1 /* 2 drbd_receiver.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 drbd is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2, or (at your option) 13 any later version. 14 15 drbd is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with drbd; see the file COPYING. If not, write to 22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 26 #include <linux/module.h> 27 28 #include <linux/uaccess.h> 29 #include <net/sock.h> 30 31 #include <linux/drbd.h> 32 #include <linux/fs.h> 33 #include <linux/file.h> 34 #include <linux/in.h> 35 #include <linux/mm.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mm_inline.h> 38 #include <linux/slab.h> 39 #include <uapi/linux/sched/types.h> 40 #include <linux/sched/signal.h> 41 #include <linux/pkt_sched.h> 42 #define __KERNEL_SYSCALLS__ 43 #include <linux/unistd.h> 44 #include <linux/vmalloc.h> 45 #include <linux/random.h> 46 #include <linux/string.h> 47 #include <linux/scatterlist.h> 48 #include "drbd_int.h" 49 #include "drbd_protocol.h" 50 #include "drbd_req.h" 51 #include "drbd_vli.h" 52 53 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME) 54 55 struct packet_info { 56 enum drbd_packet cmd; 57 unsigned int size; 58 unsigned int vnr; 59 void *data; 60 }; 61 62 enum finish_epoch { 63 FE_STILL_LIVE, 64 FE_DESTROYED, 65 FE_RECYCLED, 66 }; 67 68 static int drbd_do_features(struct drbd_connection *connection); 69 static int drbd_do_auth(struct drbd_connection *connection); 70 static int drbd_disconnected(struct drbd_peer_device *); 71 static void conn_wait_active_ee_empty(struct drbd_connection *connection); 72 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event); 73 static int e_end_block(struct drbd_work *, int); 74 75 76 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 77 78 /* 79 * some helper functions to deal with single linked page lists, 80 * page->private being our "next" pointer. 81 */ 82 83 /* If at least n pages are linked at head, get n pages off. 84 * Otherwise, don't modify head, and return NULL. 85 * Locking is the responsibility of the caller. 86 */ 87 static struct page *page_chain_del(struct page **head, int n) 88 { 89 struct page *page; 90 struct page *tmp; 91 92 BUG_ON(!n); 93 BUG_ON(!head); 94 95 page = *head; 96 97 if (!page) 98 return NULL; 99 100 while (page) { 101 tmp = page_chain_next(page); 102 if (--n == 0) 103 break; /* found sufficient pages */ 104 if (tmp == NULL) 105 /* insufficient pages, don't use any of them. */ 106 return NULL; 107 page = tmp; 108 } 109 110 /* add end of list marker for the returned list */ 111 set_page_private(page, 0); 112 /* actual return value, and adjustment of head */ 113 page = *head; 114 *head = tmp; 115 return page; 116 } 117 118 /* may be used outside of locks to find the tail of a (usually short) 119 * "private" page chain, before adding it back to a global chain head 120 * with page_chain_add() under a spinlock. */ 121 static struct page *page_chain_tail(struct page *page, int *len) 122 { 123 struct page *tmp; 124 int i = 1; 125 while ((tmp = page_chain_next(page))) 126 ++i, page = tmp; 127 if (len) 128 *len = i; 129 return page; 130 } 131 132 static int page_chain_free(struct page *page) 133 { 134 struct page *tmp; 135 int i = 0; 136 page_chain_for_each_safe(page, tmp) { 137 put_page(page); 138 ++i; 139 } 140 return i; 141 } 142 143 static void page_chain_add(struct page **head, 144 struct page *chain_first, struct page *chain_last) 145 { 146 #if 1 147 struct page *tmp; 148 tmp = page_chain_tail(chain_first, NULL); 149 BUG_ON(tmp != chain_last); 150 #endif 151 152 /* add chain to head */ 153 set_page_private(chain_last, (unsigned long)*head); 154 *head = chain_first; 155 } 156 157 static struct page *__drbd_alloc_pages(struct drbd_device *device, 158 unsigned int number) 159 { 160 struct page *page = NULL; 161 struct page *tmp = NULL; 162 unsigned int i = 0; 163 164 /* Yes, testing drbd_pp_vacant outside the lock is racy. 165 * So what. It saves a spin_lock. */ 166 if (drbd_pp_vacant >= number) { 167 spin_lock(&drbd_pp_lock); 168 page = page_chain_del(&drbd_pp_pool, number); 169 if (page) 170 drbd_pp_vacant -= number; 171 spin_unlock(&drbd_pp_lock); 172 if (page) 173 return page; 174 } 175 176 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 177 * "criss-cross" setup, that might cause write-out on some other DRBD, 178 * which in turn might block on the other node at this very place. */ 179 for (i = 0; i < number; i++) { 180 tmp = alloc_page(GFP_TRY); 181 if (!tmp) 182 break; 183 set_page_private(tmp, (unsigned long)page); 184 page = tmp; 185 } 186 187 if (i == number) 188 return page; 189 190 /* Not enough pages immediately available this time. 191 * No need to jump around here, drbd_alloc_pages will retry this 192 * function "soon". */ 193 if (page) { 194 tmp = page_chain_tail(page, NULL); 195 spin_lock(&drbd_pp_lock); 196 page_chain_add(&drbd_pp_pool, page, tmp); 197 drbd_pp_vacant += i; 198 spin_unlock(&drbd_pp_lock); 199 } 200 return NULL; 201 } 202 203 static void reclaim_finished_net_peer_reqs(struct drbd_device *device, 204 struct list_head *to_be_freed) 205 { 206 struct drbd_peer_request *peer_req, *tmp; 207 208 /* The EEs are always appended to the end of the list. Since 209 they are sent in order over the wire, they have to finish 210 in order. As soon as we see the first not finished we can 211 stop to examine the list... */ 212 213 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) { 214 if (drbd_peer_req_has_active_page(peer_req)) 215 break; 216 list_move(&peer_req->w.list, to_be_freed); 217 } 218 } 219 220 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device) 221 { 222 LIST_HEAD(reclaimed); 223 struct drbd_peer_request *peer_req, *t; 224 225 spin_lock_irq(&device->resource->req_lock); 226 reclaim_finished_net_peer_reqs(device, &reclaimed); 227 spin_unlock_irq(&device->resource->req_lock); 228 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 229 drbd_free_net_peer_req(device, peer_req); 230 } 231 232 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection) 233 { 234 struct drbd_peer_device *peer_device; 235 int vnr; 236 237 rcu_read_lock(); 238 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 239 struct drbd_device *device = peer_device->device; 240 if (!atomic_read(&device->pp_in_use_by_net)) 241 continue; 242 243 kref_get(&device->kref); 244 rcu_read_unlock(); 245 drbd_reclaim_net_peer_reqs(device); 246 kref_put(&device->kref, drbd_destroy_device); 247 rcu_read_lock(); 248 } 249 rcu_read_unlock(); 250 } 251 252 /** 253 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 254 * @device: DRBD device. 255 * @number: number of pages requested 256 * @retry: whether to retry, if not enough pages are available right now 257 * 258 * Tries to allocate number pages, first from our own page pool, then from 259 * the kernel. 260 * Possibly retry until DRBD frees sufficient pages somewhere else. 261 * 262 * If this allocation would exceed the max_buffers setting, we throttle 263 * allocation (schedule_timeout) to give the system some room to breathe. 264 * 265 * We do not use max-buffers as hard limit, because it could lead to 266 * congestion and further to a distributed deadlock during online-verify or 267 * (checksum based) resync, if the max-buffers, socket buffer sizes and 268 * resync-rate settings are mis-configured. 269 * 270 * Returns a page chain linked via page->private. 271 */ 272 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number, 273 bool retry) 274 { 275 struct drbd_device *device = peer_device->device; 276 struct page *page = NULL; 277 struct net_conf *nc; 278 DEFINE_WAIT(wait); 279 unsigned int mxb; 280 281 rcu_read_lock(); 282 nc = rcu_dereference(peer_device->connection->net_conf); 283 mxb = nc ? nc->max_buffers : 1000000; 284 rcu_read_unlock(); 285 286 if (atomic_read(&device->pp_in_use) < mxb) 287 page = __drbd_alloc_pages(device, number); 288 289 /* Try to keep the fast path fast, but occasionally we need 290 * to reclaim the pages we lended to the network stack. */ 291 if (page && atomic_read(&device->pp_in_use_by_net) > 512) 292 drbd_reclaim_net_peer_reqs(device); 293 294 while (page == NULL) { 295 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 296 297 drbd_reclaim_net_peer_reqs(device); 298 299 if (atomic_read(&device->pp_in_use) < mxb) { 300 page = __drbd_alloc_pages(device, number); 301 if (page) 302 break; 303 } 304 305 if (!retry) 306 break; 307 308 if (signal_pending(current)) { 309 drbd_warn(device, "drbd_alloc_pages interrupted!\n"); 310 break; 311 } 312 313 if (schedule_timeout(HZ/10) == 0) 314 mxb = UINT_MAX; 315 } 316 finish_wait(&drbd_pp_wait, &wait); 317 318 if (page) 319 atomic_add(number, &device->pp_in_use); 320 return page; 321 } 322 323 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 324 * Is also used from inside an other spin_lock_irq(&resource->req_lock); 325 * Either links the page chain back to the global pool, 326 * or returns all pages to the system. */ 327 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net) 328 { 329 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use; 330 int i; 331 332 if (page == NULL) 333 return; 334 335 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count) 336 i = page_chain_free(page); 337 else { 338 struct page *tmp; 339 tmp = page_chain_tail(page, &i); 340 spin_lock(&drbd_pp_lock); 341 page_chain_add(&drbd_pp_pool, page, tmp); 342 drbd_pp_vacant += i; 343 spin_unlock(&drbd_pp_lock); 344 } 345 i = atomic_sub_return(i, a); 346 if (i < 0) 347 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n", 348 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 349 wake_up(&drbd_pp_wait); 350 } 351 352 /* 353 You need to hold the req_lock: 354 _drbd_wait_ee_list_empty() 355 356 You must not have the req_lock: 357 drbd_free_peer_req() 358 drbd_alloc_peer_req() 359 drbd_free_peer_reqs() 360 drbd_ee_fix_bhs() 361 drbd_finish_peer_reqs() 362 drbd_clear_done_ee() 363 drbd_wait_ee_list_empty() 364 */ 365 366 /* normal: payload_size == request size (bi_size) 367 * w_same: payload_size == logical_block_size 368 * trim: payload_size == 0 */ 369 struct drbd_peer_request * 370 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 371 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local) 372 { 373 struct drbd_device *device = peer_device->device; 374 struct drbd_peer_request *peer_req; 375 struct page *page = NULL; 376 unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT; 377 378 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE)) 379 return NULL; 380 381 peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 382 if (!peer_req) { 383 if (!(gfp_mask & __GFP_NOWARN)) 384 drbd_err(device, "%s: allocation failed\n", __func__); 385 return NULL; 386 } 387 388 if (nr_pages) { 389 page = drbd_alloc_pages(peer_device, nr_pages, 390 gfpflags_allow_blocking(gfp_mask)); 391 if (!page) 392 goto fail; 393 } 394 395 memset(peer_req, 0, sizeof(*peer_req)); 396 INIT_LIST_HEAD(&peer_req->w.list); 397 drbd_clear_interval(&peer_req->i); 398 peer_req->i.size = request_size; 399 peer_req->i.sector = sector; 400 peer_req->submit_jif = jiffies; 401 peer_req->peer_device = peer_device; 402 peer_req->pages = page; 403 /* 404 * The block_id is opaque to the receiver. It is not endianness 405 * converted, and sent back to the sender unchanged. 406 */ 407 peer_req->block_id = id; 408 409 return peer_req; 410 411 fail: 412 mempool_free(peer_req, &drbd_ee_mempool); 413 return NULL; 414 } 415 416 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req, 417 int is_net) 418 { 419 might_sleep(); 420 if (peer_req->flags & EE_HAS_DIGEST) 421 kfree(peer_req->digest); 422 drbd_free_pages(device, peer_req->pages, is_net); 423 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0); 424 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 425 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) { 426 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 427 drbd_al_complete_io(device, &peer_req->i); 428 } 429 mempool_free(peer_req, &drbd_ee_mempool); 430 } 431 432 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list) 433 { 434 LIST_HEAD(work_list); 435 struct drbd_peer_request *peer_req, *t; 436 int count = 0; 437 int is_net = list == &device->net_ee; 438 439 spin_lock_irq(&device->resource->req_lock); 440 list_splice_init(list, &work_list); 441 spin_unlock_irq(&device->resource->req_lock); 442 443 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 444 __drbd_free_peer_req(device, peer_req, is_net); 445 count++; 446 } 447 return count; 448 } 449 450 /* 451 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 452 */ 453 static int drbd_finish_peer_reqs(struct drbd_device *device) 454 { 455 LIST_HEAD(work_list); 456 LIST_HEAD(reclaimed); 457 struct drbd_peer_request *peer_req, *t; 458 int err = 0; 459 460 spin_lock_irq(&device->resource->req_lock); 461 reclaim_finished_net_peer_reqs(device, &reclaimed); 462 list_splice_init(&device->done_ee, &work_list); 463 spin_unlock_irq(&device->resource->req_lock); 464 465 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 466 drbd_free_net_peer_req(device, peer_req); 467 468 /* possible callbacks here: 469 * e_end_block, and e_end_resync_block, e_send_superseded. 470 * all ignore the last argument. 471 */ 472 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 473 int err2; 474 475 /* list_del not necessary, next/prev members not touched */ 476 err2 = peer_req->w.cb(&peer_req->w, !!err); 477 if (!err) 478 err = err2; 479 drbd_free_peer_req(device, peer_req); 480 } 481 wake_up(&device->ee_wait); 482 483 return err; 484 } 485 486 static void _drbd_wait_ee_list_empty(struct drbd_device *device, 487 struct list_head *head) 488 { 489 DEFINE_WAIT(wait); 490 491 /* avoids spin_lock/unlock 492 * and calling prepare_to_wait in the fast path */ 493 while (!list_empty(head)) { 494 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 495 spin_unlock_irq(&device->resource->req_lock); 496 io_schedule(); 497 finish_wait(&device->ee_wait, &wait); 498 spin_lock_irq(&device->resource->req_lock); 499 } 500 } 501 502 static void drbd_wait_ee_list_empty(struct drbd_device *device, 503 struct list_head *head) 504 { 505 spin_lock_irq(&device->resource->req_lock); 506 _drbd_wait_ee_list_empty(device, head); 507 spin_unlock_irq(&device->resource->req_lock); 508 } 509 510 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 511 { 512 struct kvec iov = { 513 .iov_base = buf, 514 .iov_len = size, 515 }; 516 struct msghdr msg = { 517 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 518 }; 519 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, size); 520 return sock_recvmsg(sock, &msg, msg.msg_flags); 521 } 522 523 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size) 524 { 525 int rv; 526 527 rv = drbd_recv_short(connection->data.socket, buf, size, 0); 528 529 if (rv < 0) { 530 if (rv == -ECONNRESET) 531 drbd_info(connection, "sock was reset by peer\n"); 532 else if (rv != -ERESTARTSYS) 533 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 534 } else if (rv == 0) { 535 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 536 long t; 537 rcu_read_lock(); 538 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 539 rcu_read_unlock(); 540 541 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t); 542 543 if (t) 544 goto out; 545 } 546 drbd_info(connection, "sock was shut down by peer\n"); 547 } 548 549 if (rv != size) 550 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 551 552 out: 553 return rv; 554 } 555 556 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size) 557 { 558 int err; 559 560 err = drbd_recv(connection, buf, size); 561 if (err != size) { 562 if (err >= 0) 563 err = -EIO; 564 } else 565 err = 0; 566 return err; 567 } 568 569 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size) 570 { 571 int err; 572 573 err = drbd_recv_all(connection, buf, size); 574 if (err && !signal_pending(current)) 575 drbd_warn(connection, "short read (expected size %d)\n", (int)size); 576 return err; 577 } 578 579 /* quoting tcp(7): 580 * On individual connections, the socket buffer size must be set prior to the 581 * listen(2) or connect(2) calls in order to have it take effect. 582 * This is our wrapper to do so. 583 */ 584 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 585 unsigned int rcv) 586 { 587 /* open coded SO_SNDBUF, SO_RCVBUF */ 588 if (snd) { 589 sock->sk->sk_sndbuf = snd; 590 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 591 } 592 if (rcv) { 593 sock->sk->sk_rcvbuf = rcv; 594 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 595 } 596 } 597 598 static struct socket *drbd_try_connect(struct drbd_connection *connection) 599 { 600 const char *what; 601 struct socket *sock; 602 struct sockaddr_in6 src_in6; 603 struct sockaddr_in6 peer_in6; 604 struct net_conf *nc; 605 int err, peer_addr_len, my_addr_len; 606 int sndbuf_size, rcvbuf_size, connect_int; 607 int disconnect_on_error = 1; 608 609 rcu_read_lock(); 610 nc = rcu_dereference(connection->net_conf); 611 if (!nc) { 612 rcu_read_unlock(); 613 return NULL; 614 } 615 sndbuf_size = nc->sndbuf_size; 616 rcvbuf_size = nc->rcvbuf_size; 617 connect_int = nc->connect_int; 618 rcu_read_unlock(); 619 620 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6)); 621 memcpy(&src_in6, &connection->my_addr, my_addr_len); 622 623 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6) 624 src_in6.sin6_port = 0; 625 else 626 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 627 628 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6)); 629 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len); 630 631 what = "sock_create_kern"; 632 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family, 633 SOCK_STREAM, IPPROTO_TCP, &sock); 634 if (err < 0) { 635 sock = NULL; 636 goto out; 637 } 638 639 sock->sk->sk_rcvtimeo = 640 sock->sk->sk_sndtimeo = connect_int * HZ; 641 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 642 643 /* explicitly bind to the configured IP as source IP 644 * for the outgoing connections. 645 * This is needed for multihomed hosts and to be 646 * able to use lo: interfaces for drbd. 647 * Make sure to use 0 as port number, so linux selects 648 * a free one dynamically. 649 */ 650 what = "bind before connect"; 651 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 652 if (err < 0) 653 goto out; 654 655 /* connect may fail, peer not yet available. 656 * stay C_WF_CONNECTION, don't go Disconnecting! */ 657 disconnect_on_error = 0; 658 what = "connect"; 659 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 660 661 out: 662 if (err < 0) { 663 if (sock) { 664 sock_release(sock); 665 sock = NULL; 666 } 667 switch (-err) { 668 /* timeout, busy, signal pending */ 669 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 670 case EINTR: case ERESTARTSYS: 671 /* peer not (yet) available, network problem */ 672 case ECONNREFUSED: case ENETUNREACH: 673 case EHOSTDOWN: case EHOSTUNREACH: 674 disconnect_on_error = 0; 675 break; 676 default: 677 drbd_err(connection, "%s failed, err = %d\n", what, err); 678 } 679 if (disconnect_on_error) 680 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 681 } 682 683 return sock; 684 } 685 686 struct accept_wait_data { 687 struct drbd_connection *connection; 688 struct socket *s_listen; 689 struct completion door_bell; 690 void (*original_sk_state_change)(struct sock *sk); 691 692 }; 693 694 static void drbd_incoming_connection(struct sock *sk) 695 { 696 struct accept_wait_data *ad = sk->sk_user_data; 697 void (*state_change)(struct sock *sk); 698 699 state_change = ad->original_sk_state_change; 700 if (sk->sk_state == TCP_ESTABLISHED) 701 complete(&ad->door_bell); 702 state_change(sk); 703 } 704 705 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad) 706 { 707 int err, sndbuf_size, rcvbuf_size, my_addr_len; 708 struct sockaddr_in6 my_addr; 709 struct socket *s_listen; 710 struct net_conf *nc; 711 const char *what; 712 713 rcu_read_lock(); 714 nc = rcu_dereference(connection->net_conf); 715 if (!nc) { 716 rcu_read_unlock(); 717 return -EIO; 718 } 719 sndbuf_size = nc->sndbuf_size; 720 rcvbuf_size = nc->rcvbuf_size; 721 rcu_read_unlock(); 722 723 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6)); 724 memcpy(&my_addr, &connection->my_addr, my_addr_len); 725 726 what = "sock_create_kern"; 727 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family, 728 SOCK_STREAM, IPPROTO_TCP, &s_listen); 729 if (err) { 730 s_listen = NULL; 731 goto out; 732 } 733 734 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 735 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 736 737 what = "bind before listen"; 738 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 739 if (err < 0) 740 goto out; 741 742 ad->s_listen = s_listen; 743 write_lock_bh(&s_listen->sk->sk_callback_lock); 744 ad->original_sk_state_change = s_listen->sk->sk_state_change; 745 s_listen->sk->sk_state_change = drbd_incoming_connection; 746 s_listen->sk->sk_user_data = ad; 747 write_unlock_bh(&s_listen->sk->sk_callback_lock); 748 749 what = "listen"; 750 err = s_listen->ops->listen(s_listen, 5); 751 if (err < 0) 752 goto out; 753 754 return 0; 755 out: 756 if (s_listen) 757 sock_release(s_listen); 758 if (err < 0) { 759 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 760 drbd_err(connection, "%s failed, err = %d\n", what, err); 761 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 762 } 763 } 764 765 return -EIO; 766 } 767 768 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 769 { 770 write_lock_bh(&sk->sk_callback_lock); 771 sk->sk_state_change = ad->original_sk_state_change; 772 sk->sk_user_data = NULL; 773 write_unlock_bh(&sk->sk_callback_lock); 774 } 775 776 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad) 777 { 778 int timeo, connect_int, err = 0; 779 struct socket *s_estab = NULL; 780 struct net_conf *nc; 781 782 rcu_read_lock(); 783 nc = rcu_dereference(connection->net_conf); 784 if (!nc) { 785 rcu_read_unlock(); 786 return NULL; 787 } 788 connect_int = nc->connect_int; 789 rcu_read_unlock(); 790 791 timeo = connect_int * HZ; 792 /* 28.5% random jitter */ 793 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7; 794 795 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 796 if (err <= 0) 797 return NULL; 798 799 err = kernel_accept(ad->s_listen, &s_estab, 0); 800 if (err < 0) { 801 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 802 drbd_err(connection, "accept failed, err = %d\n", err); 803 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 804 } 805 } 806 807 if (s_estab) 808 unregister_state_change(s_estab->sk, ad); 809 810 return s_estab; 811 } 812 813 static int decode_header(struct drbd_connection *, void *, struct packet_info *); 814 815 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock, 816 enum drbd_packet cmd) 817 { 818 if (!conn_prepare_command(connection, sock)) 819 return -EIO; 820 return conn_send_command(connection, sock, cmd, 0, NULL, 0); 821 } 822 823 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock) 824 { 825 unsigned int header_size = drbd_header_size(connection); 826 struct packet_info pi; 827 struct net_conf *nc; 828 int err; 829 830 rcu_read_lock(); 831 nc = rcu_dereference(connection->net_conf); 832 if (!nc) { 833 rcu_read_unlock(); 834 return -EIO; 835 } 836 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10; 837 rcu_read_unlock(); 838 839 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0); 840 if (err != header_size) { 841 if (err >= 0) 842 err = -EIO; 843 return err; 844 } 845 err = decode_header(connection, connection->data.rbuf, &pi); 846 if (err) 847 return err; 848 return pi.cmd; 849 } 850 851 /** 852 * drbd_socket_okay() - Free the socket if its connection is not okay 853 * @sock: pointer to the pointer to the socket. 