest, di->digest, digest_size); 1202 kfree(digest); 1203 } 1204 1205 if (eq) { 1206 drbd_set_in_sync(device, peer_req->i.sector, peer_req->i.size); 1207 /* rs_same_csums unit is BM_BLOCK_SIZE */ 1208 device->rs_same_csum += peer_req->i.size >> BM_BLOCK_SHIFT; 1209 err = drbd_send_ack(peer_device, P_RS_IS_IN_SYNC, peer_req); 1210 } else { 1211 inc_rs_pending(device); 1212 peer_req->block_id = ID_SYNCER; /* By setting block_id, digest pointer becomes invalid! */ 1213 peer_req->flags &= ~EE_HAS_DIGEST; /* This peer request no longer has a digest pointer */ 1214 kfree(di); 1215 err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req); 1216 } 1217 } else { 1218 err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req); 1219 if (__ratelimit(&drbd_ratelimit_state)) 1220 drbd_err(device, "Sending NegDReply. I guess it gets messy.\n"); 1221 } 1222 1223 dec_unacked(device); 1224 move_to_net_ee_or_free(device, peer_req); 1225 1226 if (unlikely(err)) 1227 drbd_err(device, "drbd_send_block/ack() failed\n"); 1228 return err; 1229 } 1230 1231 int w_e_end_ov_req(struct drbd_work *w, int cancel) 1232 { 1233 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1234 struct drbd_peer_device *peer_device = peer_req->peer_device; 1235 struct drbd_device *device = peer_device->device; 1236 sector_t sector = peer_req->i.sector; 1237 unsigned int size = peer_req->i.size; 1238 int digest_size; 1239 void *digest; 1240 int err = 0; 1241 1242 if (unlikely(cancel)) 1243 goto out; 1244 1245 digest_size = crypto_ahash_digestsize(peer_device->connection->verify_tfm); 1246 digest = kmalloc(digest_size, GFP_NOIO); 1247 if (!digest) { 1248 err = 1; /* terminate the connection in case the allocation failed */ 1249 goto out; 1250 } 1251 1252 if (likely(!(peer_req->flags & EE_WAS_ERROR))) 1253 drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest); 1254 else 1255 memset(digest, 0, digest_size); 1256 1257 /* Free e and pages before send. 1258 * In case we block on congestion, we could otherwise run into 1259 * some distributed deadlock, if the other side blocks on 1260 * congestion as well, because our receiver blocks in 1261 * drbd_alloc_pages due to pp_in_use > max_buffers. */ 1262 drbd_free_peer_req(device, peer_req); 1263 peer_req = NULL; 1264 inc_rs_pending(device); 1265 err = drbd_send_drequest_csum(peer_device, sector, size, digest, digest_size, P_OV_REPLY); 1266 if (err) 1267 dec_rs_pending(device); 1268 kfree(digest); 1269 1270 out: 1271 if (peer_req) 1272 drbd_free_peer_req(device, peer_req); 1273 dec_unacked(device); 1274 return err; 1275 } 1276 1277 void drbd_ov_out_of_sync_found(struct drbd_device *device, sector_t sector, int size) 1278 { 1279 if (device->ov_last_oos_start + device->ov_last_oos_size == sector) { 1280 device->ov_last_oos_size += size>>9; 1281 } else { 1282 device->ov_last_oos_start = sector; 1283 device->ov_last_oos_size = size>>9; 1284 } 1285 drbd_set_out_of_sync(device, sector, size); 1286 } 1287 1288 int w_e_end_ov_reply(struct drbd_work *w, int cancel) 1289 { 1290 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1291 struct drbd_peer_device *peer_device = peer_req->peer_device; 1292 struct drbd_device *device = peer_device->device; 1293 struct digest_info *di; 1294 void *digest; 1295 sector_t sector = peer_req->i.sector; 1296 unsigned int size = peer_req->i.size; 1297 int digest_size; 1298 int err, eq = 0; 1299 bool stop_sector_reached = false; 1300 1301 if (unlikely(cancel)) { 1302 drbd_free_peer_req(device, peer_req); 1303 dec_unacked(device); 1304 return 0; 1305 } 1306 1307 /* after "cancel", because after drbd_disconnect/drbd_rs_cancel_all 1308 * the resync lru has been cleaned up already */ 1309 if (get_ldev(device)) { 1310 drbd_rs_complete_io(device, peer_req->i.sector); 1311 put_ldev(device); 1312 } 1313 1314 di = peer_req->digest; 1315 1316 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1317 digest_size = crypto_ahash_digestsize(peer_device->connection->verify_tfm); 1318 digest = kmalloc(digest_size, GFP_NOIO); 1319 if (digest) { 1320 drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest); 1321 1322 D_ASSERT(device, digest_size == di->digest_size); 1323 eq = !memcmp(digest, di->digest, digest_size); 1324 kfree(digest); 1325 } 1326 } 1327 1328 /* Free peer_req and pages before send. 1329 * In case we block on congestion, we could otherwise run into 1330 * some distributed deadlock, if the other side blocks on 1331 * congestion as well, because our receiver blocks in 1332 * drbd_alloc_pages due to pp_in_use > max_buffers. */ 1333 drbd_free_peer_req(device, peer_req); 1334 if (!eq) 1335 drbd_ov_out_of_sync_found(device, sector, size); 1336 else 1337 ov_out_of_sync_print(device); 1338 1339 err = drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, 1340 eq ? ID_IN_SYNC : ID_OUT_OF_SYNC); 1341 1342 dec_unacked(device); 1343 1344 --device->ov_left; 1345 1346 /* let's advance progress step marks only for every other megabyte */ 1347 if ((device->ov_left & 0x200) == 0x200) 1348 drbd_advance_rs_marks(device, device->ov_left); 1349 1350 stop_sector_reached = verify_can_do_stop_sector(device) && 1351 (sector + (size>>9)) >= device->ov_stop_sector; 1352 1353 if (device->ov_left == 0 || stop_sector_reached) { 1354 ov_out_of_sync_print(device); 1355 drbd_resync_finished(device); 1356 } 1357 1358 return err; 1359 } 1360 1361 /* FIXME 1362 * We need to track the number of pending barrier acks, 1363 * and to be able to wait for them. 1364 * See also comment in drbd_adm_attach before drbd_suspend_io. 1365 */ 1366 static int drbd_send_barrier(struct drbd_connection *connection) 1367 { 1368 struct p_barrier *p; 1369 struct drbd_socket *sock; 1370 1371 sock = &connection->data; 1372 p = conn_prepare_command(connection, sock); 1373 if (!p) 1374 return -EIO; 1375 p->barrier = connection->send.current_epoch_nr; 1376 p->pad = 0; 1377 connection->send.current_epoch_writes = 0; 1378 connection->send.last_sent_barrier_jif = jiffies; 1379 1380 return conn_send_command(connection, sock, P_BARRIER, sizeof(*p), NULL, 0); 1381 } 1382 1383 int w_send_write_hint(struct drbd_work *w, int cancel) 1384 { 1385 struct drbd_device *device = 1386 container_of(w, struct drbd_device, unplug_work); 1387 struct drbd_socket *sock; 1388 1389 if (cancel) 1390 return 0; 1391 sock = &first_peer_device(device)->connection->data; 1392 if (!drbd_prepare_command(first_peer_device(device), sock)) 1393 return -EIO; 1394 return drbd_send_command(first_peer_device(device), sock, P_UNPLUG_REMOTE, 0, NULL, 0); 1395 } 1396 1397 static void re_init_if_first_write(struct drbd_connection *connection, unsigned int epoch) 1398 { 1399 if (!connection->send.seen_any_write_yet) { 1400 connection->send.seen_any_write_yet = true; 1401 connection->send.current_epoch_nr = epoch; 1402 connection->send.current_epoch_writes = 0; 1403 connection->send.last_sent_barrier_jif = jiffies; 1404 } 1405 } 1406 1407 static void maybe_send_barrier(struct drbd_connection *connection, unsigned int epoch) 1408 { 1409 /* re-init if first write on this connection */ 1410 if (!connection->send.seen_any_write_yet) 1411 return; 1412 if (connection->send.current_epoch_nr != epoch) { 1413 if (connection->send.current_epoch_writes) 1414 drbd_send_barrier(connection); 1415 connection->send.current_epoch_nr = epoch; 1416 } 1417 } 1418 1419 int w_send_out_of_sync(struct drbd_work *w, int cancel) 1420 { 1421 struct drbd_request *req = container_of(w, struct drbd_request, w); 1422 struct drbd_device *device = req->device; 1423 struct drbd_peer_device *const peer_device = first_peer_device(device); 1424 struct drbd_connection *const connection = peer_device->connection; 1425 int err; 1426 1427 if (unlikely(cancel)) { 1428 req_mod(req, SEND_CANCELED); 1429 return 0; 1430 } 1431 req->pre_send_jif = jiffies; 1432 1433 /* this time, no connection->send.current_epoch_writes++; 1434 * If it was sent, it was the closing barrier for the last 1435 * replicated epoch, before we went into AHEAD mode. 1436 * No more barriers will be sent, until we leave AHEAD mode again. */ 1437 maybe_send_barrier(connection, req->epoch); 1438 1439 err = drbd_send_out_of_sync(peer_device, req); 1440 req_mod(req, OOS_HANDED_TO_NETWORK); 1441 1442 return err; 1443 } 1444 1445 /** 1446 * w_send_dblock() - Worker callback to send a P_DATA packet in order to mirror a write request 1447 * @w: work object. 