xref: /linux/drivers/block/drbd/drbd_receiver.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd_receiver.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11  */
12 
13 
14 #include <linux/module.h>
15 
16 #include <linux/uaccess.h>
17 #include <net/sock.h>
18 
19 #include <linux/drbd.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/in.h>
23 #include <linux/mm.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/slab.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/sched/signal.h>
29 #include <linux/pkt_sched.h>
30 #define __KERNEL_SYSCALLS__
31 #include <linux/unistd.h>
32 #include <linux/vmalloc.h>
33 #include <linux/random.h>
34 #include <linux/string.h>
35 #include <linux/scatterlist.h>
36 #include <linux/part_stat.h>
37 #include "drbd_int.h"
38 #include "drbd_protocol.h"
39 #include "drbd_req.h"
40 #include "drbd_vli.h"
41 
42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES)
43 
44 struct packet_info {
45 	enum drbd_packet cmd;
46 	unsigned int size;
47 	unsigned int vnr;
48 	void *data;
49 };
50 
51 enum finish_epoch {
52 	FE_STILL_LIVE,
53 	FE_DESTROYED,
54 	FE_RECYCLED,
55 };
56 
57 static int drbd_do_features(struct drbd_connection *connection);
58 static int drbd_do_auth(struct drbd_connection *connection);
59 static int drbd_disconnected(struct drbd_peer_device *);
60 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
62 static int e_end_block(struct drbd_work *, int);
63 
64 
65 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
66 
67 /*
68  * some helper functions to deal with single linked page lists,
69  * page->private being our "next" pointer.
70  */
71 
72 /* If at least n pages are linked at head, get n pages off.
73  * Otherwise, don't modify head, and return NULL.
74  * Locking is the responsibility of the caller.
75  */
76 static struct page *page_chain_del(struct page **head, int n)
77 {
78 	struct page *page;
79 	struct page *tmp;
80 
81 	BUG_ON(!n);
82 	BUG_ON(!head);
83 
84 	page = *head;
85 
86 	if (!page)
87 		return NULL;
88 
89 	while (page) {
90 		tmp = page_chain_next(page);
91 		if (--n == 0)
92 			break; /* found sufficient pages */
93 		if (tmp == NULL)
94 			/* insufficient pages, don't use any of them. */
95 			return NULL;
96 		page = tmp;
97 	}
98 
99 	/* add end of list marker for the returned list */
100 	set_page_private(page, 0);
101 	/* actual return value, and adjustment of head */
102 	page = *head;
103 	*head = tmp;
104 	return page;
105 }
106 
107 /* may be used outside of locks to find the tail of a (usually short)
108  * "private" page chain, before adding it back to a global chain head
109  * with page_chain_add() under a spinlock. */
110 static struct page *page_chain_tail(struct page *page, int *len)
111 {
112 	struct page *tmp;
113 	int i = 1;
114 	while ((tmp = page_chain_next(page))) {
115 		++i;
116 		page = tmp;
117 	}
118 	if (len)
119 		*len = i;
120 	return page;
121 }
122 
123 static int page_chain_free(struct page *page)
124 {
125 	struct page *tmp;
126 	int i = 0;
127 	page_chain_for_each_safe(page, tmp) {
128 		put_page(page);
129 		++i;
130 	}
131 	return i;
132 }
133 
134 static void page_chain_add(struct page **head,
135 		struct page *chain_first, struct page *chain_last)
136 {
137 #if 1
138 	struct page *tmp;
139 	tmp = page_chain_tail(chain_first, NULL);
140 	BUG_ON(tmp != chain_last);
141 #endif
142 
143 	/* add chain to head */
144 	set_page_private(chain_last, (unsigned long)*head);
145 	*head = chain_first;
146 }
147 
148 static struct page *__drbd_alloc_pages(struct drbd_device *device,
149 				       unsigned int number)
150 {
151 	struct page *page = NULL;
152 	struct page *tmp = NULL;
153 	unsigned int i = 0;
154 
155 	/* Yes, testing drbd_pp_vacant outside the lock is racy.
156 	 * So what. It saves a spin_lock. */
157 	if (drbd_pp_vacant >= number) {
158 		spin_lock(&drbd_pp_lock);
159 		page = page_chain_del(&drbd_pp_pool, number);
160 		if (page)
161 			drbd_pp_vacant -= number;
162 		spin_unlock(&drbd_pp_lock);
163 		if (page)
164 			return page;
165 	}
166 
167 	/* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
168 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
169 	 * which in turn might block on the other node at this very place.  */
170 	for (i = 0; i < number; i++) {
171 		tmp = alloc_page(GFP_TRY);
172 		if (!tmp)
173 			break;
174 		set_page_private(tmp, (unsigned long)page);
175 		page = tmp;
176 	}
177 
178 	if (i == number)
179 		return page;
180 
181 	/* Not enough pages immediately available this time.
182 	 * No need to jump around here, drbd_alloc_pages will retry this
183 	 * function "soon". */
184 	if (page) {
185 		tmp = page_chain_tail(page, NULL);
186 		spin_lock(&drbd_pp_lock);
187 		page_chain_add(&drbd_pp_pool, page, tmp);
188 		drbd_pp_vacant += i;
189 		spin_unlock(&drbd_pp_lock);
190 	}
191 	return NULL;
192 }
193 
194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
195 					   struct list_head *to_be_freed)
196 {
197 	struct drbd_peer_request *peer_req, *tmp;
198 
199 	/* The EEs are always appended to the end of the list. Since
200 	   they are sent in order over the wire, they have to finish
201 	   in order. As soon as we see the first not finished we can
202 	   stop to examine the list... */
203 
204 	list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
205 		if (drbd_peer_req_has_active_page(peer_req))
206 			break;
207 		list_move(&peer_req->w.list, to_be_freed);
208 	}
209 }
210 
211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
212 {
213 	LIST_HEAD(reclaimed);
214 	struct drbd_peer_request *peer_req, *t;
215 
216 	spin_lock_irq(&device->resource->req_lock);
217 	reclaim_finished_net_peer_reqs(device, &reclaimed);
218 	spin_unlock_irq(&device->resource->req_lock);
219 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
220 		drbd_free_net_peer_req(device, peer_req);
221 }
222 
223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
224 {
225 	struct drbd_peer_device *peer_device;
226 	int vnr;
227 
228 	rcu_read_lock();
229 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
230 		struct drbd_device *device = peer_device->device;
231 		if (!atomic_read(&device->pp_in_use_by_net))
232 			continue;
233 
234 		kref_get(&device->kref);
235 		rcu_read_unlock();
236 		drbd_reclaim_net_peer_reqs(device);
237 		kref_put(&device->kref, drbd_destroy_device);
238 		rcu_read_lock();
239 	}
240 	rcu_read_unlock();
241 }
242 
243 /**
244  * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
245  * @peer_device:	DRBD device.
246  * @number:		number of pages requested
247  * @retry:		whether to retry, if not enough pages are available right now
248  *
249  * Tries to allocate number pages, first from our own page pool, then from
250  * the kernel.
251  * Possibly retry until DRBD frees sufficient pages somewhere else.
252  *
253  * If this allocation would exceed the max_buffers setting, we throttle
254  * allocation (schedule_timeout) to give the system some room to breathe.
255  *
256  * We do not use max-buffers as hard limit, because it could lead to
257  * congestion and further to a distributed deadlock during online-verify or
258  * (checksum based) resync, if the max-buffers, socket buffer sizes and
259  * resync-rate settings are mis-configured.
260  *
261  * Returns a page chain linked via page->private.
262  */
263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
264 			      bool retry)
265 {
266 	struct drbd_device *device = peer_device->device;
267 	struct page *page = NULL;
268 	struct net_conf *nc;
269 	DEFINE_WAIT(wait);
270 	unsigned int mxb;
271 
272 	rcu_read_lock();
273 	nc = rcu_dereference(peer_device->connection->net_conf);
274 	mxb = nc ? nc->max_buffers : 1000000;
275 	rcu_read_unlock();
276 
277 	if (atomic_read(&device->pp_in_use) < mxb)
278 		page = __drbd_alloc_pages(device, number);
279 
280 	/* Try to keep the fast path fast, but occasionally we need
281 	 * to reclaim the pages we lended to the network stack. */
282 	if (page && atomic_read(&device->pp_in_use_by_net) > 512)
283 		drbd_reclaim_net_peer_reqs(device);
284 
285 	while (page == NULL) {
286 		prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
287 
288 		drbd_reclaim_net_peer_reqs(device);
289 
290 		if (atomic_read(&device->pp_in_use) < mxb) {
291 			page = __drbd_alloc_pages(device, number);
292 			if (page)
293 				break;
294 		}
295 
296 		if (!retry)
297 			break;
298 
299 		if (signal_pending(current)) {
300 			drbd_warn(device, "drbd_alloc_pages interrupted!\n");
301 			break;
302 		}
303 
304 		if (schedule_timeout(HZ/10) == 0)
305 			mxb = UINT_MAX;
306 	}
307 	finish_wait(&drbd_pp_wait, &wait);
308 
309 	if (page)
310 		atomic_add(number, &device->pp_in_use);
311 	return page;
312 }
313 
314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
315  * Is also used from inside an other spin_lock_irq(&resource->req_lock);
316  * Either links the page chain back to the global pool,
317  * or returns all pages to the system. */
318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
319 {
320 	atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
321 	int i;
322 
323 	if (page == NULL)
324 		return;
325 
326 	if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count)
327 		i = page_chain_free(page);
328 	else {
329 		struct page *tmp;
330 		tmp = page_chain_tail(page, &i);
331 		spin_lock(&drbd_pp_lock);
332 		page_chain_add(&drbd_pp_pool, page, tmp);
333 		drbd_pp_vacant += i;
334 		spin_unlock(&drbd_pp_lock);
335 	}
336 	i = atomic_sub_return(i, a);
337 	if (i < 0)
338 		drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
339 			is_net ? "pp_in_use_by_net" : "pp_in_use", i);
340 	wake_up(&drbd_pp_wait);
341 }
342 
343 /*
344 You need to hold the req_lock:
345  _drbd_wait_ee_list_empty()
346 
347 You must not have the req_lock:
348  drbd_free_peer_req()
349  drbd_alloc_peer_req()
350  drbd_free_peer_reqs()
351  drbd_ee_fix_bhs()
352  drbd_finish_peer_reqs()
353  drbd_clear_done_ee()
354  drbd_wait_ee_list_empty()
355 */
356 
357 /* normal: payload_size == request size (bi_size)
358  * w_same: payload_size == logical_block_size
359  * trim: payload_size == 0 */
360 struct drbd_peer_request *
361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
362 		    unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
363 {
364 	struct drbd_device *device = peer_device->device;
365 	struct drbd_peer_request *peer_req;
366 	struct page *page = NULL;
367 	unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT;
368 
369 	if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
370 		return NULL;
371 
372 	peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
373 	if (!peer_req) {
374 		if (!(gfp_mask & __GFP_NOWARN))
375 			drbd_err(device, "%s: allocation failed\n", __func__);
376 		return NULL;
377 	}
378 
379 	if (nr_pages) {
380 		page = drbd_alloc_pages(peer_device, nr_pages,
381 					gfpflags_allow_blocking(gfp_mask));
382 		if (!page)
383 			goto fail;
384 	}
385 
386 	memset(peer_req, 0, sizeof(*peer_req));
387 	INIT_LIST_HEAD(&peer_req->w.list);
388 	drbd_clear_interval(&peer_req->i);
389 	peer_req->i.size = request_size;
390 	peer_req->i.sector = sector;
391 	peer_req->submit_jif = jiffies;
392 	peer_req->peer_device = peer_device;
393 	peer_req->pages = page;
394 	/*
395 	 * The block_id is opaque to the receiver.  It is not endianness
396 	 * converted, and sent back to the sender unchanged.
397 	 */
398 	peer_req->block_id = id;
399 
400 	return peer_req;
401 
402  fail:
403 	mempool_free(peer_req, &drbd_ee_mempool);
404 	return NULL;
405 }
406 
407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
408 		       int is_net)
409 {
410 	might_sleep();
411 	if (peer_req->flags & EE_HAS_DIGEST)
412 		kfree(peer_req->digest);
413 	drbd_free_pages(device, peer_req->pages, is_net);
414 	D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
415 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
416 	if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
417 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
418 		drbd_al_complete_io(device, &peer_req->i);
419 	}
420 	mempool_free(peer_req, &drbd_ee_mempool);
421 }
422 
423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
424 {
425 	LIST_HEAD(work_list);
426 	struct drbd_peer_request *peer_req, *t;
427 	int count = 0;
428 	int is_net = list == &device->net_ee;
429 
430 	spin_lock_irq(&device->resource->req_lock);
431 	list_splice_init(list, &work_list);
432 	spin_unlock_irq(&device->resource->req_lock);
433 
434 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
435 		__drbd_free_peer_req(device, peer_req, is_net);
436 		count++;
437 	}
438 	return count;
439 }
440 
441 /*
442  * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
443  */
444 static int drbd_finish_peer_reqs(struct drbd_device *device)
445 {
446 	LIST_HEAD(work_list);
447 	LIST_HEAD(reclaimed);
448 	struct drbd_peer_request *peer_req, *t;
449 	int err = 0;
450 
451 	spin_lock_irq(&device->resource->req_lock);
452 	reclaim_finished_net_peer_reqs(device, &reclaimed);
453 	list_splice_init(&device->done_ee, &work_list);
454 	spin_unlock_irq(&device->resource->req_lock);
455 
456 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
457 		drbd_free_net_peer_req(device, peer_req);
458 
459 	/* possible callbacks here:
460 	 * e_end_block, and e_end_resync_block, e_send_superseded.
461 	 * all ignore the last argument.
462 	 */
463 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
464 		int err2;
465 
466 		/* list_del not necessary, next/prev members not touched */
467 		err2 = peer_req->w.cb(&peer_req->w, !!err);
468 		if (!err)
469 			err = err2;
470 		drbd_free_peer_req(device, peer_req);
471 	}
472 	wake_up(&device->ee_wait);
473 
474 	return err;
475 }
476 
477 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
478 				     struct list_head *head)
479 {
480 	DEFINE_WAIT(wait);
481 
482 	/* avoids spin_lock/unlock
483 	 * and calling prepare_to_wait in the fast path */
484 	while (!list_empty(head)) {
485 		prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
486 		spin_unlock_irq(&device->resource->req_lock);
487 		io_schedule();
488 		finish_wait(&device->ee_wait, &wait);
489 		spin_lock_irq(&device->resource->req_lock);
490 	}
491 }
492 
493 static void drbd_wait_ee_list_empty(struct drbd_device *device,
494 				    struct list_head *head)
495 {
496 	spin_lock_irq(&device->resource->req_lock);
497 	_drbd_wait_ee_list_empty(device, head);
498 	spin_unlock_irq(&device->resource->req_lock);
499 }
500 
501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
502 {
503 	struct kvec iov = {
504 		.iov_base = buf,
505 		.iov_len = size,
506 	};
507 	struct msghdr msg = {
508 		.msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
509 	};
510 	iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size);
511 	return sock_recvmsg(sock, &msg, msg.msg_flags);
512 }
513 
514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
515 {
516 	int rv;
517 
518 	rv = drbd_recv_short(connection->data.socket, buf, size, 0);
519 
520 	if (rv < 0) {
521 		if (rv == -ECONNRESET)
522 			drbd_info(connection, "sock was reset by peer\n");
523 		else if (rv != -ERESTARTSYS)
524 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
525 	} else if (rv == 0) {
526 		if (test_bit(DISCONNECT_SENT, &connection->flags)) {
527 			long t;
528 			rcu_read_lock();
529 			t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
530 			rcu_read_unlock();
531 
532 			t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
533 
534 			if (t)
535 				goto out;
536 		}
537 		drbd_info(connection, "sock was shut down by peer\n");
538 	}
539 
540 	if (rv != size)
541 		conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
542 
543 out:
544 	return rv;
545 }
546 
547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
548 {
549 	int err;
550 
551 	err = drbd_recv(connection, buf, size);
552 	if (err != size) {
553 		if (err >= 0)
554 			err = -EIO;
555 	} else
556 		err = 0;
557 	return err;
558 }
559 
560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
561 {
562 	int err;
563 
564 	err = drbd_recv_all(connection, buf, size);
565 	if (err && !signal_pending(current))
566 		drbd_warn(connection, "short read (expected size %d)\n", (int)size);
567 	return err;
568 }
569 
570 /* quoting tcp(7):
571  *   On individual connections, the socket buffer size must be set prior to the
572  *   listen(2) or connect(2) calls in order to have it take effect.
573  * This is our wrapper to do so.
574  */
575 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
576 		unsigned int rcv)
577 {
578 	/* open coded SO_SNDBUF, SO_RCVBUF */
579 	if (snd) {
580 		sock->sk->sk_sndbuf = snd;
581 		sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
582 	}
583 	if (rcv) {
584 		sock->sk->sk_rcvbuf = rcv;
585 		sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
586 	}
587 }
588 
589 static struct socket *drbd_try_connect(struct drbd_connection *connection)
590 {
591 	const char *what;
592 	struct socket *sock;
593 	struct sockaddr_in6 src_in6;
594 	struct sockaddr_in6 peer_in6;
595 	struct net_conf *nc;
596 	int err, peer_addr_len, my_addr_len;
597 	int sndbuf_size, rcvbuf_size, connect_int;
598 	int disconnect_on_error = 1;
599 
600 	rcu_read_lock();
601 	nc = rcu_dereference(connection->net_conf);
602 	if (!nc) {
603 		rcu_read_unlock();
604 		return NULL;
605 	}
606 	sndbuf_size = nc->sndbuf_size;
607 	rcvbuf_size = nc->rcvbuf_size;
608 	connect_int = nc->connect_int;
609 	rcu_read_unlock();
610 
611 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
612 	memcpy(&src_in6, &connection->my_addr, my_addr_len);
613 
614 	if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
615 		src_in6.sin6_port = 0;
616 	else
617 		((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
618 
619 	peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
620 	memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
621 
622 	what = "sock_create_kern";
623 	err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
624 			       SOCK_STREAM, IPPROTO_TCP, &sock);
625 	if (err < 0) {
626 		sock = NULL;
627 		goto out;
628 	}
629 
630 	sock->sk->sk_rcvtimeo =
631 	sock->sk->sk_sndtimeo = connect_int * HZ;
632 	drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
633 
634        /* explicitly bind to the configured IP as source IP
635 	*  for the outgoing connections.
636 	*  This is needed for multihomed hosts and to be
637 	*  able to use lo: interfaces for drbd.
638 	* Make sure to use 0 as port number, so linux selects
639 	*  a free one dynamically.
640 	*/
641 	what = "bind before connect";
642 	err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
643 	if (err < 0)
644 		goto out;
645 
646 	/* connect may fail, peer not yet available.