854 */ 855 static bool drbd_socket_okay(struct socket **sock) 856 { 857 int rr; 858 char tb[4]; 859 860 if (!*sock) 861 return false; 862 863 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 864 865 if (rr > 0 || rr == -EAGAIN) { 866 return true; 867 } else { 868 sock_release(*sock); 869 *sock = NULL; 870 return false; 871 } 872 } 873 874 static bool connection_established(struct drbd_connection *connection, 875 struct socket **sock1, 876 struct socket **sock2) 877 { 878 struct net_conf *nc; 879 int timeout; 880 bool ok; 881 882 if (!*sock1 || !*sock2) 883 return false; 884 885 rcu_read_lock(); 886 nc = rcu_dereference(connection->net_conf); 887 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10; 888 rcu_read_unlock(); 889 schedule_timeout_interruptible(timeout); 890 891 ok = drbd_socket_okay(sock1); 892 ok = drbd_socket_okay(sock2) && ok; 893 894 return ok; 895 } 896 897 /* Gets called if a connection is established, or if a new minor gets created 898 in a connection */ 899 int drbd_connected(struct drbd_peer_device *peer_device) 900 { 901 struct drbd_device *device = peer_device->device; 902 int err; 903 904 atomic_set(&device->packet_seq, 0); 905 device->peer_seq = 0; 906 907 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ? 908 &peer_device->connection->cstate_mutex : 909 &device->own_state_mutex; 910 911 err = drbd_send_sync_param(peer_device); 912 if (!err) 913 err = drbd_send_sizes(peer_device, 0, 0); 914 if (!err) 915 err = drbd_send_uuids(peer_device); 916 if (!err) 917 err = drbd_send_current_state(peer_device); 918 clear_bit(USE_DEGR_WFC_T, &device->flags); 919 clear_bit(RESIZE_PENDING, &device->flags); 920 atomic_set(&device->ap_in_flight, 0); 921 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */ 922 return err; 923 } 924 925 /* 926 * return values: 927 * 1 yes, we have a valid connection 928 * 0 oops, did not work out, please try again 929 * -1 peer talks different language, 930 * no point in trying again, please go standalone. 931 * -2 We do not have a network config... 932 */ 933 static int conn_connect(struct drbd_connection *connection) 934 { 935 struct drbd_socket sock, msock; 936 struct drbd_peer_device *peer_device; 937 struct net_conf *nc; 938 int vnr, timeout, h; 939 bool discard_my_data, ok; 940 enum drbd_state_rv rv; 941 struct accept_wait_data ad = { 942 .connection = connection, 943 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 944 }; 945 946 clear_bit(DISCONNECT_SENT, &connection->flags); 947 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 948 return -2; 949 950 mutex_init(&sock.mutex); 951 sock.sbuf = connection->data.sbuf; 952 sock.rbuf = connection->data.rbuf; 953 sock.socket = NULL; 954 mutex_init(&msock.mutex); 955 msock.sbuf = connection->meta.sbuf; 956 msock.rbuf = connection->meta.rbuf; 957 msock.socket = NULL; 958 959 /* Assume that the peer only understands protocol 80 until we know better. */ 960 connection->agreed_pro_version = 80; 961 962 if (prepare_listen_socket(connection, &ad)) 963 return 0; 964 965 do { 966 struct socket *s; 967 968 s = drbd_try_connect(connection); 969 if (s) { 970 if (!sock.socket) { 971 sock.socket = s; 972 send_first_packet(connection, &sock, P_INITIAL_DATA); 973 } else if (!msock.socket) { 974 clear_bit(RESOLVE_CONFLICTS, &connection->flags); 975 msock.socket = s; 976 send_first_packet(connection, &msock, P_INITIAL_META); 977 } else { 978 drbd_err(connection, "Logic error in conn_connect()\n"); 979 goto out_release_sockets; 980 } 981 } 982 983 if (connection_established(connection, &sock.socket, &msock.socket)) 984 break; 985 986 retry: 987 s = drbd_wait_for_connect(connection, &ad); 988 if (s) { 989 int fp = receive_first_packet(connection, s); 990 drbd_socket_okay(&sock.socket); 991 drbd_socket_okay(&msock.socket); 992 switch (fp) { 993 case P_INITIAL_DATA: 994 if (sock.socket) { 995 drbd_warn(connection, "initial packet S crossed\n"); 996 sock_release(sock.socket); 997 sock.socket = s; 998 goto randomize; 999 } 1000 sock.socket = s; 1001 break; 1002 case P_INITIAL_META: 1003 set_bit(RESOLVE_CONFLICTS, &connection->flags); 1004 if (msock.socket) { 1005 drbd_warn(connection, "initial packet M crossed\n"); 1006 sock_release(msock.socket); 1007 msock.socket = s; 1008 goto randomize; 1009 } 1010 msock.socket = s; 1011 break; 1012 default: 1013 drbd_warn(connection, "Error receiving initial packet\n"); 1014 sock_release(s); 1015 randomize: 1016 if (prandom_u32() & 1) 1017 goto retry; 1018 } 1019 } 1020 1021 if (connection->cstate <= C_DISCONNECTING) 1022 goto out_release_sockets; 1023 if (signal_pending(current)) { 1024 flush_signals(current); 1025 smp_rmb(); 1026 if (get_t_state(&connection->receiver) == EXITING) 1027 goto out_release_sockets; 1028 } 1029 1030 ok = connection_established(connection, &sock.socket, &msock.socket); 1031 } while (!ok); 1032 1033 if (ad.s_listen) 1034 sock_release(ad.s_listen); 1035 1036 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1037 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1038 1039 sock.socket->sk->sk_allocation = GFP_NOIO; 1040 msock.socket->sk->sk_allocation = GFP_NOIO; 1041 1042 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 1043 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 1044 1045 /* NOT YET ... 1046 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10; 1047 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1048 * first set it to the P_CONNECTION_FEATURES timeout, 1049 * which we set to 4x the configured ping_timeout. */ 1050 rcu_read_lock(); 1051 nc = rcu_dereference(connection->net_conf); 1052 1053 sock.socket->sk->sk_sndtimeo = 1054 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 1055 1056 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1057 timeout = nc->timeout * HZ / 10; 1058 discard_my_data = nc->discard_my_data; 1059 rcu_read_unlock(); 1060 1061 msock.socket->sk->sk_sndtimeo = timeout; 1062 1063 /* we don't want delays. 1064 * we use TCP_CORK where appropriate, though */ 1065 drbd_tcp_nodelay(sock.socket); 1066 drbd_tcp_nodelay(msock.socket); 1067 1068 connection->data.socket = sock.socket; 1069 connection->meta.socket = msock.socket; 1070 connection->last_received = jiffies; 1071 1072 h = drbd_do_features(connection); 1073 if (h <= 0) 1074 return h; 1075 1076 if (connection->cram_hmac_tfm) { 1077 /* drbd_request_state(device, NS(conn, WFAuth)); */ 1078 switch (drbd_do_auth(connection)) { 1079 case -1: 1080 drbd_err(connection, "Authentication of peer failed\n"); 1081 return -1; 1082 case 0: 1083 drbd_err(connection, "Authentication of peer failed, trying again.\n"); 1084 return 0; 1085 } 1086 } 1087 1088 connection->data.socket->sk->sk_sndtimeo = timeout; 1089 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1090 1091 if (drbd_send_protocol(connection) == -EOPNOTSUPP) 1092 return -1; 1093 1094 /* Prevent a race between resync-handshake and 1095 * being promoted to Primary. 1096 * 1097 * Grab and release the state mutex, so we know that any current 1098 * drbd_set_role() is finished, and any incoming drbd_set_role 1099 * will see the STATE_SENT flag, and wait for it to be cleared. 1100 */ 1101 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1102 mutex_lock(peer_device->device->state_mutex); 1103 1104 /* avoid a race with conn_request_state( C_DISCONNECTING ) */ 1105 spin_lock_irq(&connection->resource->req_lock); 1106 set_bit(STATE_SENT, &connection->flags); 1107 spin_unlock_irq(&connection->resource->req_lock); 1108 1109 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1110 mutex_unlock(peer_device->device->state_mutex); 1111 1112 rcu_read_lock(); 1113 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1114 struct drbd_device *device = peer_device->device; 1115 kref_get(&device->kref); 1116 rcu_read_unlock(); 1117 1118 if (discard_my_data) 1119 set_bit(DISCARD_MY_DATA, &device->flags); 1120 else 1121 clear_bit(DISCARD_MY_DATA, &device->flags); 1122 1123 drbd_connected(peer_device); 1124 kref_put(&device->kref, drbd_destroy_device); 1125 rcu_read_lock(); 1126 } 1127 rcu_read_unlock(); 1128 1129 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1130 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) { 1131 clear_bit(STATE_SENT, &connection->flags); 1132 return 0; 1133 } 1134 1135 drbd_thread_start(&connection->ack_receiver); 1136 /* opencoded create_singlethread_workqueue(), 1137 * to be able to use format string arguments */ 1138 connection->ack_sender = 1139 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name); 1140 if (!connection->ack_sender) { 1141 drbd_err(connection, "Failed to create workqueue ack_sender\n"); 1142 return 0; 1143 } 1144 1145 mutex_lock(&connection->resource->conf_update); 1146 /* The discard_my_data flag is a single-shot modifier to the next 1147 * connection attempt, the handshake of which is now well underway. 1148 * No need for rcu style copying of the whole struct 1149 * just to clear a single value. */ 1150 connection->net_conf->discard_my_data = 0; 1151 mutex_unlock(&connection->resource->conf_update); 1152 1153 return h; 1154 1155 out_release_sockets: 1156 if (ad.s_listen) 1157 sock_release(ad.s_listen); 1158 if (sock.socket) 1159 sock_release(sock.socket); 1160 if (msock.socket) 1161 sock_release(msock.socket); 1162 return -1; 1163 } 1164 1165 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi) 1166 { 1167 unsigned int header_size = drbd_header_size(connection); 1168 1169 if (header_size == sizeof(struct p_header100) && 1170 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1171 struct p_header100 *h = header; 1172 if (h->pad != 0) { 1173 drbd_err(connection, "Header padding is not zero\n"); 1174 return -EINVAL; 1175 } 1176 pi->vnr = be16_to_cpu(h->volume); 1177 pi->cmd = be16_to_cpu(h->command); 1178 pi->size = be32_to_cpu(h->length); 1179 } else if (header_size == sizeof(struct p_header95) && 1180 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1181 struct p_header95 *h = header; 1182 pi->cmd = be16_to_cpu(h->command); 1183 pi->size = be32_to_cpu(h->length); 1184 pi->vnr = 0; 1185 } else if (header_size == sizeof(struct p_header80) && 1186 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1187 struct p_header80 *h = header; 1188 pi->cmd = be16_to_cpu(h->command); 1189 pi->size = be16_to_cpu(h->length); 1190 pi->vnr = 0; 1191 } else { 1192 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n", 1193 be32_to_cpu(*(__be32 *)header), 1194 connection->agreed_pro_version); 1195 return -EINVAL; 1196 } 1197 pi->data = header + header_size; 1198 return 0; 1199 } 1200 1201 static void drbd_unplug_all_devices(struct drbd_connection *connection) 1202 { 1203 if (current->plug == &connection->receiver_plug) { 1204 blk_finish_plug(&connection->receiver_plug); 1205 blk_start_plug(&connection->receiver_plug); 1206 } /* else: maybe just schedule() ?? */ 1207 } 1208 1209 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi) 1210 { 1211 void *buffer = connection->data.rbuf; 1212 int err; 1213 1214 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection)); 1215 if (err) 1216 return err; 1217 1218 err = decode_header(connection, buffer, pi); 1219 connection->last_received = jiffies; 1220 1221 return err; 1222 } 1223 1224 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi) 1225 { 1226 void *buffer = connection->data.rbuf; 1227 unsigned int size = drbd_header_size(connection); 1228 int err; 1229 1230 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT); 1231 if (err != size) { 1232 /* If we have nothing in the receive buffer now, to reduce 1233 * application latency, try to drain the backend queues as 1234 * quickly as possible, and let remote TCP know what we have 1235 * received so far. */ 1236 if (err == -EAGAIN) { 1237 drbd_tcp_quickack(connection->data.socket); 1238 drbd_unplug_all_devices(connection); 1239 } 1240 if (err > 0) { 1241 buffer += err; 1242 size -= err; 1243 } 1244 err = drbd_recv_all_warn(connection, buffer, size); 1245 if (err) 1246 return err; 1247 } 1248 1249 err = decode_header(connection, connection->data.rbuf, pi); 1250 connection->last_received = jiffies; 1251 1252 return err; 1253 } 1254 /* This is blkdev_issue_flush, but asynchronous. 1255 * We want to submit to all component volumes in parallel, 1256 * then wait for all completions. 1257 */ 1258 struct issue_flush_context { 1259 atomic_t pending; 1260 int error; 1261 struct completion done; 1262 }; 1263 struct one_flush_context { 1264 struct drbd_device *device; 1265 struct issue_flush_context *ctx; 1266 }; 1267 1268 static void one_flush_endio(struct bio *bio) 1269 { 1270 struct one_flush_context *octx = bio->bi_private; 1271 struct drbd_device *device = octx->device; 1272 struct issue_flush_context *ctx = octx->ctx; 1273 1274 if (bio->bi_status) { 1275 ctx->error = blk_status_to_errno(bio->bi_status); 1276 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status); 1277 } 1278 kfree(octx); 1279 bio_put(bio); 1280 1281 clear_bit(FLUSH_PENDING, &device->flags); 1282 put_ldev(device); 1283 kref_put(&device->kref, drbd_destroy_device); 1284 1285 if (atomic_dec_and_test(&ctx->pending)) 1286 complete(&ctx->done); 1287 } 1288 1289 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx) 1290 { 1291 struct bio *bio = bio_alloc(GFP_NOIO, 0); 1292 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO); 1293 if (!bio || !octx) { 1294 drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n"); 1295 /* FIXME: what else can I do now? disconnecting or detaching 1296 * really does not help to improve the state of the world, either. 1297 */ 1298 kfree(octx); 1299 if (bio) 1300 bio_put(bio); 1301 1302 ctx->error = -ENOMEM; 1303 put_ldev(device); 1304 kref_put(&device->kref, drbd_destroy_device); 1305 return; 1306 } 1307 1308 octx->device = device; 1309 octx->ctx = ctx; 1310 bio_set_dev(bio, device->ldev->backing_bdev); 1311 bio->bi_private = octx; 1312 bio->bi_end_io = one_flush_endio; 1313 bio->bi_opf = REQ_OP_FLUSH | REQ_PREFLUSH; 1314 1315 device->flush_jif = jiffies; 1316 set_bit(FLUSH_PENDING, &device->flags); 1317 atomic_inc(&ctx->pending); 1318 submit_bio(bio); 1319 } 1320 1321 static void drbd_flush(struct drbd_connection *connection) 1322 { 1323 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) { 1324 struct drbd_peer_device *peer_device; 1325 struct issue_flush_context ctx; 1326 int vnr; 1327 1328 atomic_set(&ctx.pending, 1); 1329 ctx.error = 0; 1330 init_completion(&ctx.done); 1331 1332 rcu_read_lock(); 1333 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1334 struct drbd_device *device = peer_device->device; 1335 1336 if (!get_ldev(device)) 1337 continue; 1338 kref_get(&device->kref); 1339 rcu_read_unlock(); 1340 1341 submit_one_flush(device, &ctx); 1342 1343 rcu_read_lock(); 1344 } 1345 rcu_read_unlock(); 1346 1347 /* Do we want to add a timeout, 1348 * if disk-timeout is set? */ 1349 if (!atomic_dec_and_test(&ctx.pending)) 1350 wait_for_completion(&ctx.done); 1351 1352 if (ctx.error) { 1353 /* would rather check on EOPNOTSUPP, but that is not reliable. 1354 * don't try again for ANY return value != 0 1355 * if (rv == -EOPNOTSUPP) */ 1356 /* Any error is already reported by bio_endio callback. */ 1357 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO); 1358 } 1359 } 1360 } 1361 1362 /** 1363 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1364 * @device: DRBD device. 1365 * @epoch: Epoch object. 1366 * @ev: Epoch event. 1367 */ 1368 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection, 1369 struct drbd_epoch *epoch, 1370 enum epoch_event ev) 1371 { 1372 int epoch_size; 1373 struct drbd_epoch *next_epoch; 1374 enum finish_epoch rv = FE_STILL_LIVE; 1375 1376 spin_lock(&connection->epoch_lock); 1377 do { 1378 next_epoch = NULL; 1379 1380 epoch_size = atomic_read(&epoch->epoch_size); 1381 1382 switch (ev & ~EV_CLEANUP) { 1383 case EV_PUT: 1384 atomic_dec(&epoch->active); 1385 break; 1386 case EV_GOT_BARRIER_NR: 1387 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1388 break; 1389 case EV_BECAME_LAST: 1390 /* nothing to do*/ 1391 break; 1392 } 1393 1394 if (epoch_size != 0 && 1395 atomic_read(&epoch->active) == 0 && 1396 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1397 if (!(ev & EV_CLEANUP)) { 1398 spin_unlock(&connection->epoch_lock); 1399 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size); 1400 spin_lock(&connection->epoch_lock); 1401 } 1402 #if 0 1403 /* FIXME: dec unacked on connection, once we have 1404 * something to count pending connection packets in. */ 1405 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1406 dec_unacked(epoch->connection); 1407 #endif 1408 1409 if (connection->current_epoch != epoch) { 1410 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1411 list_del(&epoch->list); 1412 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1413 connection->epochs--; 1414 kfree(epoch); 1415 1416 if (rv == FE_STILL_LIVE) 1417 rv = FE_DESTROYED; 1418 } else { 1419 epoch->flags = 0; 1420 atomic_set(&epoch->epoch_size, 0); 1421 /* atomic_set(&epoch->active, 0); is already zero */ 1422 if (rv == FE_STILL_LIVE) 1423 rv = FE_RECYCLED; 1424 } 1425 } 1426 1427 if (!next_epoch) 1428 break; 1429 1430 epoch = next_epoch; 1431 } while (1); 1432 1433 spin_unlock(&connection->epoch_lock); 1434 1435 return rv; 1436 } 1437 1438 static enum write_ordering_e 1439 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo) 1440 { 1441 struct disk_conf *dc; 1442 1443 dc = rcu_dereference(bdev->disk_conf); 1444 1445 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes) 1446 wo = WO_DRAIN_IO; 1447 if (wo == WO_DRAIN_IO && !dc->disk_drain) 1448 wo = WO_NONE; 1449 1450 return wo; 1451 } 1452 1453 /** 1454 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1455 * @connection: DRBD connection. 1456 * @wo: Write ordering method to try. 1457 */ 1458 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev, 1459 enum write_ordering_e wo) 1460 { 1461 struct drbd_device *device; 1462 enum write_ordering_e pwo; 1463 int vnr; 1464 static char *write_ordering_str[] = { 1465 [WO_NONE] = "none", 1466 [WO_DRAIN_IO] = "drain", 1467 [WO_BDEV_FLUSH] = "flush", 1468 }; 1469 1470 pwo = resource->write_ordering; 1471 if (wo != WO_BDEV_FLUSH) 1472 wo = min(pwo, wo); 1473 rcu_read_lock(); 1474 idr_for_each_entry(&resource->devices, device, vnr) { 1475 if (get_ldev(device)) { 1476 wo = max_allowed_wo(device->ldev, wo); 1477 if (device->ldev == bdev) 1478 bdev = NULL; 1479 put_ldev(device); 1480 } 1481 } 1482 1483 if (bdev) 1484 wo = max_allowed_wo(bdev, wo); 1485 1486 rcu_read_unlock(); 1487 1488 resource->write_ordering = wo; 1489 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH) 1490 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]); 1491 } 1492 1493 static void drbd_issue_peer_discard(struct drbd_device *device, struct drbd_peer_request *peer_req) 1494 { 1495 struct block_device *bdev = device->ldev->backing_bdev; 1496 1497 if (blkdev_issue_zeroout(bdev, peer_req->i.sector, peer_req->i.size >> 9, 1498 GFP_NOIO, 0)) 1499 peer_req->flags |= EE_WAS_ERROR; 1500 1501 drbd_endio_write_sec_final(peer_req); 1502 } 1503 1504 static void drbd_issue_peer_wsame(struct drbd_device *device, 1505 struct drbd_peer_request *peer_req) 1506 { 1507 struct block_device *bdev = device->ldev->backing_bdev; 1508 sector_t s = peer_req->i.sector; 1509 sector_t nr = peer_req->i.size >> 9; 1510 if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages)) 1511 peer_req->flags |= EE_WAS_ERROR; 1512 drbd_endio_write_sec_final(peer_req); 1513 } 1514 1515 1516 /** 1517 * drbd_submit_peer_request() 1518 * @device: DRBD device. 1519 * @peer_req: peer request 1520 * @rw: flag field, see bio->bi_opf 1521 * 1522 * May spread the pages to multiple bios, 1523 * depending on bio_add_page restrictions. 1524 * 1525 * Returns 0 if all bios have been submitted, 1526 * -ENOMEM if we could not allocate enough bios, 1527 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1528 * single page to an empty bio (which should never happen and likely indicates 1529 * that the lower level IO stack is in some way broken). This has been observed 1530 * on certain Xen deployments. 1531 */ 1532 /* TODO allocate from our own bio_set. */ 1533 int drbd_submit_peer_request(struct drbd_device *device, 1534 struct drbd_peer_request *peer_req, 1535 const unsigned op, const unsigned op_flags, 1536 const int fault_type) 1537 { 1538 struct bio *bios = NULL; 1539 struct bio *bio; 1540 struct page *page = peer_req->pages; 1541 sector_t sector = peer_req->i.sector; 1542 unsigned data_size = peer_req->i.size; 1543 unsigned n_bios = 0; 1544 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT; 1545 int err = -ENOMEM; 1546 1547 /* TRIM/DISCARD: for now, always use the helper function 1548 * blkdev_issue_zeroout(..., discard=true). 1549 * It's synchronous, but it does the right thing wrt. bio splitting. 