1448 * @cancel: The connection will be closed anyways 1449 */ 1450 int w_send_dblock(struct drbd_work *w, int cancel) 1451 { 1452 struct drbd_request *req = container_of(w, struct drbd_request, w); 1453 struct drbd_device *device = req->device; 1454 struct drbd_peer_device *const peer_device = first_peer_device(device); 1455 struct drbd_connection *connection = peer_device->connection; 1456 int err; 1457 1458 if (unlikely(cancel)) { 1459 req_mod(req, SEND_CANCELED); 1460 return 0; 1461 } 1462 req->pre_send_jif = jiffies; 1463 1464 re_init_if_first_write(connection, req->epoch); 1465 maybe_send_barrier(connection, req->epoch); 1466 connection->send.current_epoch_writes++; 1467 1468 err = drbd_send_dblock(peer_device, req); 1469 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK); 1470 1471 return err; 1472 } 1473 1474 /** 1475 * w_send_read_req() - Worker callback to send a read request (P_DATA_REQUEST) packet 1476 * @w: work object. 1477 * @cancel: The connection will be closed anyways 1478 */ 1479 int w_send_read_req(struct drbd_work *w, int cancel) 1480 { 1481 struct drbd_request *req = container_of(w, struct drbd_request, w); 1482 struct drbd_device *device = req->device; 1483 struct drbd_peer_device *const peer_device = first_peer_device(device); 1484 struct drbd_connection *connection = peer_device->connection; 1485 int err; 1486 1487 if (unlikely(cancel)) { 1488 req_mod(req, SEND_CANCELED); 1489 return 0; 1490 } 1491 req->pre_send_jif = jiffies; 1492 1493 /* Even read requests may close a write epoch, 1494 * if there was any yet. */ 1495 maybe_send_barrier(connection, req->epoch); 1496 1497 err = drbd_send_drequest(peer_device, P_DATA_REQUEST, req->i.sector, req->i.size, 1498 (unsigned long)req); 1499 1500 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK); 1501 1502 return err; 1503 } 1504 1505 int w_restart_disk_io(struct drbd_work *w, int cancel) 1506 { 1507 struct drbd_request *req = container_of(w, struct drbd_request, w); 1508 struct drbd_device *device = req->device; 1509 1510 if (bio_data_dir(req->master_bio) == WRITE && req->rq_state & RQ_IN_ACT_LOG) 1511 drbd_al_begin_io(device, &req->i); 1512 1513 drbd_req_make_private_bio(req, req->master_bio); 1514 req->private_bio->bi_bdev = device->ldev->backing_bdev; 1515 generic_make_request(req->private_bio); 1516 1517 return 0; 1518 } 1519 1520 static int _drbd_may_sync_now(struct drbd_device *device) 1521 { 1522 struct drbd_device *odev = device; 1523 int resync_after; 1524 1525 while (1) { 1526 if (!odev->ldev || odev->state.disk == D_DISKLESS) 1527 return 1; 1528 rcu_read_lock(); 1529 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after; 1530 rcu_read_unlock(); 1531 if (resync_after == -1) 1532 return 1; 1533 odev = minor_to_device(resync_after); 1534 if (!odev) 1535 return 1; 1536 if ((odev->state.conn >= C_SYNC_SOURCE && 1537 odev->state.conn <= C_PAUSED_SYNC_T) || 1538 odev->state.aftr_isp || odev->state.peer_isp || 1539 odev->state.user_isp) 1540 return 0; 1541 } 1542 } 1543 1544 /** 1545 * drbd_pause_after() - Pause resync on all devices that may not resync now 1546 * @device: DRBD device. 1547 * 1548 * Called from process context only (admin command and after_state_ch). 1549 */ 1550 static bool drbd_pause_after(struct drbd_device *device) 1551 { 1552 bool changed = false; 1553 struct drbd_device *odev; 1554 int i; 1555 1556 rcu_read_lock(); 1557 idr_for_each_entry(&drbd_devices, odev, i) { 1558 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS) 1559 continue; 1560 if (!_drbd_may_sync_now(odev) && 1561 _drbd_set_state(_NS(odev, aftr_isp, 1), 1562 CS_HARD, NULL) != SS_NOTHING_TO_DO) 1563 changed = true; 1564 } 1565 rcu_read_unlock(); 1566 1567 return changed; 1568 } 1569 1570 /** 1571 * drbd_resume_next() - Resume resync on all devices that may resync now 1572 * @device: DRBD device. 1573 * 1574 * Called from process context only (admin command and worker). 