647 	 * stay C_WF_CONNECTION, don't go Disconnecting! */
648 	disconnect_on_error = 0;
649 	what = "connect";
650 	err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
651 
652 out:
653 	if (err < 0) {
654 		if (sock) {
655 			sock_release(sock);
656 			sock = NULL;
657 		}
658 		switch (-err) {
659 			/* timeout, busy, signal pending */
660 		case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
661 		case EINTR: case ERESTARTSYS:
662 			/* peer not (yet) available, network problem */
663 		case ECONNREFUSED: case ENETUNREACH:
664 		case EHOSTDOWN:    case EHOSTUNREACH:
665 			disconnect_on_error = 0;
666 			break;
667 		default:
668 			drbd_err(connection, "%s failed, err = %d\n", what, err);
669 		}
670 		if (disconnect_on_error)
671 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
672 	}
673 
674 	return sock;
675 }
676 
677 struct accept_wait_data {
678 	struct drbd_connection *connection;
679 	struct socket *s_listen;
680 	struct completion door_bell;
681 	void (*original_sk_state_change)(struct sock *sk);
682 
683 };
684 
685 static void drbd_incoming_connection(struct sock *sk)
686 {
687 	struct accept_wait_data *ad = sk->sk_user_data;
688 	void (*state_change)(struct sock *sk);
689 
690 	state_change = ad->original_sk_state_change;
691 	if (sk->sk_state == TCP_ESTABLISHED)
692 		complete(&ad->door_bell);
693 	state_change(sk);
694 }
695 
696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
697 {
698 	int err, sndbuf_size, rcvbuf_size, my_addr_len;
699 	struct sockaddr_in6 my_addr;
700 	struct socket *s_listen;
701 	struct net_conf *nc;
702 	const char *what;
703 
704 	rcu_read_lock();
705 	nc = rcu_dereference(connection->net_conf);
706 	if (!nc) {
707 		rcu_read_unlock();
708 		return -EIO;
709 	}
710 	sndbuf_size = nc->sndbuf_size;
711 	rcvbuf_size = nc->rcvbuf_size;
712 	rcu_read_unlock();
713 
714 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
715 	memcpy(&my_addr, &connection->my_addr, my_addr_len);
716 
717 	what = "sock_create_kern";
718 	err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
719 			       SOCK_STREAM, IPPROTO_TCP, &s_listen);
720 	if (err) {
721 		s_listen = NULL;
722 		goto out;
723 	}
724 
725 	s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
726 	drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
727 
728 	what = "bind before listen";
729 	err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
730 	if (err < 0)
731 		goto out;
732 
733 	ad->s_listen = s_listen;
734 	write_lock_bh(&s_listen->sk->sk_callback_lock);
735 	ad->original_sk_state_change = s_listen->sk->sk_state_change;
736 	s_listen->sk->sk_state_change = drbd_incoming_connection;
737 	s_listen->sk->sk_user_data = ad;
738 	write_unlock_bh(&s_listen->sk->sk_callback_lock);
739 
740 	what = "listen";
741 	err = s_listen->ops->listen(s_listen, 5);
742 	if (err < 0)
743 		goto out;
744 
745 	return 0;
746 out:
747 	if (s_listen)
748 		sock_release(s_listen);
749 	if (err < 0) {
750 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
751 			drbd_err(connection, "%s failed, err = %d\n", what, err);
752 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
753 		}
754 	}
755 
756 	return -EIO;
757 }
758 
759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
760 {
761 	write_lock_bh(&sk->sk_callback_lock);
762 	sk->sk_state_change = ad->original_sk_state_change;
763 	sk->sk_user_data = NULL;
764 	write_unlock_bh(&sk->sk_callback_lock);
765 }
766 
767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
768 {
769 	int timeo, connect_int, err = 0;
770 	struct socket *s_estab = NULL;
771 	struct net_conf *nc;
772 
773 	rcu_read_lock();
774 	nc = rcu_dereference(connection->net_conf);
775 	if (!nc) {
776 		rcu_read_unlock();
777 		return NULL;
778 	}
779 	connect_int = nc->connect_int;
780 	rcu_read_unlock();
781 
782 	timeo = connect_int * HZ;
783 	/* 28.5% random jitter */
784 	timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7;
785 
786 	err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
787 	if (err <= 0)
788 		return NULL;
789 
790 	err = kernel_accept(ad->s_listen, &s_estab, 0);
791 	if (err < 0) {
792 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
793 			drbd_err(connection, "accept failed, err = %d\n", err);
794 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
795 		}
796 	}
797 
798 	if (s_estab)
799 		unregister_state_change(s_estab->sk, ad);
800 
801 	return s_estab;
802 }
803 
804 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
805 
806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
807 			     enum drbd_packet cmd)
808 {
809 	if (!conn_prepare_command(connection, sock))
810 		return -EIO;
811 	return conn_send_command(connection, sock, cmd, 0, NULL, 0);
812 }
813 
814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
815 {
816 	unsigned int header_size = drbd_header_size(connection);
817 	struct packet_info pi;
818 	struct net_conf *nc;
819 	int err;
820 
821 	rcu_read_lock();
822 	nc = rcu_dereference(connection->net_conf);
823 	if (!nc) {
824 		rcu_read_unlock();
825 		return -EIO;
826 	}
827 	sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
828 	rcu_read_unlock();
829 
830 	err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
831 	if (err != header_size) {
832 		if (err >= 0)
833 			err = -EIO;
834 		return err;
835 	}
836 	err = decode_header(connection, connection->data.rbuf, &pi);
837 	if (err)
838 		return err;
839 	return pi.cmd;
840 }
841 
842 /**
843  * drbd_socket_okay() - Free the socket if its connection is not okay
844  * @sock:	pointer to the pointer to the socket.
845  */
846 static bool drbd_socket_okay(struct socket **sock)
847 {
848 	int rr;
849 	char tb[4];
850 
851 	if (!*sock)
852 		return false;
853 
854 	rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
855 
856 	if (rr > 0 || rr == -EAGAIN) {
857 		return true;
858 	} else {
859 		sock_release(*sock);
860 		*sock = NULL;
861 		return false;
862 	}
863 }
864 
865 static bool connection_established(struct drbd_connection *connection,
866 				   struct socket **sock1,
867 				   struct socket **sock2)
868 {
869 	struct net_conf *nc;
870 	int timeout;
871 	bool ok;
872 
873 	if (!*sock1 || !*sock2)
874 		return false;
875 
876 	rcu_read_lock();
877 	nc = rcu_dereference(connection->net_conf);
878 	timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
879 	rcu_read_unlock();
880 	schedule_timeout_interruptible(timeout);
881 
882 	ok = drbd_socket_okay(sock1);
883 	ok = drbd_socket_okay(sock2) && ok;
884 
885 	return ok;
886 }
887 
888 /* Gets called if a connection is established, or if a new minor gets created
889    in a connection */
890 int drbd_connected(struct drbd_peer_device *peer_device)
891 {
892 	struct drbd_device *device = peer_device->device;
893 	int err;
894 
895 	atomic_set(&device->packet_seq, 0);
896 	device->peer_seq = 0;
897 
898 	device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
899 		&peer_device->connection->cstate_mutex :
900 		&device->own_state_mutex;
901 
902 	err = drbd_send_sync_param(peer_device);
903 	if (!err)
904 		err = drbd_send_sizes(peer_device, 0, 0);
905 	if (!err)
906 		err = drbd_send_uuids(peer_device);
907 	if (!err)
908 		err = drbd_send_current_state(peer_device);
909 	clear_bit(USE_DEGR_WFC_T, &device->flags);
910 	clear_bit(RESIZE_PENDING, &device->flags);
911 	atomic_set(&device->ap_in_flight, 0);
912 	mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
913 	return err;
914 }
915 
916 /*
917  * return values:
918  *   1 yes, we have a valid connection
919  *   0 oops, did not work out, please try again
920  *  -1 peer talks different language,
921  *     no point in trying again, please go standalone.
922  *  -2 We do not have a network config...
923  */
924 static int conn_connect(struct drbd_connection *connection)
925 {
926 	struct drbd_socket sock, msock;
927 	struct drbd_peer_device *peer_device;
928 	struct net_conf *nc;
929 	int vnr, timeout, h;
930 	bool discard_my_data, ok;
931 	enum drbd_state_rv rv;
932 	struct accept_wait_data ad = {
933 		.connection = connection,
934 		.door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
935 	};
936 
937 	clear_bit(DISCONNECT_SENT, &connection->flags);
938 	if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
939 		return -2;
940 
941 	mutex_init(&sock.mutex);
942 	sock.sbuf = connection->data.sbuf;
943 	sock.rbuf = connection->data.rbuf;
944 	sock.socket = NULL;
945 	mutex_init(&msock.mutex);
946 	msock.sbuf = connection->meta.sbuf;
947 	msock.rbuf = connection->meta.rbuf;
948 	msock.socket = NULL;
949 
950 	/* Assume that the peer only understands protocol 80 until we know better.  */
951 	connection->agreed_pro_version = 80;
952 
953 	if (prepare_listen_socket(connection, &ad))
954 		return 0;
955 
956 	do {
957 		struct socket *s;
958 
959 		s = drbd_try_connect(connection);
960 		if (s) {
961 			if (!sock.socket) {
962 				sock.socket = s;
963 				send_first_packet(connection, &sock, P_INITIAL_DATA);
964 			} else if (!msock.socket) {
965 				clear_bit(RESOLVE_CONFLICTS, &connection->flags);
966 				msock.socket = s;
967 				send_first_packet(connection, &msock, P_INITIAL_META);
968 			} else {
969 				drbd_err(connection, "Logic error in conn_connect()\n");
970 				goto out_release_sockets;
971 			}
972 		}
973 
974 		if (connection_established(connection, &sock.socket, &msock.socket))
975 			break;
976 
977 retry:
978 		s = drbd_wait_for_connect(connection, &ad);
979 		if (s) {
980 			int fp = receive_first_packet(connection, s);
981 			drbd_socket_okay(&sock.socket);
982 			drbd_socket_okay(&msock.socket);
983 			switch (fp) {
984 			case P_INITIAL_DATA:
985 				if (sock.socket) {
986 					drbd_warn(connection, "initial packet S crossed\n");
987 					sock_release(sock.socket);
988 					sock.socket = s;
989 					goto randomize;
990 				}
991 				sock.socket = s;
992 				break;
993 			case P_INITIAL_META:
994 				set_bit(RESOLVE_CONFLICTS, &connection->flags);
995 				if (msock.socket) {
996 					drbd_warn(connection, "initial packet M crossed\n");
997 					sock_release(msock.socket);
998 					msock.socket = s;
999 					goto randomize;
1000 				}
1001 				msock.socket = s;
1002 				break;
1003 			default:
1004 				drbd_warn(connection, "Error receiving initial packet\n");
1005 				sock_release(s);
1006 randomize:
1007 				if (prandom_u32() & 1)
1008 					goto retry;
1009 			}
1010 		}
1011 
1012 		if (connection->cstate <= C_DISCONNECTING)
1013 			goto out_release_sockets;
1014 		if (signal_pending(current)) {
1015 			flush_signals(current);
1016 			smp_rmb();
1017 			if (get_t_state(&connection->receiver) == EXITING)
1018 				goto out_release_sockets;
1019 		}
1020 
1021 		ok = connection_established(connection, &sock.socket, &msock.socket);
1022 	} while (!ok);
1023 
1024 	if (ad.s_listen)
1025 		sock_release(ad.s_listen);
1026 
1027 	sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1028 	msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1029 
1030 	sock.socket->sk->sk_allocation = GFP_NOIO;
1031 	msock.socket->sk->sk_allocation = GFP_NOIO;
1032 
1033 	sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1034 	msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1035 
1036 	/* NOT YET ...
1037 	 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1038 	 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1039 	 * first set it to the P_CONNECTION_FEATURES timeout,
1040 	 * which we set to 4x the configured ping_timeout. */
1041 	rcu_read_lock();
1042 	nc = rcu_dereference(connection->net_conf);
1043 
1044 	sock.socket->sk->sk_sndtimeo =
1045 	sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1046 
1047 	msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1048 	timeout = nc->timeout * HZ / 10;
1049 	discard_my_data = nc->discard_my_data;
1050 	rcu_read_unlock();
1051 
1052 	msock.socket->sk->sk_sndtimeo = timeout;
1053 
1054 	/* we don't want delays.
1055 	 * we use TCP_CORK where appropriate, though */
1056 	tcp_sock_set_nodelay(sock.socket->sk);
1057 	tcp_sock_set_nodelay(msock.socket->sk);
1058 
1059 	connection->data.socket = sock.socket;
1060 	connection->meta.socket = msock.socket;
1061 	connection->last_received = jiffies;
1062 
1063 	h = drbd_do_features(connection);
1064 	if (h <= 0)
1065 		return h;
1066 
1067 	if (connection->cram_hmac_tfm) {
1068 		/* drbd_request_state(device, NS(conn, WFAuth)); */
1069 		switch (drbd_do_auth(connection)) {
1070 		case -1:
1071 			drbd_err(connection, "Authentication of peer failed\n");
1072 			return -1;
1073 		case 0:
1074 			drbd_err(connection, "Authentication of peer failed, trying again.\n");
1075 			return 0;
1076 		}
1077 	}
1078 
1079 	connection->data.socket->sk->sk_sndtimeo = timeout;
1080 	connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1081 
1082 	if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1083 		return -1;
1084 
1085 	/* Prevent a race between resync-handshake and
1086 	 * being promoted to Primary.
1087 	 *
1088 	 * Grab and release the state mutex, so we know that any current
1089 	 * drbd_set_role() is finished, and any incoming drbd_set_role
1090 	 * will see the STATE_SENT flag, and wait for it to be cleared.
1091 	 */
1092 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1093 		mutex_lock(peer_device->device->state_mutex);
1094 
1095 	/* avoid a race with conn_request_state( C_DISCONNECTING ) */
1096 	spin_lock_irq(&connection->resource->req_lock);
1097 	set_bit(STATE_SENT, &connection->flags);
1098 	spin_unlock_irq(&connection->resource->req_lock);
1099 
1100 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1101 		mutex_unlock(peer_device->device->state_mutex);
1102 
1103 	rcu_read_lock();
1104 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1105 		struct drbd_device *device = peer_device->device;
1106 		kref_get(&device->kref);
1107 		rcu_read_unlock();
1108 
1109 		if (discard_my_data)
1110 			set_bit(DISCARD_MY_DATA, &device->flags);
1111 		else
1112 			clear_bit(DISCARD_MY_DATA, &device->flags);
1113 
1114 		drbd_connected(peer_device);
1115 		kref_put(&device->kref, drbd_destroy_device);
1116 		rcu_read_lock();
1117 	}
1118 	rcu_read_unlock();
1119 
1120 	rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1121 	if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1122 		clear_bit(STATE_SENT, &connection->flags);
1123 		return 0;
1124 	}
1125 
1126 	drbd_thread_start(&connection->ack_receiver);
1127 	/* opencoded create_singlethread_workqueue(),
1128 	 * to be able to use format string arguments */
1129 	connection->ack_sender =
1130 		alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1131 	if (!connection->ack_sender) {
1132 		drbd_err(connection, "Failed to create workqueue ack_sender\n");
1133 		return 0;
1134 	}
1135 
1136 	mutex_lock(&connection->resource->conf_update);
1137 	/* The discard_my_data flag is a single-shot modifier to the next
1138 	 * connection attempt, the handshake of which is now well underway.
1139 	 * No need for rcu style copying of the whole struct
1140 	 * just to clear a single value. */
1141 	connection->net_conf->discard_my_data = 0;
1142 	mutex_unlock(&connection->resource->conf_update);
1143 
1144 	return h;
1145 
1146 out_release_sockets:
1147 	if (ad.s_listen)
1148 		sock_release(ad.s_listen);
1149 	if (sock.socket)
1150 		sock_release(sock.socket);
1151 	if (msock.socket)
1152 		sock_release(msock.socket);
1153 	return -1;
1154 }
1155 
1156 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1157 {
1158 	unsigned int header_size = drbd_header_size(connection);
1159 
1160 	if (header_size == sizeof(struct p_header100) &&
1161 	    *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1162 		struct p_header100 *h = header;
1163 		if (h->pad != 0) {
1164 			drbd_err(connection, "Header padding is not zero\n");
1165 			return -EINVAL;
1166 		}
1167 		pi->vnr = be16_to_cpu(h->volume);
1168 		pi->cmd = be16_to_cpu(h->command);
1169 		pi->size = be32_to_cpu(h->length);
1170 	} else if (header_size == sizeof(struct p_header95) &&
1171 		   *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1172 		struct p_header95 *h = header;
1173 		pi->cmd = be16_to_cpu(h->command);
1174 		pi->size = be32_to_cpu(h->length);
1175 		pi->vnr = 0;
1176 	} else if (header_size == sizeof(struct p_header80) &&
1177 		   *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1178 		struct p_header80 *h = header;
1179 		pi->cmd = be16_to_cpu(h->command);
1180 		pi->size = be16_to_cpu(h->length);
1181 		pi->vnr = 0;
1182 	} else {
1183 		drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1184 			 be32_to_cpu(*(__be32 *)header),
1185 			 connection->agreed_pro_version);
1186 		return -EINVAL;
1187 	}
1188 	pi->data = header + header_size;
1189 	return 0;
1190 }
1191 
1192 static void drbd_unplug_all_devices(struct drbd_connection *connection)
1193 {
1194 	if (current->plug == &connection->receiver_plug) {
1195 		blk_finish_plug(&connection->receiver_plug);
1196 		blk_start_plug(&connection->receiver_plug);
1197 	} /* else: maybe just schedule() ?? */
1198 }
1199 
1200 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1201 {
1202 	void *buffer = connection->data.rbuf;
1203 	int err;
1204 
1205 	err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1206 	if (err)
1207 		return err;
1208 
1209 	err = decode_header(connection, buffer, pi);
1210 	connection->last_received = jiffies;
1211 
1212 	return err;
1213 }
1214 
1215 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi)
1216 {
1217 	void *buffer = connection->data.rbuf;
1218 	unsigned int size = drbd_header_size(connection);
1219 	int err;
1220 
1221 	err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT);
1222 	if (err != size) {
1223 		/* If we have nothing in the receive buffer now, to reduce
1224 		 * application latency, try to drain the backend queues as
1225 		 * quickly as possible, and let remote TCP know what we have
1226 		 * received so far. */
1227 		if (err == -EAGAIN) {
1228 			tcp_sock_set_quickack(connection->data.socket->sk, 2);
1229 			drbd_unplug_all_devices(connection);
1230 		}
1231 		if (err > 0) {
1232 			buffer += err;
1233 			size -= err;
1234 		}
1235 		err = drbd_recv_all_warn(connection, buffer, size);
1236 		if (err)
1237 			return err;
1238 	}
1239 
1240 	err = decode_header(connection, connection->data.rbuf, pi);
1241 	connection->last_received = jiffies;
1242 
1243 	return err;
1244 }
1245 /* This is blkdev_issue_flush, but asynchronous.
1246  * We want to submit to all component volumes in parallel,
1247  * then wait for all completions.
1248  */
1249 struct issue_flush_context {
1250 	atomic_t pending;
1251 	int error;
1252 	struct completion done;
1253 };
1254 struct one_flush_context {
1255 	struct drbd_device *device;
1256 	struct issue_flush_context *ctx;
1257 };
1258 
1259 static void one_flush_endio(struct bio *bio)
1260 {
1261 	struct one_flush_context *octx = bio->bi_private;
1262 	struct drbd_device *device = octx->device;
1263 	struct issue_flush_context *ctx = octx->ctx;
1264 
1265 	if (bio->bi_status) {
1266 		ctx->error = blk_status_to_errno(bio->bi_status);
1267 		drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status);
1268 	}
1269 	kfree(octx);
1270 	bio_put(bio);
1271 
1272 	clear_bit(FLUSH_PENDING, &device->flags);
1273 	put_ldev(device);
1274 	kref_put(&device->kref, drbd_destroy_device);
1275 
1276 	if (atomic_dec_and_test(&ctx->pending))
1277 		complete(&ctx->done);
1278 }
1279 
1280 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1281 {
1282 	struct bio *bio = bio_alloc(GFP_NOIO, 0);
1283 	struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1284 	if (!bio || !octx) {
1285 		drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n");
1286 		/* FIXME: what else can I do now?  disconnecting or detaching
1287 		 * really does not help to improve the state of the world, either.
1288 		 */
1289 		kfree(octx);
1290 		if (bio)
1291 			bio_put(bio);
1292 
1293 		ctx->error = -ENOMEM;
1294 		put_ldev(device);
1295 		kref_put(&device->kref, drbd_destroy_device);
1296 		return;
1297 	}
1298 
1299 	octx->device = device;
1300 	octx->ctx = ctx;
1301 	bio_set_dev(bio, device->ldev->backing_bdev);
1302 	bio->bi_private = octx;
1303 	bio->bi_end_io = one_flush_endio;
1304 	bio->bi_opf = REQ_OP_FLUSH | REQ_PREFLUSH;
1305 
1306 	device->flush_jif = jiffies;
1307 	set_bit(FLUSH_PENDING, &device->flags);
1308 	atomic_inc(&ctx->pending);
1309 	submit_bio(bio);
1310 }
1311 
1312 static void drbd_flush(struct drbd_connection *connection)
1313 {
1314 	if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1315 		struct drbd_peer_device *peer_device;
1316 		struct issue_flush_context ctx;
1317 		int vnr;
1318 
1319 		atomic_set(&ctx.pending, 1);
1320 		ctx.error = 0;
1321 		init_completion(&ctx.done);
1322 
1323 		rcu_read_lock();
1324 		idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1325 			struct drbd_device *device = peer_device->device;
1326 
1327 			if (!get_ldev(device))
1328 				continue;
1329 			kref_get(&device->kref);
1330 			rcu_read_unlock();
1331 
1332 			submit_one_flush(device, &ctx);
1333 
1334 			rcu_read_lock();
1335 		}
1336 		rcu_read_unlock();
1337 
1338 		/* Do we want to add a timeout,
1339 		 * if disk-timeout is set? */
1340 		if (!atomic_dec_and_test(&ctx.pending))
1341 			wait_for_completion(&ctx.done);
1342 
1343 		if (ctx.error) {
1344 			/* would rather check on EOPNOTSUPP, but that is not reliable.