1550 * Correctness first, performance later. Next step is to code an 1551 * asynchronous variant of the same. 1552 */ 1553 if (peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) { 1554 /* wait for all pending IO completions, before we start 1555 * zeroing things out. */ 1556 conn_wait_active_ee_empty(peer_req->peer_device->connection); 1557 /* add it to the active list now, 1558 * so we can find it to present it in debugfs */ 1559 peer_req->submit_jif = jiffies; 1560 peer_req->flags |= EE_SUBMITTED; 1561 1562 /* If this was a resync request from receive_rs_deallocated(), 1563 * it is already on the sync_ee list */ 1564 if (list_empty(&peer_req->w.list)) { 1565 spin_lock_irq(&device->resource->req_lock); 1566 list_add_tail(&peer_req->w.list, &device->active_ee); 1567 spin_unlock_irq(&device->resource->req_lock); 1568 } 1569 1570 if (peer_req->flags & EE_IS_TRIM) 1571 drbd_issue_peer_discard(device, peer_req); 1572 else /* EE_WRITE_SAME */ 1573 drbd_issue_peer_wsame(device, peer_req); 1574 return 0; 1575 } 1576 1577 /* In most cases, we will only need one bio. But in case the lower 1578 * level restrictions happen to be different at this offset on this 1579 * side than those of the sending peer, we may need to submit the 1580 * request in more than one bio. 1581 * 1582 * Plain bio_alloc is good enough here, this is no DRBD internally 1583 * generated bio, but a bio allocated on behalf of the peer. 1584 */ 1585 next_bio: 1586 bio = bio_alloc(GFP_NOIO, nr_pages); 1587 if (!bio) { 1588 drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages); 1589 goto fail; 1590 } 1591 /* > peer_req->i.sector, unless this is the first bio */ 1592 bio->bi_iter.bi_sector = sector; 1593 bio_set_dev(bio, device->ldev->backing_bdev); 1594 bio_set_op_attrs(bio, op, op_flags); 1595 bio->bi_private = peer_req; 1596 bio->bi_end_io = drbd_peer_request_endio; 1597 1598 bio->bi_next = bios; 1599 bios = bio; 1600 ++n_bios; 1601 1602 page_chain_for_each(page) { 1603 unsigned len = min_t(unsigned, data_size, PAGE_SIZE); 1604 if (!bio_add_page(bio, page, len, 0)) 1605 goto next_bio; 1606 data_size -= len; 1607 sector += len >> 9; 1608 --nr_pages; 1609 } 1610 D_ASSERT(device, data_size == 0); 1611 D_ASSERT(device, page == NULL); 1612 1613 atomic_set(&peer_req->pending_bios, n_bios); 1614 /* for debugfs: update timestamp, mark as submitted */ 1615 peer_req->submit_jif = jiffies; 1616 peer_req->flags |= EE_SUBMITTED; 1617 do { 1618 bio = bios; 1619 bios = bios->bi_next; 1620 bio->bi_next = NULL; 1621 1622 drbd_generic_make_request(device, fault_type, bio); 1623 } while (bios); 1624 return 0; 1625 1626 fail: 1627 while (bios) { 1628 bio = bios; 1629 bios = bios->bi_next; 1630 bio_put(bio); 1631 } 1632 return err; 1633 } 1634 1635 static void drbd_remove_epoch_entry_interval(struct drbd_device *device, 1636 struct drbd_peer_request *peer_req) 1637 { 1638 struct drbd_interval *i = &peer_req->i; 1639 1640 drbd_remove_interval(&device->write_requests, i); 1641 drbd_clear_interval(i); 1642 1643 /* Wake up any processes waiting for this peer request to complete. */ 1644 if (i->waiting) 1645 wake_up(&device->misc_wait); 1646 } 1647 1648 static void conn_wait_active_ee_empty(struct drbd_connection *connection) 1649 { 1650 struct drbd_peer_device *peer_device; 1651 int vnr; 1652 1653 rcu_read_lock(); 1654 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1655 struct drbd_device *device = peer_device->device; 1656 1657 kref_get(&device->kref); 1658 rcu_read_unlock(); 1659 drbd_wait_ee_list_empty(device, &device->active_ee); 1660 kref_put(&device->kref, drbd_destroy_device); 1661 rcu_read_lock(); 1662 } 1663 rcu_read_unlock(); 1664 } 1665 1666 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi) 1667 { 1668 int rv; 1669 struct p_barrier *p = pi->data; 1670 struct drbd_epoch *epoch; 1671 1672 /* FIXME these are unacked on connection, 1673 * not a specific (peer)device. 1674 */ 1675 connection->current_epoch->barrier_nr = p->barrier; 1676 connection->current_epoch->connection = connection; 1677 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR); 1678 1679 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1680 * the activity log, which means it would not be resynced in case the 1681 * R_PRIMARY crashes now. 1682 * Therefore we must send the barrier_ack after the barrier request was 1683 * completed. */ 1684 switch (connection->resource->write_ordering) { 1685 case WO_NONE: 1686 if (rv == FE_RECYCLED) 1687 return 0; 1688 1689 /* receiver context, in the writeout path of the other node. 1690 * avoid potential distributed deadlock */ 1691 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1692 if (epoch) 1693 break; 1694 else 1695 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n"); 1696 /* Fall through */ 1697 1698 case WO_BDEV_FLUSH: 1699 case WO_DRAIN_IO: 1700 conn_wait_active_ee_empty(connection); 1701 drbd_flush(connection); 1702 1703 if (atomic_read(&connection->current_epoch->epoch_size)) { 1704 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1705 if (epoch) 1706 break; 1707 } 1708 1709 return 0; 1710 default: 1711 drbd_err(connection, "Strangeness in connection->write_ordering %d\n", 1712 connection->resource->write_ordering); 1713 return -EIO; 1714 } 1715 1716 epoch->flags = 0; 1717 atomic_set(&epoch->epoch_size, 0); 1718 atomic_set(&epoch->active, 0); 1719 1720 spin_lock(&connection->epoch_lock); 1721 if (atomic_read(&connection->current_epoch->epoch_size)) { 1722 list_add(&epoch->list, &connection->current_epoch->list); 1723 connection->current_epoch = epoch; 1724 connection->epochs++; 1725 } else { 1726 /* The current_epoch got recycled while we allocated this one... */ 1727 kfree(epoch); 1728 } 1729 spin_unlock(&connection->epoch_lock); 1730 1731 return 0; 1732 } 1733 1734 /* quick wrapper in case payload size != request_size (write same) */ 1735 static void drbd_csum_ee_size(struct crypto_ahash *h, 1736 struct drbd_peer_request *r, void *d, 1737 unsigned int payload_size) 1738 { 1739 unsigned int tmp = r->i.size; 1740 r->i.size = payload_size; 1741 drbd_csum_ee(h, r, d); 1742 r->i.size = tmp; 1743 } 1744 1745 /* used from receive_RSDataReply (recv_resync_read) 1746 * and from receive_Data. 1747 * data_size: actual payload ("data in") 1748 * for normal writes that is bi_size. 1749 * for discards, that is zero. 1750 * for write same, it is logical_block_size. 1751 * both trim and write same have the bi_size ("data len to be affected") 1752 * as extra argument in the packet header. 1753 */ 1754 static struct drbd_peer_request * 1755 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 1756 struct packet_info *pi) __must_hold(local) 1757 { 1758 struct drbd_device *device = peer_device->device; 1759 const sector_t capacity = drbd_get_capacity(device->this_bdev); 1760 struct drbd_peer_request *peer_req; 1761 struct page *page; 1762 int digest_size, err; 1763 unsigned int data_size = pi->size, ds; 1764 void *dig_in = peer_device->connection->int_dig_in; 1765 void *dig_vv = peer_device->connection->int_dig_vv; 1766 unsigned long *data; 1767 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL; 1768 struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL; 1769 1770 digest_size = 0; 1771 if (!trim && peer_device->connection->peer_integrity_tfm) { 1772 digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1773 /* 1774 * FIXME: Receive the incoming digest into the receive buffer 1775 * here, together with its struct p_data? 1776 */ 1777 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1778 if (err) 1779 return NULL; 1780 data_size -= digest_size; 1781 } 1782 1783 /* assume request_size == data_size, but special case trim and wsame. */ 1784 ds = data_size; 1785 if (trim) { 1786 if (!expect(data_size == 0)) 1787 return NULL; 1788 ds = be32_to_cpu(trim->size); 1789 } else if (wsame) { 1790 if (data_size != queue_logical_block_size(device->rq_queue)) { 1791 drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n", 1792 data_size, queue_logical_block_size(device->rq_queue)); 1793 return NULL; 1794 } 1795 if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) { 1796 drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n", 1797 data_size, bdev_logical_block_size(device->ldev->backing_bdev)); 1798 return NULL; 1799 } 1800 ds = be32_to_cpu(wsame->size); 1801 } 1802 1803 if (!expect(IS_ALIGNED(ds, 512))) 1804 return NULL; 1805 if (trim || wsame) { 1806 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9))) 1807 return NULL; 1808 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE)) 1809 return NULL; 1810 1811 /* even though we trust out peer, 1812 * we sometimes have to double check. */ 1813 if (sector + (ds>>9) > capacity) { 1814 drbd_err(device, "request from peer beyond end of local disk: " 1815 "capacity: %llus < sector: %llus + size: %u\n", 1816 (unsigned long long)capacity, 1817 (unsigned long long)sector, ds); 1818 return NULL; 1819 } 1820 1821 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1822 * "criss-cross" setup, that might cause write-out on some other DRBD, 1823 * which in turn might block on the other node at this very place. */ 1824 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO); 1825 if (!peer_req) 1826 return NULL; 1827 1828 peer_req->flags |= EE_WRITE; 1829 if (trim) { 1830 peer_req->flags |= EE_IS_TRIM; 1831 return peer_req; 1832 } 1833 if (wsame) 1834 peer_req->flags |= EE_WRITE_SAME; 1835 1836 /* receive payload size bytes into page chain */ 1837 ds = data_size; 1838 page = peer_req->pages; 1839 page_chain_for_each(page) { 1840 unsigned len = min_t(int, ds, PAGE_SIZE); 1841 data = kmap(page); 1842 err = drbd_recv_all_warn(peer_device->connection, data, len); 1843 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) { 1844 drbd_err(device, "Fault injection: Corrupting data on receive\n"); 1845 data[0] = data[0] ^ (unsigned long)-1; 1846 } 1847 kunmap(page); 1848 if (err) { 1849 drbd_free_peer_req(device, peer_req); 1850 return NULL; 1851 } 1852 ds -= len; 1853 } 1854 1855 if (digest_size) { 1856 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size); 1857 if (memcmp(dig_in, dig_vv, digest_size)) { 1858 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n", 1859 (unsigned long long)sector, data_size); 1860 drbd_free_peer_req(device, peer_req); 1861 return NULL; 1862 } 1863 } 1864 device->recv_cnt += data_size >> 9; 1865 return peer_req; 1866 } 1867 1868 /* drbd_drain_block() just takes a data block 1869 * out of the socket input buffer, and discards it. 1870 */ 1871 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size) 1872 { 1873 struct page *page; 1874 int err = 0; 1875 void *data; 1876 1877 if (!data_size) 1878 return 0; 1879 1880 page = drbd_alloc_pages(peer_device, 1, 1); 1881 1882 data = kmap(page); 1883 while (data_size) { 1884 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1885 1886 err = drbd_recv_all_warn(peer_device->connection, data, len); 1887 if (err) 1888 break; 1889 data_size -= len; 1890 } 1891 kunmap(page); 1892 drbd_free_pages(peer_device->device, page, 0); 1893 return err; 1894 } 1895 1896 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req, 1897 sector_t sector, int data_size) 1898 { 1899 struct bio_vec bvec; 1900 struct bvec_iter iter; 1901 struct bio *bio; 1902 int digest_size, err, expect; 1903 void *dig_in = peer_device->connection->int_dig_in; 1904 void *dig_vv = peer_device->connection->int_dig_vv; 1905 1906 digest_size = 0; 1907 if (peer_device->connection->peer_integrity_tfm) { 1908 digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1909 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1910 if (err) 1911 return err; 1912 data_size -= digest_size; 1913 } 1914 1915 /* optimistically update recv_cnt. if receiving fails below, 1916 * we disconnect anyways, and counters will be reset. */ 1917 peer_device->device->recv_cnt += data_size>>9; 1918 1919 bio = req->master_bio; 1920 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector); 1921 1922 bio_for_each_segment(bvec, bio, iter) { 1923 void *mapped = kmap(bvec.bv_page) + bvec.bv_offset; 1924 expect = min_t(int, data_size, bvec.bv_len); 1925 err = drbd_recv_all_warn(peer_device->connection, mapped, expect); 1926 kunmap(bvec.bv_page); 1927 if (err) 1928 return err; 1929 data_size -= expect; 1930 } 1931 1932 if (digest_size) { 1933 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv); 1934 if (memcmp(dig_in, dig_vv, digest_size)) { 1935 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n"); 1936 return -EINVAL; 1937 } 1938 } 1939 1940 D_ASSERT(peer_device->device, data_size == 0); 1941 return 0; 1942 } 1943 1944 /* 1945 * e_end_resync_block() is called in ack_sender context via 1946 * drbd_finish_peer_reqs(). 1947 */ 1948 static int e_end_resync_block(struct drbd_work *w, int unused) 1949 { 1950 struct drbd_peer_request *peer_req = 1951 container_of(w, struct drbd_peer_request, w); 1952 struct drbd_peer_device *peer_device = peer_req->peer_device; 1953 struct drbd_device *device = peer_device->device; 1954 sector_t sector = peer_req->i.sector; 1955 int err; 1956 1957 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 1958 1959 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1960 drbd_set_in_sync(device, sector, peer_req->i.size); 1961 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req); 1962 } else { 1963 /* Record failure to sync */ 1964 drbd_rs_failed_io(device, sector, peer_req->i.size); 1965 1966 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 1967 } 1968 dec_unacked(device); 1969 1970 return err; 1971 } 1972 1973 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector, 1974 struct packet_info *pi) __releases(local) 1975 { 1976 struct drbd_device *device = peer_device->device; 1977 struct drbd_peer_request *peer_req; 1978 1979 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi); 1980 if (!peer_req) 1981 goto fail; 1982 1983 dec_rs_pending(device); 1984 1985 inc_unacked(device); 1986 /* corresponding dec_unacked() in e_end_resync_block() 1987 * respective _drbd_clear_done_ee */ 1988 1989 peer_req->w.cb = e_end_resync_block; 1990 peer_req->submit_jif = jiffies; 1991 1992 spin_lock_irq(&device->resource->req_lock); 1993 list_add_tail(&peer_req->w.list, &device->sync_ee); 1994 spin_unlock_irq(&device->resource->req_lock); 1995 1996 atomic_add(pi->size >> 9, &device->rs_sect_ev); 1997 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0, 1998 DRBD_FAULT_RS_WR) == 0) 1999 return 0; 2000 2001 /* don't care for the reason here */ 2002 drbd_err(device, "submit failed, triggering re-connect\n"); 2003 spin_lock_irq(&device->resource->req_lock); 2004 list_del(&peer_req->w.list); 2005 spin_unlock_irq(&device->resource->req_lock); 2006 2007 drbd_free_peer_req(device, peer_req); 2008 fail: 2009 put_ldev(device); 2010 return -EIO; 2011 } 2012 2013 static struct drbd_request * 2014 find_request(struct drbd_device *device, struct rb_root *root, u64 id, 2015 sector_t sector, bool missing_ok, const char *func) 2016 { 2017 struct drbd_request *req; 2018 2019 /* Request object according to our peer */ 2020 req = (struct drbd_request *)(unsigned long)id; 2021 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 2022 return req; 2023 if (!missing_ok) { 2024 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func, 2025 (unsigned long)id, (unsigned long long)sector); 2026 } 2027 return NULL; 2028 } 2029 2030 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi) 2031 { 2032 struct drbd_peer_device *peer_device; 2033 struct drbd_device *device; 2034 struct drbd_request *req; 2035 sector_t sector; 2036 int err; 2037 struct p_data *p = pi->data; 2038 2039 peer_device = conn_peer_device(connection, pi->vnr); 2040 if (!peer_device) 2041 return -EIO; 2042 device = peer_device->device; 2043 2044 sector = be64_to_cpu(p->sector); 2045 2046 spin_lock_irq(&device->resource->req_lock); 2047 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__); 2048 spin_unlock_irq(&device->resource->req_lock); 2049 if (unlikely(!req)) 2050 return -EIO; 2051 2052 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid 2053 * special casing it there for the various failure cases. 2054 * still no race with drbd_fail_pending_reads */ 2055 err = recv_dless_read(peer_device, req, sector, pi->size); 2056 if (!err) 2057 req_mod(req, DATA_RECEIVED); 2058 /* else: nothing. handled from drbd_disconnect... 2059 * I don't think we may complete this just yet 2060 * in case we are "on-disconnect: freeze" */ 2061 2062 return err; 2063 } 2064 2065 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi) 2066 { 2067 struct drbd_peer_device *peer_device; 2068 struct drbd_device *device; 2069 sector_t sector; 2070 int err; 2071 struct p_data *p = pi->data; 2072 2073 peer_device = conn_peer_device(connection, pi->vnr); 2074 if (!peer_device) 2075 return -EIO; 2076 device = peer_device->device; 2077 2078 sector = be64_to_cpu(p->sector); 2079 D_ASSERT(device, p->block_id == ID_SYNCER); 2080 2081 if (get_ldev(device)) { 2082 /* data is submitted to disk within recv_resync_read. 2083 * corresponding put_ldev done below on error, 2084 * or in drbd_peer_request_endio. */ 2085 err = recv_resync_read(peer_device, sector, pi); 2086 } else { 2087 if (__ratelimit(&drbd_ratelimit_state)) 2088 drbd_err(device, "Can not write resync data to local disk.\n"); 2089 2090 err = drbd_drain_block(peer_device, pi->size); 2091 2092 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2093 } 2094 2095 atomic_add(pi->size >> 9, &device->rs_sect_in); 2096 2097 return err; 2098 } 2099 2100 static void restart_conflicting_writes(struct drbd_device *device, 2101 sector_t sector, int size) 2102 { 2103 struct drbd_interval *i; 2104 struct drbd_request *req; 2105 2106 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2107 if (!i->local) 2108 continue; 2109 req = container_of(i, struct drbd_request, i); 2110 if (req->rq_state & RQ_LOCAL_PENDING || 2111 !(req->rq_state & RQ_POSTPONED)) 2112 continue; 2113 /* as it is RQ_POSTPONED, this will cause it to 2114 * be queued on the retry workqueue. */ 2115 __req_mod(req, CONFLICT_RESOLVED, NULL); 2116 } 2117 } 2118 2119 /* 2120 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs(). 2121 */ 2122 static int e_end_block(struct drbd_work *w, int cancel) 2123 { 2124 struct drbd_peer_request *peer_req = 2125 container_of(w, struct drbd_peer_request, w); 2126 struct drbd_peer_device *peer_device = peer_req->peer_device; 2127 struct drbd_device *device = peer_device->device; 2128 sector_t sector = peer_req->i.sector; 2129 int err = 0, pcmd; 2130 2131 if (peer_req->flags & EE_SEND_WRITE_ACK) { 2132 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2133 pcmd = (device->state.conn >= C_SYNC_SOURCE && 2134 device->state.conn <= C_PAUSED_SYNC_T && 2135 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 2136 P_RS_WRITE_ACK : P_WRITE_ACK; 2137 err = drbd_send_ack(peer_device, pcmd, peer_req); 2138 if (pcmd == P_RS_WRITE_ACK) 2139 drbd_set_in_sync(device, sector, peer_req->i.size); 2140 } else { 2141 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2142 /* we expect it to be marked out of sync anyways... 2143 * maybe assert this? */ 2144 } 2145 dec_unacked(device); 2146 } 2147 2148 /* we delete from the conflict detection hash _after_ we sent out the 2149 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 2150 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 2151 spin_lock_irq(&device->resource->req_lock); 2152 D_ASSERT(device, !drbd_interval_empty(&peer_req->i)); 2153 drbd_remove_epoch_entry_interval(device, peer_req); 2154 if (peer_req->flags & EE_RESTART_REQUESTS) 2155 restart_conflicting_writes(device, sector, peer_req->i.size); 2156 spin_unlock_irq(&device->resource->req_lock); 2157 } else 2158 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2159 2160 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 2161 2162 return err; 2163 } 2164 2165 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 2166 { 2167 struct drbd_peer_request *peer_req = 2168 container_of(w, struct drbd_peer_request, w); 2169 struct drbd_peer_device *peer_device = peer_req->peer_device; 2170 int err; 2171 2172 err = drbd_send_ack(peer_device, ack, peer_req); 2173 dec_unacked(peer_device->device); 2174 2175 return err; 2176 } 2177 2178 static int e_send_superseded(struct drbd_work *w, int unused) 2179 { 2180 return e_send_ack(w, P_SUPERSEDED); 2181 } 2182 2183 static int e_send_retry_write(struct drbd_work *w, int unused) 2184 { 2185 struct drbd_peer_request *peer_req = 2186 container_of(w, struct drbd_peer_request, w); 2187 struct drbd_connection *connection = peer_req->peer_device->connection; 2188 2189 return e_send_ack(w, connection->agreed_pro_version >= 100 ? 2190 P_RETRY_WRITE : P_SUPERSEDED); 2191 } 2192 2193 static bool seq_greater(u32 a, u32 b) 2194 { 2195 /* 2196 * We assume 32-bit wrap-around here. 2197 * For 24-bit wrap-around, we would have to shift: 2198 * a <<= 8; b <<= 8; 2199 */ 2200 return (s32)a - (s32)b > 0; 2201 } 2202 2203 static u32 seq_max(u32 a, u32 b) 2204 { 2205 return seq_greater(a, b) ? a : b; 2206 } 2207 2208 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq) 2209 { 2210 struct drbd_device *device = peer_device->device; 2211 unsigned int newest_peer_seq; 2212 2213 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) { 2214 spin_lock(&device->peer_seq_lock); 2215 newest_peer_seq = seq_max(device->peer_seq, peer_seq); 2216 device->peer_seq = newest_peer_seq; 2217 spin_unlock(&device->peer_seq_lock); 2218 /* wake up only if we actually changed device->peer_seq */ 2219 if (peer_seq == newest_peer_seq) 2220 wake_up(&device->seq_wait); 2221 } 2222 } 2223 2224 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 2225 { 2226 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 2227 } 2228 2229 /* maybe change sync_ee into interval trees as well? */ 2230 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req) 2231 { 2232 struct drbd_peer_request *rs_req; 2233 bool rv = false; 2234 2235 spin_lock_irq(&device->resource->req_lock); 2236 list_for_each_entry(rs_req, &device->sync_ee, w.list) { 2237 if (overlaps(peer_req->i.sector, peer_req->i.size, 2238 rs_req->i.sector, rs_req->i.size)) { 2239 rv = true; 2240 break; 2241 } 2242 } 2243 spin_unlock_irq(&device->resource->req_lock); 2244 2245 return rv; 2246 } 2247 2248 /* Called from receive_Data. 2249 * Synchronize packets on sock with packets on msock. 2250 * 2251 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 2252 * packet traveling on msock, they are still processed in the order they have 2253 * been sent. 2254 * 2255 * Note: we don't care for Ack packets overtaking P_DATA packets. 2256 * 2257 * In case packet_seq is larger than device->peer_seq number, there are 2258 * outstanding packets on the msock. We wait for them to arrive. 2259 * In case we are the logically next packet, we update device->peer_seq 2260 * ourselves. Correctly handles 32bit wrap around. 2261 * 2262 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 2263 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 2264 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 2265 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 2266 * 2267 * returns 0 if we may process the packet, 2268 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 2269 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq) 2270 { 2271 struct drbd_device *device = peer_device->device; 2272 DEFINE_WAIT(wait); 2273 long timeout; 2274 int ret = 0, tp; 2275 2276 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) 2277 return 0; 2278 2279 spin_lock(&device->peer_seq_lock); 2280 for (;;) { 2281 if (!seq_greater(peer_seq - 1, device->peer_seq)) { 2282 device->peer_seq = seq_max(device->peer_seq, peer_seq); 2283 break; 2284 } 2285 2286 if (signal_pending(current)) { 2287 ret = -ERESTARTSYS; 2288 break; 2289 } 2290 2291 rcu_read_lock(); 2292 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries; 2293 rcu_read_unlock(); 2294 2295 if (!tp) 2296 break; 2297 2298 /* Only need to wait if two_primaries is enabled */ 2299 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE); 2300 spin_unlock(&device->peer_seq_lock); 2301 rcu_read_lock(); 2302 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10; 2303 rcu_read_unlock(); 2304 timeout = schedule_timeout(timeout); 2305 spin_lock(&device->peer_seq_lock); 2306 if (!timeout) { 2307 ret = -ETIMEDOUT; 2308 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n"); 2309 break; 2310 } 2311 } 2312 spin_unlock(&device->peer_seq_lock); 2313 finish_wait(&device->seq_wait, &wait); 2314 return ret; 2315 } 2316 2317 /* see also bio_flags_to_wire() 2318 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2319 * flags and back. We may replicate to other kernel versions. */ 2320 static unsigned long wire_flags_to_bio_flags(u32 dpf) 2321 { 2322 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2323 (dpf & DP_FUA ? REQ_FUA : 0) | 2324 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0); 2325 } 2326 2327 static unsigned long wire_flags_to_bio_op(u32 dpf) 2328 { 2329 if (dpf & DP_DISCARD) 2330 return REQ_OP_WRITE_ZEROES; 2331 else 2332 return REQ_OP_WRITE; 2333 } 2334 2335 static void fail_postponed_requests(struct drbd_device *device, sector_t sector, 2336 unsigned int size) 2337 { 2338 struct drbd_interval *i; 2339 2340 repeat: 2341 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2342 struct drbd_request *req; 2343 struct bio_and_error m; 2344 2345 if (!i->local) 2346 continue; 2347 req = container_of(i, struct drbd_request, i); 2348 if (!