1575 */ 1576 static bool drbd_resume_next(struct drbd_device *device) 1577 { 1578 bool changed = false; 1579 struct drbd_device *odev; 1580 int i; 1581 1582 rcu_read_lock(); 1583 idr_for_each_entry(&drbd_devices, odev, i) { 1584 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS) 1585 continue; 1586 if (odev->state.aftr_isp) { 1587 if (_drbd_may_sync_now(odev) && 1588 _drbd_set_state(_NS(odev, aftr_isp, 0), 1589 CS_HARD, NULL) != SS_NOTHING_TO_DO) 1590 changed = true; 1591 } 1592 } 1593 rcu_read_unlock(); 1594 return changed; 1595 } 1596 1597 void resume_next_sg(struct drbd_device *device) 1598 { 1599 lock_all_resources(); 1600 drbd_resume_next(device); 1601 unlock_all_resources(); 1602 } 1603 1604 void suspend_other_sg(struct drbd_device *device) 1605 { 1606 lock_all_resources(); 1607 drbd_pause_after(device); 1608 unlock_all_resources(); 1609 } 1610 1611 /* caller must lock_all_resources() */ 1612 enum drbd_ret_code drbd_resync_after_valid(struct drbd_device *device, int o_minor) 1613 { 1614 struct drbd_device *odev; 1615 int resync_after; 1616 1617 if (o_minor == -1) 1618 return NO_ERROR; 1619 if (o_minor < -1 || o_minor > MINORMASK) 1620 return ERR_RESYNC_AFTER; 1621 1622 /* check for loops */ 1623 odev = minor_to_device(o_minor); 1624 while (1) { 1625 if (odev == device) 1626 return ERR_RESYNC_AFTER_CYCLE; 1627 1628 /* You are free to depend on diskless, non-existing, 1629 * or not yet/no longer existing minors. 1630 * We only reject dependency loops. 1631 * We cannot follow the dependency chain beyond a detached or 1632 * missing minor. 1633 */ 1634 if (!odev || !odev->ldev || odev->state.disk == D_DISKLESS) 1635 return NO_ERROR; 1636 1637 rcu_read_lock(); 1638 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after; 1639 rcu_read_unlock(); 1640 /* dependency chain ends here, no cycles. */ 1641 if (resync_after == -1) 1642 return NO_ERROR; 1643 1644 /* follow the dependency chain */ 1645 odev = minor_to_device(resync_after); 1646 } 1647 } 1648 1649 /* caller must lock_all_resources() */ 1650 void drbd_resync_after_changed(struct drbd_device *device) 1651 { 1652 int changed; 1653 1654 do { 1655 changed = drbd_pause_after(device); 1656 changed |= drbd_resume_next(device); 1657 } while (changed); 1658 } 1659 1660 void drbd_rs_controller_reset(struct drbd_device *device) 1661 { 1662 struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk; 1663 struct fifo_buffer *plan; 1664 1665 atomic_set(&device->rs_sect_in, 0); 1666 atomic_set(&device->rs_sect_ev, 0); 1667 device->rs_in_flight = 0; 1668 device->rs_last_events = 1669 (int)part_stat_read(&disk->part0, sectors[0]) + 1670 (int)part_stat_read(&disk->part0, sectors[1]); 1671 1672 /* Updating the RCU protected object in place is necessary since 1673 this function gets called from atomic context. 1674 It is valid since all other updates also lead to an completely 1675 empty fifo */ 1676 rcu_read_lock(); 1677 plan = rcu_dereference(device->rs_plan_s); 1678 plan->total = 0; 1679 fifo_set(plan, 0); 1680 rcu_read_unlock(); 1681 } 1682 1683 void start_resync_timer_fn(unsigned long data) 1684 { 1685 struct drbd_device *device = (struct drbd_device *) data; 1686 drbd_device_post_work(device, RS_START); 1687 } 1688 1689 static void do_start_resync(struct drbd_device *device) 1690 { 1691 if (atomic_read(&device->unacked_cnt) || atomic_read(&device->rs_pending_cnt)) { 1692 drbd_warn(device, "postponing start_resync ...\n"); 1693 device->start_resync_timer.expires = jiffies + HZ/10; 1694 add_timer(&device->start_resync_timer); 1695 return; 1696 } 1697 1698 drbd_start_resync(device, C_SYNC_SOURCE); 1699 clear_bit(AHEAD_TO_SYNC_SOURCE, &device->flags); 1700 } 1701 1702 static bool use_checksum_based_resync(struct drbd_connection *connection, struct drbd_device *device) 1703 { 1704 bool csums_after_crash_only; 1705 rcu_read_lock(); 1706 csums_after_crash_only = rcu_dereference(connection->net_conf)->csums_after_crash_only; 1707 rcu_read_unlock(); 1708 return connection->agreed_pro_version >= 89 && /* supported? */ 1709 connection->csums_tfm && /* configured? */ 1710 (csums_after_crash_only == false /* use for each resync? */ 1711 || test_bit(CRASHED_PRIMARY, &device->flags)); /* or only after Primary crash? */ 1712 } 1713 1714 /** 1715 * drbd_start_resync() - Start the resync process 1716 * @device: DRBD device. 