1345 			 * don't try again for ANY return value != 0
1346 			 * if (rv == -EOPNOTSUPP) */
1347 			/* Any error is already reported by bio_endio callback. */
1348 			drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1349 		}
1350 	}
1351 }
1352 
1353 /**
1354  * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1355  * @connection:	DRBD connection.
1356  * @epoch:	Epoch object.
1357  * @ev:		Epoch event.
1358  */
1359 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1360 					       struct drbd_epoch *epoch,
1361 					       enum epoch_event ev)
1362 {
1363 	int epoch_size;
1364 	struct drbd_epoch *next_epoch;
1365 	enum finish_epoch rv = FE_STILL_LIVE;
1366 
1367 	spin_lock(&connection->epoch_lock);
1368 	do {
1369 		next_epoch = NULL;
1370 
1371 		epoch_size = atomic_read(&epoch->epoch_size);
1372 
1373 		switch (ev & ~EV_CLEANUP) {
1374 		case EV_PUT:
1375 			atomic_dec(&epoch->active);
1376 			break;
1377 		case EV_GOT_BARRIER_NR:
1378 			set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1379 			break;
1380 		case EV_BECAME_LAST:
1381 			/* nothing to do*/
1382 			break;
1383 		}
1384 
1385 		if (epoch_size != 0 &&
1386 		    atomic_read(&epoch->active) == 0 &&
1387 		    (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1388 			if (!(ev & EV_CLEANUP)) {
1389 				spin_unlock(&connection->epoch_lock);
1390 				drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1391 				spin_lock(&connection->epoch_lock);
1392 			}
1393 #if 0
1394 			/* FIXME: dec unacked on connection, once we have
1395 			 * something to count pending connection packets in. */
1396 			if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1397 				dec_unacked(epoch->connection);
1398 #endif
1399 
1400 			if (connection->current_epoch != epoch) {
1401 				next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1402 				list_del(&epoch->list);
1403 				ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1404 				connection->epochs--;
1405 				kfree(epoch);
1406 
1407 				if (rv == FE_STILL_LIVE)
1408 					rv = FE_DESTROYED;
1409 			} else {
1410 				epoch->flags = 0;
1411 				atomic_set(&epoch->epoch_size, 0);
1412 				/* atomic_set(&epoch->active, 0); is already zero */
1413 				if (rv == FE_STILL_LIVE)
1414 					rv = FE_RECYCLED;
1415 			}
1416 		}
1417 
1418 		if (!next_epoch)
1419 			break;
1420 
1421 		epoch = next_epoch;
1422 	} while (1);
1423 
1424 	spin_unlock(&connection->epoch_lock);
1425 
1426 	return rv;
1427 }
1428 
1429 static enum write_ordering_e
1430 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1431 {
1432 	struct disk_conf *dc;
1433 
1434 	dc = rcu_dereference(bdev->disk_conf);
1435 
1436 	if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1437 		wo = WO_DRAIN_IO;
1438 	if (wo == WO_DRAIN_IO && !dc->disk_drain)
1439 		wo = WO_NONE;
1440 
1441 	return wo;
1442 }
1443 
1444 /*
1445  * drbd_bump_write_ordering() - Fall back to an other write ordering method
1446  * @wo:		Write ordering method to try.
1447  */
1448 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1449 			      enum write_ordering_e wo)
1450 {
1451 	struct drbd_device *device;
1452 	enum write_ordering_e pwo;
1453 	int vnr;
1454 	static char *write_ordering_str[] = {
1455 		[WO_NONE] = "none",
1456 		[WO_DRAIN_IO] = "drain",
1457 		[WO_BDEV_FLUSH] = "flush",
1458 	};
1459 
1460 	pwo = resource->write_ordering;
1461 	if (wo != WO_BDEV_FLUSH)
1462 		wo = min(pwo, wo);
1463 	rcu_read_lock();
1464 	idr_for_each_entry(&resource->devices, device, vnr) {
1465 		if (get_ldev(device)) {
1466 			wo = max_allowed_wo(device->ldev, wo);
1467 			if (device->ldev == bdev)
1468 				bdev = NULL;
1469 			put_ldev(device);
1470 		}
1471 	}
1472 
1473 	if (bdev)
1474 		wo = max_allowed_wo(bdev, wo);
1475 
1476 	rcu_read_unlock();
1477 
1478 	resource->write_ordering = wo;
1479 	if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1480 		drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1481 }
1482 
1483 /*
1484  * Mapping "discard" to ZEROOUT with UNMAP does not work for us:
1485  * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it
1486  * will directly go to fallback mode, submitting normal writes, and
1487  * never even try to UNMAP.
1488  *
1489  * And dm-thin does not do this (yet), mostly because in general it has
1490  * to assume that "skip_block_zeroing" is set.  See also:
1491  * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html
1492  * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html
1493  *
1494  * We *may* ignore the discard-zeroes-data setting, if so configured.
1495  *
1496  * Assumption is that this "discard_zeroes_data=0" is only because the backend
1497  * may ignore partial unaligned discards.
1498  *
1499  * LVM/DM thin as of at least
1500  *   LVM version:     2.02.115(2)-RHEL7 (2015-01-28)
1501  *   Library version: 1.02.93-RHEL7 (2015-01-28)
1502  *   Driver version:  4.29.0
1503  * still behaves this way.
1504  *
1505  * For unaligned (wrt. alignment and granularity) or too small discards,
1506  * we zero-out the initial (and/or) trailing unaligned partial chunks,
1507  * but discard all the aligned full chunks.
1508  *
1509  * At least for LVM/DM thin, with skip_block_zeroing=false,
1510  * the result is effectively "discard_zeroes_data=1".
1511  */
1512 /* flags: EE_TRIM|EE_ZEROOUT */
1513 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags)
1514 {
1515 	struct block_device *bdev = device->ldev->backing_bdev;
1516 	struct request_queue *q = bdev_get_queue(bdev);
1517 	sector_t tmp, nr;
1518 	unsigned int max_discard_sectors, granularity;
1519 	int alignment;
1520 	int err = 0;
1521 
1522 	if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM))
1523 		goto zero_out;
1524 
1525 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
1526 	granularity = max(q->limits.discard_granularity >> 9, 1U);
1527 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
1528 
1529 	max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22));
1530 	max_discard_sectors -= max_discard_sectors % granularity;
1531 	if (unlikely(!max_discard_sectors))
1532 		goto zero_out;
1533 
1534 	if (nr_sectors < granularity)
1535 		goto zero_out;
1536 
1537 	tmp = start;
1538 	if (sector_div(tmp, granularity) != alignment) {
1539 		if (nr_sectors < 2*granularity)
1540 			goto zero_out;
1541 		/* start + gran - (start + gran - align) % gran */
1542 		tmp = start + granularity - alignment;
1543 		tmp = start + granularity - sector_div(tmp, granularity);
1544 
1545 		nr = tmp - start;
1546 		/* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many
1547 		 * layers are below us, some may have smaller granularity */
1548 		err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
1549 		nr_sectors -= nr;
1550 		start = tmp;
1551 	}
1552 	while (nr_sectors >= max_discard_sectors) {
1553 		err |= blkdev_issue_discard(bdev, start, max_discard_sectors, GFP_NOIO, 0);
1554 		nr_sectors -= max_discard_sectors;
1555 		start += max_discard_sectors;
1556 	}
1557 	if (nr_sectors) {
1558 		/* max_discard_sectors is unsigned int (and a multiple of
1559 		 * granularity, we made sure of that above already);
1560 		 * nr is < max_discard_sectors;
1561 		 * I don't need sector_div here, even though nr is sector_t */
1562 		nr = nr_sectors;
1563 		nr -= (unsigned int)nr % granularity;
1564 		if (nr) {
1565 			err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0);
1566 			nr_sectors -= nr;
1567 			start += nr;
1568 		}
1569 	}
1570  zero_out:
1571 	if (nr_sectors) {
1572 		err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO,
1573 				(flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP);
1574 	}
1575 	return err != 0;
1576 }
1577 
1578 static bool can_do_reliable_discards(struct drbd_device *device)
1579 {
1580 	struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
1581 	struct disk_conf *dc;
1582 	bool can_do;
1583 
1584 	if (!blk_queue_discard(q))
1585 		return false;
1586 
1587 	rcu_read_lock();
1588 	dc = rcu_dereference(device->ldev->disk_conf);
1589 	can_do = dc->discard_zeroes_if_aligned;
1590 	rcu_read_unlock();
1591 	return can_do;
1592 }
1593 
1594 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req)
1595 {
1596 	/* If the backend cannot discard, or does not guarantee
1597 	 * read-back zeroes in discarded ranges, we fall back to
1598 	 * zero-out.  Unless configuration specifically requested
1599 	 * otherwise. */
1600 	if (!can_do_reliable_discards(device))
1601 		peer_req->flags |= EE_ZEROOUT;
1602 
1603 	if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
1604 	    peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM)))
1605 		peer_req->flags |= EE_WAS_ERROR;
1606 	drbd_endio_write_sec_final(peer_req);
1607 }
1608 
1609 static void drbd_issue_peer_wsame(struct drbd_device *device,
1610 				  struct drbd_peer_request *peer_req)
1611 {
1612 	struct block_device *bdev = device->ldev->backing_bdev;
1613 	sector_t s = peer_req->i.sector;
1614 	sector_t nr = peer_req->i.size >> 9;
1615 	if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages))
1616 		peer_req->flags |= EE_WAS_ERROR;
1617 	drbd_endio_write_sec_final(peer_req);
1618 }
1619 
1620 
1621 /*
1622  * drbd_submit_peer_request()
1623  * @device:	DRBD device.
1624  * @peer_req:	peer request
1625  *
1626  * May spread the pages to multiple bios,
1627  * depending on bio_add_page restrictions.
1628  *
1629  * Returns 0 if all bios have been submitted,
1630  * -ENOMEM if we could not allocate enough bios,
1631  * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1632  *  single page to an empty bio (which should never happen and likely indicates
1633  *  that the lower level IO stack is in some way broken). This has been observed
1634  *  on certain Xen deployments.
1635  */
1636 /* TODO allocate from our own bio_set. */
1637 int drbd_submit_peer_request(struct drbd_device *device,
1638 			     struct drbd_peer_request *peer_req,
1639 			     const unsigned op, const unsigned op_flags,
1640 			     const int fault_type)
1641 {
1642 	struct bio *bios = NULL;
1643 	struct bio *bio;
1644 	struct page *page = peer_req->pages;
1645 	sector_t sector = peer_req->i.sector;
1646 	unsigned data_size = peer_req->i.size;
1647 	unsigned n_bios = 0;
1648 	unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT;
1649 	int err = -ENOMEM;
1650 
1651 	/* TRIM/DISCARD: for now, always use the helper function
1652 	 * blkdev_issue_zeroout(..., discard=true).
1653 	 * It's synchronous, but it does the right thing wrt. bio splitting.
1654 	 * Correctness first, performance later.  Next step is to code an
1655 	 * asynchronous variant of the same.
1656 	 */
1657 	if (peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) {
1658 		/* wait for all pending IO completions, before we start
1659 		 * zeroing things out. */
1660 		conn_wait_active_ee_empty(peer_req->peer_device->connection);
1661 		/* add it to the active list now,
1662 		 * so we can find it to present it in debugfs */
1663 		peer_req->submit_jif = jiffies;
1664 		peer_req->flags |= EE_SUBMITTED;
1665 
1666 		/* If this was a resync request from receive_rs_deallocated(),
1667 		 * it is already on the sync_ee list */
1668 		if (list_empty(&peer_req->w.list)) {
1669 			spin_lock_irq(&device->resource->req_lock);
1670 			list_add_tail(&peer_req->w.list, &device->active_ee);
1671 			spin_unlock_irq(&device->resource->req_lock);
1672 		}
1673 
1674 		if (peer_req->flags & (EE_TRIM|EE_ZEROOUT))
1675 			drbd_issue_peer_discard_or_zero_out(device, peer_req);
1676 		else /* EE_WRITE_SAME */
1677 			drbd_issue_peer_wsame(device, peer_req);
1678 		return 0;
1679 	}
1680 
1681 	/* In most cases, we will only need one bio.  But in case the lower
1682 	 * level restrictions happen to be different at this offset on this
1683 	 * side than those of the sending peer, we may need to submit the
1684 	 * request in more than one bio.
1685 	 *
1686 	 * Plain bio_alloc is good enough here, this is no DRBD internally
1687 	 * generated bio, but a bio allocated on behalf of the peer.
1688 	 */
1689 next_bio:
1690 	bio = bio_alloc(GFP_NOIO, nr_pages);
1691 	if (!bio) {
1692 		drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages);
1693 		goto fail;
1694 	}
1695 	/* > peer_req->i.sector, unless this is the first bio */
1696 	bio->bi_iter.bi_sector = sector;
1697 	bio_set_dev(bio, device->ldev->backing_bdev);
1698 	bio_set_op_attrs(bio, op, op_flags);
1699 	bio->bi_private = peer_req;
1700 	bio->bi_end_io = drbd_peer_request_endio;
1701 
1702 	bio->bi_next = bios;
1703 	bios = bio;
1704 	++n_bios;
1705 
1706 	page_chain_for_each(page) {
1707 		unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1708 		if (!bio_add_page(bio, page, len, 0))
1709 			goto next_bio;
1710 		data_size -= len;
1711 		sector += len >> 9;
1712 		--nr_pages;
1713 	}
1714 	D_ASSERT(device, data_size == 0);
1715 	D_ASSERT(device, page == NULL);
1716 
1717 	atomic_set(&peer_req->pending_bios, n_bios);
1718 	/* for debugfs: update timestamp, mark as submitted */
1719 	peer_req->submit_jif = jiffies;
1720 	peer_req->flags |= EE_SUBMITTED;
1721 	do {
1722 		bio = bios;
1723 		bios = bios->bi_next;
1724 		bio->bi_next = NULL;
1725 
1726 		drbd_submit_bio_noacct(device, fault_type, bio);
1727 	} while (bios);
1728 	return 0;
1729 
1730 fail:
1731 	while (bios) {
1732 		bio = bios;
1733 		bios = bios->bi_next;
1734 		bio_put(bio);
1735 	}
1736 	return err;
1737 }
1738 
1739 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1740 					     struct drbd_peer_request *peer_req)
1741 {
1742 	struct drbd_interval *i = &peer_req->i;
1743 
1744 	drbd_remove_interval(&device->write_requests, i);
1745 	drbd_clear_interval(i);
1746 
1747 	/* Wake up any processes waiting for this peer request to complete.  */
1748 	if (i->waiting)
1749 		wake_up(&device->misc_wait);
1750 }
1751 
1752 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1753 {
1754 	struct drbd_peer_device *peer_device;
1755 	int vnr;
1756 
1757 	rcu_read_lock();
1758 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1759 		struct drbd_device *device = peer_device->device;
1760 
1761 		kref_get(&device->kref);
1762 		rcu_read_unlock();
1763 		drbd_wait_ee_list_empty(device, &device->active_ee);
1764 		kref_put(&device->kref, drbd_destroy_device);
1765 		rcu_read_lock();
1766 	}
1767 	rcu_read_unlock();
1768 }
1769 
1770 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1771 {
1772 	int rv;
1773 	struct p_barrier *p = pi->data;
1774 	struct drbd_epoch *epoch;
1775 
1776 	/* FIXME these are unacked on connection,
1777 	 * not a specific (peer)device.
1778 	 */
1779 	connection->current_epoch->barrier_nr = p->barrier;
1780 	connection->current_epoch->connection = connection;
1781 	rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1782 
1783 	/* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1784 	 * the activity log, which means it would not be resynced in case the
1785 	 * R_PRIMARY crashes now.
1786 	 * Therefore we must send the barrier_ack after the barrier request was
1787 	 * completed. */
1788 	switch (connection->resource->write_ordering) {
1789 	case WO_NONE:
1790 		if (rv == FE_RECYCLED)
1791 			return 0;
1792 
1793 		/* receiver context, in the writeout path of the other node.
1794 		 * avoid potential distributed deadlock */
1795 		epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1796 		if (epoch)
1797 			break;
1798 		else
1799 			drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1800 		fallthrough;
1801 
1802 	case WO_BDEV_FLUSH:
1803 	case WO_DRAIN_IO:
1804 		conn_wait_active_ee_empty(connection);
1805 		drbd_flush(connection);
1806 
1807 		if (atomic_read(&connection->current_epoch->epoch_size)) {
1808 			epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1809 			if (epoch)
1810 				break;
1811 		}
1812 
1813 		return 0;
1814 	default:
1815 		drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1816 			 connection->resource->write_ordering);
1817 		return -EIO;
1818 	}
1819 
1820 	epoch->flags = 0;
1821 	atomic_set(&epoch->epoch_size, 0);
1822 	atomic_set(&epoch->active, 0);
1823 
1824 	spin_lock(&connection->epoch_lock);
1825 	if (atomic_read(&connection->current_epoch->epoch_size)) {
1826 		list_add(&epoch->list, &connection->current_epoch->list);
1827 		connection->current_epoch = epoch;
1828 		connection->epochs++;
1829 	} else {
1830 		/* The current_epoch got recycled while we allocated this one... */
1831 		kfree(epoch);
1832 	}
1833 	spin_unlock(&connection->epoch_lock);
1834 
1835 	return 0;
1836 }
1837 
1838 /* quick wrapper in case payload size != request_size (write same) */
1839 static void drbd_csum_ee_size(struct crypto_shash *h,
1840 			      struct drbd_peer_request *r, void *d,
1841 			      unsigned int payload_size)
1842 {
1843 	unsigned int tmp = r->i.size;
1844 	r->i.size = payload_size;
1845 	drbd_csum_ee(h, r, d);
1846 	r->i.size = tmp;
1847 }
1848 
1849 /* used from receive_RSDataReply (recv_resync_read)
1850  * and from receive_Data.
1851  * data_size: actual payload ("data in")
1852  * 	for normal writes that is bi_size.
1853  * 	for discards, that is zero.
1854  * 	for write same, it is logical_block_size.
1855  * both trim and write same have the bi_size ("data len to be affected")
1856  * as extra argument in the packet header.
1857  */
1858 static struct drbd_peer_request *
1859 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1860 	      struct packet_info *pi) __must_hold(local)
1861 {
1862 	struct drbd_device *device = peer_device->device;
1863 	const sector_t capacity = get_capacity(device->vdisk);
1864 	struct drbd_peer_request *peer_req;
1865 	struct page *page;
1866 	int digest_size, err;
1867 	unsigned int data_size = pi->size, ds;
1868 	void *dig_in = peer_device->connection->int_dig_in;
1869 	void *dig_vv = peer_device->connection->int_dig_vv;
1870 	unsigned long *data;
1871 	struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1872 	struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL;
1873 	struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL;
1874 
1875 	digest_size = 0;
1876 	if (!trim && peer_device->connection->peer_integrity_tfm) {
1877 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1878 		/*
1879 		 * FIXME: Receive the incoming digest into the receive buffer
1880 		 *	  here, together with its struct p_data?