(req->rq_state & RQ_POSTPONED)) 2349 continue; 2350 req->rq_state &= ~RQ_POSTPONED; 2351 __req_mod(req, NEG_ACKED, &m); 2352 spin_unlock_irq(&device->resource->req_lock); 2353 if (m.bio) 2354 complete_master_bio(device, &m); 2355 spin_lock_irq(&device->resource->req_lock); 2356 goto repeat; 2357 } 2358 } 2359 2360 static int handle_write_conflicts(struct drbd_device *device, 2361 struct drbd_peer_request *peer_req) 2362 { 2363 struct drbd_connection *connection = peer_req->peer_device->connection; 2364 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags); 2365 sector_t sector = peer_req->i.sector; 2366 const unsigned int size = peer_req->i.size; 2367 struct drbd_interval *i; 2368 bool equal; 2369 int err; 2370 2371 /* 2372 * Inserting the peer request into the write_requests tree will prevent 2373 * new conflicting local requests from being added. 2374 */ 2375 drbd_insert_interval(&device->write_requests, &peer_req->i); 2376 2377 repeat: 2378 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2379 if (i == &peer_req->i) 2380 continue; 2381 if (i->completed) 2382 continue; 2383 2384 if (!i->local) { 2385 /* 2386 * Our peer has sent a conflicting remote request; this 2387 * should not happen in a two-node setup. Wait for the 2388 * earlier peer request to complete. 2389 */ 2390 err = drbd_wait_misc(device, i); 2391 if (err) 2392 goto out; 2393 goto repeat; 2394 } 2395 2396 equal = i->sector == sector && i->size == size; 2397 if (resolve_conflicts) { 2398 /* 2399 * If the peer request is fully contained within the 2400 * overlapping request, it can be considered overwritten 2401 * and thus superseded; otherwise, it will be retried 2402 * once all overlapping requests have completed. 2403 */ 2404 bool superseded = i->sector <= sector && i->sector + 2405 (i->size >> 9) >= sector + (size >> 9); 2406 2407 if (!equal) 2408 drbd_alert(device, "Concurrent writes detected: " 2409 "local=%llus +%u, remote=%llus +%u, " 2410 "assuming %s came first\n", 2411 (unsigned long long)i->sector, i->size, 2412 (unsigned long long)sector, size, 2413 superseded ? "local" : "remote"); 2414 2415 peer_req->w.cb = superseded ? e_send_superseded : 2416 e_send_retry_write; 2417 list_add_tail(&peer_req->w.list, &device->done_ee); 2418 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work); 2419 2420 err = -ENOENT; 2421 goto out; 2422 } else { 2423 struct drbd_request *req = 2424 container_of(i, struct drbd_request, i); 2425 2426 if (!equal) 2427 drbd_alert(device, "Concurrent writes detected: " 2428 "local=%llus +%u, remote=%llus +%u\n", 2429 (unsigned long long)i->sector, i->size, 2430 (unsigned long long)sector, size); 2431 2432 if (req->rq_state & RQ_LOCAL_PENDING || 2433 !(req->rq_state & RQ_POSTPONED)) { 2434 /* 2435 * Wait for the node with the discard flag to 2436 * decide if this request has been superseded 2437 * or needs to be retried. 2438 * Requests that have been superseded will 2439 * disappear from the write_requests tree. 2440 * 2441 * In addition, wait for the conflicting 2442 * request to finish locally before submitting 2443 * the conflicting peer request. 2444 */ 2445 err = drbd_wait_misc(device, &req->i); 2446 if (err) { 2447 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 2448 fail_postponed_requests(device, sector, size); 2449 goto out; 2450 } 2451 goto repeat; 2452 } 2453 /* 2454 * Remember to restart the conflicting requests after 2455 * the new peer request has completed. 2456 */ 2457 peer_req->flags |= EE_RESTART_REQUESTS; 2458 } 2459 } 2460 err = 0; 2461 2462 out: 2463 if (err) 2464 drbd_remove_epoch_entry_interval(device, peer_req); 2465 return err; 2466 } 2467 2468 /* mirrored write */ 2469 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi) 2470 { 2471 struct drbd_peer_device *peer_device; 2472 struct drbd_device *device; 2473 struct net_conf *nc; 2474 sector_t sector; 2475 struct drbd_peer_request *peer_req; 2476 struct p_data *p = pi->data; 2477 u32 peer_seq = be32_to_cpu(p->seq_num); 2478 int op, op_flags; 2479 u32 dp_flags; 2480 int err, tp; 2481 2482 peer_device = conn_peer_device(connection, pi->vnr); 2483 if (!peer_device) 2484 return -EIO; 2485 device = peer_device->device; 2486 2487 if (!get_ldev(device)) { 2488 int err2; 2489 2490 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2491 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2492 atomic_inc(&connection->current_epoch->epoch_size); 2493 err2 = drbd_drain_block(peer_device, pi->size); 2494 if (!err) 2495 err = err2; 2496 return err; 2497 } 2498 2499 /* 2500 * Corresponding put_ldev done either below (on various errors), or in 2501 * drbd_peer_request_endio, if we successfully submit the data at the 2502 * end of this function. 2503 */ 2504 2505 sector = be64_to_cpu(p->sector); 2506 peer_req = read_in_block(peer_device, p->block_id, sector, pi); 2507 if (!peer_req) { 2508 put_ldev(device); 2509 return -EIO; 2510 } 2511 2512 peer_req->w.cb = e_end_block; 2513 peer_req->submit_jif = jiffies; 2514 peer_req->flags |= EE_APPLICATION; 2515 2516 dp_flags = be32_to_cpu(p->dp_flags); 2517 op = wire_flags_to_bio_op(dp_flags); 2518 op_flags = wire_flags_to_bio_flags(dp_flags); 2519 if (pi->cmd == P_TRIM) { 2520 D_ASSERT(peer_device, peer_req->i.size > 0); 2521 D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES); 2522 D_ASSERT(peer_device, peer_req->pages == NULL); 2523 } else if (peer_req->pages == NULL) { 2524 D_ASSERT(device, peer_req->i.size == 0); 2525 D_ASSERT(device, dp_flags & DP_FLUSH); 2526 } 2527 2528 if (dp_flags & DP_MAY_SET_IN_SYNC) 2529 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2530 2531 spin_lock(&connection->epoch_lock); 2532 peer_req->epoch = connection->current_epoch; 2533 atomic_inc(&peer_req->epoch->epoch_size); 2534 atomic_inc(&peer_req->epoch->active); 2535 spin_unlock(&connection->epoch_lock); 2536 2537 rcu_read_lock(); 2538 nc = rcu_dereference(peer_device->connection->net_conf); 2539 tp = nc->two_primaries; 2540 if (peer_device->connection->agreed_pro_version < 100) { 2541 switch (nc->wire_protocol) { 2542 case DRBD_PROT_C: 2543 dp_flags |= DP_SEND_WRITE_ACK; 2544 break; 2545 case DRBD_PROT_B: 2546 dp_flags |= DP_SEND_RECEIVE_ACK; 2547 break; 2548 } 2549 } 2550 rcu_read_unlock(); 2551 2552 if (dp_flags & DP_SEND_WRITE_ACK) { 2553 peer_req->flags |= EE_SEND_WRITE_ACK; 2554 inc_unacked(device); 2555 /* corresponding dec_unacked() in e_end_block() 2556 * respective _drbd_clear_done_ee */ 2557 } 2558 2559 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2560 /* I really don't like it that the receiver thread 2561 * sends on the msock, but anyways */ 2562 drbd_send_ack(peer_device, P_RECV_ACK, peer_req); 2563 } 2564 2565 if (tp) { 2566 /* two primaries implies protocol C */ 2567 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK); 2568 peer_req->flags |= EE_IN_INTERVAL_TREE; 2569 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2570 if (err) 2571 goto out_interrupted; 2572 spin_lock_irq(&device->resource->req_lock); 2573 err = handle_write_conflicts(device, peer_req); 2574 if (err) { 2575 spin_unlock_irq(&device->resource->req_lock); 2576 if (err == -ENOENT) { 2577 put_ldev(device); 2578 return 0; 2579 } 2580 goto out_interrupted; 2581 } 2582 } else { 2583 update_peer_seq(peer_device, peer_seq); 2584 spin_lock_irq(&device->resource->req_lock); 2585 } 2586 /* TRIM and WRITE_SAME are processed synchronously, 2587 * we wait for all pending requests, respectively wait for 2588 * active_ee to become empty in drbd_submit_peer_request(); 2589 * better not add ourselves here. */ 2590 if ((peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) == 0) 2591 list_add_tail(&peer_req->w.list, &device->active_ee); 2592 spin_unlock_irq(&device->resource->req_lock); 2593 2594 if (device->state.conn == C_SYNC_TARGET) 2595 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req)); 2596 2597 if (device->state.pdsk < D_INCONSISTENT) { 2598 /* In case we have the only disk of the cluster, */ 2599 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 2600 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2601 drbd_al_begin_io(device, &peer_req->i); 2602 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2603 } 2604 2605 err = drbd_submit_peer_request(device, peer_req, op, op_flags, 2606 DRBD_FAULT_DT_WR); 2607 if (!err) 2608 return 0; 2609 2610 /* don't care for the reason here */ 2611 drbd_err(device, "submit failed, triggering re-connect\n"); 2612 spin_lock_irq(&device->resource->req_lock); 2613 list_del(&peer_req->w.list); 2614 drbd_remove_epoch_entry_interval(device, peer_req); 2615 spin_unlock_irq(&device->resource->req_lock); 2616 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) { 2617 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 2618 drbd_al_complete_io(device, &peer_req->i); 2619 } 2620 2621 out_interrupted: 2622 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP); 2623 put_ldev(device); 2624 drbd_free_peer_req(device, peer_req); 2625 return err; 2626 } 2627 2628 /* We may throttle resync, if the lower device seems to be busy, 2629 * and current sync rate is above c_min_rate. 2630 * 2631 * To decide whether or not the lower device is busy, we use a scheme similar 2632 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2633 * (more than 64 sectors) of activity we cannot account for with our own resync 2634 * activity, it obviously is "busy". 2635 * 2636 * The current sync rate used here uses only the most recent two step marks, 2637 * to have a short time average so we can react faster. 2638 */ 2639 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector, 2640 bool throttle_if_app_is_waiting) 2641 { 2642 struct lc_element *tmp; 2643 bool throttle = drbd_rs_c_min_rate_throttle(device); 2644 2645 if (!throttle || throttle_if_app_is_waiting) 2646 return throttle; 2647 2648 spin_lock_irq(&device->al_lock); 2649 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector)); 2650 if (tmp) { 2651 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2652 if (test_bit(BME_PRIORITY, &bm_ext->flags)) 2653 throttle = false; 2654 /* Do not slow down if app IO is already waiting for this extent, 2655 * and our progress is necessary for application IO to complete. */ 2656 } 2657 spin_unlock_irq(&device->al_lock); 2658 2659 return throttle; 2660 } 2661 2662 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device) 2663 { 2664 struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk; 2665 unsigned long db, dt, dbdt; 2666 unsigned int c_min_rate; 2667 int curr_events; 2668 2669 rcu_read_lock(); 2670 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate; 2671 rcu_read_unlock(); 2672 2673 /* feature disabled? */ 2674 if (c_min_rate == 0) 2675 return false; 2676 2677 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 2678 atomic_read(&device->rs_sect_ev); 2679 2680 if (atomic_read(&device->ap_actlog_cnt) 2681 || curr_events - device->rs_last_events > 64) { 2682 unsigned long rs_left; 2683 int i; 2684 2685 device->rs_last_events = curr_events; 2686 2687 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2688 * approx. */ 2689 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2690 2691 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 2692 rs_left = device->ov_left; 2693 else 2694 rs_left = drbd_bm_total_weight(device) - device->rs_failed; 2695 2696 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ; 2697 if (!dt) 2698 dt++; 2699 db = device->rs_mark_left[i] - rs_left; 2700 dbdt = Bit2KB(db/dt); 2701 2702 if (dbdt > c_min_rate) 2703 return true; 2704 } 2705 return false; 2706 } 2707 2708 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi) 2709 { 2710 struct drbd_peer_device *peer_device; 2711 struct drbd_device *device; 2712 sector_t sector; 2713 sector_t capacity; 2714 struct drbd_peer_request *peer_req; 2715 struct digest_info *di = NULL; 2716 int size, verb; 2717 unsigned int fault_type; 2718 struct p_block_req *p = pi->data; 2719 2720 peer_device = conn_peer_device(connection, pi->vnr); 2721 if (!peer_device) 2722 return -EIO; 2723 device = peer_device->device; 2724 capacity = drbd_get_capacity(device->this_bdev); 2725 2726 sector = be64_to_cpu(p->sector); 2727 size = be32_to_cpu(p->blksize); 2728 2729 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2730 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2731 (unsigned long long)sector, size); 2732 return -EINVAL; 2733 } 2734 if (sector + (size>>9) > capacity) { 2735 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2736 (unsigned long long)sector, size); 2737 return -EINVAL; 2738 } 2739 2740 if (!get_ldev_if_state(device, D_UP_TO_DATE)) { 2741 verb = 1; 2742 switch (pi->cmd) { 2743 case P_DATA_REQUEST: 2744 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p); 2745 break; 2746 case P_RS_THIN_REQ: 2747 case P_RS_DATA_REQUEST: 2748 case P_CSUM_RS_REQUEST: 2749 case P_OV_REQUEST: 2750 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p); 2751 break; 2752 case P_OV_REPLY: 2753 verb = 0; 2754 dec_rs_pending(device); 2755 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC); 2756 break; 2757 default: 2758 BUG(); 2759 } 2760 if (verb && __ratelimit(&drbd_ratelimit_state)) 2761 drbd_err(device, "Can not satisfy peer's read request, " 2762 "no local data.\n"); 2763 2764 /* drain possibly payload */ 2765 return drbd_drain_block(peer_device, pi->size); 2766 } 2767 2768 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2769 * "criss-cross" setup, that might cause write-out on some other DRBD, 2770 * which in turn might block on the other node at this very place. */ 2771 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size, 2772 size, GFP_NOIO); 2773 if (!peer_req) { 2774 put_ldev(device); 2775 return -ENOMEM; 2776 } 2777 2778 switch (pi->cmd) { 2779 case P_DATA_REQUEST: 2780 peer_req->w.cb = w_e_end_data_req; 2781 fault_type = DRBD_FAULT_DT_RD; 2782 /* application IO, don't drbd_rs_begin_io */ 2783 peer_req->flags |= EE_APPLICATION; 2784 goto submit; 2785 2786 case P_RS_THIN_REQ: 2787 /* If at some point in the future we have a smart way to 2788 find out if this data block is completely deallocated, 2789 then we would do something smarter here than reading 2790 the block... */ 2791 peer_req->flags |= EE_RS_THIN_REQ; 2792 /* fall through */ 2793 case P_RS_DATA_REQUEST: 2794 peer_req->w.cb = w_e_end_rsdata_req; 2795 fault_type = DRBD_FAULT_RS_RD; 2796 /* used in the sector offset progress display */ 2797 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2798 break; 2799 2800 case P_OV_REPLY: 2801 case P_CSUM_RS_REQUEST: 2802 fault_type = DRBD_FAULT_RS_RD; 2803 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2804 if (!di) 2805 goto out_free_e; 2806 2807 di->digest_size = pi->size; 2808 di->digest = (((char *)di)+sizeof(struct digest_info)); 2809 2810 peer_req->digest = di; 2811 peer_req->flags |= EE_HAS_DIGEST; 2812 2813 if (drbd_recv_all(peer_device->connection, di->digest, pi->size)) 2814 goto out_free_e; 2815 2816 if (pi->cmd == P_CSUM_RS_REQUEST) { 2817 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 2818 peer_req->w.cb = w_e_end_csum_rs_req; 2819 /* used in the sector offset progress display */ 2820 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2821 /* remember to report stats in drbd_resync_finished */ 2822 device->use_csums = true; 2823 } else if (pi->cmd == P_OV_REPLY) { 2824 /* track progress, we may need to throttle */ 2825 atomic_add(size >> 9, &device->rs_sect_in); 2826 peer_req->w.cb = w_e_end_ov_reply; 2827 dec_rs_pending(device); 2828 /* drbd_rs_begin_io done when we sent this request, 2829 * but accounting still needs to be done. */ 2830 goto submit_for_resync; 2831 } 2832 break; 2833 2834 case P_OV_REQUEST: 2835 if (device->ov_start_sector == ~(sector_t)0 && 2836 peer_device->connection->agreed_pro_version >= 90) { 2837 unsigned long now = jiffies; 2838 int i; 2839 device->ov_start_sector = sector; 2840 device->ov_position = sector; 2841 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector); 2842 device->rs_total = device->ov_left; 2843 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2844 device->rs_mark_left[i] = device->ov_left; 2845 device->rs_mark_time[i] = now; 2846 } 2847 drbd_info(device, "Online Verify start sector: %llu\n", 2848 (unsigned long long)sector); 2849 } 2850 peer_req->w.cb = w_e_end_ov_req; 2851 fault_type = DRBD_FAULT_RS_RD; 2852 break; 2853 2854 default: 2855 BUG(); 2856 } 2857 2858 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2859 * wrt the receiver, but it is not as straightforward as it may seem. 2860 * Various places in the resync start and stop logic assume resync 2861 * requests are processed in order, requeuing this on the worker thread 2862 * introduces a bunch of new code for synchronization between threads. 2863 * 2864 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2865 * "forever", throttling after drbd_rs_begin_io will lock that extent 2866 * for application writes for the same time. For now, just throttle 2867 * here, where the rest of the code expects the receiver to sleep for 2868 * a while, anyways. 2869 */ 2870 2871 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 2872 * this defers syncer requests for some time, before letting at least 2873 * on request through. The resync controller on the receiving side 2874 * will adapt to the incoming rate accordingly. 2875 * 2876 * We cannot throttle here if remote is Primary/SyncTarget: 2877 * we would also throttle its application reads. 2878 * In that case, throttling is done on the SyncTarget only. 2879 */ 2880 2881 /* Even though this may be a resync request, we do add to "read_ee"; 2882 * "sync_ee" is only used for resync WRITEs. 2883 * Add to list early, so debugfs can find this request 2884 * even if we have to sleep below. */ 2885 spin_lock_irq(&device->resource->req_lock); 2886 list_add_tail(&peer_req->w.list, &device->read_ee); 2887 spin_unlock_irq(&device->resource->req_lock); 2888 2889 update_receiver_timing_details(connection, drbd_rs_should_slow_down); 2890 if (device->state.peer != R_PRIMARY 2891 && drbd_rs_should_slow_down(device, sector, false)) 2892 schedule_timeout_uninterruptible(HZ/10); 2893 update_receiver_timing_details(connection, drbd_rs_begin_io); 2894 if (drbd_rs_begin_io(device, sector)) 2895 goto out_free_e; 2896 2897 submit_for_resync: 2898 atomic_add(size >> 9, &device->rs_sect_ev); 2899 2900 submit: 2901 update_receiver_timing_details(connection, drbd_submit_peer_request); 2902 inc_unacked(device); 2903 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, 2904 fault_type) == 0) 2905 return 0; 2906 2907 /* don't care for the reason here */ 2908 drbd_err(device, "submit failed, triggering re-connect\n"); 2909 2910 out_free_e: 2911 spin_lock_irq(&device->resource->req_lock); 2912 list_del(&peer_req->w.list); 2913 spin_unlock_irq(&device->resource->req_lock); 2914 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 2915 2916 put_ldev(device); 2917 drbd_free_peer_req(device, peer_req); 2918 return -EIO; 2919 } 2920 2921 /** 2922 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries 2923 */ 2924 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local) 2925 { 2926 struct drbd_device *device = peer_device->device; 2927 int self, peer, rv = -100; 2928 unsigned long ch_self, ch_peer; 2929 enum drbd_after_sb_p after_sb_0p; 2930 2931 self = device->ldev->md.uuid[UI_BITMAP] & 1; 2932 peer = device->p_uuid[UI_BITMAP] & 1; 2933 2934 ch_peer = device->p_uuid[UI_SIZE]; 2935 ch_self = device->comm_bm_set; 2936 2937 rcu_read_lock(); 2938 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p; 2939 rcu_read_unlock(); 2940 switch (after_sb_0p) { 2941 case ASB_CONSENSUS: 2942 case ASB_DISCARD_SECONDARY: 2943 case ASB_CALL_HELPER: 2944 case ASB_VIOLENTLY: 2945 drbd_err(device, "Configuration error.\n"); 2946 break; 2947 case ASB_DISCONNECT: 2948 break; 2949 case ASB_DISCARD_YOUNGER_PRI: 2950 if (self == 0 && peer == 1) { 2951 rv = -1; 2952 break; 2953 } 2954 if (self == 1 && peer == 0) { 2955 rv = 1; 2956 break; 2957 } 2958 /* Else fall through to one of the other strategies... */ 2959 case ASB_DISCARD_OLDER_PRI: 2960 if (self == 0 && peer == 1) { 2961 rv = 1; 2962 break; 2963 } 2964 if (self == 1 && peer == 0) { 2965 rv = -1; 2966 break; 2967 } 2968 /* Else fall through to one of the other strategies... */ 2969 drbd_warn(device, "Discard younger/older primary did not find a decision\n" 2970 "Using discard-least-changes instead\n"); 2971 /* fall through */ 2972 case ASB_DISCARD_ZERO_CHG: 2973 if (ch_peer == 0 && ch_self == 0) { 2974 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 2975 ? -1 : 1; 2976 break; 2977 } else { 2978 if (ch_peer == 0) { rv = 1; break; } 2979 if (ch_self == 0) { rv = -1; break; } 2980 } 2981 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 2982 break; 2983 /* else: fall through */ 2984 case ASB_DISCARD_LEAST_CHG: 2985 if (ch_self < ch_peer) 2986 rv = -1; 2987 else if (ch_self > ch_peer) 2988 rv = 1; 2989 else /* ( ch_self == ch_peer ) */ 2990 /* Well, then use something else. */ 2991 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 2992 ? -1 : 1; 2993 break; 2994 case ASB_DISCARD_LOCAL: 2995 rv = -1; 2996 break; 2997 case ASB_DISCARD_REMOTE: 2998 rv = 1; 2999 } 3000 3001 return rv; 3002 } 3003 3004 /** 3005 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary 3006 */ 3007 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local) 3008 { 3009 struct drbd_device *device = peer_device->device; 3010 int hg, rv = -100; 3011 enum drbd_after_sb_p after_sb_1p; 3012 3013 rcu_read_lock(); 3014 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p; 3015 rcu_read_unlock(); 3016 switch (after_sb_1p) { 3017 case ASB_DISCARD_YOUNGER_PRI: 3018 case ASB_DISCARD_OLDER_PRI: 3019 case ASB_DISCARD_LEAST_CHG: 3020 case ASB_DISCARD_LOCAL: 3021 case ASB_DISCARD_REMOTE: 3022 case ASB_DISCARD_ZERO_CHG: 3023 drbd_err(device, "Configuration error.\n"); 3024 break; 3025 case ASB_DISCONNECT: 3026 break; 3027 case ASB_CONSENSUS: 3028 hg = drbd_asb_recover_0p(peer_device); 3029 if (hg == -1 && device->state.role == R_SECONDARY) 3030 rv = hg; 3031 if (hg == 1 && device->state.role == R_PRIMARY) 3032 rv = hg; 3033 break; 3034 case ASB_VIOLENTLY: 3035 rv = drbd_asb_recover_0p(peer_device); 3036 break; 3037 case ASB_DISCARD_SECONDARY: 3038 return device->state.role == R_PRIMARY ? 1 : -1; 3039 case ASB_CALL_HELPER: 3040 hg = drbd_asb_recover_0p(peer_device); 3041 if (hg == -1 && device->state.role == R_PRIMARY) { 3042 enum drbd_state_rv rv2; 3043 3044 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3045 * we might be here in C_WF_REPORT_PARAMS which is transient. 