1717 * @side: Either C_SYNC_SOURCE or C_SYNC_TARGET 1718 * 1719 * This function might bring you directly into one of the 1720 * C_PAUSED_SYNC_* states. 1721 */ 1722 void drbd_start_resync(struct drbd_device *device, enum drbd_conns side) 1723 { 1724 struct drbd_peer_device *peer_device = first_peer_device(device); 1725 struct drbd_connection *connection = peer_device ? peer_device->connection : NULL; 1726 union drbd_state ns; 1727 int r; 1728 1729 if (device->state.conn >= C_SYNC_SOURCE && device->state.conn < C_AHEAD) { 1730 drbd_err(device, "Resync already running!\n"); 1731 return; 1732 } 1733 1734 if (!test_bit(B_RS_H_DONE, &device->flags)) { 1735 if (side == C_SYNC_TARGET) { 1736 /* Since application IO was locked out during C_WF_BITMAP_T and 1737 C_WF_SYNC_UUID we are still unmodified. Before going to C_SYNC_TARGET 1738 we check that we might make the data inconsistent. */ 1739 r = drbd_khelper(device, "before-resync-target"); 1740 r = (r >> 8) & 0xff; 1741 if (r > 0) { 1742 drbd_info(device, "before-resync-target handler returned %d, " 1743 "dropping connection.\n", r); 1744 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 1745 return; 1746 } 1747 } else /* C_SYNC_SOURCE */ { 1748 r = drbd_khelper(device, "before-resync-source"); 1749 r = (r >> 8) & 0xff; 1750 if (r > 0) { 1751 if (r == 3) { 1752 drbd_info(device, "before-resync-source handler returned %d, " 1753 "ignoring. Old userland tools?", r); 1754 } else { 1755 drbd_info(device, "before-resync-source handler returned %d, " 1756 "dropping connection.\n", r); 1757 conn_request_state(connection, 1758 NS(conn, C_DISCONNECTING), CS_HARD); 1759 return; 1760 } 1761 } 1762 } 1763 } 1764 1765 if (current == connection->worker.task) { 1766 /* The worker should not sleep waiting for state_mutex, 1767 that can take long */ 1768 if (!mutex_trylock(device->state_mutex)) { 1769 set_bit(B_RS_H_DONE, &device->flags); 1770 device->start_resync_timer.expires = jiffies + HZ/5; 1771 add_timer(&device->start_resync_timer); 1772 return; 1773 } 1774 } else { 1775 mutex_lock(device->state_mutex); 1776 } 1777 1778 lock_all_resources(); 1779 clear_bit(B_RS_H_DONE, &device->flags); 1780 /* Did some connection breakage or IO error race with us? */ 1781 if (device->state.conn < C_CONNECTED 1782 || !get_ldev_if_state(device, D_NEGOTIATING)) { 1783 unlock_all_resources(); 1784 goto out; 1785 } 1786 1787 ns = drbd_read_state(device); 1788 1789 ns.aftr_isp = !_drbd_may_sync_now(device); 1790 1791 ns.conn = side; 1792 1793 if (side == C_SYNC_TARGET) 1794 ns.disk = D_INCONSISTENT; 1795 else /* side == C_SYNC_SOURCE */ 1796 ns.pdsk = D_INCONSISTENT; 1797 1798 r = _drbd_set_state(device, ns, CS_VERBOSE, NULL); 1799 ns = drbd_read_state(device); 1800 1801 if (ns.conn < C_CONNECTED) 1802 r = SS_UNKNOWN_ERROR; 1803 1804 if (r == SS_SUCCESS) { 1805 unsigned long tw = drbd_bm_total_weight(device); 1806 unsigned long now = jiffies; 1807 int i; 1808 1809 device->rs_failed = 0; 1810 device->rs_paused = 0; 1811 device->rs_same_csum = 0; 1812 device->rs_last_sect_ev = 0; 1813 device->rs_total = tw; 1814 device->rs_start = now; 1815 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 1816 device->rs_mark_left[i] = tw; 1817 device->rs_mark_time[i] = now; 1818 } 1819 drbd_pause_after(device); 1820 /* Forget potentially stale cached per resync extent bit-counts. 1821 * Open coded drbd_rs_cancel_all(device), we already have IRQs 1822 * disabled, and know the disk state is ok. */ 1823 spin_lock(&device->al_lock); 1824 lc_reset(device->resync); 1825 device->resync_locked = 0; 1826 device->resync_wenr = LC_FREE; 1827 spin_unlock(&device->al_lock); 1828 } 1829 unlock_all_resources(); 1830 1831 if (r == SS_SUCCESS) { 1832 wake_up(&device->al_wait); /* for lc_reset() above */ 1833 /* reset rs_last_bcast when a resync or verify is started, 1834 * to deal with potential jiffies wrap. */ 1835 device->rs_last_bcast = jiffies - HZ; 1836 1837 drbd_info(device, "Began resync as %s (will sync %lu KB [%lu bits set]).