1881 		 */
1882 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1883 		if (err)
1884 			return NULL;
1885 		data_size -= digest_size;
1886 	}
1887 
1888 	/* assume request_size == data_size, but special case trim and wsame. */
1889 	ds = data_size;
1890 	if (trim) {
1891 		if (!expect(data_size == 0))
1892 			return NULL;
1893 		ds = be32_to_cpu(trim->size);
1894 	} else if (zeroes) {
1895 		if (!expect(data_size == 0))
1896 			return NULL;
1897 		ds = be32_to_cpu(zeroes->size);
1898 	} else if (wsame) {
1899 		if (data_size != queue_logical_block_size(device->rq_queue)) {
1900 			drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n",
1901 				data_size, queue_logical_block_size(device->rq_queue));
1902 			return NULL;
1903 		}
1904 		if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) {
1905 			drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n",
1906 				data_size, bdev_logical_block_size(device->ldev->backing_bdev));
1907 			return NULL;
1908 		}
1909 		ds = be32_to_cpu(wsame->size);
1910 	}
1911 
1912 	if (!expect(IS_ALIGNED(ds, 512)))
1913 		return NULL;
1914 	if (trim || wsame || zeroes) {
1915 		if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1916 			return NULL;
1917 	} else if (!expect(ds <= DRBD_MAX_BIO_SIZE))
1918 		return NULL;
1919 
1920 	/* even though we trust out peer,
1921 	 * we sometimes have to double check. */
1922 	if (sector + (ds>>9) > capacity) {
1923 		drbd_err(device, "request from peer beyond end of local disk: "
1924 			"capacity: %llus < sector: %llus + size: %u\n",
1925 			(unsigned long long)capacity,
1926 			(unsigned long long)sector, ds);
1927 		return NULL;
1928 	}
1929 
1930 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1931 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
1932 	 * which in turn might block on the other node at this very place.  */
1933 	peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1934 	if (!peer_req)
1935 		return NULL;
1936 
1937 	peer_req->flags |= EE_WRITE;
1938 	if (trim) {
1939 		peer_req->flags |= EE_TRIM;
1940 		return peer_req;
1941 	}
1942 	if (zeroes) {
1943 		peer_req->flags |= EE_ZEROOUT;
1944 		return peer_req;
1945 	}
1946 	if (wsame)
1947 		peer_req->flags |= EE_WRITE_SAME;
1948 
1949 	/* receive payload size bytes into page chain */
1950 	ds = data_size;
1951 	page = peer_req->pages;
1952 	page_chain_for_each(page) {
1953 		unsigned len = min_t(int, ds, PAGE_SIZE);
1954 		data = kmap(page);
1955 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1956 		if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1957 			drbd_err(device, "Fault injection: Corrupting data on receive\n");
1958 			data[0] = data[0] ^ (unsigned long)-1;
1959 		}
1960 		kunmap(page);
1961 		if (err) {
1962 			drbd_free_peer_req(device, peer_req);
1963 			return NULL;
1964 		}
1965 		ds -= len;
1966 	}
1967 
1968 	if (digest_size) {
1969 		drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1970 		if (memcmp(dig_in, dig_vv, digest_size)) {
1971 			drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1972 				(unsigned long long)sector, data_size);
1973 			drbd_free_peer_req(device, peer_req);
1974 			return NULL;
1975 		}
1976 	}
1977 	device->recv_cnt += data_size >> 9;
1978 	return peer_req;
1979 }
1980 
1981 /* drbd_drain_block() just takes a data block
1982  * out of the socket input buffer, and discards it.
1983  */
1984 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1985 {
1986 	struct page *page;
1987 	int err = 0;
1988 	void *data;
1989 
1990 	if (!data_size)
1991 		return 0;
1992 
1993 	page = drbd_alloc_pages(peer_device, 1, 1);
1994 
1995 	data = kmap(page);
1996 	while (data_size) {
1997 		unsigned int len = min_t(int, data_size, PAGE_SIZE);
1998 
1999 		err = drbd_recv_all_warn(peer_device->connection, data, len);
2000 		if (err)
2001 			break;
2002 		data_size -= len;
2003 	}
2004 	kunmap(page);
2005 	drbd_free_pages(peer_device->device, page, 0);
2006 	return err;
2007 }
2008 
2009 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
2010 			   sector_t sector, int data_size)
2011 {
2012 	struct bio_vec bvec;
2013 	struct bvec_iter iter;
2014 	struct bio *bio;
2015 	int digest_size, err, expect;
2016 	void *dig_in = peer_device->connection->int_dig_in;
2017 	void *dig_vv = peer_device->connection->int_dig_vv;
2018 
2019 	digest_size = 0;
2020 	if (peer_device->connection->peer_integrity_tfm) {
2021 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
2022 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
2023 		if (err)
2024 			return err;
2025 		data_size -= digest_size;
2026 	}
2027 
2028 	/* optimistically update recv_cnt.  if receiving fails below,
2029 	 * we disconnect anyways, and counters will be reset. */
2030 	peer_device->device->recv_cnt += data_size>>9;
2031 
2032 	bio = req->master_bio;
2033 	D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
2034 
2035 	bio_for_each_segment(bvec, bio, iter) {
2036 		void *mapped = kmap(bvec.bv_page) + bvec.bv_offset;
2037 		expect = min_t(int, data_size, bvec.bv_len);
2038 		err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
2039 		kunmap(bvec.bv_page);
2040 		if (err)
2041 			return err;
2042 		data_size -= expect;
2043 	}
2044 
2045 	if (digest_size) {
2046 		drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
2047 		if (memcmp(dig_in, dig_vv, digest_size)) {
2048 			drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
2049 			return -EINVAL;
2050 		}
2051 	}
2052 
2053 	D_ASSERT(peer_device->device, data_size == 0);
2054 	return 0;
2055 }
2056 
2057 /*
2058  * e_end_resync_block() is called in ack_sender context via
2059  * drbd_finish_peer_reqs().
2060  */
2061 static int e_end_resync_block(struct drbd_work *w, int unused)
2062 {
2063 	struct drbd_peer_request *peer_req =
2064 		container_of(w, struct drbd_peer_request, w);
2065 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2066 	struct drbd_device *device = peer_device->device;
2067 	sector_t sector = peer_req->i.sector;
2068 	int err;
2069 
2070 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2071 
2072 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2073 		drbd_set_in_sync(device, sector, peer_req->i.size);
2074 		err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
2075 	} else {
2076 		/* Record failure to sync */
2077 		drbd_rs_failed_io(device, sector, peer_req->i.size);
2078 
2079 		err  = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2080 	}
2081 	dec_unacked(device);
2082 
2083 	return err;
2084 }
2085 
2086 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
2087 			    struct packet_info *pi) __releases(local)
2088 {
2089 	struct drbd_device *device = peer_device->device;
2090 	struct drbd_peer_request *peer_req;
2091 
2092 	peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
2093 	if (!peer_req)
2094 		goto fail;
2095 
2096 	dec_rs_pending(device);
2097 
2098 	inc_unacked(device);
2099 	/* corresponding dec_unacked() in e_end_resync_block()
2100 	 * respective _drbd_clear_done_ee */
2101 
2102 	peer_req->w.cb = e_end_resync_block;
2103 	peer_req->submit_jif = jiffies;
2104 
2105 	spin_lock_irq(&device->resource->req_lock);
2106 	list_add_tail(&peer_req->w.list, &device->sync_ee);
2107 	spin_unlock_irq(&device->resource->req_lock);
2108 
2109 	atomic_add(pi->size >> 9, &device->rs_sect_ev);
2110 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0,
2111 				     DRBD_FAULT_RS_WR) == 0)
2112 		return 0;
2113 
2114 	/* don't care for the reason here */
2115 	drbd_err(device, "submit failed, triggering re-connect\n");
2116 	spin_lock_irq(&device->resource->req_lock);
2117 	list_del(&peer_req->w.list);
2118 	spin_unlock_irq(&device->resource->req_lock);
2119 
2120 	drbd_free_peer_req(device, peer_req);
2121 fail:
2122 	put_ldev(device);
2123 	return -EIO;
2124 }
2125 
2126 static struct drbd_request *
2127 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2128 	     sector_t sector, bool missing_ok, const char *func)
2129 {
2130 	struct drbd_request *req;
2131 
2132 	/* Request object according to our peer */
2133 	req = (struct drbd_request *)(unsigned long)id;
2134 	if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2135 		return req;
2136 	if (!missing_ok) {
2137 		drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2138 			(unsigned long)id, (unsigned long long)sector);
2139 	}
2140 	return NULL;
2141 }
2142 
2143 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2144 {
2145 	struct drbd_peer_device *peer_device;
2146 	struct drbd_device *device;
2147 	struct drbd_request *req;
2148 	sector_t sector;
2149 	int err;
2150 	struct p_data *p = pi->data;
2151 
2152 	peer_device = conn_peer_device(connection, pi->vnr);
2153 	if (!peer_device)
2154 		return -EIO;
2155 	device = peer_device->device;
2156 
2157 	sector = be64_to_cpu(p->sector);
2158 
2159 	spin_lock_irq(&device->resource->req_lock);
2160 	req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2161 	spin_unlock_irq(&device->resource->req_lock);
2162 	if (unlikely(!req))
2163 		return -EIO;
2164 
2165 	/* hlist_del(&req->collision) is done in _req_may_be_done, to avoid
2166 	 * special casing it there for the various failure cases.
2167 	 * still no race with drbd_fail_pending_reads */
2168 	err = recv_dless_read(peer_device, req, sector, pi->size);
2169 	if (!err)
2170 		req_mod(req, DATA_RECEIVED);
2171 	/* else: nothing. handled from drbd_disconnect...
2172 	 * I don't think we may complete this just yet
2173 	 * in case we are "on-disconnect: freeze" */
2174 
2175 	return err;
2176 }
2177 
2178 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2179 {
2180 	struct drbd_peer_device *peer_device;
2181 	struct drbd_device *device;
2182 	sector_t sector;
2183 	int err;
2184 	struct p_data *p = pi->data;
2185 
2186 	peer_device = conn_peer_device(connection, pi->vnr);
2187 	if (!peer_device)
2188 		return -EIO;
2189 	device = peer_device->device;
2190 
2191 	sector = be64_to_cpu(p->sector);
2192 	D_ASSERT(device, p->block_id == ID_SYNCER);
2193 
2194 	if (get_ldev(device)) {
2195 		/* data is submitted to disk within recv_resync_read.
2196 		 * corresponding put_ldev done below on error,
2197 		 * or in drbd_peer_request_endio. */
2198 		err = recv_resync_read(peer_device, sector, pi);
2199 	} else {
2200 		if (__ratelimit(&drbd_ratelimit_state))
2201 			drbd_err(device, "Can not write resync data to local disk.\n");
2202 
2203 		err = drbd_drain_block(peer_device, pi->size);
2204 
2205 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2206 	}
2207 
2208 	atomic_add(pi->size >> 9, &device->rs_sect_in);
2209 
2210 	return err;
2211 }
2212 
2213 static void restart_conflicting_writes(struct drbd_device *device,
2214 				       sector_t sector, int size)
2215 {
2216 	struct drbd_interval *i;
2217 	struct drbd_request *req;
2218 
2219 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2220 		if (!i->local)
2221 			continue;
2222 		req = container_of(i, struct drbd_request, i);
2223 		if (req->rq_state & RQ_LOCAL_PENDING ||
2224 		    !(req->rq_state & RQ_POSTPONED))
2225 			continue;
2226 		/* as it is RQ_POSTPONED, this will cause it to
2227 		 * be queued on the retry workqueue. */
2228 		__req_mod(req, CONFLICT_RESOLVED, NULL);
2229 	}
2230 }
2231 
2232 /*
2233  * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2234  */
2235 static int e_end_block(struct drbd_work *w, int cancel)
2236 {
2237 	struct drbd_peer_request *peer_req =
2238 		container_of(w, struct drbd_peer_request, w);
2239 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2240 	struct drbd_device *device = peer_device->device;
2241 	sector_t sector = peer_req->i.sector;
2242 	int err = 0, pcmd;
2243 
2244 	if (peer_req->flags & EE_SEND_WRITE_ACK) {
2245 		if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2246 			pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2247 				device->state.conn <= C_PAUSED_SYNC_T &&
2248 				peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2249 				P_RS_WRITE_ACK : P_WRITE_ACK;
2250 			err = drbd_send_ack(peer_device, pcmd, peer_req);
2251 			if (pcmd == P_RS_WRITE_ACK)
2252 				drbd_set_in_sync(device, sector, peer_req->i.size);
2253 		} else {
2254 			err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2255 			/* we expect it to be marked out of sync anyways...
2256 			 * maybe assert this?  */
2257 		}
2258 		dec_unacked(device);
2259 	}
2260 
2261 	/* we delete from the conflict detection hash _after_ we sent out the
2262 	 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right.  */
2263 	if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2264 		spin_lock_irq(&device->resource->req_lock);
2265 		D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2266 		drbd_remove_epoch_entry_interval(device, peer_req);
2267 		if (peer_req->flags & EE_RESTART_REQUESTS)
2268 			restart_conflicting_writes(device, sector, peer_req->i.size);
2269 		spin_unlock_irq(&device->resource->req_lock);
2270 	} else
2271 		D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2272 
2273 	drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2274 
2275 	return err;
2276 }
2277 
2278 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2279 {
2280 	struct drbd_peer_request *peer_req =
2281 		container_of(w, struct drbd_peer_request, w);
2282 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2283 	int err;
2284 
2285 	err = drbd_send_ack(peer_device, ack, peer_req);
2286 	dec_unacked(peer_device->device);
2287 
2288 	return err;
2289 }
2290 
2291 static int e_send_superseded(struct drbd_work *w, int unused)
2292 {
2293 	return e_send_ack(w, P_SUPERSEDED);
2294 }
2295 
2296 static int e_send_retry_write(struct drbd_work *w, int unused)
2297 {
2298 	struct drbd_peer_request *peer_req =
2299 		container_of(w, struct drbd_peer_request, w);
2300 	struct drbd_connection *connection = peer_req->peer_device->connection;
2301 
2302 	return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2303 			     P_RETRY_WRITE : P_SUPERSEDED);
2304 }
2305 
2306 static bool seq_greater(u32 a, u32 b)
2307 {
2308 	/*
2309 	 * We assume 32-bit wrap-around here.
2310 	 * For 24-bit wrap-around, we would have to shift:
2311 	 *  a <<= 8; b <<= 8;
2312 	 */
2313 	return (s32)a - (s32)b > 0;
2314 }
2315 
2316 static u32 seq_max(u32 a, u32 b)
2317 {
2318 	return seq_greater(a, b) ? a : b;
2319 }
2320 
2321 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2322 {
2323 	struct drbd_device *device = peer_device->device;
2324 	unsigned int newest_peer_seq;
2325 
2326 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2327 		spin_lock(&device->peer_seq_lock);
2328 		newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2329 		device->peer_seq = newest_peer_seq;
2330 		spin_unlock(&device->peer_seq_lock);
2331 		/* wake up only if we actually changed device->peer_seq */
2332 		if (peer_seq == newest_peer_seq)
2333 			wake_up(&device->seq_wait);
2334 	}
2335 }
2336 
2337 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2338 {
2339 	return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2340 }
2341 
2342 /* maybe change sync_ee into interval trees as well? */
2343 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2344 {
2345 	struct drbd_peer_request *rs_req;
2346 	bool rv = false;
2347 
2348 	spin_lock_irq(&device->resource->req_lock);
2349 	list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2350 		if (overlaps(peer_req->i.sector, peer_req->i.size,
2351 			     rs_req->i.sector, rs_req->i.size)) {
2352 			rv = true;
2353 			break;
2354 		}
2355 	}
2356 	spin_unlock_irq(&device->resource->req_lock);
2357 
2358 	return rv;
2359 }
2360 
2361 /* Called from receive_Data.
2362  * Synchronize packets on sock with packets on msock.
2363  *
2364  * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2365  * packet traveling on msock, they are still processed in the order they have
2366  * been sent.
2367  *
2368  * Note: we don't care for Ack packets overtaking P_DATA packets.
2369  *
2370  * In case packet_seq is larger than device->peer_seq number, there are
2371  * outstanding packets on the msock. We wait for them to arrive.
2372  * In case we are the logically next packet, we update device->peer_seq
2373  * ourselves. Correctly handles 32bit wrap around.
2374  *
2375  * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2376  * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2377  * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2378  * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2379  *
2380  * returns 0 if we may process the packet,
2381  * -ERESTARTSYS if we were interrupted (by disconnect signal). */
2382 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2383 {
2384 	struct drbd_device *device = peer_device->device;
2385 	DEFINE_WAIT(wait);
2386 	long timeout;
2387 	int ret = 0, tp;
2388 
2389 	if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2390 		return 0;
2391 
2392 	spin_lock(&device->peer_seq_lock);
2393 	for (;;) {
2394 		if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2395 			device->peer_seq = seq_max(device->peer_seq, peer_seq);
2396 			break;
2397 		}
2398 
2399 		if (signal_pending(current)) {
2400 			ret = -ERESTARTSYS;
2401 			break;
2402 		}
2403 
2404 		rcu_read_lock();
2405 		tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2406 		rcu_read_unlock();
2407 
2408 		if (!tp)
2409 			break;
2410 
2411 		/* Only need to wait if two_primaries is enabled */
2412 		prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2413 		spin_unlock(&device->peer_seq_lock);
2414 		rcu_read_lock();
2415 		timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2416 		rcu_read_unlock();
2417 		timeout = schedule_timeout(timeout);
2418 		spin_lock(&device->peer_seq_lock);
2419 		if (!timeout) {
2420 			ret = -ETIMEDOUT;
2421 			drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2422 			break;
2423 		}
2424 	}
2425 	spin_unlock(&device->peer_seq_lock);
2426 	finish_wait(&device->seq_wait, &wait);
2427 	return ret;
2428 }
2429 
2430 /* see also bio_flags_to_wire()
2431  * DRBD_REQ_*, because we need to semantically map the flags to data packet
2432  * flags and back. We may replicate to other kernel versions. */
2433 static unsigned long wire_flags_to_bio_flags(u32 dpf)
2434 {
2435 	return  (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2436 		(dpf & DP_FUA ? REQ_FUA : 0) |
2437 		(dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2438 }
2439 
2440 static unsigned long wire_flags_to_bio_op(u32 dpf)
2441 {
2442 	if (dpf & DP_ZEROES)
2443 		return REQ_OP_WRITE_ZEROES;
2444 	if (dpf & DP_DISCARD)
2445 		return REQ_OP_DISCARD;
2446 	if (dpf & DP_WSAME)
2447 		return REQ_OP_WRITE_SAME;
2448 	else
2449 		return REQ_OP_WRITE;
2450 }
2451 
2452 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2453 				    unsigned int size)
2454 {
2455 	struct drbd_interval *i;
2456 
2457     repeat:
2458 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2459 		struct drbd_request *req;
2460 		struct bio_and_error m;
2461 
2462 		if (!i->local)
2463 			continue;
2464 		req = container_of(i, struct drbd_request, i);
2465 		if (!(req->rq_state & RQ_POSTPONED))
2466 			continue;
2467 		req->rq_state &= ~RQ_POSTPONED;
2468 		__req_mod(req, NEG_ACKED, &m);
2469 		spin_unlock_irq(&device->resource->req_lock);
2470 		if (m.bio)
2471 			complete_master_bio(device, &m);
2472 		spin_lock_irq(&device->resource->req_lock);
2473 		goto repeat;
2474 	}
2475 }
2476 
2477 static int handle_write_conflicts(struct drbd_device *device,
2478 				  struct drbd_peer_request *peer_req)
2479 {
2480 	struct drbd_connection *connection = peer_req->peer_device->connection;
2481 	bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2482 	sector_t sector = peer_req->i.sector;
2483 	const unsigned int size = peer_req->i.size;
2484 	struct drbd_interval *i;
2485 	bool equal;
2486 	int err;
2487 
2488 	/*
2489 	 * Inserting the peer request into the write_requests tree will prevent
2490 	 * new conflicting local requests from being added.
2491 	 */
2492 	drbd_insert_interval(&device->write_requests, &peer_req->i);
2493 
2494     repeat:
2495 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2496 		if (i == &peer_req->i)
2497 			continue;
2498 		if (i->completed)
2499 			continue;
2500 
2501 		if (!i->local) {
2502 			/*
2503 			 * Our peer has sent a conflicting remote request; this
2504 			 * should not happen in a two-node setup.  Wait for the
2505 			 * earlier peer request to complete.