3046 * we do not need to wait for the after state change work either. */ 3047 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3048 if (rv2 != SS_SUCCESS) { 3049 drbd_khelper(device, "pri-lost-after-sb"); 3050 } else { 3051 drbd_warn(device, "Successfully gave up primary role.\n"); 3052 rv = hg; 3053 } 3054 } else 3055 rv = hg; 3056 } 3057 3058 return rv; 3059 } 3060 3061 /** 3062 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries 3063 */ 3064 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local) 3065 { 3066 struct drbd_device *device = peer_device->device; 3067 int hg, rv = -100; 3068 enum drbd_after_sb_p after_sb_2p; 3069 3070 rcu_read_lock(); 3071 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p; 3072 rcu_read_unlock(); 3073 switch (after_sb_2p) { 3074 case ASB_DISCARD_YOUNGER_PRI: 3075 case ASB_DISCARD_OLDER_PRI: 3076 case ASB_DISCARD_LEAST_CHG: 3077 case ASB_DISCARD_LOCAL: 3078 case ASB_DISCARD_REMOTE: 3079 case ASB_CONSENSUS: 3080 case ASB_DISCARD_SECONDARY: 3081 case ASB_DISCARD_ZERO_CHG: 3082 drbd_err(device, "Configuration error.\n"); 3083 break; 3084 case ASB_VIOLENTLY: 3085 rv = drbd_asb_recover_0p(peer_device); 3086 break; 3087 case ASB_DISCONNECT: 3088 break; 3089 case ASB_CALL_HELPER: 3090 hg = drbd_asb_recover_0p(peer_device); 3091 if (hg == -1) { 3092 enum drbd_state_rv rv2; 3093 3094 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3095 * we might be here in C_WF_REPORT_PARAMS which is transient. 3096 * we do not need to wait for the after state change work either. */ 3097 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3098 if (rv2 != SS_SUCCESS) { 3099 drbd_khelper(device, "pri-lost-after-sb"); 3100 } else { 3101 drbd_warn(device, "Successfully gave up primary role.\n"); 3102 rv = hg; 3103 } 3104 } else 3105 rv = hg; 3106 } 3107 3108 return rv; 3109 } 3110 3111 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid, 3112 u64 bits, u64 flags) 3113 { 3114 if (!uuid) { 3115 drbd_info(device, "%s uuid info vanished while I was looking!\n", text); 3116 return; 3117 } 3118 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 3119 text, 3120 (unsigned long long)uuid[UI_CURRENT], 3121 (unsigned long long)uuid[UI_BITMAP], 3122 (unsigned long long)uuid[UI_HISTORY_START], 3123 (unsigned long long)uuid[UI_HISTORY_END], 3124 (unsigned long long)bits, 3125 (unsigned long long)flags); 3126 } 3127 3128 /* 3129 100 after split brain try auto recover 3130 2 C_SYNC_SOURCE set BitMap 3131 1 C_SYNC_SOURCE use BitMap 3132 0 no Sync 3133 -1 C_SYNC_TARGET use BitMap 3134 -2 C_SYNC_TARGET set BitMap 3135 -100 after split brain, disconnect 3136 -1000 unrelated data 3137 -1091 requires proto 91 3138 -1096 requires proto 96 3139 */ 3140 3141 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local) 3142 { 3143 struct drbd_peer_device *const peer_device = first_peer_device(device); 3144 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 3145 u64 self, peer; 3146 int i, j; 3147 3148 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3149 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3150 3151 *rule_nr = 10; 3152 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 3153 return 0; 3154 3155 *rule_nr = 20; 3156 if ((self == UUID_JUST_CREATED || self == (u64)0) && 3157 peer != UUID_JUST_CREATED) 3158 return -2; 3159 3160 *rule_nr = 30; 3161 if (self != UUID_JUST_CREATED && 3162 (peer == UUID_JUST_CREATED || peer == (u64)0)) 3163 return 2; 3164 3165 if (self == peer) { 3166 int rct, dc; /* roles at crash time */ 3167 3168 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) { 3169 3170 if (connection->agreed_pro_version < 91) 3171 return -1091; 3172 3173 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 3174 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 3175 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n"); 3176 drbd_uuid_move_history(device); 3177 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3178 device->ldev->md.uuid[UI_BITMAP] = 0; 3179 3180 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3181 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3182 *rule_nr = 34; 3183 } else { 3184 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n"); 3185 *rule_nr = 36; 3186 } 3187 3188 return 1; 3189 } 3190 3191 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) { 3192 3193 if (connection->agreed_pro_version < 91) 3194 return -1091; 3195 3196 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) && 3197 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 3198 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 3199 3200 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START]; 3201 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP]; 3202 device->p_uuid[UI_BITMAP] = 0UL; 3203 3204 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3205 *rule_nr = 35; 3206 } else { 3207 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n"); 3208 *rule_nr = 37; 3209 } 3210 3211 return -1; 3212 } 3213 3214 /* Common power [off|failure] */ 3215 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) + 3216 (device->p_uuid[UI_FLAGS] & 2); 3217 /* lowest bit is set when we were primary, 3218 * next bit (weight 2) is set when peer was primary */ 3219 *rule_nr = 40; 3220 3221 /* Neither has the "crashed primary" flag set, 3222 * only a replication link hickup. */ 3223 if (rct == 0) 3224 return 0; 3225 3226 /* Current UUID equal and no bitmap uuid; does not necessarily 3227 * mean this was a "simultaneous hard crash", maybe IO was 3228 * frozen, so no UUID-bump happened. 3229 * This is a protocol change, overload DRBD_FF_WSAME as flag 3230 * for "new-enough" peer DRBD version. */ 3231 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) { 3232 *rule_nr = 41; 3233 if (!(connection->agreed_features & DRBD_FF_WSAME)) { 3234 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n"); 3235 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8)); 3236 } 3237 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) { 3238 /* At least one has the "crashed primary" bit set, 3239 * both are primary now, but neither has rotated its UUIDs? 3240 * "Can not happen." */ 3241 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n"); 3242 return -100; 3243 } 3244 if (device->state.role == R_PRIMARY) 3245 return 1; 3246 return -1; 3247 } 3248 3249 /* Both are secondary. 3250 * Really looks like recovery from simultaneous hard crash. 3251 * Check which had been primary before, and arbitrate. */ 3252 switch (rct) { 3253 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */ 3254 case 1: /* self_pri && !peer_pri */ return 1; 3255 case 2: /* !self_pri && peer_pri */ return -1; 3256 case 3: /* self_pri && peer_pri */ 3257 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags); 3258 return dc ? -1 : 1; 3259 } 3260 } 3261 3262 *rule_nr = 50; 3263 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3264 if (self == peer) 3265 return -1; 3266 3267 *rule_nr = 51; 3268 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1); 3269 if (self == peer) { 3270 if (connection->agreed_pro_version < 96 ? 3271 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 3272 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 3273 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) { 3274 /* The last P_SYNC_UUID did not get though. Undo the last start of 3275 resync as sync source modifications of the peer's UUIDs. */ 3276 3277 if (connection->agreed_pro_version < 91) 3278 return -1091; 3279 3280 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START]; 3281 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1]; 3282 3283 drbd_info(device, "Lost last syncUUID packet, corrected:\n"); 3284 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3285 3286 return -1; 3287 } 3288 } 3289 3290 *rule_nr = 60; 3291 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3292 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3293 peer = device->p_uuid[i] & ~((u64)1); 3294 if (self == peer) 3295 return -2; 3296 } 3297 3298 *rule_nr = 70; 3299 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3300 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3301 if (self == peer) 3302 return 1; 3303 3304 *rule_nr = 71; 3305 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 3306 if (self == peer) { 3307 if (connection->agreed_pro_version < 96 ? 3308 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 3309 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 3310 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 3311 /* The last P_SYNC_UUID did not get though. Undo the last start of 3312 resync as sync source modifications of our UUIDs. */ 3313 3314 if (connection->agreed_pro_version < 91) 3315 return -1091; 3316 3317 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]); 3318 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]); 3319 3320 drbd_info(device, "Last syncUUID did not get through, corrected:\n"); 3321 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3322 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3323 3324 return 1; 3325 } 3326 } 3327 3328 3329 *rule_nr = 80; 3330 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3331 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3332 self = device->ldev->md.uuid[i] & ~((u64)1); 3333 if (self == peer) 3334 return 2; 3335 } 3336 3337 *rule_nr = 90; 3338 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3339 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3340 if (self == peer && self != ((u64)0)) 3341 return 100; 3342 3343 *rule_nr = 100; 3344 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3345 self = device->ldev->md.uuid[i] & ~((u64)1); 3346 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 3347 peer = device->p_uuid[j] & ~((u64)1); 3348 if (self == peer) 3349 return -100; 3350 } 3351 } 3352 3353 return -1000; 3354 } 3355 3356 /* drbd_sync_handshake() returns the new conn state on success, or 3357 CONN_MASK (-1) on failure. 3358 */ 3359 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device, 3360 enum drbd_role peer_role, 3361 enum drbd_disk_state peer_disk) __must_hold(local) 3362 { 3363 struct drbd_device *device = peer_device->device; 3364 enum drbd_conns rv = C_MASK; 3365 enum drbd_disk_state mydisk; 3366 struct net_conf *nc; 3367 int hg, rule_nr, rr_conflict, tentative; 3368 3369 mydisk = device->state.disk; 3370 if (mydisk == D_NEGOTIATING) 3371 mydisk = device->new_state_tmp.disk; 3372 3373 drbd_info(device, "drbd_sync_handshake:\n"); 3374 3375 spin_lock_irq(&device->ldev->md.uuid_lock); 3376 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0); 3377 drbd_uuid_dump(device, "peer", device->p_uuid, 3378 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3379 3380 hg = drbd_uuid_compare(device, peer_role, &rule_nr); 3381 spin_unlock_irq(&device->ldev->md.uuid_lock); 3382 3383 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 3384 3385 if (hg == -1000) { 3386 drbd_alert(device, "Unrelated data, aborting!\n"); 3387 return C_MASK; 3388 } 3389 if (hg < -0x10000) { 3390 int proto, fflags; 3391 hg = -hg; 3392 proto = hg & 0xff; 3393 fflags = (hg >> 8) & 0xff; 3394 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n", 3395 proto, fflags); 3396 return C_MASK; 3397 } 3398 if (hg < -1000) { 3399 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 3400 return C_MASK; 3401 } 3402 3403 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 3404 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 3405 int f = (hg == -100) || abs(hg) == 2; 3406 hg = mydisk > D_INCONSISTENT ? 1 : -1; 3407 if (f) 3408 hg = hg*2; 3409 drbd_info(device, "Becoming sync %s due to disk states.\n", 3410 hg > 0 ? "source" : "target"); 3411 } 3412 3413 if (abs(hg) == 100) 3414 drbd_khelper(device, "initial-split-brain"); 3415 3416 rcu_read_lock(); 3417 nc = rcu_dereference(peer_device->connection->net_conf); 3418 3419 if (hg == 100 || (hg == -100 && nc->always_asbp)) { 3420 int pcount = (device->state.role == R_PRIMARY) 3421 + (peer_role == R_PRIMARY); 3422 int forced = (hg == -100); 3423 3424 switch (pcount) { 3425 case 0: 3426 hg = drbd_asb_recover_0p(peer_device); 3427 break; 3428 case 1: 3429 hg = drbd_asb_recover_1p(peer_device); 3430 break; 3431 case 2: 3432 hg = drbd_asb_recover_2p(peer_device); 3433 break; 3434 } 3435 if (abs(hg) < 100) { 3436 drbd_warn(device, "Split-Brain detected, %d primaries, " 3437 "automatically solved. Sync from %s node\n", 3438 pcount, (hg < 0) ? "peer" : "this"); 3439 if (forced) { 3440 drbd_warn(device, "Doing a full sync, since" 3441 " UUIDs where ambiguous.\n"); 3442 hg = hg*2; 3443 } 3444 } 3445 } 3446 3447 if (hg == -100) { 3448 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1)) 3449 hg = -1; 3450 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1)) 3451 hg = 1; 3452 3453 if (abs(hg) < 100) 3454 drbd_warn(device, "Split-Brain detected, manually solved. " 3455 "Sync from %s node\n", 3456 (hg < 0) ? "peer" : "this"); 3457 } 3458 rr_conflict = nc->rr_conflict; 3459 tentative = nc->tentative; 3460 rcu_read_unlock(); 3461 3462 if (hg == -100) { 3463 /* FIXME this log message is not correct if we end up here 3464 * after an attempted attach on a diskless node. 3465 * We just refuse to attach -- well, we drop the "connection" 3466 * to that disk, in a way... */ 3467 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n"); 3468 drbd_khelper(device, "split-brain"); 3469 return C_MASK; 3470 } 3471 3472 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3473 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n"); 3474 return C_MASK; 3475 } 3476 3477 if (hg < 0 && /* by intention we do not use mydisk here. */ 3478 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) { 3479 switch (rr_conflict) { 3480 case ASB_CALL_HELPER: 3481 drbd_khelper(device, "pri-lost"); 3482 /* fall through */ 3483 case ASB_DISCONNECT: 3484 drbd_err(device, "I shall become SyncTarget, but I am primary!\n"); 3485 return C_MASK; 3486 case ASB_VIOLENTLY: 3487 drbd_warn(device, "Becoming SyncTarget, violating the stable-data" 3488 "assumption\n"); 3489 } 3490 } 3491 3492 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) { 3493 if (hg == 0) 3494 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n"); 3495 else 3496 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.", 3497 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3498 abs(hg) >= 2 ? "full" : "bit-map based"); 3499 return C_MASK; 3500 } 3501 3502 if (abs(hg) >= 2) { 3503 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3504 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3505 BM_LOCKED_SET_ALLOWED)) 3506 return C_MASK; 3507 } 3508 3509 if (hg > 0) { /* become sync source. */ 3510 rv = C_WF_BITMAP_S; 3511 } else if (hg < 0) { /* become sync target */ 3512 rv = C_WF_BITMAP_T; 3513 } else { 3514 rv = C_CONNECTED; 3515 if (drbd_bm_total_weight(device)) { 3516 drbd_info(device, "No resync, but %lu bits in bitmap!\n", 3517 drbd_bm_total_weight(device)); 3518 } 3519 } 3520 3521 return rv; 3522 } 3523 3524 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3525 { 3526 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3527 if (peer == ASB_DISCARD_REMOTE) 3528 return ASB_DISCARD_LOCAL; 3529 3530 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3531 if (peer == ASB_DISCARD_LOCAL) 3532 return ASB_DISCARD_REMOTE; 3533 3534 /* everything else is valid if they are equal on both sides. */ 3535 return peer; 3536 } 3537 3538 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi) 3539 { 3540 struct p_protocol *p = pi->data; 3541 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3542 int p_proto, p_discard_my_data, p_two_primaries, cf; 3543 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3544 char integrity_alg[SHARED_SECRET_MAX] = ""; 3545 struct crypto_ahash *peer_integrity_tfm = NULL; 3546 void *int_dig_in = NULL, *int_dig_vv = NULL; 3547 3548 p_proto = be32_to_cpu(p->protocol); 3549 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3550 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3551 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3552 p_two_primaries = be32_to_cpu(p->two_primaries); 3553 cf = be32_to_cpu(p->conn_flags); 3554 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3555 3556 if (connection->agreed_pro_version >= 87) { 3557 int err; 3558 3559 if (pi->size > sizeof(integrity_alg)) 3560 return -EIO; 3561 err = drbd_recv_all(connection, integrity_alg, pi->size); 3562 if (err) 3563 return err; 3564 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3565 } 3566 3567 if (pi->cmd != P_PROTOCOL_UPDATE) { 3568 clear_bit(CONN_DRY_RUN, &connection->flags); 3569 3570 if (cf & CF_DRY_RUN) 3571 set_bit(CONN_DRY_RUN, &connection->flags); 3572 3573 rcu_read_lock(); 3574 nc = rcu_dereference(connection->net_conf); 3575 3576 if (p_proto != nc->wire_protocol) { 3577 drbd_err(connection, "incompatible %s settings\n", "protocol"); 3578 goto disconnect_rcu_unlock; 3579 } 3580 3581 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3582 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri"); 3583 goto disconnect_rcu_unlock; 3584 } 3585 3586 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3587 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri"); 3588 goto disconnect_rcu_unlock; 3589 } 3590 3591 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3592 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri"); 3593 goto disconnect_rcu_unlock; 3594 } 3595 3596 if (p_discard_my_data && nc->discard_my_data) { 3597 drbd_err(connection, "incompatible %s settings\n", "discard-my-data"); 3598 goto disconnect_rcu_unlock; 3599 } 3600 3601 if (p_two_primaries != nc->two_primaries) { 3602 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries"); 3603 goto disconnect_rcu_unlock; 3604 } 3605 3606 if (strcmp(integrity_alg, nc->integrity_alg)) { 3607 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg"); 3608 goto disconnect_rcu_unlock; 3609 } 3610 3611 rcu_read_unlock(); 3612 } 3613 3614 if (integrity_alg[0]) { 3615 int hash_size; 3616 3617 /* 3618 * We can only change the peer data integrity algorithm 3619 * here. Changing our own data integrity algorithm 3620 * requires that we send a P_PROTOCOL_UPDATE packet at 3621 * the same time; otherwise, the peer has no way to 3622 * tell between which packets the algorithm should 3623 * change. 3624 */ 3625 3626 peer_integrity_tfm = crypto_alloc_ahash(integrity_alg, 0, CRYPTO_ALG_ASYNC); 3627 if (IS_ERR(peer_integrity_tfm)) { 3628 peer_integrity_tfm = NULL; 3629 drbd_err(connection, "peer data-integrity-alg %s not supported\n", 3630 integrity_alg); 3631 goto disconnect; 3632 } 3633 3634 hash_size = crypto_ahash_digestsize(peer_integrity_tfm); 3635 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3636 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3637 if (!(int_dig_in && int_dig_vv)) { 3638 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n"); 3639 goto disconnect; 3640 } 3641 } 3642 3643 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3644 if (!new_net_conf) { 3645 drbd_err(connection, "Allocation of new net_conf failed\n"); 3646 goto disconnect; 3647 } 3648 3649 mutex_lock(&connection->data.mutex); 3650 mutex_lock(&connection->resource->conf_update); 3651 old_net_conf = connection->net_conf; 3652 *new_net_conf = *old_net_conf; 3653 3654 new_net_conf->wire_protocol = p_proto; 3655 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3656 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3657 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3658 new_net_conf->two_primaries = p_two_primaries; 3659 3660 rcu_assign_pointer(connection->net_conf, new_net_conf); 3661 mutex_unlock(&connection->resource->conf_update); 3662 mutex_unlock(&connection->data.mutex); 3663 3664 crypto_free_ahash(connection->peer_integrity_tfm); 3665 kfree(connection->int_dig_in); 3666 kfree(connection->int_dig_vv); 3667 connection->peer_integrity_tfm = peer_integrity_tfm; 3668 connection->int_dig_in = int_dig_in; 3669 connection->int_dig_vv = int_dig_vv; 3670 3671 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3672 drbd_info(connection, "peer data-integrity-alg: %s\n", 3673 integrity_alg[0] ? integrity_alg : "(none)"); 3674 3675 synchronize_rcu(); 3676 kfree(old_net_conf); 3677 return 0; 3678 3679 disconnect_rcu_unlock: 3680 rcu_read_unlock(); 3681 disconnect: 3682 crypto_free_ahash(peer_integrity_tfm); 3683 kfree(int_dig_in); 3684 kfree(int_dig_vv); 3685 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 3686 return -EIO; 3687 } 3688 3689 /* helper function 3690 * input: alg name, feature name 3691 * return: NULL (alg name was "") 3692 * ERR_PTR(error) if something goes wrong 3693 * or the crypto hash ptr, if it worked out ok. */ 3694 static struct crypto_ahash *drbd_crypto_alloc_digest_safe(const struct drbd_device *device, 3695 const char *alg, const char *name) 3696 { 3697 struct crypto_ahash *tfm; 3698 3699 if (!alg[0]) 3700 return NULL; 3701 3702 tfm = crypto_alloc_ahash(alg, 0, CRYPTO_ALG_ASYNC); 3703 if (IS_ERR(tfm)) { 3704 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3705 alg, name, PTR_ERR(tfm)); 3706 return tfm; 3707 } 3708 return tfm; 3709 } 3710 3711 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi) 3712 { 3713 void *buffer = connection->data.rbuf; 3714 int size = pi->size; 3715 3716 while (size) { 3717 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3718 s = drbd_recv(connection, buffer, s); 3719 if (s <= 0) { 3720 if (s < 0) 3721 return s; 3722 break; 3723 } 3724 size -= s; 3725 } 3726 if (size) 3727 return -EIO; 3728 return 0; 3729 } 3730 3731 /* 3732 * config_unknown_volume - device configuration command for unknown volume 3733 * 3734 * When a device is added to an existing connection, the node on which the 3735 * device is added first will send configuration commands to its peer but the 3736 * peer will not know about the device yet. It will warn and ignore these 3737 * commands. Once the device is added on the second node, the second node will 3738 * send the same device configuration commands, but in the other direction. 3739 * 3740 * (We can also end up here if drbd is misconfigured.) 