\n", 1838 drbd_conn_str(ns.conn), 1839 (unsigned long) device->rs_total << (BM_BLOCK_SHIFT-10), 1840 (unsigned long) device->rs_total); 1841 if (side == C_SYNC_TARGET) { 1842 device->bm_resync_fo = 0; 1843 device->use_csums = use_checksum_based_resync(connection, device); 1844 } else { 1845 device->use_csums = false; 1846 } 1847 1848 /* Since protocol 96, we must serialize drbd_gen_and_send_sync_uuid 1849 * with w_send_oos, or the sync target will get confused as to 1850 * how much bits to resync. We cannot do that always, because for an 1851 * empty resync and protocol < 95, we need to do it here, as we call 1852 * drbd_resync_finished from here in that case. 1853 * We drbd_gen_and_send_sync_uuid here for protocol < 96, 1854 * and from after_state_ch otherwise. */ 1855 if (side == C_SYNC_SOURCE && connection->agreed_pro_version < 96) 1856 drbd_gen_and_send_sync_uuid(peer_device); 1857 1858 if (connection->agreed_pro_version < 95 && device->rs_total == 0) { 1859 /* This still has a race (about when exactly the peers 1860 * detect connection loss) that can lead to a full sync 1861 * on next handshake. In 8.3.9 we fixed this with explicit 1862 * resync-finished notifications, but the fix 1863 * introduces a protocol change. Sleeping for some 1864 * time longer than the ping interval + timeout on the 1865 * SyncSource, to give the SyncTarget the chance to 1866 * detect connection loss, then waiting for a ping 1867 * response (implicit in drbd_resync_finished) reduces 1868 * the race considerably, but does not solve it. */ 1869 if (side == C_SYNC_SOURCE) { 1870 struct net_conf *nc; 1871 int timeo; 1872 1873 rcu_read_lock(); 1874 nc = rcu_dereference(connection->net_conf); 1875 timeo = nc->ping_int * HZ + nc->ping_timeo * HZ / 9; 1876 rcu_read_unlock(); 1877 schedule_timeout_interruptible(timeo); 1878 } 1879 drbd_resync_finished(device); 1880 } 1881 1882 drbd_rs_controller_reset(device); 1883 /* ns.conn may already be != device->state.conn, 1884 * we may have been paused in between, or become paused until 1885 * the timer triggers. 1886 * No matter, that is handled in resync_timer_fn() */ 1887 if (ns.conn == C_SYNC_TARGET) 1888 mod_timer(&device->resync_timer, jiffies); 1889 1890 drbd_md_sync(device); 1891 } 1892 put_ldev(device); 1893 out: 1894 mutex_unlock(device->state_mutex); 1895 } 1896 1897 static void update_on_disk_bitmap(struct drbd_device *device, bool resync_done) 1898 { 1899 struct sib_info sib = { .sib_reason = SIB_SYNC_PROGRESS, }; 1900 device->rs_last_bcast = jiffies; 1901 1902 if (!get_ldev(device)) 1903 return; 1904 1905 drbd_bm_write_lazy(device, 0); 1906 if (resync_done && is_sync_state(device->state.conn)) 1907 drbd_resync_finished(device); 1908 1909 drbd_bcast_event(device, &sib); 1910 /* update timestamp, in case it took a while to write out stuff */ 1911 device->rs_last_bcast = jiffies; 1912 put_ldev(device); 1913 } 1914 1915 static void drbd_ldev_destroy(struct drbd_device *device) 1916 { 1917 lc_destroy(device->resync); 1918 device->resync = NULL; 1919 lc_destroy(device->act_log); 1920 device->act_log = NULL; 1921 1922 __acquire(local); 1923 drbd_backing_dev_free(device, device->ldev); 1924 device->ldev = NULL; 1925 __release(local); 1926 1927 clear_bit(GOING_DISKLESS, &device->flags); 1928 wake_up(&device->misc_wait); 1929 } 1930 1931 static void go_diskless(struct drbd_device *device) 1932 { 1933 D_ASSERT(device, device->state.disk == D_FAILED); 1934 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will 1935 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch 1936 * the protected members anymore, though, so once put_ldev reaches zero 1937 * again, it will be safe to free them. */ 1938 1939 /* Try to write changed bitmap pages, read errors may have just 1940 * set some bits outside the area covered by the activity log. 1941 * 1942 * If we have an IO error during the bitmap writeout, 1943 * we will want a full sync next time, just in case. 1944 * (Do we want a specific meta data flag for this?) 1945 * 1946 * If that does not make it to stable storage either, 1947 * we cannot do anything about that anymore. 1948 * 1949 * We still need to check if both bitmap and ldev are present, we may 1950 * end up here after a failed attach, before ldev was even assigned. 1951 */ 1952 if (device->bitmap && device->ldev) { 1953 /* An interrupted resync or similar is allowed to recounts bits 1954 * while we detach. 