2506 			 */
2507 			err = drbd_wait_misc(device, i);
2508 			if (err)
2509 				goto out;
2510 			goto repeat;
2511 		}
2512 
2513 		equal = i->sector == sector && i->size == size;
2514 		if (resolve_conflicts) {
2515 			/*
2516 			 * If the peer request is fully contained within the
2517 			 * overlapping request, it can be considered overwritten
2518 			 * and thus superseded; otherwise, it will be retried
2519 			 * once all overlapping requests have completed.
2520 			 */
2521 			bool superseded = i->sector <= sector && i->sector +
2522 				       (i->size >> 9) >= sector + (size >> 9);
2523 
2524 			if (!equal)
2525 				drbd_alert(device, "Concurrent writes detected: "
2526 					       "local=%llus +%u, remote=%llus +%u, "
2527 					       "assuming %s came first\n",
2528 					  (unsigned long long)i->sector, i->size,
2529 					  (unsigned long long)sector, size,
2530 					  superseded ? "local" : "remote");
2531 
2532 			peer_req->w.cb = superseded ? e_send_superseded :
2533 						   e_send_retry_write;
2534 			list_add_tail(&peer_req->w.list, &device->done_ee);
2535 			queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
2536 
2537 			err = -ENOENT;
2538 			goto out;
2539 		} else {
2540 			struct drbd_request *req =
2541 				container_of(i, struct drbd_request, i);
2542 
2543 			if (!equal)
2544 				drbd_alert(device, "Concurrent writes detected: "
2545 					       "local=%llus +%u, remote=%llus +%u\n",
2546 					  (unsigned long long)i->sector, i->size,
2547 					  (unsigned long long)sector, size);
2548 
2549 			if (req->rq_state & RQ_LOCAL_PENDING ||
2550 			    !(req->rq_state & RQ_POSTPONED)) {
2551 				/*
2552 				 * Wait for the node with the discard flag to
2553 				 * decide if this request has been superseded
2554 				 * or needs to be retried.
2555 				 * Requests that have been superseded will
2556 				 * disappear from the write_requests tree.
2557 				 *
2558 				 * In addition, wait for the conflicting
2559 				 * request to finish locally before submitting
2560 				 * the conflicting peer request.
2561 				 */
2562 				err = drbd_wait_misc(device, &req->i);
2563 				if (err) {
2564 					_conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2565 					fail_postponed_requests(device, sector, size);
2566 					goto out;
2567 				}
2568 				goto repeat;
2569 			}
2570 			/*
2571 			 * Remember to restart the conflicting requests after
2572 			 * the new peer request has completed.
2573 			 */
2574 			peer_req->flags |= EE_RESTART_REQUESTS;
2575 		}
2576 	}
2577 	err = 0;
2578 
2579     out:
2580 	if (err)
2581 		drbd_remove_epoch_entry_interval(device, peer_req);
2582 	return err;
2583 }
2584 
2585 /* mirrored write */
2586 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2587 {
2588 	struct drbd_peer_device *peer_device;
2589 	struct drbd_device *device;
2590 	struct net_conf *nc;
2591 	sector_t sector;
2592 	struct drbd_peer_request *peer_req;
2593 	struct p_data *p = pi->data;
2594 	u32 peer_seq = be32_to_cpu(p->seq_num);
2595 	int op, op_flags;
2596 	u32 dp_flags;
2597 	int err, tp;
2598 
2599 	peer_device = conn_peer_device(connection, pi->vnr);
2600 	if (!peer_device)
2601 		return -EIO;
2602 	device = peer_device->device;
2603 
2604 	if (!get_ldev(device)) {
2605 		int err2;
2606 
2607 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2608 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2609 		atomic_inc(&connection->current_epoch->epoch_size);
2610 		err2 = drbd_drain_block(peer_device, pi->size);
2611 		if (!err)
2612 			err = err2;
2613 		return err;
2614 	}
2615 
2616 	/*
2617 	 * Corresponding put_ldev done either below (on various errors), or in
2618 	 * drbd_peer_request_endio, if we successfully submit the data at the
2619 	 * end of this function.
2620 	 */
2621 
2622 	sector = be64_to_cpu(p->sector);
2623 	peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2624 	if (!peer_req) {
2625 		put_ldev(device);
2626 		return -EIO;
2627 	}
2628 
2629 	peer_req->w.cb = e_end_block;
2630 	peer_req->submit_jif = jiffies;
2631 	peer_req->flags |= EE_APPLICATION;
2632 
2633 	dp_flags = be32_to_cpu(p->dp_flags);
2634 	op = wire_flags_to_bio_op(dp_flags);
2635 	op_flags = wire_flags_to_bio_flags(dp_flags);
2636 	if (pi->cmd == P_TRIM) {
2637 		D_ASSERT(peer_device, peer_req->i.size > 0);
2638 		D_ASSERT(peer_device, op == REQ_OP_DISCARD);
2639 		D_ASSERT(peer_device, peer_req->pages == NULL);
2640 		/* need to play safe: an older DRBD sender
2641 		 * may mean zero-out while sending P_TRIM. */
2642 		if (0 == (connection->agreed_features & DRBD_FF_WZEROES))
2643 			peer_req->flags |= EE_ZEROOUT;
2644 	} else if (pi->cmd == P_ZEROES) {
2645 		D_ASSERT(peer_device, peer_req->i.size > 0);
2646 		D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES);
2647 		D_ASSERT(peer_device, peer_req->pages == NULL);
2648 		/* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */
2649 		if (dp_flags & DP_DISCARD)
2650 			peer_req->flags |= EE_TRIM;
2651 	} else if (peer_req->pages == NULL) {
2652 		D_ASSERT(device, peer_req->i.size == 0);
2653 		D_ASSERT(device, dp_flags & DP_FLUSH);
2654 	}
2655 
2656 	if (dp_flags & DP_MAY_SET_IN_SYNC)
2657 		peer_req->flags |= EE_MAY_SET_IN_SYNC;
2658 
2659 	spin_lock(&connection->epoch_lock);
2660 	peer_req->epoch = connection->current_epoch;
2661 	atomic_inc(&peer_req->epoch->epoch_size);
2662 	atomic_inc(&peer_req->epoch->active);
2663 	spin_unlock(&connection->epoch_lock);
2664 
2665 	rcu_read_lock();
2666 	nc = rcu_dereference(peer_device->connection->net_conf);
2667 	tp = nc->two_primaries;
2668 	if (peer_device->connection->agreed_pro_version < 100) {
2669 		switch (nc->wire_protocol) {
2670 		case DRBD_PROT_C:
2671 			dp_flags |= DP_SEND_WRITE_ACK;
2672 			break;
2673 		case DRBD_PROT_B:
2674 			dp_flags |= DP_SEND_RECEIVE_ACK;
2675 			break;
2676 		}
2677 	}
2678 	rcu_read_unlock();
2679 
2680 	if (dp_flags & DP_SEND_WRITE_ACK) {
2681 		peer_req->flags |= EE_SEND_WRITE_ACK;
2682 		inc_unacked(device);
2683 		/* corresponding dec_unacked() in e_end_block()
2684 		 * respective _drbd_clear_done_ee */
2685 	}
2686 
2687 	if (dp_flags & DP_SEND_RECEIVE_ACK) {
2688 		/* I really don't like it that the receiver thread
2689 		 * sends on the msock, but anyways */
2690 		drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2691 	}
2692 
2693 	if (tp) {
2694 		/* two primaries implies protocol C */
2695 		D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2696 		peer_req->flags |= EE_IN_INTERVAL_TREE;
2697 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2698 		if (err)
2699 			goto out_interrupted;
2700 		spin_lock_irq(&device->resource->req_lock);
2701 		err = handle_write_conflicts(device, peer_req);
2702 		if (err) {
2703 			spin_unlock_irq(&device->resource->req_lock);
2704 			if (err == -ENOENT) {
2705 				put_ldev(device);
2706 				return 0;
2707 			}
2708 			goto out_interrupted;
2709 		}
2710 	} else {
2711 		update_peer_seq(peer_device, peer_seq);
2712 		spin_lock_irq(&device->resource->req_lock);
2713 	}
2714 	/* TRIM and WRITE_SAME are processed synchronously,
2715 	 * we wait for all pending requests, respectively wait for
2716 	 * active_ee to become empty in drbd_submit_peer_request();
2717 	 * better not add ourselves here. */
2718 	if ((peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) == 0)
2719 		list_add_tail(&peer_req->w.list, &device->active_ee);
2720 	spin_unlock_irq(&device->resource->req_lock);
2721 
2722 	if (device->state.conn == C_SYNC_TARGET)
2723 		wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2724 
2725 	if (device->state.pdsk < D_INCONSISTENT) {
2726 		/* In case we have the only disk of the cluster, */
2727 		drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
2728 		peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2729 		drbd_al_begin_io(device, &peer_req->i);
2730 		peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2731 	}
2732 
2733 	err = drbd_submit_peer_request(device, peer_req, op, op_flags,
2734 				       DRBD_FAULT_DT_WR);
2735 	if (!err)
2736 		return 0;
2737 
2738 	/* don't care for the reason here */
2739 	drbd_err(device, "submit failed, triggering re-connect\n");
2740 	spin_lock_irq(&device->resource->req_lock);
2741 	list_del(&peer_req->w.list);
2742 	drbd_remove_epoch_entry_interval(device, peer_req);
2743 	spin_unlock_irq(&device->resource->req_lock);
2744 	if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2745 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2746 		drbd_al_complete_io(device, &peer_req->i);
2747 	}
2748 
2749 out_interrupted:
2750 	drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2751 	put_ldev(device);
2752 	drbd_free_peer_req(device, peer_req);
2753 	return err;
2754 }
2755 
2756 /* We may throttle resync, if the lower device seems to be busy,
2757  * and current sync rate is above c_min_rate.
2758  *
2759  * To decide whether or not the lower device is busy, we use a scheme similar
2760  * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2761  * (more than 64 sectors) of activity we cannot account for with our own resync
2762  * activity, it obviously is "busy".
2763  *
2764  * The current sync rate used here uses only the most recent two step marks,
2765  * to have a short time average so we can react faster.
2766  */
2767 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector,
2768 		bool throttle_if_app_is_waiting)
2769 {
2770 	struct lc_element *tmp;
2771 	bool throttle = drbd_rs_c_min_rate_throttle(device);
2772 
2773 	if (!throttle || throttle_if_app_is_waiting)
2774 		return throttle;
2775 
2776 	spin_lock_irq(&device->al_lock);
2777 	tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2778 	if (tmp) {
2779 		struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2780 		if (test_bit(BME_PRIORITY, &bm_ext->flags))
2781 			throttle = false;
2782 		/* Do not slow down if app IO is already waiting for this extent,
2783 		 * and our progress is necessary for application IO to complete. */
2784 	}
2785 	spin_unlock_irq(&device->al_lock);
2786 
2787 	return throttle;
2788 }
2789 
2790 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2791 {
2792 	struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
2793 	unsigned long db, dt, dbdt;
2794 	unsigned int c_min_rate;
2795 	int curr_events;
2796 
2797 	rcu_read_lock();
2798 	c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2799 	rcu_read_unlock();
2800 
2801 	/* feature disabled? */
2802 	if (c_min_rate == 0)
2803 		return false;
2804 
2805 	curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
2806 			atomic_read(&device->rs_sect_ev);
2807 
2808 	if (atomic_read(&device->ap_actlog_cnt)
2809 	    || curr_events - device->rs_last_events > 64) {
2810 		unsigned long rs_left;
2811 		int i;
2812 
2813 		device->rs_last_events = curr_events;
2814 
2815 		/* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2816 		 * approx. */
2817 		i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2818 
2819 		if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2820 			rs_left = device->ov_left;
2821 		else
2822 			rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2823 
2824 		dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2825 		if (!dt)
2826 			dt++;
2827 		db = device->rs_mark_left[i] - rs_left;
2828 		dbdt = Bit2KB(db/dt);
2829 
2830 		if (dbdt > c_min_rate)
2831 			return true;
2832 	}
2833 	return false;
2834 }
2835 
2836 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2837 {
2838 	struct drbd_peer_device *peer_device;
2839 	struct drbd_device *device;
2840 	sector_t sector;
2841 	sector_t capacity;
2842 	struct drbd_peer_request *peer_req;
2843 	struct digest_info *di = NULL;
2844 	int size, verb;
2845 	unsigned int fault_type;
2846 	struct p_block_req *p =	pi->data;
2847 
2848 	peer_device = conn_peer_device(connection, pi->vnr);
2849 	if (!peer_device)
2850 		return -EIO;
2851 	device = peer_device->device;
2852 	capacity = get_capacity(device->vdisk);
2853 
2854 	sector = be64_to_cpu(p->sector);
2855 	size   = be32_to_cpu(p->blksize);
2856 
2857 	if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2858 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2859 				(unsigned long long)sector, size);
2860 		return -EINVAL;
2861 	}
2862 	if (sector + (size>>9) > capacity) {
2863 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2864 				(unsigned long long)sector, size);
2865 		return -EINVAL;
2866 	}
2867 
2868 	if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2869 		verb = 1;
2870 		switch (pi->cmd) {
2871 		case P_DATA_REQUEST:
2872 			drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2873 			break;
2874 		case P_RS_THIN_REQ:
2875 		case P_RS_DATA_REQUEST:
2876 		case P_CSUM_RS_REQUEST:
2877 		case P_OV_REQUEST:
2878 			drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2879 			break;
2880 		case P_OV_REPLY:
2881 			verb = 0;
2882 			dec_rs_pending(device);
2883 			drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2884 			break;
2885 		default:
2886 			BUG();
2887 		}
2888 		if (verb && __ratelimit(&drbd_ratelimit_state))
2889 			drbd_err(device, "Can not satisfy peer's read request, "
2890 			    "no local data.\n");
2891 
2892 		/* drain possibly payload */
2893 		return drbd_drain_block(peer_device, pi->size);
2894 	}
2895 
2896 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2897 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
2898 	 * which in turn might block on the other node at this very place.  */
2899 	peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2900 			size, GFP_NOIO);
2901 	if (!peer_req) {
2902 		put_ldev(device);
2903 		return -ENOMEM;
2904 	}
2905 
2906 	switch (pi->cmd) {
2907 	case P_DATA_REQUEST:
2908 		peer_req->w.cb = w_e_end_data_req;
2909 		fault_type = DRBD_FAULT_DT_RD;
2910 		/* application IO, don't drbd_rs_begin_io */
2911 		peer_req->flags |= EE_APPLICATION;
2912 		goto submit;
2913 
2914 	case P_RS_THIN_REQ:
2915 		/* If at some point in the future we have a smart way to
2916 		   find out if this data block is completely deallocated,
2917 		   then we would do something smarter here than reading
2918 		   the block... */
2919 		peer_req->flags |= EE_RS_THIN_REQ;
2920 		fallthrough;
2921 	case P_RS_DATA_REQUEST:
2922 		peer_req->w.cb = w_e_end_rsdata_req;
2923 		fault_type = DRBD_FAULT_RS_RD;
2924 		/* used in the sector offset progress display */
2925 		device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2926 		break;
2927 
2928 	case P_OV_REPLY:
2929 	case P_CSUM_RS_REQUEST:
2930 		fault_type = DRBD_FAULT_RS_RD;
2931 		di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2932 		if (!di)
2933 			goto out_free_e;
2934 
2935 		di->digest_size = pi->size;
2936 		di->digest = (((char *)di)+sizeof(struct digest_info));
2937 
2938 		peer_req->digest = di;
2939 		peer_req->flags |= EE_HAS_DIGEST;
2940 
2941 		if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2942 			goto out_free_e;
2943 
2944 		if (pi->cmd == P_CSUM_RS_REQUEST) {
2945 			D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2946 			peer_req->w.cb = w_e_end_csum_rs_req;
2947 			/* used in the sector offset progress display */
2948 			device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2949 			/* remember to report stats in drbd_resync_finished */
2950 			device->use_csums = true;
2951 		} else if (pi->cmd == P_OV_REPLY) {
2952 			/* track progress, we may need to throttle */
2953 			atomic_add(size >> 9, &device->rs_sect_in);
2954 			peer_req->w.cb = w_e_end_ov_reply;
2955 			dec_rs_pending(device);
2956 			/* drbd_rs_begin_io done when we sent this request,
2957 			 * but accounting still needs to be done. */
2958 			goto submit_for_resync;
2959 		}
2960 		break;
2961 
2962 	case P_OV_REQUEST:
2963 		if (device->ov_start_sector == ~(sector_t)0 &&
2964 		    peer_device->connection->agreed_pro_version >= 90) {
2965 			unsigned long now = jiffies;
2966 			int i;
2967 			device->ov_start_sector = sector;
2968 			device->ov_position = sector;
2969 			device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2970 			device->rs_total = device->ov_left;
2971 			for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2972 				device->rs_mark_left[i] = device->ov_left;
2973 				device->rs_mark_time[i] = now;
2974 			}
2975 			drbd_info(device, "Online Verify start sector: %llu\n",
2976 					(unsigned long long)sector);
2977 		}
2978 		peer_req->w.cb = w_e_end_ov_req;
2979 		fault_type = DRBD_FAULT_RS_RD;
2980 		break;
2981 
2982 	default:
2983 		BUG();
2984 	}
2985 
2986 	/* Throttle, drbd_rs_begin_io and submit should become asynchronous
2987 	 * wrt the receiver, but it is not as straightforward as it may seem.
2988 	 * Various places in the resync start and stop logic assume resync
2989 	 * requests are processed in order, requeuing this on the worker thread
2990 	 * introduces a bunch of new code for synchronization between threads.
2991 	 *
2992 	 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2993 	 * "forever", throttling after drbd_rs_begin_io will lock that extent
2994 	 * for application writes for the same time.  For now, just throttle
2995 	 * here, where the rest of the code expects the receiver to sleep for
2996 	 * a while, anyways.
2997 	 */
2998 
2999 	/* Throttle before drbd_rs_begin_io, as that locks out application IO;
3000 	 * this defers syncer requests for some time, before letting at least
3001 	 * on request through.  The resync controller on the receiving side
3002 	 * will adapt to the incoming rate accordingly.
3003 	 *
3004 	 * We cannot throttle here if remote is Primary/SyncTarget:
3005 	 * we would also throttle its application reads.
3006 	 * In that case, throttling is done on the SyncTarget only.
3007 	 */
3008 
3009 	/* Even though this may be a resync request, we do add to "read_ee";
3010 	 * "sync_ee" is only used for resync WRITEs.