3741 */ 3742 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi) 3743 { 3744 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n", 3745 cmdname(pi->cmd), pi->vnr); 3746 return ignore_remaining_packet(connection, pi); 3747 } 3748 3749 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi) 3750 { 3751 struct drbd_peer_device *peer_device; 3752 struct drbd_device *device; 3753 struct p_rs_param_95 *p; 3754 unsigned int header_size, data_size, exp_max_sz; 3755 struct crypto_ahash *verify_tfm = NULL; 3756 struct crypto_ahash *csums_tfm = NULL; 3757 struct net_conf *old_net_conf, *new_net_conf = NULL; 3758 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3759 const int apv = connection->agreed_pro_version; 3760 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3761 int fifo_size = 0; 3762 int err; 3763 3764 peer_device = conn_peer_device(connection, pi->vnr); 3765 if (!peer_device) 3766 return config_unknown_volume(connection, pi); 3767 device = peer_device->device; 3768 3769 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3770 : apv == 88 ? sizeof(struct p_rs_param) 3771 + SHARED_SECRET_MAX 3772 : apv <= 94 ? sizeof(struct p_rs_param_89) 3773 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3774 3775 if (pi->size > exp_max_sz) { 3776 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3777 pi->size, exp_max_sz); 3778 return -EIO; 3779 } 3780 3781 if (apv <= 88) { 3782 header_size = sizeof(struct p_rs_param); 3783 data_size = pi->size - header_size; 3784 } else if (apv <= 94) { 3785 header_size = sizeof(struct p_rs_param_89); 3786 data_size = pi->size - header_size; 3787 D_ASSERT(device, data_size == 0); 3788 } else { 3789 header_size = sizeof(struct p_rs_param_95); 3790 data_size = pi->size - header_size; 3791 D_ASSERT(device, data_size == 0); 3792 } 3793 3794 /* initialize verify_alg and csums_alg */ 3795 p = pi->data; 3796 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 3797 3798 err = drbd_recv_all(peer_device->connection, p, header_size); 3799 if (err) 3800 return err; 3801 3802 mutex_lock(&connection->resource->conf_update); 3803 old_net_conf = peer_device->connection->net_conf; 3804 if (get_ldev(device)) { 3805 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3806 if (!new_disk_conf) { 3807 put_ldev(device); 3808 mutex_unlock(&connection->resource->conf_update); 3809 drbd_err(device, "Allocation of new disk_conf failed\n"); 3810 return -ENOMEM; 3811 } 3812 3813 old_disk_conf = device->ldev->disk_conf; 3814 *new_disk_conf = *old_disk_conf; 3815 3816 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3817 } 3818 3819 if (apv >= 88) { 3820 if (apv == 88) { 3821 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3822 drbd_err(device, "verify-alg of wrong size, " 3823 "peer wants %u, accepting only up to %u byte\n", 3824 data_size, SHARED_SECRET_MAX); 3825 err = -EIO; 3826 goto reconnect; 3827 } 3828 3829 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size); 3830 if (err) 3831 goto reconnect; 3832 /* we expect NUL terminated string */ 3833 /* but just in case someone tries to be evil */ 3834 D_ASSERT(device, p->verify_alg[data_size-1] == 0); 3835 p->verify_alg[data_size-1] = 0; 3836 3837 } else /* apv >= 89 */ { 3838 /* we still expect NUL terminated strings */ 3839 /* but just in case someone tries to be evil */ 3840 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3841 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3842 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3843 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3844 } 3845 3846 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3847 if (device->state.conn == C_WF_REPORT_PARAMS) { 3848 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3849 old_net_conf->verify_alg, p->verify_alg); 3850 goto disconnect; 3851 } 3852 verify_tfm = drbd_crypto_alloc_digest_safe(device, 3853 p->verify_alg, "verify-alg"); 3854 if (IS_ERR(verify_tfm)) { 3855 verify_tfm = NULL; 3856 goto disconnect; 3857 } 3858 } 3859 3860 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3861 if (device->state.conn == C_WF_REPORT_PARAMS) { 3862 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3863 old_net_conf->csums_alg, p->csums_alg); 3864 goto disconnect; 3865 } 3866 csums_tfm = drbd_crypto_alloc_digest_safe(device, 3867 p->csums_alg, "csums-alg"); 3868 if (IS_ERR(csums_tfm)) { 3869 csums_tfm = NULL; 3870 goto disconnect; 3871 } 3872 } 3873 3874 if (apv > 94 && new_disk_conf) { 3875 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 3876 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 3877 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 3878 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 3879 3880 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 3881 if (fifo_size != device->rs_plan_s->size) { 3882 new_plan = fifo_alloc(fifo_size); 3883 if (!new_plan) { 3884 drbd_err(device, "kmalloc of fifo_buffer failed"); 3885 put_ldev(device); 3886 goto disconnect; 3887 } 3888 } 3889 } 3890 3891 if (verify_tfm || csums_tfm) { 3892 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 3893 if (!new_net_conf) { 3894 drbd_err(device, "Allocation of new net_conf failed\n"); 3895 goto disconnect; 3896 } 3897 3898 *new_net_conf = *old_net_conf; 3899 3900 if (verify_tfm) { 3901 strcpy(new_net_conf->verify_alg, p->verify_alg); 3902 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 3903 crypto_free_ahash(peer_device->connection->verify_tfm); 3904 peer_device->connection->verify_tfm = verify_tfm; 3905 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg); 3906 } 3907 if (csums_tfm) { 3908 strcpy(new_net_conf->csums_alg, p->csums_alg); 3909 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 3910 crypto_free_ahash(peer_device->connection->csums_tfm); 3911 peer_device->connection->csums_tfm = csums_tfm; 3912 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg); 3913 } 3914 rcu_assign_pointer(connection->net_conf, new_net_conf); 3915 } 3916 } 3917 3918 if (new_disk_conf) { 3919 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 3920 put_ldev(device); 3921 } 3922 3923 if (new_plan) { 3924 old_plan = device->rs_plan_s; 3925 rcu_assign_pointer(device->rs_plan_s, new_plan); 3926 } 3927 3928 mutex_unlock(&connection->resource->conf_update); 3929 synchronize_rcu(); 3930 if (new_net_conf) 3931 kfree(old_net_conf); 3932 kfree(old_disk_conf); 3933 kfree(old_plan); 3934 3935 return 0; 3936 3937 reconnect: 3938 if (new_disk_conf) { 3939 put_ldev(device); 3940 kfree(new_disk_conf); 3941 } 3942 mutex_unlock(&connection->resource->conf_update); 3943 return -EIO; 3944 3945 disconnect: 3946 kfree(new_plan); 3947 if (new_disk_conf) { 3948 put_ldev(device); 3949 kfree(new_disk_conf); 3950 } 3951 mutex_unlock(&connection->resource->conf_update); 3952 /* just for completeness: actually not needed, 3953 * as this is not reached if csums_tfm was ok. */ 3954 crypto_free_ahash(csums_tfm); 3955 /* but free the verify_tfm again, if csums_tfm did not work out */ 3956 crypto_free_ahash(verify_tfm); 3957 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 3958 return -EIO; 3959 } 3960 3961 /* warn if the arguments differ by more than 12.5% */ 3962 static void warn_if_differ_considerably(struct drbd_device *device, 3963 const char *s, sector_t a, sector_t b) 3964 { 3965 sector_t d; 3966 if (a == 0 || b == 0) 3967 return; 3968 d = (a > b) ? (a - b) : (b - a); 3969 if (d > (a>>3) || d > (b>>3)) 3970 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s, 3971 (unsigned long long)a, (unsigned long long)b); 3972 } 3973 3974 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi) 3975 { 3976 struct drbd_peer_device *peer_device; 3977 struct drbd_device *device; 3978 struct p_sizes *p = pi->data; 3979 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL; 3980 enum determine_dev_size dd = DS_UNCHANGED; 3981 sector_t p_size, p_usize, p_csize, my_usize; 3982 int ldsc = 0; /* local disk size changed */ 3983 enum dds_flags ddsf; 3984 3985 peer_device = conn_peer_device(connection, pi->vnr); 3986 if (!peer_device) 3987 return config_unknown_volume(connection, pi); 3988 device = peer_device->device; 3989 3990 p_size = be64_to_cpu(p->d_size); 3991 p_usize = be64_to_cpu(p->u_size); 3992 p_csize = be64_to_cpu(p->c_size); 3993 3994 /* just store the peer's disk size for now. 3995 * we still need to figure out whether we accept that. */ 3996 device->p_size = p_size; 3997 3998 if (get_ldev(device)) { 3999 sector_t new_size, cur_size; 4000 rcu_read_lock(); 4001 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size; 4002 rcu_read_unlock(); 4003 4004 warn_if_differ_considerably(device, "lower level device sizes", 4005 p_size, drbd_get_max_capacity(device->ldev)); 4006 warn_if_differ_considerably(device, "user requested size", 4007 p_usize, my_usize); 4008 4009 /* if this is the first connect, or an otherwise expected 4010 * param exchange, choose the minimum */ 4011 if (device->state.conn == C_WF_REPORT_PARAMS) 4012 p_usize = min_not_zero(my_usize, p_usize); 4013 4014 /* Never shrink a device with usable data during connect. 4015 But allow online shrinking if we are connected. */ 4016 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0); 4017 cur_size = drbd_get_capacity(device->this_bdev); 4018 if (new_size < cur_size && 4019 device->state.disk >= D_OUTDATED && 4020 device->state.conn < C_CONNECTED) { 4021 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n", 4022 (unsigned long long)new_size, (unsigned long long)cur_size); 4023 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4024 put_ldev(device); 4025 return -EIO; 4026 } 4027 4028 if (my_usize != p_usize) { 4029 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 4030 4031 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 4032 if (!new_disk_conf) { 4033 drbd_err(device, "Allocation of new disk_conf failed\n"); 4034 put_ldev(device); 4035 return -ENOMEM; 4036 } 4037 4038 mutex_lock(&connection->resource->conf_update); 4039 old_disk_conf = device->ldev->disk_conf; 4040 *new_disk_conf = *old_disk_conf; 4041 new_disk_conf->disk_size = p_usize; 4042 4043 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4044 mutex_unlock(&connection->resource->conf_update); 4045 synchronize_rcu(); 4046 kfree(old_disk_conf); 4047 4048 drbd_info(device, "Peer sets u_size to %lu sectors\n", 4049 (unsigned long)my_usize); 4050 } 4051 4052 put_ldev(device); 4053 } 4054 4055 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 4056 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size(). 4057 In case we cleared the QUEUE_FLAG_DISCARD from our queue in 4058 drbd_reconsider_queue_parameters(), we can be sure that after 4059 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */ 4060 4061 ddsf = be16_to_cpu(p->dds_flags); 4062 if (get_ldev(device)) { 4063 drbd_reconsider_queue_parameters(device, device->ldev, o); 4064 dd = drbd_determine_dev_size(device, ddsf, NULL); 4065 put_ldev(device); 4066 if (dd == DS_ERROR) 4067 return -EIO; 4068 drbd_md_sync(device); 4069 } else { 4070 /* 4071 * I am diskless, need to accept the peer's *current* size. 4072 * I must NOT accept the peers backing disk size, 4073 * it may have been larger than mine all along... 4074 * 4075 * At this point, the peer knows more about my disk, or at 4076 * least about what we last agreed upon, than myself. 4077 * So if his c_size is less than his d_size, the most likely 4078 * reason is that *my* d_size was smaller last time we checked. 4079 * 4080 * However, if he sends a zero current size, 4081 * take his (user-capped or) backing disk size anyways. 4082 */ 4083 drbd_reconsider_queue_parameters(device, NULL, o); 4084 drbd_set_my_capacity(device, p_csize ?: p_usize ?: p_size); 4085 } 4086 4087 if (get_ldev(device)) { 4088 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) { 4089 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); 4090 ldsc = 1; 4091 } 4092 4093 put_ldev(device); 4094 } 4095 4096 if (device->state.conn > C_WF_REPORT_PARAMS) { 4097 if (be64_to_cpu(p->c_size) != 4098 drbd_get_capacity(device->this_bdev) || ldsc) { 4099 /* we have different sizes, probably peer 4100 * needs to know my new size... */ 4101 drbd_send_sizes(peer_device, 0, ddsf); 4102 } 4103 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) || 4104 (dd == DS_GREW && device->state.conn == C_CONNECTED)) { 4105 if (device->state.pdsk >= D_INCONSISTENT && 4106 device->state.disk >= D_INCONSISTENT) { 4107 if (ddsf & DDSF_NO_RESYNC) 4108 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n"); 4109 else 4110 resync_after_online_grow(device); 4111 } else 4112 set_bit(RESYNC_AFTER_NEG, &device->flags); 4113 } 4114 } 4115 4116 return 0; 4117 } 4118 4119 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi) 4120 { 4121 struct drbd_peer_device *peer_device; 4122 struct drbd_device *device; 4123 struct p_uuids *p = pi->data; 4124 u64 *p_uuid; 4125 int i, updated_uuids = 0; 4126 4127 peer_device = conn_peer_device(connection, pi->vnr); 4128 if (!peer_device) 4129 return config_unknown_volume(connection, pi); 4130 device = peer_device->device; 4131 4132 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO); 4133 if (!p_uuid) { 4134 drbd_err(device, "kmalloc of p_uuid failed\n"); 4135 return false; 4136 } 4137 4138 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 4139 p_uuid[i] = be64_to_cpu(p->uuid[i]); 4140 4141 kfree(device->p_uuid); 4142 device->p_uuid = p_uuid; 4143 4144 if (device->state.conn < C_CONNECTED && 4145 device->state.disk < D_INCONSISTENT && 4146 device->state.role == R_PRIMARY && 4147 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 4148 drbd_err(device, "Can only connect to data with current UUID=%016llX\n", 4149 (unsigned long long)device->ed_uuid); 4150 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4151 return -EIO; 4152 } 4153 4154 if (get_ldev(device)) { 4155 int skip_initial_sync = 4156 device->state.conn == C_CONNECTED && 4157 peer_device->connection->agreed_pro_version >= 90 && 4158 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 4159 (p_uuid[UI_FLAGS] & 8); 4160 if (skip_initial_sync) { 4161 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n"); 4162 drbd_bitmap_io(device, &drbd_bmio_clear_n_write, 4163 "clear_n_write from receive_uuids", 4164 BM_LOCKED_TEST_ALLOWED); 4165 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]); 4166 _drbd_uuid_set(device, UI_BITMAP, 0); 4167 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 4168 CS_VERBOSE, NULL); 4169 drbd_md_sync(device); 4170 updated_uuids = 1; 4171 } 4172 put_ldev(device); 4173 } else if (device->state.disk < D_INCONSISTENT && 4174 device->state.role == R_PRIMARY) { 4175 /* I am a diskless primary, the peer just created a new current UUID 4176 for me. */ 4177 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4178 } 4179 4180 /* Before we test for the disk state, we should wait until an eventually 4181 ongoing cluster wide state change is finished. That is important if 4182 we are primary and are detaching from our disk. We need to see the 4183 new disk state... */ 4184 mutex_lock(device->state_mutex); 4185 mutex_unlock(device->state_mutex); 4186 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT) 4187 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4188 4189 if (updated_uuids) 4190 drbd_print_uuids(device, "receiver updated UUIDs to"); 4191 4192 return 0; 4193 } 4194 4195 /** 4196 * convert_state() - Converts the peer's view of the cluster state to our point of view 4197 * @ps: The state as seen by the peer. 4198 */ 4199 static union drbd_state convert_state(union drbd_state ps) 4200 { 4201 union drbd_state ms; 4202 4203 static enum drbd_conns c_tab[] = { 4204 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 4205 [C_CONNECTED] = C_CONNECTED, 4206 4207 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 4208 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 4209 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 4210 [C_VERIFY_S] = C_VERIFY_T, 4211 [C_MASK] = C_MASK, 4212 }; 4213 4214 ms.i = ps.i; 4215 4216 ms.conn = c_tab[ps.conn]; 4217 ms.peer = ps.role; 4218 ms.role = ps.peer; 4219 ms.pdsk = ps.disk; 4220 ms.disk = ps.pdsk; 4221 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 4222 4223 return ms; 4224 } 4225 4226 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi) 4227 { 4228 struct drbd_peer_device *peer_device; 4229 struct drbd_device *device; 4230 struct p_req_state *p = pi->data; 4231 union drbd_state mask, val; 4232 enum drbd_state_rv rv; 4233 4234 peer_device = conn_peer_device(connection, pi->vnr); 4235 if (!peer_device) 4236 return -EIO; 4237 device = peer_device->device; 4238 4239 mask.i = be32_to_cpu(p->mask); 4240 val.i = be32_to_cpu(p->val); 4241 4242 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) && 4243 mutex_is_locked(device->state_mutex)) { 4244 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG); 4245 return 0; 4246 } 4247 4248 mask = convert_state(mask); 4249 val = convert_state(val); 4250 4251 rv = drbd_change_state(device, CS_VERBOSE, mask, val); 4252 drbd_send_sr_reply(peer_device, rv); 4253 4254 drbd_md_sync(device); 4255 4256 return 0; 4257 } 4258 4259 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi) 4260 { 4261 struct p_req_state *p = pi->data; 4262 union drbd_state mask, val; 4263 enum drbd_state_rv rv; 4264 4265 mask.i = be32_to_cpu(p->mask); 4266 val.i = be32_to_cpu(p->val); 4267 4268 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) && 4269 mutex_is_locked(&connection->cstate_mutex)) { 4270 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG); 4271 return 0; 4272 } 4273 4274 mask = convert_state(mask); 4275 val = convert_state(val); 4276 4277 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 4278 conn_send_sr_reply(connection, rv); 4279 4280 return 0; 4281 } 4282 4283 static int receive_state(struct drbd_connection *connection, struct packet_info *pi) 4284 { 4285 struct drbd_peer_device *peer_device; 4286 struct drbd_device *device; 4287 struct p_state *p = pi->data; 4288 union drbd_state os, ns, peer_state; 4289 enum drbd_disk_state real_peer_disk; 4290 enum chg_state_flags cs_flags; 4291 int rv; 4292 4293 peer_device = conn_peer_device(connection, pi->vnr); 4294 if (!peer_device) 4295 return config_unknown_volume(connection, pi); 4296 device = peer_device->device; 4297 4298 peer_state.i = be32_to_cpu(p->state); 4299 4300 real_peer_disk = peer_state.disk; 4301 if (peer_state.disk == D_NEGOTIATING) { 4302 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 4303 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 4304 } 4305 4306 spin_lock_irq(&device->resource->req_lock); 4307 retry: 4308 os = ns = drbd_read_state(device); 4309 spin_unlock_irq(&device->resource->req_lock); 4310 4311 /* If some other part of the code (ack_receiver thread, timeout) 4312 * already decided to close the connection again, 4313 * we must not "re-establish" it here. */ 4314 if (os.conn <= C_TEAR_DOWN) 4315 return -ECONNRESET; 4316 4317 /* If this is the "end of sync" confirmation, usually the peer disk 4318 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 4319 * set) resync started in PausedSyncT, or if the timing of pause-/ 4320 * unpause-sync events has been "just right", the peer disk may 4321 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 4322 */ 4323 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 4324 real_peer_disk == D_UP_TO_DATE && 4325 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 4326 /* If we are (becoming) SyncSource, but peer is still in sync 4327 * preparation, ignore its uptodate-ness to avoid flapping, it 4328 * will change to inconsistent once the peer reaches active 4329 * syncing states. 4330 * It may have changed syncer-paused flags, however, so we 4331 * cannot ignore this completely. */ 4332 if (peer_state.conn > C_CONNECTED && 4333 peer_state.conn < C_SYNC_SOURCE) 4334 real_peer_disk = D_INCONSISTENT; 4335 4336 /* if peer_state changes to connected at the same time, 4337 * it explicitly notifies us that it finished resync. 4338 * Maybe we should finish it up, too? */ 4339 else if (os.conn >= C_SYNC_SOURCE && 4340 peer_state.conn == C_CONNECTED) { 4341 if (drbd_bm_total_weight(device) <= device->rs_failed) 4342 drbd_resync_finished(device); 4343 return 0; 4344 } 4345 } 4346 4347 /* explicit verify finished notification, stop sector reached. */ 4348 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 4349 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 4350 ov_out_of_sync_print(device); 4351 drbd_resync_finished(device); 4352 return 0; 4353 } 4354 4355 /* peer says his disk is inconsistent, while we think it is uptodate, 4356 * and this happens while the peer still thinks we have a sync going on, 4357 * but we think we are already done with the sync. 4358 * We ignore this to avoid flapping pdsk. 4359 * This should not happen, if the peer is a recent version of drbd. */ 4360 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 4361 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 4362 real_peer_disk = D_UP_TO_DATE; 4363 4364 if (ns.conn == C_WF_REPORT_PARAMS) 4365 ns.conn = C_CONNECTED; 4366 4367 if (peer_state.conn == C_AHEAD) 4368 ns.conn = C_BEHIND; 4369 4370 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING && 4371 get_ldev_if_state(device, D_NEGOTIATING)) { 4372 int cr; /* consider resync */ 4373 4374 /* if we established a new connection */ 4375 cr = (os.conn < C_CONNECTED); 4376 /* if we had an established connection 4377 * and one of the nodes newly attaches a disk */ 4378 cr |= (os.conn == C_CONNECTED && 4379 (peer_state.disk == D_NEGOTIATING || 4380 os.disk == D_NEGOTIATING)); 4381 /* if we have both been inconsistent, and the peer has been 4382 * forced to be UpToDate with --overwrite-data */ 4383 cr |= test_bit(CONSIDER_RESYNC, &device->flags); 4384 /* if we had been plain connected, and the admin requested to 4385 * start a sync by "invalidate" or "invalidate-remote" */ 4386 cr |= (os.conn == C_CONNECTED && 4387 (peer_state.conn >= C_STARTING_SYNC_S && 4388 peer_state.conn <= C_WF_BITMAP_T)); 4389 4390 if (cr) 4391 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk); 4392 4393 put_ldev(device); 4394 if (ns.conn == C_MASK) { 4395 ns.conn = C_CONNECTED; 4396 if (device->state.disk == D_NEGOTIATING) { 4397 drbd_force_state(device, NS(disk, D_FAILED)); 4398 } else if (peer_state.disk == D_NEGOTIATING) { 4399 drbd_err(device, "Disk attach process on the peer node was aborted.\n"); 4400 peer_state.disk = D_DISKLESS; 4401 real_peer_disk = D_DISKLESS; 4402 } else { 4403 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags)) 4404 return -EIO; 4405 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS); 4406 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4407 return -EIO; 4408 } 4409 } 4410 } 4411 4412 spin_lock_irq(&device->resource->req_lock); 4413 if (os.i != drbd_read_state(device).i) 4414 goto retry; 4415 clear_bit(CONSIDER_RESYNC, &device->flags); 4416 ns.peer = peer_state.role; 4417 ns.pdsk = real_peer_disk; 4418 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 4419 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 4420 ns.disk = device->new_state_tmp.disk; 4421 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 4422 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 4423 test_bit(NEW_CUR_UUID, &device->flags)) { 4424 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 4425 for temporal network outages! */ 4426 spin_unlock_irq(&device->resource->req_lock); 4427 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 4428 tl_clear(peer_device->connection); 4429 drbd_uuid_new_current(device); 4430 clear_bit(NEW_CUR_UUID, &device->flags); 4431 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 4432 return -EIO; 4433 } 4434 rv = _drbd_set_state(device, ns, cs_flags, NULL); 4435 ns = drbd_read_state(device); 4436 spin_unlock_irq(&device->resource->req_lock); 4437 4438 if (rv < SS_SUCCESS) { 4439 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4440 return -EIO; 4441 } 4442 4443 if (os.conn > C_WF_REPORT_PARAMS) { 4444 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 4445 peer_state.disk != D_NEGOTIATING ) { 4446 /* we want resync, peer has not yet decided to sync... */ 4447 /* Nowadays only used when forcing a node into primary role and 4448 setting its disk to UpToDate with that */ 4449 drbd_send_uuids(peer_device); 4450 drbd_send_current_state(peer_device); 4451 } 4452 } 4453 4454 clear_bit(DISCARD_MY_DATA, &device->flags); 4455 4456 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */ 4457 4458 return 0; 4459 } 4460 4461 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi) 4462 { 4463 struct drbd_peer_device *peer_device; 4464 struct drbd_device *device; 4465 struct p_rs_uuid *p = pi->data; 4466 4467 peer_device = conn_peer_device(connection, pi->vnr); 4468 if (!peer_device) 4469 return -EIO; 4470 device = peer_device->device; 4471 4472 wait_event(device->misc_wait, 4473 device->state.conn == C_WF_SYNC_UUID || 4474 device->state.conn == C_BEHIND || 4475 device->state.conn < C_CONNECTED || 4476 device->state.disk < D_NEGOTIATING); 4477 4478 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */ 4479 4480 /* Here the _drbd_uuid_ functions are right, current should 4481 _not_ be rotated into the history */ 4482 if (get_ldev_if_state(device, D_NEGOTIATING)) { 4483 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid)); 4484 _drbd_uuid_set(device, UI_BITMAP, 0UL); 4485 4486 drbd_print_uuids(device, "updated sync uuid"); 4487 drbd_start_resync(device, C_SYNC_TARGET); 4488 4489 put_ldev(device); 4490 } else 4491 drbd_err(device, "Ignoring SyncUUID packet!