1955 * Any modifications would not be expected anymore, though. 1956 */ 1957 if (drbd_bitmap_io_from_worker(device, drbd_bm_write, 1958 "detach", BM_LOCKED_TEST_ALLOWED)) { 1959 if (test_bit(WAS_READ_ERROR, &device->flags)) { 1960 drbd_md_set_flag(device, MDF_FULL_SYNC); 1961 drbd_md_sync(device); 1962 } 1963 } 1964 } 1965 1966 drbd_force_state(device, NS(disk, D_DISKLESS)); 1967 } 1968 1969 static int do_md_sync(struct drbd_device *device) 1970 { 1971 drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n"); 1972 drbd_md_sync(device); 1973 return 0; 1974 } 1975 1976 /* only called from drbd_worker thread, no locking */ 1977 void __update_timing_details( 1978 struct drbd_thread_timing_details *tdp, 1979 unsigned int *cb_nr, 1980 void *cb, 1981 const char *fn, const unsigned int line) 1982 { 1983 unsigned int i = *cb_nr % DRBD_THREAD_DETAILS_HIST; 1984 struct drbd_thread_timing_details *td = tdp + i; 1985 1986 td->start_jif = jiffies; 1987 td->cb_addr = cb; 1988 td->caller_fn = fn; 1989 td->line = line; 1990 td->cb_nr = *cb_nr; 1991 1992 i = (i+1) % DRBD_THREAD_DETAILS_HIST; 1993 td = tdp + i; 1994 memset(td, 0, sizeof(*td)); 1995 1996 ++(*cb_nr); 1997 } 1998 1999 static void do_device_work(struct drbd_device *device, const unsigned long todo) 2000 { 2001 if (test_bit(MD_SYNC, &todo)) 2002 do_md_sync(device); 2003 if (test_bit(RS_DONE, &todo) || 2004 test_bit(RS_PROGRESS, &todo)) 2005 update_on_disk_bitmap(device, test_bit(RS_DONE, &todo)); 2006 if (test_bit(GO_DISKLESS, &todo)) 2007 go_diskless(device); 2008 if (test_bit(DESTROY_DISK, &todo)) 2009 drbd_ldev_destroy(device); 2010 if (test_bit(RS_START, &todo)) 2011 do_start_resync(device); 2012 } 2013 2014 #define DRBD_DEVICE_WORK_MASK \ 2015 ((1UL << GO_DISKLESS) \ 2016 |(1UL << DESTROY_DISK) \ 2017 |(1UL << MD_SYNC) \ 2018 |(1UL << RS_START) \ 2019 |(1UL << RS_PROGRESS) \ 2020 |(1UL << RS_DONE) \ 2021 ) 2022 2023 static unsigned long get_work_bits(unsigned long *flags) 2024 { 2025 unsigned long old, new; 2026 do { 2027 old = *flags; 2028 new = old & ~DRBD_DEVICE_WORK_MASK; 2029 } while (cmpxchg(flags, old, new) != old); 2030 return old & DRBD_DEVICE_WORK_MASK; 2031 } 2032 2033 static void do_unqueued_work(struct drbd_connection *connection) 2034 { 2035 struct drbd_peer_device *peer_device; 2036 int vnr; 2037 2038 rcu_read_lock(); 2039 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2040 struct drbd_device *device = peer_device->device; 2041 unsigned long todo = get_work_bits(&device->flags); 2042 if (!todo) 2043 continue; 2044 2045 kref_get(&device->kref); 2046 rcu_read_unlock(); 2047 do_device_work(device, todo); 2048 kref_put(&device->kref, drbd_destroy_device); 2049 rcu_read_lock(); 2050 } 2051 rcu_read_unlock(); 2052 } 2053 2054 static bool dequeue_work_batch(struct drbd_work_queue *queue, struct list_head *work_list) 2055 { 2056 spin_lock_irq(&queue->q_lock); 2057 list_splice_tail_init(&queue->q, work_list); 2058 spin_unlock_irq(&queue->q_lock); 2059 return !list_empty(work_list); 2060 } 2061 2062 static void wait_for_work(struct drbd_connection *connection, struct list_head *work_list) 2063 { 2064 DEFINE_WAIT(wait); 2065 struct net_conf *nc; 2066 int uncork, cork; 2067 2068 dequeue_work_batch(&connection->sender_work, work_list); 2069 if (!list_empty(work_list)) 2070 return; 2071 2072 /* Still nothing to do? 2073 * Maybe we still need to close the current epoch, 2074 * even if no new requests are queued yet. 2075 * 2076 * Also, poke TCP, just in case. 2077 * Then wait for new work (or signal). */ 2078 rcu_read_lock(); 2079 nc = rcu_dereference(connection->net_conf); 2080 uncork = nc ? nc->tcp_cork : 0; 2081 rcu_read_unlock(); 2082 if (uncork) { 2083 mutex_lock(&connection->data.mutex); 2084 if (connection->data.socket) 2085 drbd_tcp_uncork(connection->data.socket); 2086 mutex_unlock(&connection->data.mutex); 2087 } 2088 2089 for (;;) { 2090 int send_barrier; 2091 prepare_to_wait(&connection->sender_work.q_wait, &wait, TASK_INTERRUPTIBLE); 2092 spin_lock_irq(&connection->resource->req_lock); 2093 spin_lock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */ 2094 if (!list_empty(&connection->sender_work.q)) 2095 