3011 	 * Add to list early, so debugfs can find this request
3012 	 * even if we have to sleep below. */
3013 	spin_lock_irq(&device->resource->req_lock);
3014 	list_add_tail(&peer_req->w.list, &device->read_ee);
3015 	spin_unlock_irq(&device->resource->req_lock);
3016 
3017 	update_receiver_timing_details(connection, drbd_rs_should_slow_down);
3018 	if (device->state.peer != R_PRIMARY
3019 	&& drbd_rs_should_slow_down(device, sector, false))
3020 		schedule_timeout_uninterruptible(HZ/10);
3021 	update_receiver_timing_details(connection, drbd_rs_begin_io);
3022 	if (drbd_rs_begin_io(device, sector))
3023 		goto out_free_e;
3024 
3025 submit_for_resync:
3026 	atomic_add(size >> 9, &device->rs_sect_ev);
3027 
3028 submit:
3029 	update_receiver_timing_details(connection, drbd_submit_peer_request);
3030 	inc_unacked(device);
3031 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
3032 				     fault_type) == 0)
3033 		return 0;
3034 
3035 	/* don't care for the reason here */
3036 	drbd_err(device, "submit failed, triggering re-connect\n");
3037 
3038 out_free_e:
3039 	spin_lock_irq(&device->resource->req_lock);
3040 	list_del(&peer_req->w.list);
3041 	spin_unlock_irq(&device->resource->req_lock);
3042 	/* no drbd_rs_complete_io(), we are dropping the connection anyways */
3043 
3044 	put_ldev(device);
3045 	drbd_free_peer_req(device, peer_req);
3046 	return -EIO;
3047 }
3048 
3049 /*
3050  * drbd_asb_recover_0p  -  Recover after split-brain with no remaining primaries
3051  */
3052 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
3053 {
3054 	struct drbd_device *device = peer_device->device;
3055 	int self, peer, rv = -100;
3056 	unsigned long ch_self, ch_peer;
3057 	enum drbd_after_sb_p after_sb_0p;
3058 
3059 	self = device->ldev->md.uuid[UI_BITMAP] & 1;
3060 	peer = device->p_uuid[UI_BITMAP] & 1;
3061 
3062 	ch_peer = device->p_uuid[UI_SIZE];
3063 	ch_self = device->comm_bm_set;
3064 
3065 	rcu_read_lock();
3066 	after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
3067 	rcu_read_unlock();
3068 	switch (after_sb_0p) {
3069 	case ASB_CONSENSUS:
3070 	case ASB_DISCARD_SECONDARY:
3071 	case ASB_CALL_HELPER:
3072 	case ASB_VIOLENTLY:
3073 		drbd_err(device, "Configuration error.\n");
3074 		break;
3075 	case ASB_DISCONNECT:
3076 		break;
3077 	case ASB_DISCARD_YOUNGER_PRI:
3078 		if (self == 0 && peer == 1) {
3079 			rv = -1;
3080 			break;
3081 		}
3082 		if (self == 1 && peer == 0) {
3083 			rv =  1;
3084 			break;
3085 		}
3086 		fallthrough;	/* to one of the other strategies */
3087 	case ASB_DISCARD_OLDER_PRI:
3088 		if (self == 0 && peer == 1) {
3089 			rv = 1;
3090 			break;
3091 		}
3092 		if (self == 1 && peer == 0) {
3093 			rv = -1;
3094 			break;
3095 		}
3096 		/* Else fall through to one of the other strategies... */
3097 		drbd_warn(device, "Discard younger/older primary did not find a decision\n"
3098 		     "Using discard-least-changes instead\n");
3099 		fallthrough;
3100 	case ASB_DISCARD_ZERO_CHG:
3101 		if (ch_peer == 0 && ch_self == 0) {
3102 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3103 				? -1 : 1;
3104 			break;
3105 		} else {
3106 			if (ch_peer == 0) { rv =  1; break; }
3107 			if (ch_self == 0) { rv = -1; break; }
3108 		}
3109 		if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
3110 			break;
3111 		fallthrough;
3112 	case ASB_DISCARD_LEAST_CHG:
3113 		if	(ch_self < ch_peer)
3114 			rv = -1;
3115 		else if (ch_self > ch_peer)
3116 			rv =  1;
3117 		else /* ( ch_self == ch_peer ) */
3118 		     /* Well, then use something else. */
3119 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3120 				? -1 : 1;
3121 		break;
3122 	case ASB_DISCARD_LOCAL:
3123 		rv = -1;
3124 		break;
3125 	case ASB_DISCARD_REMOTE:
3126 		rv =  1;
3127 	}
3128 
3129 	return rv;
3130 }
3131 
3132 /*
3133  * drbd_asb_recover_1p  -  Recover after split-brain with one remaining primary
3134  */
3135 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3136 {
3137 	struct drbd_device *device = peer_device->device;
3138 	int hg, rv = -100;
3139 	enum drbd_after_sb_p after_sb_1p;
3140 
3141 	rcu_read_lock();
3142 	after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3143 	rcu_read_unlock();
3144 	switch (after_sb_1p) {
3145 	case ASB_DISCARD_YOUNGER_PRI:
3146 	case ASB_DISCARD_OLDER_PRI:
3147 	case ASB_DISCARD_LEAST_CHG:
3148 	case ASB_DISCARD_LOCAL:
3149 	case ASB_DISCARD_REMOTE:
3150 	case ASB_DISCARD_ZERO_CHG:
3151 		drbd_err(device, "Configuration error.\n");
3152 		break;
3153 	case ASB_DISCONNECT:
3154 		break;
3155 	case ASB_CONSENSUS:
3156 		hg = drbd_asb_recover_0p(peer_device);
3157 		if (hg == -1 && device->state.role == R_SECONDARY)
3158 			rv = hg;
3159 		if (hg == 1  && device->state.role == R_PRIMARY)
3160 			rv = hg;
3161 		break;
3162 	case ASB_VIOLENTLY:
3163 		rv = drbd_asb_recover_0p(peer_device);
3164 		break;
3165 	case ASB_DISCARD_SECONDARY:
3166 		return device->state.role == R_PRIMARY ? 1 : -1;
3167 	case ASB_CALL_HELPER:
3168 		hg = drbd_asb_recover_0p(peer_device);
3169 		if (hg == -1 && device->state.role == R_PRIMARY) {
3170 			enum drbd_state_rv rv2;
3171 
3172 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3173 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3174 			  * we do not need to wait for the after state change work either. */
3175 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3176 			if (rv2 != SS_SUCCESS) {
3177 				drbd_khelper(device, "pri-lost-after-sb");
3178 			} else {
3179 				drbd_warn(device, "Successfully gave up primary role.\n");
3180 				rv = hg;
3181 			}
3182 		} else
3183 			rv = hg;
3184 	}
3185 
3186 	return rv;
3187 }
3188 
3189 /*
3190  * drbd_asb_recover_2p  -  Recover after split-brain with two remaining primaries
3191  */
3192 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3193 {
3194 	struct drbd_device *device = peer_device->device;
3195 	int hg, rv = -100;
3196 	enum drbd_after_sb_p after_sb_2p;
3197 
3198 	rcu_read_lock();
3199 	after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3200 	rcu_read_unlock();
3201 	switch (after_sb_2p) {
3202 	case ASB_DISCARD_YOUNGER_PRI:
3203 	case ASB_DISCARD_OLDER_PRI:
3204 	case ASB_DISCARD_LEAST_CHG:
3205 	case ASB_DISCARD_LOCAL:
3206 	case ASB_DISCARD_REMOTE:
3207 	case ASB_CONSENSUS:
3208 	case ASB_DISCARD_SECONDARY:
3209 	case ASB_DISCARD_ZERO_CHG:
3210 		drbd_err(device, "Configuration error.\n");
3211 		break;
3212 	case ASB_VIOLENTLY:
3213 		rv = drbd_asb_recover_0p(peer_device);
3214 		break;
3215 	case ASB_DISCONNECT:
3216 		break;
3217 	case ASB_CALL_HELPER:
3218 		hg = drbd_asb_recover_0p(peer_device);
3219 		if (hg == -1) {
3220 			enum drbd_state_rv rv2;
3221 
3222 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3223 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3224 			  * we do not need to wait for the after state change work either. */
3225 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3226 			if (rv2 != SS_SUCCESS) {
3227 				drbd_khelper(device, "pri-lost-after-sb");
3228 			} else {
3229 				drbd_warn(device, "Successfully gave up primary role.\n");
3230 				rv = hg;
3231 			}
3232 		} else
3233 			rv = hg;
3234 	}
3235 
3236 	return rv;
3237 }
3238 
3239 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3240 			   u64 bits, u64 flags)
3241 {
3242 	if (!uuid) {
3243 		drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3244 		return;
3245 	}
3246 	drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3247 	     text,
3248 	     (unsigned long long)uuid[UI_CURRENT],
3249 	     (unsigned long long)uuid[UI_BITMAP],
3250 	     (unsigned long long)uuid[UI_HISTORY_START],
3251 	     (unsigned long long)uuid[UI_HISTORY_END],
3252 	     (unsigned long long)bits,
3253 	     (unsigned long long)flags);
3254 }
3255 
3256 /*
3257   100	after split brain try auto recover
3258     2	C_SYNC_SOURCE set BitMap
3259     1	C_SYNC_SOURCE use BitMap
3260     0	no Sync
3261    -1	C_SYNC_TARGET use BitMap
3262    -2	C_SYNC_TARGET set BitMap
3263  -100	after split brain, disconnect
3264 -1000	unrelated data
3265 -1091   requires proto 91
3266 -1096   requires proto 96
3267  */
3268 
3269 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3270 {
3271 	struct drbd_peer_device *const peer_device = first_peer_device(device);
3272 	struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
3273 	u64 self, peer;
3274 	int i, j;
3275 
3276 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3277 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3278 
3279 	*rule_nr = 10;
3280 	if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3281 		return 0;
3282 
3283 	*rule_nr = 20;
3284 	if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3285 	     peer != UUID_JUST_CREATED)
3286 		return -2;
3287 
3288 	*rule_nr = 30;
3289 	if (self != UUID_JUST_CREATED &&
3290 	    (peer == UUID_JUST_CREATED || peer == (u64)0))
3291 		return 2;
3292 
3293 	if (self == peer) {
3294 		int rct, dc; /* roles at crash time */
3295 
3296 		if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3297 
3298 			if (connection->agreed_pro_version < 91)
3299 				return -1091;
3300 
3301 			if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3302 			    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3303 				drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3304 				drbd_uuid_move_history(device);
3305 				device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3306 				device->ldev->md.uuid[UI_BITMAP] = 0;
3307 
3308 				drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3309 					       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3310 				*rule_nr = 34;
3311 			} else {
3312 				drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3313 				*rule_nr = 36;
3314 			}
3315 
3316 			return 1;
3317 		}
3318 
3319 		if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3320 
3321 			if (connection->agreed_pro_version < 91)
3322 				return -1091;
3323 
3324 			if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3325 			    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3326 				drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3327 
3328 				device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3329 				device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3330 				device->p_uuid[UI_BITMAP] = 0UL;
3331 
3332 				drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3333 				*rule_nr = 35;
3334 			} else {
3335 				drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3336 				*rule_nr = 37;
3337 			}
3338 
3339 			return -1;
3340 		}
3341 
3342 		/* Common power [off|failure] */
3343 		rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3344 			(device->p_uuid[UI_FLAGS] & 2);
3345 		/* lowest bit is set when we were primary,
3346 		 * next bit (weight 2) is set when peer was primary */
3347 		*rule_nr = 40;
3348 
3349 		/* Neither has the "crashed primary" flag set,
3350 		 * only a replication link hickup. */
3351 		if (rct == 0)
3352 			return 0;
3353 
3354 		/* Current UUID equal and no bitmap uuid; does not necessarily
3355 		 * mean this was a "simultaneous hard crash", maybe IO was
3356 		 * frozen, so no UUID-bump happened.
3357 		 * This is a protocol change, overload DRBD_FF_WSAME as flag
3358 		 * for "new-enough" peer DRBD version. */
3359 		if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3360 			*rule_nr = 41;
3361 			if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3362 				drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3363 				return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3364 			}
3365 			if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3366 				/* At least one has the "crashed primary" bit set,
3367 				 * both are primary now, but neither has rotated its UUIDs?
3368 				 * "Can not happen." */
3369 				drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3370 				return -100;
3371 			}
3372 			if (device->state.role == R_PRIMARY)
3373 				return 1;
3374 			return -1;
3375 		}
3376 
3377 		/* Both are secondary.
3378 		 * Really looks like recovery from simultaneous hard crash.
3379 		 * Check which had been primary before, and arbitrate. */
3380 		switch (rct) {
3381 		case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3382 		case 1: /*  self_pri && !peer_pri */ return 1;
3383 		case 2: /* !self_pri &&  peer_pri */ return -1;
3384 		case 3: /*  self_pri &&  peer_pri */
3385 			dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3386 			return dc ? -1 : 1;
3387 		}
3388 	}
3389 
3390 	*rule_nr = 50;
3391 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3392 	if (self == peer)
3393 		return -1;
3394 
3395 	*rule_nr = 51;
3396 	peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3397 	if (self == peer) {
3398 		if (connection->agreed_pro_version < 96 ?
3399 		    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3400 		    (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3401 		    peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3402 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3403 			   resync as sync source modifications of the peer's UUIDs. */
3404 
3405 			if (connection->agreed_pro_version < 91)
3406 				return -1091;
3407 
3408 			device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3409 			device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3410 
3411 			drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3412 			drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3413 
3414 			return -1;
3415 		}
3416 	}
3417 
3418 	*rule_nr = 60;
3419 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3420 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3421 		peer = device->p_uuid[i] & ~((u64)1);
3422 		if (self == peer)
3423 			return -2;
3424 	}
3425 
3426 	*rule_nr = 70;
3427 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3428 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3429 	if (self == peer)
3430 		return 1;
3431 
3432 	*rule_nr = 71;
3433 	self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3434 	if (self == peer) {
3435 		if (connection->agreed_pro_version < 96 ?
3436 		    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3437 		    (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3438 		    self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3439 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3440 			   resync as sync source modifications of our UUIDs. */
3441 
3442 			if (connection->agreed_pro_version < 91)
3443 				return -1091;
3444 
3445 			__drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3446 			__drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3447 
3448 			drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3449 			drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3450 				       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3451 
3452 			return 1;
3453 		}
3454 	}
3455 
3456 
3457 	*rule_nr = 80;
3458 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3459 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3460 		self = device->ldev->md.uuid[i] & ~((u64)1);
3461 		if (self == peer)
3462 			return 2;
3463 	}
3464 
3465 	*rule_nr = 90;
3466 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3467 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3468 	if (self == peer && self != ((u64)0))
3469 		return 100;
3470 
3471 	*rule_nr = 100;
3472 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3473 		self = device->ldev->md.uuid[i] & ~((u64)1);
3474 		for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3475 			peer = device->p_uuid[j] & ~((u64)1);
3476 			if (self == peer)
3477 				return -100;
3478 		}
3479 	}
3480 
3481 	return -1000;
3482 }
3483 
3484 /* drbd_sync_handshake() returns the new conn state on success, or
3485    CONN_MASK (-1) on failure.
3486  */
3487 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3488 					   enum drbd_role peer_role,
3489 					   enum drbd_disk_state peer_disk) __must_hold(local)
3490 {
3491 	struct drbd_device *device = peer_device->device;
3492 	enum drbd_conns rv = C_MASK;
3493 	enum drbd_disk_state mydisk;
3494 	struct net_conf *nc;
3495 	int hg, rule_nr, rr_conflict, tentative, always_asbp;
3496 
3497 	mydisk = device->state.disk;
3498 	if (mydisk == D_NEGOTIATING)
3499 		mydisk = device->new_state_tmp.disk;
3500 
3501 	drbd_info(device, "drbd_sync_handshake:\n");
3502 
3503 	spin_lock_irq(&device->ldev->md.uuid_lock);
3504 	drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3505 	drbd_uuid_dump(device, "peer", device->p_uuid,
3506 		       device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3507 
3508 	hg = drbd_uuid_compare(device, peer_role, &rule_nr);
3509 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3510 
3511 	drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3512 
3513 	if (hg == -1000) {
3514 		drbd_alert(device, "Unrelated data, aborting!\n");
3515 		return C_MASK;
3516 	}
3517 	if (hg < -0x10000) {
3518 		int proto, fflags;
3519 		hg = -hg;
3520 		proto = hg & 0xff;
3521 		fflags = (hg >> 8) & 0xff;
3522 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3523 					proto, fflags);
3524 		return C_MASK;
3525 	}
3526 	if (hg < -1000) {
3527 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3528 		return C_MASK;
3529 	}
3530 
3531 	if    ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3532 	    (peer_disk == D_INCONSISTENT && mydisk    > D_INCONSISTENT)) {
3533 		int f = (hg == -100) || abs(hg) == 2;
3534 		hg = mydisk > D_INCONSISTENT ? 1 : -1;
3535 		if (f)
3536 			hg = hg*2;
3537 		drbd_info(device, "Becoming sync %s due to disk states.\n",
3538 		     hg > 0 ? "source" : "target");
3539 	}
3540 
3541 	if (abs(hg) == 100)
3542 		drbd_khelper(device, "initial-split-brain");
3543 
3544 	rcu_read_lock();
3545 	nc = rcu_dereference(peer_device->connection->net_conf);
3546 	always_asbp = nc->always_asbp;
3547 	rr_conflict = nc->rr_conflict;
3548 	tentative = nc->tentative;
3549 	rcu_read_unlock();
3550 
3551 	if (hg == 100 || (hg == -100 && always_asbp)) {
3552 		int pcount = (device->state.role == R_PRIMARY)
3553 			   + (peer_role == R_PRIMARY);
3554 		int forced = (hg == -100);
3555 
3556 		switch (pcount) {
3557 		case 0:
3558 			hg = drbd_asb_recover_0p(peer_device);
3559 			break;
3560 		case 1:
3561 			hg = drbd_asb_recover_1p(peer_device);
3562 			break;
3563 		case 2:
3564 			hg = drbd_asb_recover_2p(peer_device);
3565 			break;
3566 		}
3567 		if (abs(hg) < 100) {
3568 			drbd_warn(device, "Split-Brain detected, %d primaries, "
3569 			     "automatically solved. Sync from %s node\n",
3570 			     pcount, (hg < 0) ? "peer" : "this");
3571 			if (forced) {
3572 				drbd_warn(device, "Doing a full sync, since"
3573 				     " UUIDs where ambiguous.\n");
3574 				hg = hg*2;
3575 			}
3576 		}
3577 	}
3578 
3579 	if (hg == -100) {
3580 		if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3581 			hg = -1;
3582 		if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3583 			hg = 1;
3584 
3585 		if (abs(hg) < 100)
3586 			drbd_warn(device, "Split-Brain detected, manually solved. "
3587 			     "Sync from %s node\n",
3588 			     (hg < 0) ? "peer" : "this");
3589 	}
3590 
3591 	if (hg == -100) {
3592 		/* FIXME this log message is not correct if we end up here
3593 		 * after an attempted attach on a diskless node.