\n"); 4492 4493 return 0; 4494 } 4495 4496 /** 4497 * receive_bitmap_plain 4498 * 4499 * Return 0 when done, 1 when another iteration is needed, and a negative error 4500 * code upon failure. 4501 */ 4502 static int 4503 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size, 4504 unsigned long *p, struct bm_xfer_ctx *c) 4505 { 4506 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4507 drbd_header_size(peer_device->connection); 4508 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4509 c->bm_words - c->word_offset); 4510 unsigned int want = num_words * sizeof(*p); 4511 int err; 4512 4513 if (want != size) { 4514 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size); 4515 return -EIO; 4516 } 4517 if (want == 0) 4518 return 0; 4519 err = drbd_recv_all(peer_device->connection, p, want); 4520 if (err) 4521 return err; 4522 4523 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p); 4524 4525 c->word_offset += num_words; 4526 c->bit_offset = c->word_offset * BITS_PER_LONG; 4527 if (c->bit_offset > c->bm_bits) 4528 c->bit_offset = c->bm_bits; 4529 4530 return 1; 4531 } 4532 4533 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4534 { 4535 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4536 } 4537 4538 static int dcbp_get_start(struct p_compressed_bm *p) 4539 { 4540 return (p->encoding & 0x80) != 0; 4541 } 4542 4543 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4544 { 4545 return (p->encoding >> 4) & 0x7; 4546 } 4547 4548 /** 4549 * recv_bm_rle_bits 4550 * 4551 * Return 0 when done, 1 when another iteration is needed, and a negative error 4552 * code upon failure. 4553 */ 4554 static int 4555 recv_bm_rle_bits(struct drbd_peer_device *peer_device, 4556 struct p_compressed_bm *p, 4557 struct bm_xfer_ctx *c, 4558 unsigned int len) 4559 { 4560 struct bitstream bs; 4561 u64 look_ahead; 4562 u64 rl; 4563 u64 tmp; 4564 unsigned long s = c->bit_offset; 4565 unsigned long e; 4566 int toggle = dcbp_get_start(p); 4567 int have; 4568 int bits; 4569 4570 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4571 4572 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4573 if (bits < 0) 4574 return -EIO; 4575 4576 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4577 bits = vli_decode_bits(&rl, look_ahead); 4578 if (bits <= 0) 4579 return -EIO; 4580 4581 if (toggle) { 4582 e = s + rl -1; 4583 if (e >= c->bm_bits) { 4584 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4585 return -EIO; 4586 } 4587 _drbd_bm_set_bits(peer_device->device, s, e); 4588 } 4589 4590 if (have < bits) { 4591 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4592 have, bits, look_ahead, 4593 (unsigned int)(bs.cur.b - p->code), 4594 (unsigned int)bs.buf_len); 4595 return -EIO; 4596 } 4597 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */ 4598 if (likely(bits < 64)) 4599 look_ahead >>= bits; 4600 else 4601 look_ahead = 0; 4602 have -= bits; 4603 4604 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4605 if (bits < 0) 4606 return -EIO; 4607 look_ahead |= tmp << have; 4608 have += bits; 4609 } 4610 4611 c->bit_offset = s; 4612 bm_xfer_ctx_bit_to_word_offset(c); 4613 4614 return (s != c->bm_bits); 4615 } 4616 4617 /** 4618 * decode_bitmap_c 4619 * 4620 * Return 0 when done, 1 when another iteration is needed, and a negative error 4621 * code upon failure. 4622 */ 4623 static int 4624 decode_bitmap_c(struct drbd_peer_device *peer_device, 4625 struct p_compressed_bm *p, 4626 struct bm_xfer_ctx *c, 4627 unsigned int len) 4628 { 4629 if (dcbp_get_code(p) == RLE_VLI_Bits) 4630 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p)); 4631 4632 /* other variants had been implemented for evaluation, 4633 * but have been dropped as this one turned out to be "best" 4634 * during all our tests. */ 4635 4636 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4637 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4638 return -EIO; 4639 } 4640 4641 void INFO_bm_xfer_stats(struct drbd_device *device, 4642 const char *direction, struct bm_xfer_ctx *c) 4643 { 4644 /* what would it take to transfer it "plaintext" */ 4645 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 4646 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4647 unsigned int plain = 4648 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4649 c->bm_words * sizeof(unsigned long); 4650 unsigned int total = c->bytes[0] + c->bytes[1]; 4651 unsigned int r; 4652 4653 /* total can not be zero. but just in case: */ 4654 if (total == 0) 4655 return; 4656 4657 /* don't report if not compressed */ 4658 if (total >= plain) 4659 return; 4660 4661 /* total < plain. check for overflow, still */ 4662 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4663 : (1000 * total / plain); 4664 4665 if (r > 1000) 4666 r = 1000; 4667 4668 r = 1000 - r; 4669 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4670 "total %u; compression: %u.%u%%\n", 4671 direction, 4672 c->bytes[1], c->packets[1], 4673 c->bytes[0], c->packets[0], 4674 total, r/10, r % 10); 4675 } 4676 4677 /* Since we are processing the bitfield from lower addresses to higher, 4678 it does not matter if the process it in 32 bit chunks or 64 bit 4679 chunks as long as it is little endian. (Understand it as byte stream, 4680 beginning with the lowest byte...) If we would use big endian 4681 we would need to process it from the highest address to the lowest, 4682 in order to be agnostic to the 32 vs 64 bits issue. 4683 4684 returns 0 on failure, 1 if we successfully received it. */ 4685 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi) 4686 { 4687 struct drbd_peer_device *peer_device; 4688 struct drbd_device *device; 4689 struct bm_xfer_ctx c; 4690 int err; 4691 4692 peer_device = conn_peer_device(connection, pi->vnr); 4693 if (!peer_device) 4694 return -EIO; 4695 device = peer_device->device; 4696 4697 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4698 /* you are supposed to send additional out-of-sync information 4699 * if you actually set bits during this phase */ 4700 4701 c = (struct bm_xfer_ctx) { 4702 .bm_bits = drbd_bm_bits(device), 4703 .bm_words = drbd_bm_words(device), 4704 }; 4705 4706 for(;;) { 4707 if (pi->cmd == P_BITMAP) 4708 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c); 4709 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4710 /* MAYBE: sanity check that we speak proto >= 90, 4711 * and the feature is enabled! */ 4712 struct p_compressed_bm *p = pi->data; 4713 4714 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) { 4715 drbd_err(device, "ReportCBitmap packet too large\n"); 4716 err = -EIO; 4717 goto out; 4718 } 4719 if (pi->size <= sizeof(*p)) { 4720 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4721 err = -EIO; 4722 goto out; 4723 } 4724 err = drbd_recv_all(peer_device->connection, p, pi->size); 4725 if (err) 4726 goto out; 4727 err = decode_bitmap_c(peer_device, p, &c, pi->size); 4728 } else { 4729 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4730 err = -EIO; 4731 goto out; 4732 } 4733 4734 c.packets[pi->cmd == P_BITMAP]++; 4735 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size; 4736 4737 if (err <= 0) { 4738 if (err < 0) 4739 goto out; 4740 break; 4741 } 4742 err = drbd_recv_header(peer_device->connection, pi); 4743 if (err) 4744 goto out; 4745 } 4746 4747 INFO_bm_xfer_stats(device, "receive", &c); 4748 4749 if (device->state.conn == C_WF_BITMAP_T) { 4750 enum drbd_state_rv rv; 4751 4752 err = drbd_send_bitmap(device); 4753 if (err) 4754 goto out; 4755 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4756 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4757 D_ASSERT(device, rv == SS_SUCCESS); 4758 } else if (device->state.conn != C_WF_BITMAP_S) { 4759 /* admin may have requested C_DISCONNECTING, 4760 * other threads may have noticed network errors */ 4761 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n", 4762 drbd_conn_str(device->state.conn)); 4763 } 4764 err = 0; 4765 4766 out: 4767 drbd_bm_unlock(device); 4768 if (!err && device->state.conn == C_WF_BITMAP_S) 4769 drbd_start_resync(device, C_SYNC_SOURCE); 4770 return err; 4771 } 4772 4773 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi) 4774 { 4775 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n", 4776 pi->cmd, pi->size); 4777 4778 return ignore_remaining_packet(connection, pi); 4779 } 4780 4781 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi) 4782 { 4783 /* Make sure we've acked all the TCP data associated 4784 * with the data requests being unplugged */ 4785 drbd_tcp_quickack(connection->data.socket); 4786 4787 return 0; 4788 } 4789 4790 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi) 4791 { 4792 struct drbd_peer_device *peer_device; 4793 struct drbd_device *device; 4794 struct p_block_desc *p = pi->data; 4795 4796 peer_device = conn_peer_device(connection, pi->vnr); 4797 if (!peer_device) 4798 return -EIO; 4799 device = peer_device->device; 4800 4801 switch (device->state.conn) { 4802 case C_WF_SYNC_UUID: 4803 case C_WF_BITMAP_T: 4804 case C_BEHIND: 4805 break; 4806 default: 4807 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4808 drbd_conn_str(device->state.conn)); 4809 } 4810 4811 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4812 4813 return 0; 4814 } 4815 4816 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi) 4817 { 4818 struct drbd_peer_device *peer_device; 4819 struct p_block_desc *p = pi->data; 4820 struct drbd_device *device; 4821 sector_t sector; 4822 int size, err = 0; 4823 4824 peer_device = conn_peer_device(connection, pi->vnr); 4825 if (!peer_device) 4826 return -EIO; 4827 device = peer_device->device; 4828 4829 sector = be64_to_cpu(p->sector); 4830 size = be32_to_cpu(p->blksize); 4831 4832 dec_rs_pending(device); 4833 4834 if (get_ldev(device)) { 4835 struct drbd_peer_request *peer_req; 4836 const int op = REQ_OP_WRITE_ZEROES; 4837 4838 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector, 4839 size, 0, GFP_NOIO); 4840 if (!peer_req) { 4841 put_ldev(device); 4842 return -ENOMEM; 4843 } 4844 4845 peer_req->w.cb = e_end_resync_block; 4846 peer_req->submit_jif = jiffies; 4847 peer_req->flags |= EE_IS_TRIM; 4848 4849 spin_lock_irq(&device->resource->req_lock); 4850 list_add_tail(&peer_req->w.list, &device->sync_ee); 4851 spin_unlock_irq(&device->resource->req_lock); 4852 4853 atomic_add(pi->size >> 9, &device->rs_sect_ev); 4854 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR); 4855 4856 if (err) { 4857 spin_lock_irq(&device->resource->req_lock); 4858 list_del(&peer_req->w.list); 4859 spin_unlock_irq(&device->resource->req_lock); 4860 4861 drbd_free_peer_req(device, peer_req); 4862 put_ldev(device); 4863 err = 0; 4864 goto fail; 4865 } 4866 4867 inc_unacked(device); 4868 4869 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(), 4870 as well as drbd_rs_complete_io() */ 4871 } else { 4872 fail: 4873 drbd_rs_complete_io(device, sector); 4874 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER); 4875 } 4876 4877 atomic_add(size >> 9, &device->rs_sect_in); 4878 4879 return err; 4880 } 4881 4882 struct data_cmd { 4883 int expect_payload; 4884 unsigned int pkt_size; 4885 int (*fn)(struct drbd_connection *, struct packet_info *); 4886 }; 4887 4888 static struct data_cmd drbd_cmd_handler[] = { 4889 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 4890 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 4891 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 4892 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 4893 [P_BITMAP] = { 1, 0, receive_bitmap } , 4894 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 4895 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 4896 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4897 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4898 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 4899 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 4900 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 4901 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 4902 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 4903 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 4904 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 4905 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 4906 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4907 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 4908 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 4909 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4910 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 4911 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 4912 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 4913 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 4914 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data }, 4915 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated }, 4916 [P_WSAME] = { 1, sizeof(struct p_wsame), receive_Data }, 4917 }; 4918 4919 static void drbdd(struct drbd_connection *connection) 4920 { 4921 struct packet_info pi; 4922 size_t shs; /* sub header size */ 4923 int err; 4924 4925 while (get_t_state(&connection->receiver) == RUNNING) { 4926 struct data_cmd const *cmd; 4927 4928 drbd_thread_current_set_cpu(&connection->receiver); 4929 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug); 4930 if (drbd_recv_header_maybe_unplug(connection, &pi)) 4931 goto err_out; 4932 4933 cmd = &drbd_cmd_handler[pi.cmd]; 4934 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 4935 drbd_err(connection, "Unexpected data packet %s (0x%04x)", 4936 cmdname(pi.cmd), pi.cmd); 4937 goto err_out; 4938 } 4939 4940 shs = cmd->pkt_size; 4941 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME) 4942 shs += sizeof(struct o_qlim); 4943 if (pi.size > shs && !cmd->expect_payload) { 4944 drbd_err(connection, "No payload expected %s l:%d\n", 4945 cmdname(pi.cmd), pi.size); 4946 goto err_out; 4947 } 4948 if (pi.size < shs) { 4949 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n", 4950 cmdname(pi.cmd), (int)shs, pi.size); 4951 goto err_out; 4952 } 4953 4954 if (shs) { 4955 update_receiver_timing_details(connection, drbd_recv_all_warn); 4956 err = drbd_recv_all_warn(connection, pi.data, shs); 4957 if (err) 4958 goto err_out; 4959 pi.size -= shs; 4960 } 4961 4962 update_receiver_timing_details(connection, cmd->fn); 4963 err = cmd->fn(connection, &pi); 4964 if (err) { 4965 drbd_err(connection, "error receiving %s, e: %d l: %d!\n", 4966 cmdname(pi.cmd), err, pi.size); 4967 goto err_out; 4968 } 4969 } 4970 return; 4971 4972 err_out: 4973 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4974 } 4975 4976 static void conn_disconnect(struct drbd_connection *connection) 4977 { 4978 struct drbd_peer_device *peer_device; 4979 enum drbd_conns oc; 4980 int vnr; 4981 4982 if (connection->cstate == C_STANDALONE) 4983 return; 4984 4985 /* We are about to start the cleanup after connection loss. 4986 * Make sure drbd_make_request knows about that. 4987 * Usually we should be in some network failure state already, 4988 * but just in case we are not, we fix it up here. 4989 */ 4990 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 4991 4992 /* ack_receiver does not clean up anything. it must not interfere, either */ 4993 drbd_thread_stop(&connection->ack_receiver); 4994 if (connection->ack_sender) { 4995 destroy_workqueue(connection->ack_sender); 4996 connection->ack_sender = NULL; 4997 } 4998 drbd_free_sock(connection); 4999 5000 rcu_read_lock(); 5001 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5002 struct drbd_device *device = peer_device->device; 5003 kref_get(&device->kref); 5004 rcu_read_unlock(); 5005 drbd_disconnected(peer_device); 5006 kref_put(&device->kref, drbd_destroy_device); 5007 rcu_read_lock(); 5008 } 5009 rcu_read_unlock(); 5010 5011 if (!list_empty(&connection->current_epoch->list)) 5012 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n"); 5013 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 5014 atomic_set(&connection->current_epoch->epoch_size, 0); 5015 connection->send.seen_any_write_yet = false; 5016 5017 drbd_info(connection, "Connection closed\n"); 5018 5019 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN) 5020 conn_try_outdate_peer_async(connection); 5021 5022 spin_lock_irq(&connection->resource->req_lock); 5023 oc = connection->cstate; 5024 if (oc >= C_UNCONNECTED) 5025 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); 5026 5027 spin_unlock_irq(&connection->resource->req_lock); 5028 5029 if (oc == C_DISCONNECTING) 5030 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 5031 } 5032 5033 static int drbd_disconnected(struct drbd_peer_device *peer_device) 5034 { 5035 struct drbd_device *device = peer_device->device; 5036 unsigned int i; 5037 5038 /* wait for current activity to cease. */ 5039 spin_lock_irq(&device->resource->req_lock); 5040 _drbd_wait_ee_list_empty(device, &device->active_ee); 5041 _drbd_wait_ee_list_empty(device, &device->sync_ee); 5042 _drbd_wait_ee_list_empty(device, &device->read_ee); 5043 spin_unlock_irq(&device->resource->req_lock); 5044 5045 /* We do not have data structures that would allow us to 5046 * get the rs_pending_cnt down to 0 again. 5047 * * On C_SYNC_TARGET we do not have any data structures describing 5048 * the pending RSDataRequest's we have sent. 5049 * * On C_SYNC_SOURCE there is no data structure that tracks 5050 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 5051 * And no, it is not the sum of the reference counts in the 5052 * resync_LRU. The resync_LRU tracks the whole operation including 5053 * the disk-IO, while the rs_pending_cnt only tracks the blocks 5054 * on the fly. */ 5055 drbd_rs_cancel_all(device); 5056 device->rs_total = 0; 5057 device->rs_failed = 0; 5058 atomic_set(&device->rs_pending_cnt, 0); 5059 wake_up(&device->misc_wait); 5060 5061 del_timer_sync(&device->resync_timer); 5062 resync_timer_fn(&device->resync_timer); 5063 5064 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 5065 * w_make_resync_request etc. which may still be on the worker queue 5066 * to be "canceled" */ 5067 drbd_flush_workqueue(&peer_device->connection->sender_work); 5068 5069 drbd_finish_peer_reqs(device); 5070 5071 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 5072 might have issued a work again. The one before drbd_finish_peer_reqs() is 5073 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 5074 drbd_flush_workqueue(&peer_device->connection->sender_work); 5075 5076 /* need to do it again, drbd_finish_peer_reqs() may have populated it 5077 * again via drbd_try_clear_on_disk_bm(). */ 5078 drbd_rs_cancel_all(device); 5079 5080 kfree(device->p_uuid); 5081 device->p_uuid = NULL; 5082 5083 if (!drbd_suspended(device)) 5084 tl_clear(peer_device->connection); 5085 5086 drbd_md_sync(device); 5087 5088 if (get_ldev(device)) { 5089 drbd_bitmap_io(device, &drbd_bm_write_copy_pages, 5090 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED); 5091 put_ldev(device); 5092 } 5093 5094 /* tcp_close and release of sendpage pages can be deferred. I don't 5095 * want to use SO_LINGER, because apparently it can be deferred for 5096 * more than 20 seconds (longest time I checked). 5097 * 5098 * Actually we don't care for exactly when the network stack does its 5099 * put_page(), but release our reference on these pages right here. 5100 */ 5101 i = drbd_free_peer_reqs(device, &device->net_ee); 5102 if (i) 5103 drbd_info(device, "net_ee not empty, killed %u entries\n", i); 5104 i = atomic_read(&device->pp_in_use_by_net); 5105 if (i) 5106 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i); 5107 i = atomic_read(&device->pp_in_use); 5108 if (i) 5109 drbd_info(device, "pp_in_use = %d, expected 0\n", i); 5110 5111 D_ASSERT(device, list_empty(&device->read_ee)); 5112 D_ASSERT(device, list_empty(&device->active_ee)); 5113 D_ASSERT(device, list_empty(&device->sync_ee)); 5114 D_ASSERT(device, list_empty(&device->done_ee)); 5115 5116 return 0; 5117 } 5118 5119 /* 5120 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 5121 * we can agree on is stored in agreed_pro_version. 5122 * 5123 * feature flags and the reserved array should be enough room for future 5124 * enhancements of the handshake protocol, and possible plugins... 5125 * 5126 * for now, they are expected to be zero, but ignored. 5127 */ 5128 static int drbd_send_features(struct drbd_connection *connection) 5129 { 5130 struct drbd_socket *sock; 5131 struct p_connection_features *p; 5132 5133 sock = &connection->data; 5134 p = conn_prepare_command(connection, sock); 5135 if (!p) 5136 return -EIO; 5137 memset(p, 0, sizeof(*p)); 5138 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 5139 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 5140 p->feature_flags = cpu_to_be32(PRO_FEATURES); 5141 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 5142 } 5143 5144 /* 5145 * return values: 5146 * 1 yes, we have a valid connection 5147 * 0 oops, did not work out, please try again 5148 * -1 peer talks different language, 5149 * no point in trying again, please go standalone. 5150 */ 5151 static int drbd_do_features(struct drbd_connection *connection) 5152 { 5153 /* ASSERT current == connection->receiver ... */ 5154 struct p_connection_features *p; 5155 const int expect = sizeof(struct p_connection_features); 5156 struct packet_info pi; 5157 int err; 5158 5159 err = drbd_send_features(connection); 5160 if (err) 5161 return 0; 5162 5163 err = drbd_recv_header(connection, &pi); 5164 if (err) 5165 return 0; 5166 5167 if (pi.cmd != P_CONNECTION_FEATURES) { 5168 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 5169 cmdname(pi.cmd), pi.cmd); 5170 return -1; 5171 } 5172 5173 if (pi.size != expect) { 5174 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n", 5175 expect, pi.size); 5176 return -1; 5177 } 5178 5179 p = pi.data; 5180 err = drbd_recv_all_warn(connection, p, expect); 5181 if (err) 5182 return 0; 5183 5184 p->protocol_min = be32_to_cpu(p->protocol_min); 5185 p->protocol_max = be32_to_cpu(p->protocol_max); 5186 if (p->protocol_max == 0) 5187 p->protocol_max = p->protocol_min; 5188 5189 if (PRO_VERSION_MAX < p->protocol_min || 5190 PRO_VERSION_MIN > p->protocol_max) 5191 goto incompat; 5192 5193 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 5194 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags); 5195 5196 drbd_info(connection, "Handshake successful: " 5197 "Agreed network protocol version %d\n", connection->agreed_pro_version); 5198 5199 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s.