list_splice_tail_init(&connection->sender_work.q, work_list); 2096 spin_unlock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */ 2097 if (!list_empty(work_list) || signal_pending(current)) { 2098 spin_unlock_irq(&connection->resource->req_lock); 2099 break; 2100 } 2101 2102 /* We found nothing new to do, no to-be-communicated request, 2103 * no other work item. We may still need to close the last 2104 * epoch. Next incoming request epoch will be connection -> 2105 * current transfer log epoch number. If that is different 2106 * from the epoch of the last request we communicated, it is 2107 * safe to send the epoch separating barrier now. 2108 */ 2109 send_barrier = 2110 atomic_read(&connection->current_tle_nr) != 2111 connection->send.current_epoch_nr; 2112 spin_unlock_irq(&connection->resource->req_lock); 2113 2114 if (send_barrier) 2115 maybe_send_barrier(connection, 2116 connection->send.current_epoch_nr + 1); 2117 2118 if (test_bit(DEVICE_WORK_PENDING, &connection->flags)) 2119 break; 2120 2121 /* drbd_send() may have called flush_signals() */ 2122 if (get_t_state(&connection->worker) != RUNNING) 2123 break; 2124 2125 schedule(); 2126 /* may be woken up for other things but new work, too, 2127 * e.g. if the current epoch got closed. 2128 * In which case we send the barrier above. */ 2129 } 2130 finish_wait(&connection->sender_work.q_wait, &wait); 2131 2132 /* someone may have changed the config while we have been waiting above. */ 2133 rcu_read_lock(); 2134 nc = rcu_dereference(connection->net_conf); 2135 cork = nc ? nc->tcp_cork : 0; 2136 rcu_read_unlock(); 2137 mutex_lock(&connection->data.mutex); 2138 if (connection->data.socket) { 2139 if (cork) 2140 drbd_tcp_cork(connection->data.socket); 2141 else if (!uncork) 2142 drbd_tcp_uncork(connection->data.socket); 2143 } 2144 mutex_unlock(&connection->data.mutex); 2145 } 2146 2147 int drbd_worker(struct drbd_thread *thi) 2148 { 2149 struct drbd_connection *connection = thi->connection; 2150 struct drbd_work *w = NULL; 2151 struct drbd_peer_device *peer_device; 2152 LIST_HEAD(work_list); 2153 int vnr; 2154 2155 while (get_t_state(thi) == RUNNING) { 2156 drbd_thread_current_set_cpu(thi); 2157 2158 if (list_empty(&work_list)) { 2159 update_worker_timing_details(connection, wait_for_work); 2160 wait_for_work(connection, &work_list); 2161 } 2162 2163 if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) { 2164 update_worker_timing_details(connection, do_unqueued_work); 2165 do_unqueued_work(connection); 2166 } 2167 2168 if (signal_pending(current)) { 2169 flush_signals(current); 2170 if (get_t_state(thi) == RUNNING) { 2171 drbd_warn(connection, "Worker got an unexpected signal\n"); 2172 continue; 2173 } 2174 break; 2175 } 2176 2177 if (get_t_state(thi) != RUNNING) 2178 break; 2179 2180 if (!list_empty(&work_list)) { 2181 w = list_first_entry(&work_list, struct drbd_work, list); 2182 list_del_init(&w->list); 2183 update_worker_timing_details(connection, w->cb); 2184 if (w->cb(w, connection->cstate < C_WF_REPORT_PARAMS) == 0) 2185 continue; 2186 if (connection->cstate >= C_WF_REPORT_PARAMS) 2187 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 2188 } 2189 } 2190 2191 do { 2192 if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) { 2193 update_worker_timing_details(connection, do_unqueued_work); 2194 do_unqueued_work(connection); 2195 } 2196 if (!list_empty(&work_list)) { 2197 w = list_first_entry(&work_list, struct drbd_work, list); 2198 list_del_init(&w->list); 2199 update_worker_timing_details(connection, w->cb); 2200 w->cb(w, 1); 2201 } else 2202 dequeue_work_batch(&connection->sender_work, &work_list); 2203 } while (!list_empty(&work_list) || test_bit(DEVICE_WORK_PENDING, &connection->flags)); 2204 2205 rcu_read_lock(); 2206 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2207 struct drbd_device *device = peer_device->device; 2208 D_ASSERT(device, device->state.disk == D_DISKLESS && device->state.conn == C_STANDALONE); 2209 kref_get(&device->kref); 2210 rcu_read_unlock(); 2211 drbd_device_cleanup(device); 2212 kref_put(&device->kref, drbd_destroy_device); 2213 rcu_read_lock(); 2214 } 2215 rcu_read_unlock(); 2216 2217 return 0; 2218 } 2219