3594 		 * We just refuse to attach -- well, we drop the "connection"
3595 		 * to that disk, in a way... */
3596 		drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3597 		drbd_khelper(device, "split-brain");
3598 		return C_MASK;
3599 	}
3600 
3601 	if (hg > 0 && mydisk <= D_INCONSISTENT) {
3602 		drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3603 		return C_MASK;
3604 	}
3605 
3606 	if (hg < 0 && /* by intention we do not use mydisk here. */
3607 	    device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3608 		switch (rr_conflict) {
3609 		case ASB_CALL_HELPER:
3610 			drbd_khelper(device, "pri-lost");
3611 			fallthrough;
3612 		case ASB_DISCONNECT:
3613 			drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3614 			return C_MASK;
3615 		case ASB_VIOLENTLY:
3616 			drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3617 			     "assumption\n");
3618 		}
3619 	}
3620 
3621 	if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3622 		if (hg == 0)
3623 			drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3624 		else
3625 			drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3626 				 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3627 				 abs(hg) >= 2 ? "full" : "bit-map based");
3628 		return C_MASK;
3629 	}
3630 
3631 	if (abs(hg) >= 2) {
3632 		drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3633 		if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3634 					BM_LOCKED_SET_ALLOWED))
3635 			return C_MASK;
3636 	}
3637 
3638 	if (hg > 0) { /* become sync source. */
3639 		rv = C_WF_BITMAP_S;
3640 	} else if (hg < 0) { /* become sync target */
3641 		rv = C_WF_BITMAP_T;
3642 	} else {
3643 		rv = C_CONNECTED;
3644 		if (drbd_bm_total_weight(device)) {
3645 			drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3646 			     drbd_bm_total_weight(device));
3647 		}
3648 	}
3649 
3650 	return rv;
3651 }
3652 
3653 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3654 {
3655 	/* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3656 	if (peer == ASB_DISCARD_REMOTE)
3657 		return ASB_DISCARD_LOCAL;
3658 
3659 	/* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3660 	if (peer == ASB_DISCARD_LOCAL)
3661 		return ASB_DISCARD_REMOTE;
3662 
3663 	/* everything else is valid if they are equal on both sides. */
3664 	return peer;
3665 }
3666 
3667 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3668 {
3669 	struct p_protocol *p = pi->data;
3670 	enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3671 	int p_proto, p_discard_my_data, p_two_primaries, cf;
3672 	struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3673 	char integrity_alg[SHARED_SECRET_MAX] = "";
3674 	struct crypto_shash *peer_integrity_tfm = NULL;
3675 	void *int_dig_in = NULL, *int_dig_vv = NULL;
3676 
3677 	p_proto		= be32_to_cpu(p->protocol);
3678 	p_after_sb_0p	= be32_to_cpu(p->after_sb_0p);
3679 	p_after_sb_1p	= be32_to_cpu(p->after_sb_1p);
3680 	p_after_sb_2p	= be32_to_cpu(p->after_sb_2p);
3681 	p_two_primaries = be32_to_cpu(p->two_primaries);
3682 	cf		= be32_to_cpu(p->conn_flags);
3683 	p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3684 
3685 	if (connection->agreed_pro_version >= 87) {
3686 		int err;
3687 
3688 		if (pi->size > sizeof(integrity_alg))
3689 			return -EIO;
3690 		err = drbd_recv_all(connection, integrity_alg, pi->size);
3691 		if (err)
3692 			return err;
3693 		integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3694 	}
3695 
3696 	if (pi->cmd != P_PROTOCOL_UPDATE) {
3697 		clear_bit(CONN_DRY_RUN, &connection->flags);
3698 
3699 		if (cf & CF_DRY_RUN)
3700 			set_bit(CONN_DRY_RUN, &connection->flags);
3701 
3702 		rcu_read_lock();
3703 		nc = rcu_dereference(connection->net_conf);
3704 
3705 		if (p_proto != nc->wire_protocol) {
3706 			drbd_err(connection, "incompatible %s settings\n", "protocol");
3707 			goto disconnect_rcu_unlock;
3708 		}
3709 
3710 		if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3711 			drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3712 			goto disconnect_rcu_unlock;
3713 		}
3714 
3715 		if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3716 			drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3717 			goto disconnect_rcu_unlock;
3718 		}
3719 
3720 		if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3721 			drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3722 			goto disconnect_rcu_unlock;
3723 		}
3724 
3725 		if (p_discard_my_data && nc->discard_my_data) {
3726 			drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3727 			goto disconnect_rcu_unlock;
3728 		}
3729 
3730 		if (p_two_primaries != nc->two_primaries) {
3731 			drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3732 			goto disconnect_rcu_unlock;
3733 		}
3734 
3735 		if (strcmp(integrity_alg, nc->integrity_alg)) {
3736 			drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3737 			goto disconnect_rcu_unlock;
3738 		}
3739 
3740 		rcu_read_unlock();
3741 	}
3742 
3743 	if (integrity_alg[0]) {
3744 		int hash_size;
3745 
3746 		/*
3747 		 * We can only change the peer data integrity algorithm
3748 		 * here.  Changing our own data integrity algorithm
3749 		 * requires that we send a P_PROTOCOL_UPDATE packet at
3750 		 * the same time; otherwise, the peer has no way to
3751 		 * tell between which packets the algorithm should
3752 		 * change.
3753 		 */
3754 
3755 		peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0);
3756 		if (IS_ERR(peer_integrity_tfm)) {
3757 			peer_integrity_tfm = NULL;
3758 			drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3759 				 integrity_alg);
3760 			goto disconnect;
3761 		}
3762 
3763 		hash_size = crypto_shash_digestsize(peer_integrity_tfm);
3764 		int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3765 		int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3766 		if (!(int_dig_in && int_dig_vv)) {
3767 			drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3768 			goto disconnect;
3769 		}
3770 	}
3771 
3772 	new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3773 	if (!new_net_conf)
3774 		goto disconnect;
3775 
3776 	mutex_lock(&connection->data.mutex);
3777 	mutex_lock(&connection->resource->conf_update);
3778 	old_net_conf = connection->net_conf;
3779 	*new_net_conf = *old_net_conf;
3780 
3781 	new_net_conf->wire_protocol = p_proto;
3782 	new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3783 	new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3784 	new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3785 	new_net_conf->two_primaries = p_two_primaries;
3786 
3787 	rcu_assign_pointer(connection->net_conf, new_net_conf);
3788 	mutex_unlock(&connection->resource->conf_update);
3789 	mutex_unlock(&connection->data.mutex);
3790 
3791 	crypto_free_shash(connection->peer_integrity_tfm);
3792 	kfree(connection->int_dig_in);
3793 	kfree(connection->int_dig_vv);
3794 	connection->peer_integrity_tfm = peer_integrity_tfm;
3795 	connection->int_dig_in = int_dig_in;
3796 	connection->int_dig_vv = int_dig_vv;
3797 
3798 	if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3799 		drbd_info(connection, "peer data-integrity-alg: %s\n",
3800 			  integrity_alg[0] ? integrity_alg : "(none)");
3801 
3802 	synchronize_rcu();
3803 	kfree(old_net_conf);
3804 	return 0;
3805 
3806 disconnect_rcu_unlock:
3807 	rcu_read_unlock();
3808 disconnect:
3809 	crypto_free_shash(peer_integrity_tfm);
3810 	kfree(int_dig_in);
3811 	kfree(int_dig_vv);
3812 	conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3813 	return -EIO;
3814 }
3815 
3816 /* helper function
3817  * input: alg name, feature name
3818  * return: NULL (alg name was "")
3819  *         ERR_PTR(error) if something goes wrong
3820  *         or the crypto hash ptr, if it worked out ok. */
3821 static struct crypto_shash *drbd_crypto_alloc_digest_safe(
3822 		const struct drbd_device *device,
3823 		const char *alg, const char *name)
3824 {
3825 	struct crypto_shash *tfm;
3826 
3827 	if (!alg[0])
3828 		return NULL;
3829 
3830 	tfm = crypto_alloc_shash(alg, 0, 0);
3831 	if (IS_ERR(tfm)) {
3832 		drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3833 			alg, name, PTR_ERR(tfm));
3834 		return tfm;
3835 	}
3836 	return tfm;
3837 }
3838 
3839 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3840 {
3841 	void *buffer = connection->data.rbuf;
3842 	int size = pi->size;
3843 
3844 	while (size) {
3845 		int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3846 		s = drbd_recv(connection, buffer, s);
3847 		if (s <= 0) {
3848 			if (s < 0)
3849 				return s;
3850 			break;
3851 		}
3852 		size -= s;
3853 	}
3854 	if (size)
3855 		return -EIO;
3856 	return 0;
3857 }
3858 
3859 /*
3860  * config_unknown_volume  -  device configuration command for unknown volume
3861  *
3862  * When a device is added to an existing connection, the node on which the
3863  * device is added first will send configuration commands to its peer but the
3864  * peer will not know about the device yet.  It will warn and ignore these
3865  * commands.  Once the device is added on the second node, the second node will
3866  * send the same device configuration commands, but in the other direction.
3867  *
3868  * (We can also end up here if drbd is misconfigured.)
3869  */
3870 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3871 {
3872 	drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3873 		  cmdname(pi->cmd), pi->vnr);
3874 	return ignore_remaining_packet(connection, pi);
3875 }
3876 
3877 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3878 {
3879 	struct drbd_peer_device *peer_device;
3880 	struct drbd_device *device;
3881 	struct p_rs_param_95 *p;
3882 	unsigned int header_size, data_size, exp_max_sz;
3883 	struct crypto_shash *verify_tfm = NULL;
3884 	struct crypto_shash *csums_tfm = NULL;
3885 	struct net_conf *old_net_conf, *new_net_conf = NULL;
3886 	struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3887 	const int apv = connection->agreed_pro_version;
3888 	struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3889 	unsigned int fifo_size = 0;
3890 	int err;
3891 
3892 	peer_device = conn_peer_device(connection, pi->vnr);
3893 	if (!peer_device)
3894 		return config_unknown_volume(connection, pi);
3895 	device = peer_device->device;
3896 
3897 	exp_max_sz  = apv <= 87 ? sizeof(struct p_rs_param)
3898 		    : apv == 88 ? sizeof(struct p_rs_param)
3899 					+ SHARED_SECRET_MAX
3900 		    : apv <= 94 ? sizeof(struct p_rs_param_89)
3901 		    : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3902 
3903 	if (pi->size > exp_max_sz) {
3904 		drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3905 		    pi->size, exp_max_sz);
3906 		return -EIO;
3907 	}
3908 
3909 	if (apv <= 88) {
3910 		header_size = sizeof(struct p_rs_param);
3911 		data_size = pi->size - header_size;
3912 	} else if (apv <= 94) {
3913 		header_size = sizeof(struct p_rs_param_89);
3914 		data_size = pi->size - header_size;
3915 		D_ASSERT(device, data_size == 0);
3916 	} else {
3917 		header_size = sizeof(struct p_rs_param_95);
3918 		data_size = pi->size - header_size;
3919 		D_ASSERT(device, data_size == 0);
3920 	}
3921 
3922 	/* initialize verify_alg and csums_alg */
3923 	p = pi->data;
3924 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
3925 
3926 	err = drbd_recv_all(peer_device->connection, p, header_size);
3927 	if (err)
3928 		return err;
3929 
3930 	mutex_lock(&connection->resource->conf_update);
3931 	old_net_conf = peer_device->connection->net_conf;
3932 	if (get_ldev(device)) {
3933 		new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3934 		if (!new_disk_conf) {
3935 			put_ldev(device);
3936 			mutex_unlock(&connection->resource->conf_update);
3937 			drbd_err(device, "Allocation of new disk_conf failed\n");
3938 			return -ENOMEM;
3939 		}
3940 
3941 		old_disk_conf = device->ldev->disk_conf;
3942 		*new_disk_conf = *old_disk_conf;
3943 
3944 		new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3945 	}
3946 
3947 	if (apv >= 88) {
3948 		if (apv == 88) {
3949 			if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3950 				drbd_err(device, "verify-alg of wrong size, "
3951 					"peer wants %u, accepting only up to %u byte\n",
3952 					data_size, SHARED_SECRET_MAX);
3953 				err = -EIO;
3954 				goto reconnect;
3955 			}
3956 
3957 			err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3958 			if (err)
3959 				goto reconnect;
3960 			/* we expect NUL terminated string */
3961 			/* but just in case someone tries to be evil */
3962 			D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3963 			p->verify_alg[data_size-1] = 0;
3964 
3965 		} else /* apv >= 89 */ {
3966 			/* we still expect NUL terminated strings */
3967 			/* but just in case someone tries to be evil */
3968 			D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3969 			D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3970 			p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3971 			p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3972 		}
3973 
3974 		if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3975 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3976 				drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3977 				    old_net_conf->verify_alg, p->verify_alg);
3978 				goto disconnect;
3979 			}
3980 			verify_tfm = drbd_crypto_alloc_digest_safe(device,
3981 					p->verify_alg, "verify-alg");
3982 			if (IS_ERR(verify_tfm)) {
3983 				verify_tfm = NULL;
3984 				goto disconnect;
3985 			}
3986 		}
3987 
3988 		if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3989 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3990 				drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3991 				    old_net_conf->csums_alg, p->csums_alg);
3992 				goto disconnect;
3993 			}
3994 			csums_tfm = drbd_crypto_alloc_digest_safe(device,
3995 					p->csums_alg, "csums-alg");
3996 			if (IS_ERR(csums_tfm)) {
3997 				csums_tfm = NULL;
3998 				goto disconnect;
3999 			}
4000 		}
4001 
4002 		if (apv > 94 && new_disk_conf) {
4003 			new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
4004 			new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
4005 			new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
4006 			new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
4007 
4008 			fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
4009 			if (fifo_size != device->rs_plan_s->size) {
4010 				new_plan = fifo_alloc(fifo_size);
4011 				if (!new_plan) {
4012 					drbd_err(device, "kmalloc of fifo_buffer failed");
4013 					put_ldev(device);
4014 					goto disconnect;
4015 				}
4016 			}
4017 		}
4018 
4019 		if (verify_tfm || csums_tfm) {
4020 			new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
4021 			if (!new_net_conf)
4022 				goto disconnect;
4023 
4024 			*new_net_conf = *old_net_conf;
4025 
4026 			if (verify_tfm) {
4027 				strcpy(new_net_conf->verify_alg, p->verify_alg);
4028 				new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
4029 				crypto_free_shash(peer_device->connection->verify_tfm);
4030 				peer_device->connection->verify_tfm = verify_tfm;
4031 				drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
4032 			}
4033 			if (csums_tfm) {
4034 				strcpy(new_net_conf->csums_alg, p->csums_alg);
4035 				new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
4036 				crypto_free_shash(peer_device->connection->csums_tfm);
4037 				peer_device->connection->csums_tfm = csums_tfm;
4038 				drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
4039 			}
4040 			rcu_assign_pointer(connection->net_conf, new_net_conf);
4041 		}
4042 	}
4043 
4044 	if (new_disk_conf) {
4045 		rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4046 		put_ldev(device);
4047 	}
4048 
4049 	if (new_plan) {
4050 		old_plan = device->rs_plan_s;
4051 		rcu_assign_pointer(device->rs_plan_s, new_plan);
4052 	}
4053 
4054 	mutex_unlock(&connection->resource->conf_update);
4055 	synchronize_rcu();
4056 	if (new_net_conf)
4057 		kfree(old_net_conf);
4058 	kfree(old_disk_conf);
4059 	kfree(old_plan);
4060 
4061 	return 0;
4062 
4063 reconnect:
4064 	if (new_disk_conf) {
4065 		put_ldev(device);
4066 		kfree(new_disk_conf);
4067 	}
4068 	mutex_unlock(&connection->resource->conf_update);
4069 	return -EIO;
4070 
4071 disconnect:
4072 	kfree(new_plan);
4073 	if (new_disk_conf) {
4074 		put_ldev(device);
4075 		kfree(new_disk_conf);
4076 	}
4077 	mutex_unlock(&connection->resource->conf_update);
4078 	/* just for completeness: actually not needed,
4079 	 * as this is not reached if csums_tfm was ok. */
4080 	crypto_free_shash(csums_tfm);
4081 	/* but free the verify_tfm again, if csums_tfm did not work out */
4082 	crypto_free_shash(verify_tfm);
4083 	conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4084 	return -EIO;
4085 }
4086 
4087 /* warn if the arguments differ by more than 12.5% */
4088 static void warn_if_differ_considerably(struct drbd_device *device,
4089 	const char *s, sector_t a, sector_t b)
4090 {
4091 	sector_t d;
4092 	if (a == 0 || b == 0)
4093 		return;
4094 	d = (a > b) ? (a - b) : (b - a);
4095 	if (d > (a>>3) || d > (b>>3))
4096 		drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
4097 		     (unsigned long long)a, (unsigned long long)b);
4098 }
4099 
4100 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
4101 {
4102 	struct drbd_peer_device *peer_device;
4103 	struct drbd_device *device;
4104 	struct p_sizes *p = pi->data;
4105 	struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
4106 	enum determine_dev_size dd = DS_UNCHANGED;
4107 	sector_t p_size, p_usize, p_csize, my_usize;
4108 	sector_t new_size, cur_size;
4109 	int ldsc = 0; /* local disk size changed */
4110 	enum dds_flags ddsf;
4111 
4112 	peer_device = conn_peer_device(connection, pi->vnr);
4113 	if (!peer_device)
4114 		return config_unknown_volume(connection, pi);
4115 	device = peer_device->device;
4116 	cur_size = get_capacity(device->vdisk);
4117 
4118 	p_size = be64_to_cpu(p->d_size);
4119 	p_usize = be64_to_cpu(p->u_size);
4120 	p_csize = be64_to_cpu(p->c_size);
4121 
4122 	/* just store the peer's disk size for now.
4123 	 * we still need to figure out whether we accept that. */
4124 	device->p_size = p_size;
4125 
4126 	if (get_ldev(device)) {
4127 		rcu_read_lock();
4128 		my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4129 		rcu_read_unlock();
4130 
4131 		warn_if_differ_considerably(device, "lower level device sizes",
4132 			   p_size, drbd_get_max_capacity(device->ldev));
4133 		warn_if_differ_considerably(device, "user requested size",
4134 					    p_usize, my_usize);
4135 
4136 		/* if this is the first connect, or an otherwise expected
4137 		 * param exchange, choose the minimum */
4138 		if (device->state.conn == C_WF_REPORT_PARAMS)
4139 			p_usize = min_not_zero(my_usize, p_usize);
4140 
4141 		/* Never shrink a device with usable data during connect,
4142 		 * or "attach" on the peer.
4143 		 * But allow online shrinking if we are connected. */
4144 		new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4145 		if (new_size < cur_size &&
4146 		    device->state.disk >= D_OUTDATED &&
4147 		    (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) {
4148 			drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4149 					(unsigned long long)new_size, (unsigned long long)cur_size);
4150 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4151 			put_ldev(device);
4152 			return -EIO;
4153 		}
4154 
4155 		if (my_usize != p_usize) {
4156 			struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4157 
4158 			new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4159 			if (!new_disk_conf) {
4160 				put_ldev(device);
4161 				return -ENOMEM;
4162 			}
4163 
4164 			mutex_lock(&connection->resource->conf_update);
4165 			old_disk_conf = device->ldev->disk_conf;
4166 			*new_disk_conf = *old_disk_conf;
4167 			new_disk_conf->disk_size = p_usize;
4168 
4169 			rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4170 			mutex_unlock(&connection->resource->conf_update);
4171 			synchronize_rcu();
4172 			kfree(old_disk_conf);
4173 
4174 			drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n",
4175 				 (unsigned long)p_usize, (unsigned long)my_usize);
4176 		}
4177 
4178 		put_ldev(device);
4179 	}
4180 
4181 	device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4182 	/* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4183 	   In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4184 	   drbd_reconsider_queue_parameters(), we can be sure that after
4185 	   drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4186 
4187 	ddsf = be16_to_cpu(p->dds_flags);
4188 	if (get_ldev(device)) {
4189 		drbd_reconsider_queue_parameters(device, device->ldev, o);
4190 		dd = drbd_determine_dev_size(device, ddsf, NULL);
4191 		put_ldev(device);
4192 		if (dd == DS_ERROR)
4193 			return -EIO;
4194 		drbd_md_sync(device);
4195 	} else {
4196 		/*
4197 		 * I am diskless, need to accept the peer's *current* size.
4198 		 * I must NOT accept the peers backing disk size,
4199 		 * it may have been larger than mine all along...
4200 		 *
4201 		 * At this point, the peer knows more about my disk, or at
4202 		 * least about what we last agreed upon, than myself.
4203 		 * So if his c_size is less than his d_size, the most likely
4204 		 * reason is that *my* d_size was smaller last time we checked.
4205 		 *
4206 		 * However, if he sends a zero current size,
4207 		 * take his (user-capped or) backing disk size anyways.
4208 		 *
4209 		 * Unless of course he does not have a disk himself.
4210 		 * In which case we ignore this completely.