\n", 5200 connection->agreed_features, 5201 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "", 5202 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "", 5203 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : 5204 connection->agreed_features ? "" : " none"); 5205 5206 return 1; 5207 5208 incompat: 5209 drbd_err(connection, "incompatible DRBD dialects: " 5210 "I support %d-%d, peer supports %d-%d\n", 5211 PRO_VERSION_MIN, PRO_VERSION_MAX, 5212 p->protocol_min, p->protocol_max); 5213 return -1; 5214 } 5215 5216 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 5217 static int drbd_do_auth(struct drbd_connection *connection) 5218 { 5219 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 5220 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 5221 return -1; 5222 } 5223 #else 5224 #define CHALLENGE_LEN 64 5225 5226 /* Return value: 5227 1 - auth succeeded, 5228 0 - failed, try again (network error), 5229 -1 - auth failed, don't try again. 5230 */ 5231 5232 static int drbd_do_auth(struct drbd_connection *connection) 5233 { 5234 struct drbd_socket *sock; 5235 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 5236 char *response = NULL; 5237 char *right_response = NULL; 5238 char *peers_ch = NULL; 5239 unsigned int key_len; 5240 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 5241 unsigned int resp_size; 5242 SHASH_DESC_ON_STACK(desc, connection->cram_hmac_tfm); 5243 struct packet_info pi; 5244 struct net_conf *nc; 5245 int err, rv; 5246 5247 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 5248 5249 rcu_read_lock(); 5250 nc = rcu_dereference(connection->net_conf); 5251 key_len = strlen(nc->shared_secret); 5252 memcpy(secret, nc->shared_secret, key_len); 5253 rcu_read_unlock(); 5254 5255 desc->tfm = connection->cram_hmac_tfm; 5256 desc->flags = 0; 5257 5258 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len); 5259 if (rv) { 5260 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv); 5261 rv = -1; 5262 goto fail; 5263 } 5264 5265 get_random_bytes(my_challenge, CHALLENGE_LEN); 5266 5267 sock = &connection->data; 5268 if (!conn_prepare_command(connection, sock)) { 5269 rv = 0; 5270 goto fail; 5271 } 5272 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0, 5273 my_challenge, CHALLENGE_LEN); 5274 if (!rv) 5275 goto fail; 5276 5277 err = drbd_recv_header(connection, &pi); 5278 if (err) { 5279 rv = 0; 5280 goto fail; 5281 } 5282 5283 if (pi.cmd != P_AUTH_CHALLENGE) { 5284 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n", 5285 cmdname(pi.cmd), pi.cmd); 5286 rv = 0; 5287 goto fail; 5288 } 5289 5290 if (pi.size > CHALLENGE_LEN * 2) { 5291 drbd_err(connection, "expected AuthChallenge payload too big.\n"); 5292 rv = -1; 5293 goto fail; 5294 } 5295 5296 if (pi.size < CHALLENGE_LEN) { 5297 drbd_err(connection, "AuthChallenge payload too small.\n"); 5298 rv = -1; 5299 goto fail; 5300 } 5301 5302 peers_ch = kmalloc(pi.size, GFP_NOIO); 5303 if (peers_ch == NULL) { 5304 drbd_err(connection, "kmalloc of peers_ch failed\n"); 5305 rv = -1; 5306 goto fail; 5307 } 5308 5309 err = drbd_recv_all_warn(connection, peers_ch, pi.size); 5310 if (err) { 5311 rv = 0; 5312 goto fail; 5313 } 5314 5315 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) { 5316 drbd_err(connection, "Peer presented the same challenge!\n"); 5317 rv = -1; 5318 goto fail; 5319 } 5320 5321 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm); 5322 response = kmalloc(resp_size, GFP_NOIO); 5323 if (response == NULL) { 5324 drbd_err(connection, "kmalloc of response failed\n"); 5325 rv = -1; 5326 goto fail; 5327 } 5328 5329 rv = crypto_shash_digest(desc, peers_ch, pi.size, response); 5330 if (rv) { 5331 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5332 rv = -1; 5333 goto fail; 5334 } 5335 5336 if (!conn_prepare_command(connection, sock)) { 5337 rv = 0; 5338 goto fail; 5339 } 5340 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0, 5341 response, resp_size); 5342 if (!rv) 5343 goto fail; 5344 5345 err = drbd_recv_header(connection, &pi); 5346 if (err) { 5347 rv = 0; 5348 goto fail; 5349 } 5350 5351 if (pi.cmd != P_AUTH_RESPONSE) { 5352 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n", 5353 cmdname(pi.cmd), pi.cmd); 5354 rv = 0; 5355 goto fail; 5356 } 5357 5358 if (pi.size != resp_size) { 5359 drbd_err(connection, "expected AuthResponse payload of wrong size\n"); 5360 rv = 0; 5361 goto fail; 5362 } 5363 5364 err = drbd_recv_all_warn(connection, response , resp_size); 5365 if (err) { 5366 rv = 0; 5367 goto fail; 5368 } 5369 5370 right_response = kmalloc(resp_size, GFP_NOIO); 5371 if (right_response == NULL) { 5372 drbd_err(connection, "kmalloc of right_response failed\n"); 5373 rv = -1; 5374 goto fail; 5375 } 5376 5377 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN, 5378 right_response); 5379 if (rv) { 5380 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5381 rv = -1; 5382 goto fail; 5383 } 5384 5385 rv = !memcmp(response, right_response, resp_size); 5386 5387 if (rv) 5388 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n", 5389 resp_size); 5390 else 5391 rv = -1; 5392 5393 fail: 5394 kfree(peers_ch); 5395 kfree(response); 5396 kfree(right_response); 5397 shash_desc_zero(desc); 5398 5399 return rv; 5400 } 5401 #endif 5402 5403 int drbd_receiver(struct drbd_thread *thi) 5404 { 5405 struct drbd_connection *connection = thi->connection; 5406 int h; 5407 5408 drbd_info(connection, "receiver (re)started\n"); 5409 5410 do { 5411 h = conn_connect(connection); 5412 if (h == 0) { 5413 conn_disconnect(connection); 5414 schedule_timeout_interruptible(HZ); 5415 } 5416 if (h == -1) { 5417 drbd_warn(connection, "Discarding network configuration.\n"); 5418 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5419 } 5420 } while (h == 0); 5421 5422 if (h > 0) { 5423 blk_start_plug(&connection->receiver_plug); 5424 drbdd(connection); 5425 blk_finish_plug(&connection->receiver_plug); 5426 } 5427 5428 conn_disconnect(connection); 5429 5430 drbd_info(connection, "receiver terminated\n"); 5431 return 0; 5432 } 5433 5434 /* ********* acknowledge sender ******** */ 5435 5436 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5437 { 5438 struct p_req_state_reply *p = pi->data; 5439 int retcode = be32_to_cpu(p->retcode); 5440 5441 if (retcode >= SS_SUCCESS) { 5442 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags); 5443 } else { 5444 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags); 5445 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n", 5446 drbd_set_st_err_str(retcode), retcode); 5447 } 5448 wake_up(&connection->ping_wait); 5449 5450 return 0; 5451 } 5452 5453 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5454 { 5455 struct drbd_peer_device *peer_device; 5456 struct drbd_device *device; 5457 struct p_req_state_reply *p = pi->data; 5458 int retcode = be32_to_cpu(p->retcode); 5459 5460 peer_device = conn_peer_device(connection, pi->vnr); 5461 if (!peer_device) 5462 return -EIO; 5463 device = peer_device->device; 5464 5465 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) { 5466 D_ASSERT(device, connection->agreed_pro_version < 100); 5467 return got_conn_RqSReply(connection, pi); 5468 } 5469 5470 if (retcode >= SS_SUCCESS) { 5471 set_bit(CL_ST_CHG_SUCCESS, &device->flags); 5472 } else { 5473 set_bit(CL_ST_CHG_FAIL, &device->flags); 5474 drbd_err(device, "Requested state change failed by peer: %s (%d)\n", 5475 drbd_set_st_err_str(retcode), retcode); 5476 } 5477 wake_up(&device->state_wait); 5478 5479 return 0; 5480 } 5481 5482 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi) 5483 { 5484 return drbd_send_ping_ack(connection); 5485 5486 } 5487 5488 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi) 5489 { 5490 /* restore idle timeout */ 5491 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ; 5492 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags)) 5493 wake_up(&connection->ping_wait); 5494 5495 return 0; 5496 } 5497 5498 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi) 5499 { 5500 struct drbd_peer_device *peer_device; 5501 struct drbd_device *device; 5502 struct p_block_ack *p = pi->data; 5503 sector_t sector = be64_to_cpu(p->sector); 5504 int blksize = be32_to_cpu(p->blksize); 5505 5506 peer_device = conn_peer_device(connection, pi->vnr); 5507 if (!peer_device) 5508 return -EIO; 5509 device = peer_device->device; 5510 5511 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 5512 5513 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5514 5515 if (get_ldev(device)) { 5516 drbd_rs_complete_io(device, sector); 5517 drbd_set_in_sync(device, sector, blksize); 5518 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 5519 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 5520 put_ldev(device); 5521 } 5522 dec_rs_pending(device); 5523 atomic_add(blksize >> 9, &device->rs_sect_in); 5524 5525 return 0; 5526 } 5527 5528 static int 5529 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector, 5530 struct rb_root *root, const char *func, 5531 enum drbd_req_event what, bool missing_ok) 5532 { 5533 struct drbd_request *req; 5534 struct bio_and_error m; 5535 5536 spin_lock_irq(&device->resource->req_lock); 5537 req = find_request(device, root, id, sector, missing_ok, func); 5538 if (unlikely(!req)) { 5539 spin_unlock_irq(&device->resource->req_lock); 5540 return -EIO; 5541 } 5542 __req_mod(req, what, &m); 5543 spin_unlock_irq(&device->resource->req_lock); 5544 5545 if (m.bio) 5546 complete_master_bio(device, &m); 5547 return 0; 5548 } 5549 5550 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi) 5551 { 5552 struct drbd_peer_device *peer_device; 5553 struct drbd_device *device; 5554 struct p_block_ack *p = pi->data; 5555 sector_t sector = be64_to_cpu(p->sector); 5556 int blksize = be32_to_cpu(p->blksize); 5557 enum drbd_req_event what; 5558 5559 peer_device = conn_peer_device(connection, pi->vnr); 5560 if (!peer_device) 5561 return -EIO; 5562 device = peer_device->device; 5563 5564 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5565 5566 if (p->block_id == ID_SYNCER) { 5567 drbd_set_in_sync(device, sector, blksize); 5568 dec_rs_pending(device); 5569 return 0; 5570 } 5571 switch (pi->cmd) { 5572 case P_RS_WRITE_ACK: 5573 what = WRITE_ACKED_BY_PEER_AND_SIS; 5574 break; 5575 case P_WRITE_ACK: 5576 what = WRITE_ACKED_BY_PEER; 5577 break; 5578 case P_RECV_ACK: 5579 what = RECV_ACKED_BY_PEER; 5580 break; 5581 case P_SUPERSEDED: 5582 what = CONFLICT_RESOLVED; 5583 break; 5584 case P_RETRY_WRITE: 5585 what = POSTPONE_WRITE; 5586 break; 5587 default: 5588 BUG(); 5589 } 5590 5591 return validate_req_change_req_state(device, p->block_id, sector, 5592 &device->write_requests, __func__, 5593 what, false); 5594 } 5595 5596 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi) 5597 { 5598 struct drbd_peer_device *peer_device; 5599 struct drbd_device *device; 5600 struct p_block_ack *p = pi->data; 5601 sector_t sector = be64_to_cpu(p->sector); 5602 int size = be32_to_cpu(p->blksize); 5603 int err; 5604 5605 peer_device = conn_peer_device(connection, pi->vnr); 5606 if (!peer_device) 5607 return -EIO; 5608 device = peer_device->device; 5609 5610 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5611 5612 if (p->block_id == ID_SYNCER) { 5613 dec_rs_pending(device); 5614 drbd_rs_failed_io(device, sector, size); 5615 return 0; 5616 } 5617 5618 err = validate_req_change_req_state(device, p->block_id, sector, 5619 &device->write_requests, __func__, 5620 NEG_ACKED, true); 5621 if (err) { 5622 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5623 The master bio might already be completed, therefore the 5624 request is no longer in the collision hash. */ 5625 /* In Protocol B we might already have got a P_RECV_ACK 5626 but then get a P_NEG_ACK afterwards. */ 5627 drbd_set_out_of_sync(device, sector, size); 5628 } 5629 return 0; 5630 } 5631 5632 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi) 5633 { 5634 struct drbd_peer_device *peer_device; 5635 struct drbd_device *device; 5636 struct p_block_ack *p = pi->data; 5637 sector_t sector = be64_to_cpu(p->sector); 5638 5639 peer_device = conn_peer_device(connection, pi->vnr); 5640 if (!peer_device) 5641 return -EIO; 5642 device = peer_device->device; 5643 5644 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5645 5646 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n", 5647 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5648 5649 return validate_req_change_req_state(device, p->block_id, sector, 5650 &device->read_requests, __func__, 5651 NEG_ACKED, false); 5652 } 5653 5654 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi) 5655 { 5656 struct drbd_peer_device *peer_device; 5657 struct drbd_device *device; 5658 sector_t sector; 5659 int size; 5660 struct p_block_ack *p = pi->data; 5661 5662 peer_device = conn_peer_device(connection, pi->vnr); 5663 if (!peer_device) 5664 return -EIO; 5665 device = peer_device->device; 5666 5667 sector = be64_to_cpu(p->sector); 5668 size = be32_to_cpu(p->blksize); 5669 5670 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5671 5672 dec_rs_pending(device); 5673 5674 if (get_ldev_if_state(device, D_FAILED)) { 5675 drbd_rs_complete_io(device, sector); 5676 switch (pi->cmd) { 5677 case P_NEG_RS_DREPLY: 5678 drbd_rs_failed_io(device, sector, size); 5679 case P_RS_CANCEL: 5680 break; 5681 default: 5682 BUG(); 5683 } 5684 put_ldev(device); 5685 } 5686 5687 return 0; 5688 } 5689 5690 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi) 5691 { 5692 struct p_barrier_ack *p = pi->data; 5693 struct drbd_peer_device *peer_device; 5694 int vnr; 5695 5696 tl_release(connection, p->barrier, be32_to_cpu(p->set_size)); 5697 5698 rcu_read_lock(); 5699 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5700 struct drbd_device *device = peer_device->device; 5701 5702 if (device->state.conn == C_AHEAD && 5703 atomic_read(&device->ap_in_flight) == 0 && 5704 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) { 5705 device->start_resync_timer.expires = jiffies + HZ; 5706 add_timer(&device->start_resync_timer); 5707 } 5708 } 5709 rcu_read_unlock(); 5710 5711 return 0; 5712 } 5713 5714 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi) 5715 { 5716 struct drbd_peer_device *peer_device; 5717 struct drbd_device *device; 5718 struct p_block_ack *p = pi->data; 5719 struct drbd_device_work *dw; 5720 sector_t sector; 5721 int size; 5722 5723 peer_device = conn_peer_device(connection, pi->vnr); 5724 if (!peer_device) 5725 return -EIO; 5726 device = peer_device->device; 5727 5728 sector = be64_to_cpu(p->sector); 5729 size = be32_to_cpu(p->blksize); 5730 5731 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5732 5733 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5734 drbd_ov_out_of_sync_found(device, sector, size); 5735 else 5736 ov_out_of_sync_print(device); 5737 5738 if (!get_ldev(device)) 5739 return 0; 5740 5741 drbd_rs_complete_io(device, sector); 5742 dec_rs_pending(device); 5743 5744 --device->ov_left; 5745 5746 /* let's advance progress step marks only for every other megabyte */ 5747 if ((device->ov_left & 0x200) == 0x200) 5748 drbd_advance_rs_marks(device, device->ov_left); 5749 5750 if (device->ov_left == 0) { 5751 dw = kmalloc(sizeof(*dw), GFP_NOIO); 5752 if (dw) { 5753 dw->w.cb = w_ov_finished; 5754 dw->device = device; 5755 drbd_queue_work(&peer_device->connection->sender_work, &dw->w); 5756 } else { 5757 drbd_err(device, "kmalloc(dw) failed."); 5758 ov_out_of_sync_print(device); 5759 drbd_resync_finished(device); 5760 } 5761 } 5762 put_ldev(device); 5763 return 0; 5764 } 5765 5766 static int got_skip(struct drbd_connection *connection, struct packet_info *pi) 5767 { 5768 return 0; 5769 } 5770 5771 struct meta_sock_cmd { 5772 size_t pkt_size; 5773 int (*fn)(struct drbd_connection *connection, struct packet_info *); 5774 }; 5775 5776 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout) 5777 { 5778 long t; 5779 struct net_conf *nc; 5780 5781 rcu_read_lock(); 5782 nc = rcu_dereference(connection->net_conf); 5783 t = ping_timeout ? nc->ping_timeo : nc->ping_int; 5784 rcu_read_unlock(); 5785 5786 t *= HZ; 5787 if (ping_timeout) 5788 t /= 10; 5789 5790 connection->meta.socket->sk->sk_rcvtimeo = t; 5791 } 5792 5793 static void set_ping_timeout(struct drbd_connection *connection) 5794 { 5795 set_rcvtimeo(connection, 1); 5796 } 5797 5798 static void set_idle_timeout(struct drbd_connection *connection) 5799 { 5800 set_rcvtimeo(connection, 0); 5801 } 5802 5803 static struct meta_sock_cmd ack_receiver_tbl[] = { 5804 [P_PING] = { 0, got_Ping }, 5805 [P_PING_ACK] = { 0, got_PingAck }, 5806 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5807 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5808 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5809 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5810 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5811 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5812 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5813 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 5814 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 5815 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 5816 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 5817 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 5818 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5819 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 5820 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 5821 }; 5822 5823 int drbd_ack_receiver(struct drbd_thread *thi) 5824 { 5825 struct drbd_connection *connection = thi->connection; 5826 struct meta_sock_cmd *cmd = NULL; 5827 struct packet_info pi; 5828 unsigned long pre_recv_jif; 5829 int rv; 5830 void *buf = connection->meta.rbuf; 5831 int received = 0; 5832 unsigned int header_size = drbd_header_size(connection); 5833 int expect = header_size; 5834 bool ping_timeout_active = false; 5835 struct sched_param param = { .sched_priority = 2 }; 5836 5837 rv = sched_setscheduler(current, SCHED_RR, ¶m); 5838 if (rv < 0) 5839 drbd_err(connection, "drbd_ack_receiver: ERROR set priority, ret=%d\n", rv); 5840 5841 while (get_t_state(thi) == RUNNING) { 5842 drbd_thread_current_set_cpu(thi); 5843 5844 conn_reclaim_net_peer_reqs(connection); 5845 5846 if (test_and_clear_bit(SEND_PING, &connection->flags)) { 5847 if (drbd_send_ping(connection)) { 5848 drbd_err(connection, "drbd_send_ping has failed\n"); 5849 goto reconnect; 5850 } 5851 set_ping_timeout(connection); 5852 ping_timeout_active = true; 5853 } 5854 5855 pre_recv_jif = jiffies; 5856 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0); 5857 5858 /* Note: 5859 * -EINTR (on meta) we got a signal 5860 * -EAGAIN (on meta) rcvtimeo expired 5861 * -ECONNRESET other side closed the connection 5862 * -ERESTARTSYS (on data) we got a signal 5863 * rv < 0 other than above: unexpected error! 5864 * rv == expected: full header or command 5865 * rv < expected: "woken" by signal during receive 5866 * rv == 0 : "connection shut down by peer" 5867 */ 5868 if (likely(rv > 0)) { 5869 received += rv; 5870 buf += rv; 5871 } else if (rv == 0) { 5872 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 5873 long t; 5874 rcu_read_lock(); 5875 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 5876 rcu_read_unlock(); 5877 5878 t = wait_event_timeout(connection->ping_wait, 5879 connection->cstate < C_WF_REPORT_PARAMS, 5880 t); 5881 if (t) 5882 break; 5883 } 5884 drbd_err(connection, "meta connection shut down by peer.\n"); 5885 goto reconnect; 5886 } else if (rv == -EAGAIN) { 5887 /* If the data socket received something meanwhile, 5888 * that is good enough: peer is still alive. */ 5889 if (time_after(connection->last_received, pre_recv_jif)) 5890 continue; 5891 if (ping_timeout_active) { 5892 drbd_err(connection, "PingAck did not arrive in time.\n"); 5893 goto reconnect; 5894 } 5895 set_bit(SEND_PING, &connection->flags); 5896 continue; 5897 } else if (rv == -EINTR) { 5898 /* maybe drbd_thread_stop(): the while condition will notice. 5899 * maybe woken for send_ping: we'll send a ping above, 5900 * and change the rcvtimeo */ 5901 flush_signals(current); 5902 continue; 5903 } else { 5904 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 5905 goto reconnect; 5906 } 5907 5908 if (received == expect && cmd == NULL) { 5909 if (decode_header(connection, connection->meta.rbuf, &pi)) 5910 goto reconnect; 5911 cmd = &ack_receiver_tbl[pi.cmd]; 5912 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) { 5913 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n", 5914 cmdname(pi.cmd), pi.cmd); 5915 goto disconnect; 5916 } 5917 expect = header_size + cmd->pkt_size; 5918 if (pi.size != expect - header_size) { 5919 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n", 5920 pi.cmd, pi.size); 5921 goto reconnect; 5922 } 5923 } 5924 if (received == expect) { 5925 bool err; 5926 5927 err = cmd->fn(connection, &pi); 5928 if (err) { 5929 drbd_err(connection, "%pf failed\n", cmd->fn); 5930 goto reconnect; 5931 } 5932 5933 connection->last_received = jiffies; 5934 5935 if (cmd == &ack_receiver_tbl[P_PING_ACK]) { 5936 set_idle_timeout(connection); 5937 ping_timeout_active = false; 5938 } 5939 5940 buf = connection->meta.rbuf; 5941 received = 0; 5942 expect = header_size; 5943 cmd = NULL; 5944 } 5945 } 5946 5947 if (0) { 5948 reconnect: 5949 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5950 conn_md_sync(connection); 5951 } 5952 if (0) { 5953 disconnect: 5954 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5955 } 5956 5957 drbd_info(connection, "ack_receiver terminated\n"); 5958 5959 return 0; 5960 } 5961 5962 void drbd_send_acks_wf(struct work_struct *ws) 5963 { 5964 struct drbd_peer_device *peer_device = 5965 container_of(ws, struct drbd_peer_device, send_acks_work); 5966 struct drbd_connection *connection = peer_device->connection; 5967 struct drbd_device *device = peer_device->device; 5968 struct net_conf *nc; 5969 int tcp_cork, err; 5970 5971 rcu_read_lock(); 5972 nc = rcu_dereference(connection->net_conf); 5973 tcp_cork = nc->tcp_cork; 5974 rcu_read_unlock(); 5975 5976 if (tcp_cork) 5977 drbd_tcp_cork(connection->meta.socket); 5978 5979 err = drbd_finish_peer_reqs(device); 5980 kref_put(&device->kref, drbd_destroy_device); 5981 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the 5982 struct work_struct send_acks_work alive, which is in the peer_device object */ 5983 5984 if (err) { 5985 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5986 return; 5987 } 5988 5989 if (tcp_cork) 5990 drbd_tcp_uncork(connection->meta.socket); 5991 5992 return; 5993 } 5994