4211 		 */
4212 		sector_t new_size = p_csize ?: p_usize ?: p_size;
4213 		drbd_reconsider_queue_parameters(device, NULL, o);
4214 		if (new_size == 0) {
4215 			/* Ignore, peer does not know nothing. */
4216 		} else if (new_size == cur_size) {
4217 			/* nothing to do */
4218 		} else if (cur_size != 0 && p_size == 0) {
4219 			drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n",
4220 					(unsigned long long)new_size, (unsigned long long)cur_size);
4221 		} else if (new_size < cur_size && device->state.role == R_PRIMARY) {
4222 			drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n",
4223 					(unsigned long long)new_size, (unsigned long long)cur_size);
4224 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4225 			return -EIO;
4226 		} else {
4227 			/* I believe the peer, if
4228 			 *  - I don't have a current size myself
4229 			 *  - we agree on the size anyways
4230 			 *  - I do have a current size, am Secondary,
4231 			 *    and he has the only disk
4232 			 *  - I do have a current size, am Primary,
4233 			 *    and he has the only disk,
4234 			 *    which is larger than my current size
4235 			 */
4236 			drbd_set_my_capacity(device, new_size);
4237 		}
4238 	}
4239 
4240 	if (get_ldev(device)) {
4241 		if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4242 			device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4243 			ldsc = 1;
4244 		}
4245 
4246 		put_ldev(device);
4247 	}
4248 
4249 	if (device->state.conn > C_WF_REPORT_PARAMS) {
4250 		if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) ||
4251 		    ldsc) {
4252 			/* we have different sizes, probably peer
4253 			 * needs to know my new size... */
4254 			drbd_send_sizes(peer_device, 0, ddsf);
4255 		}
4256 		if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4257 		    (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4258 			if (device->state.pdsk >= D_INCONSISTENT &&
4259 			    device->state.disk >= D_INCONSISTENT) {
4260 				if (ddsf & DDSF_NO_RESYNC)
4261 					drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4262 				else
4263 					resync_after_online_grow(device);
4264 			} else
4265 				set_bit(RESYNC_AFTER_NEG, &device->flags);
4266 		}
4267 	}
4268 
4269 	return 0;
4270 }
4271 
4272 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4273 {
4274 	struct drbd_peer_device *peer_device;
4275 	struct drbd_device *device;
4276 	struct p_uuids *p = pi->data;
4277 	u64 *p_uuid;
4278 	int i, updated_uuids = 0;
4279 
4280 	peer_device = conn_peer_device(connection, pi->vnr);
4281 	if (!peer_device)
4282 		return config_unknown_volume(connection, pi);
4283 	device = peer_device->device;
4284 
4285 	p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO);
4286 	if (!p_uuid)
4287 		return false;
4288 
4289 	for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4290 		p_uuid[i] = be64_to_cpu(p->uuid[i]);
4291 
4292 	kfree(device->p_uuid);
4293 	device->p_uuid = p_uuid;
4294 
4295 	if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) &&
4296 	    device->state.disk < D_INCONSISTENT &&
4297 	    device->state.role == R_PRIMARY &&
4298 	    (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4299 		drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4300 		    (unsigned long long)device->ed_uuid);
4301 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4302 		return -EIO;
4303 	}
4304 
4305 	if (get_ldev(device)) {
4306 		int skip_initial_sync =
4307 			device->state.conn == C_CONNECTED &&
4308 			peer_device->connection->agreed_pro_version >= 90 &&
4309 			device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4310 			(p_uuid[UI_FLAGS] & 8);
4311 		if (skip_initial_sync) {
4312 			drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4313 			drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4314 					"clear_n_write from receive_uuids",
4315 					BM_LOCKED_TEST_ALLOWED);
4316 			_drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4317 			_drbd_uuid_set(device, UI_BITMAP, 0);
4318 			_drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4319 					CS_VERBOSE, NULL);
4320 			drbd_md_sync(device);
4321 			updated_uuids = 1;
4322 		}
4323 		put_ldev(device);
4324 	} else if (device->state.disk < D_INCONSISTENT &&
4325 		   device->state.role == R_PRIMARY) {
4326 		/* I am a diskless primary, the peer just created a new current UUID
4327 		   for me. */
4328 		updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4329 	}
4330 
4331 	/* Before we test for the disk state, we should wait until an eventually
4332 	   ongoing cluster wide state change is finished. That is important if
4333 	   we are primary and are detaching from our disk. We need to see the
4334 	   new disk state... */
4335 	mutex_lock(device->state_mutex);
4336 	mutex_unlock(device->state_mutex);
4337 	if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4338 		updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4339 
4340 	if (updated_uuids)
4341 		drbd_print_uuids(device, "receiver updated UUIDs to");
4342 
4343 	return 0;
4344 }
4345 
4346 /**
4347  * convert_state() - Converts the peer's view of the cluster state to our point of view
4348  * @ps:		The state as seen by the peer.
4349  */
4350 static union drbd_state convert_state(union drbd_state ps)
4351 {
4352 	union drbd_state ms;
4353 
4354 	static enum drbd_conns c_tab[] = {
4355 		[C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4356 		[C_CONNECTED] = C_CONNECTED,
4357 
4358 		[C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4359 		[C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4360 		[C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4361 		[C_VERIFY_S]       = C_VERIFY_T,
4362 		[C_MASK]   = C_MASK,
4363 	};
4364 
4365 	ms.i = ps.i;
4366 
4367 	ms.conn = c_tab[ps.conn];
4368 	ms.peer = ps.role;
4369 	ms.role = ps.peer;
4370 	ms.pdsk = ps.disk;
4371 	ms.disk = ps.pdsk;
4372 	ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4373 
4374 	return ms;
4375 }
4376 
4377 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4378 {
4379 	struct drbd_peer_device *peer_device;
4380 	struct drbd_device *device;
4381 	struct p_req_state *p = pi->data;
4382 	union drbd_state mask, val;
4383 	enum drbd_state_rv rv;
4384 
4385 	peer_device = conn_peer_device(connection, pi->vnr);
4386 	if (!peer_device)
4387 		return -EIO;
4388 	device = peer_device->device;
4389 
4390 	mask.i = be32_to_cpu(p->mask);
4391 	val.i = be32_to_cpu(p->val);
4392 
4393 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4394 	    mutex_is_locked(device->state_mutex)) {
4395 		drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4396 		return 0;
4397 	}
4398 
4399 	mask = convert_state(mask);
4400 	val = convert_state(val);
4401 
4402 	rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4403 	drbd_send_sr_reply(peer_device, rv);
4404 
4405 	drbd_md_sync(device);
4406 
4407 	return 0;
4408 }
4409 
4410 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4411 {
4412 	struct p_req_state *p = pi->data;
4413 	union drbd_state mask, val;
4414 	enum drbd_state_rv rv;
4415 
4416 	mask.i = be32_to_cpu(p->mask);
4417 	val.i = be32_to_cpu(p->val);
4418 
4419 	if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4420 	    mutex_is_locked(&connection->cstate_mutex)) {
4421 		conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4422 		return 0;
4423 	}
4424 
4425 	mask = convert_state(mask);
4426 	val = convert_state(val);
4427 
4428 	rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4429 	conn_send_sr_reply(connection, rv);
4430 
4431 	return 0;
4432 }
4433 
4434 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4435 {
4436 	struct drbd_peer_device *peer_device;
4437 	struct drbd_device *device;
4438 	struct p_state *p = pi->data;
4439 	union drbd_state os, ns, peer_state;
4440 	enum drbd_disk_state real_peer_disk;
4441 	enum chg_state_flags cs_flags;
4442 	int rv;
4443 
4444 	peer_device = conn_peer_device(connection, pi->vnr);
4445 	if (!peer_device)
4446 		return config_unknown_volume(connection, pi);
4447 	device = peer_device->device;
4448 
4449 	peer_state.i = be32_to_cpu(p->state);
4450 
4451 	real_peer_disk = peer_state.disk;
4452 	if (peer_state.disk == D_NEGOTIATING) {
4453 		real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4454 		drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4455 	}
4456 
4457 	spin_lock_irq(&device->resource->req_lock);
4458  retry:
4459 	os = ns = drbd_read_state(device);
4460 	spin_unlock_irq(&device->resource->req_lock);
4461 
4462 	/* If some other part of the code (ack_receiver thread, timeout)
4463 	 * already decided to close the connection again,
4464 	 * we must not "re-establish" it here. */
4465 	if (os.conn <= C_TEAR_DOWN)
4466 		return -ECONNRESET;
4467 
4468 	/* If this is the "end of sync" confirmation, usually the peer disk
4469 	 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4470 	 * set) resync started in PausedSyncT, or if the timing of pause-/
4471 	 * unpause-sync events has been "just right", the peer disk may
4472 	 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4473 	 */
4474 	if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4475 	    real_peer_disk == D_UP_TO_DATE &&
4476 	    os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4477 		/* If we are (becoming) SyncSource, but peer is still in sync
4478 		 * preparation, ignore its uptodate-ness to avoid flapping, it
4479 		 * will change to inconsistent once the peer reaches active
4480 		 * syncing states.
4481 		 * It may have changed syncer-paused flags, however, so we
4482 		 * cannot ignore this completely. */
4483 		if (peer_state.conn > C_CONNECTED &&
4484 		    peer_state.conn < C_SYNC_SOURCE)
4485 			real_peer_disk = D_INCONSISTENT;
4486 
4487 		/* if peer_state changes to connected at the same time,
4488 		 * it explicitly notifies us that it finished resync.
4489 		 * Maybe we should finish it up, too? */
4490 		else if (os.conn >= C_SYNC_SOURCE &&
4491 			 peer_state.conn == C_CONNECTED) {
4492 			if (drbd_bm_total_weight(device) <= device->rs_failed)
4493 				drbd_resync_finished(device);
4494 			return 0;
4495 		}
4496 	}
4497 
4498 	/* explicit verify finished notification, stop sector reached. */
4499 	if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4500 	    peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4501 		ov_out_of_sync_print(device);
4502 		drbd_resync_finished(device);
4503 		return 0;
4504 	}
4505 
4506 	/* peer says his disk is inconsistent, while we think it is uptodate,
4507 	 * and this happens while the peer still thinks we have a sync going on,
4508 	 * but we think we are already done with the sync.
4509 	 * We ignore this to avoid flapping pdsk.
4510 	 * This should not happen, if the peer is a recent version of drbd. */
4511 	if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4512 	    os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4513 		real_peer_disk = D_UP_TO_DATE;
4514 
4515 	if (ns.conn == C_WF_REPORT_PARAMS)
4516 		ns.conn = C_CONNECTED;
4517 
4518 	if (peer_state.conn == C_AHEAD)
4519 		ns.conn = C_BEHIND;
4520 
4521 	/* TODO:
4522 	 * if (primary and diskless and peer uuid != effective uuid)
4523 	 *     abort attach on peer;
4524 	 *
4525 	 * If this node does not have good data, was already connected, but
4526 	 * the peer did a late attach only now, trying to "negotiate" with me,
4527 	 * AND I am currently Primary, possibly frozen, with some specific
4528 	 * "effective" uuid, this should never be reached, really, because
4529 	 * we first send the uuids, then the current state.
4530 	 *
4531 	 * In this scenario, we already dropped the connection hard
4532 	 * when we received the unsuitable uuids (receive_uuids().
4533 	 *
4534 	 * Should we want to change this, that is: not drop the connection in
4535 	 * receive_uuids() already, then we would need to add a branch here
4536 	 * that aborts the attach of "unsuitable uuids" on the peer in case
4537 	 * this node is currently Diskless Primary.
4538 	 */
4539 
4540 	if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4541 	    get_ldev_if_state(device, D_NEGOTIATING)) {
4542 		int cr; /* consider resync */
4543 
4544 		/* if we established a new connection */
4545 		cr  = (os.conn < C_CONNECTED);
4546 		/* if we had an established connection
4547 		 * and one of the nodes newly attaches a disk */
4548 		cr |= (os.conn == C_CONNECTED &&
4549 		       (peer_state.disk == D_NEGOTIATING ||
4550 			os.disk == D_NEGOTIATING));
4551 		/* if we have both been inconsistent, and the peer has been
4552 		 * forced to be UpToDate with --force */
4553 		cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4554 		/* if we had been plain connected, and the admin requested to
4555 		 * start a sync by "invalidate" or "invalidate-remote" */
4556 		cr |= (os.conn == C_CONNECTED &&
4557 				(peer_state.conn >= C_STARTING_SYNC_S &&
4558 				 peer_state.conn <= C_WF_BITMAP_T));
4559 
4560 		if (cr)
4561 			ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4562 
4563 		put_ldev(device);
4564 		if (ns.conn == C_MASK) {
4565 			ns.conn = C_CONNECTED;
4566 			if (device->state.disk == D_NEGOTIATING) {
4567 				drbd_force_state(device, NS(disk, D_FAILED));
4568 			} else if (peer_state.disk == D_NEGOTIATING) {
4569 				drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4570 				peer_state.disk = D_DISKLESS;
4571 				real_peer_disk = D_DISKLESS;
4572 			} else {
4573 				if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4574 					return -EIO;
4575 				D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4576 				conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4577 				return -EIO;
4578 			}
4579 		}
4580 	}
4581 
4582 	spin_lock_irq(&device->resource->req_lock);
4583 	if (os.i != drbd_read_state(device).i)
4584 		goto retry;
4585 	clear_bit(CONSIDER_RESYNC, &device->flags);
4586 	ns.peer = peer_state.role;
4587 	ns.pdsk = real_peer_disk;
4588 	ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4589 	if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4590 		ns.disk = device->new_state_tmp.disk;
4591 	cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4592 	if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4593 	    test_bit(NEW_CUR_UUID, &device->flags)) {
4594 		/* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4595 		   for temporal network outages! */
4596 		spin_unlock_irq(&device->resource->req_lock);
4597 		drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4598 		tl_clear(peer_device->connection);
4599 		drbd_uuid_new_current(device);
4600 		clear_bit(NEW_CUR_UUID, &device->flags);
4601 		conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4602 		return -EIO;
4603 	}
4604 	rv = _drbd_set_state(device, ns, cs_flags, NULL);
4605 	ns = drbd_read_state(device);
4606 	spin_unlock_irq(&device->resource->req_lock);
4607 
4608 	if (rv < SS_SUCCESS) {
4609 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4610 		return -EIO;
4611 	}
4612 
4613 	if (os.conn > C_WF_REPORT_PARAMS) {
4614 		if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4615 		    peer_state.disk != D_NEGOTIATING ) {
4616 			/* we want resync, peer has not yet decided to sync... */
4617 			/* Nowadays only used when forcing a node into primary role and
4618 			   setting its disk to UpToDate with that */
4619 			drbd_send_uuids(peer_device);
4620 			drbd_send_current_state(peer_device);
4621 		}
4622 	}
4623 
4624 	clear_bit(DISCARD_MY_DATA, &device->flags);
4625 
4626 	drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4627 
4628 	return 0;
4629 }
4630 
4631 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4632 {
4633 	struct drbd_peer_device *peer_device;
4634 	struct drbd_device *device;
4635 	struct p_rs_uuid *p = pi->data;
4636 
4637 	peer_device = conn_peer_device(connection, pi->vnr);
4638 	if (!peer_device)
4639 		return -EIO;
4640 	device = peer_device->device;
4641 
4642 	wait_event(device->misc_wait,
4643 		   device->state.conn == C_WF_SYNC_UUID ||
4644 		   device->state.conn == C_BEHIND ||
4645 		   device->state.conn < C_CONNECTED ||
4646 		   device->state.disk < D_NEGOTIATING);
4647 
4648 	/* D_ASSERT(device,  device->state.conn == C_WF_SYNC_UUID ); */
4649 
4650 	/* Here the _drbd_uuid_ functions are right, current should
4651 	   _not_ be rotated into the history */
4652 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
4653 		_drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4654 		_drbd_uuid_set(device, UI_BITMAP, 0UL);
4655 
4656 		drbd_print_uuids(device, "updated sync uuid");
4657 		drbd_start_resync(device, C_SYNC_TARGET);
4658 
4659 		put_ldev(device);
4660 	} else
4661 		drbd_err(device, "Ignoring SyncUUID packet!\n");
4662 
4663 	return 0;
4664 }
4665 
4666 /*
4667  * receive_bitmap_plain
4668  *
4669  * Return 0 when done, 1 when another iteration is needed, and a negative error
4670  * code upon failure.
4671  */
4672 static int
4673 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4674 		     unsigned long *p, struct bm_xfer_ctx *c)
4675 {
4676 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4677 				 drbd_header_size(peer_device->connection);
4678 	unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4679 				       c->bm_words - c->word_offset);
4680 	unsigned int want = num_words * sizeof(*p);
4681 	int err;
4682 
4683 	if (want != size) {
4684 		drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4685 		return -EIO;
4686 	}
4687 	if (want == 0)
4688 		return 0;
4689 	err = drbd_recv_all(peer_device->connection, p, want);
4690 	if (err)
4691 		return err;
4692 
4693 	drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4694 
4695 	c->word_offset += num_words;
4696 	c->bit_offset = c->word_offset * BITS_PER_LONG;
4697 	if (c->bit_offset > c->bm_bits)
4698 		c->bit_offset = c->bm_bits;
4699 
4700 	return 1;
4701 }
4702 
4703 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4704 {
4705 	return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4706 }
4707 
4708 static int dcbp_get_start(struct p_compressed_bm *p)
4709 {
4710 	return (p->encoding & 0x80) != 0;
4711 }
4712 
4713 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4714 {
4715 	return (p->encoding >> 4) & 0x7;
4716 }
4717 
4718 /*
4719  * recv_bm_rle_bits
4720  *
4721  * Return 0 when done, 1 when another iteration is needed, and a negative error
4722  * code upon failure.
4723  */
4724 static int
4725 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4726 		struct p_compressed_bm *p,
4727 		 struct bm_xfer_ctx *c,
4728 		 unsigned int len)
4729 {
4730 	struct bitstream bs;
4731 	u64 look_ahead;
4732 	u64 rl;
4733 	u64 tmp;
4734 	unsigned long s = c->bit_offset;
4735 	unsigned long e;
4736 	int toggle = dcbp_get_start(p);
4737 	int have;
4738 	int bits;
4739 
4740 	bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4741 
4742 	bits = bitstream_get_bits(&bs, &look_ahead, 64);
4743 	if (bits < 0)
4744 		return -EIO;
4745 
4746 	for (have = bits; have > 0; s += rl, toggle = !toggle) {
4747 		bits = vli_decode_bits(&rl, look_ahead);
4748 		if (bits <= 0)
4749 			return -EIO;
4750 
4751 		if (toggle) {
4752 			e = s + rl -1;
4753 			if (e >= c->bm_bits) {
4754 				drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4755 				return -EIO;
4756 			}
4757 			_drbd_bm_set_bits(peer_device->device, s, e);
4758 		}
4759 
4760 		if (have < bits) {
4761 			drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4762 				have, bits, look_ahead,
4763 				(unsigned int)(bs.cur.b - p->code),
4764 				(unsigned int)bs.buf_len);
4765 			return -EIO;
4766 		}
4767 		/* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4768 		if (likely(bits < 64))
4769 			look_ahead >>= bits;
4770 		else
4771 			look_ahead = 0;
4772 		have -= bits;
4773 
4774 		bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4775 		if (bits < 0)
4776 			return -EIO;
4777 		look_ahead |= tmp << have;
4778 		have += bits;
4779 	}
4780 
4781 	c->bit_offset = s;
4782 	bm_xfer_ctx_bit_to_word_offset(c);
4783 
4784 	return (s != c->bm_bits);
4785 }
4786 
4787 /*
4788  * decode_bitmap_c
4789  *
4790  * Return 0 when done, 1 when another iteration is needed, and a negative error
4791  * code upon failure.
4792  */
4793 static int
4794 decode_bitmap_c(struct drbd_peer_device *peer_device,
4795 		struct p_compressed_bm *p,
4796 		struct bm_xfer_ctx *c,
4797 		unsigned int len)
4798 {
4799 	if (dcbp_get_code(p) == RLE_VLI_Bits)
4800 		return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4801 
4802 	/* other variants had been implemented for evaluation,
4803 	 * but have been dropped as this one turned out to be "best"
4804 	 * during all our tests. */
4805 
4806 	drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4807 	conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4808 	return -EIO;
4809 }
4810 
4811 void INFO_bm_xfer_stats(struct drbd_device *device,
4812 		const char *direction, struct bm_xfer_ctx *c)
4813 {
4814 	/* what would it take to transfer it "plaintext" */
4815 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
4816 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4817 	unsigned int plain =
4818 		header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4819 		c->bm_words * sizeof(unsigned long);
4820 	unsigned int total = c->bytes[0] + c->bytes[1];
4821 	unsigned int r;
4822 
4823 	/* total can not be zero. but just in case: */
4824 	if (total == 0)
4825 		return;
4826 
4827 	/* don't report if not compressed */
4828 	if (total >= plain)
4829 		return;
4830 
4831 	/* total < plain. check for overflow, still */
4832 	r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4833 		                    : (1000 * total / plain);
4834 
4835 	if (r > 1000)
4836 		r = 1000;
4837 
4838 	r = 1000 - r;
4839 	drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4840 	     "total %u; compression: %u.%u%%\n",
4841 			direction,
4842 			c->bytes[1], c->packets[1],
4843 			c->bytes[0], c->packets[0],
4844 			total, r/10, r % 10);
4845 }
4846 
4847 /* Since we are processing the bitfield from lower addresses to higher,
4848    it does not matter if the process it in 32 bit chunks or 64 bit
4849    chunks as long as it is little endian. (Understand it as byte stream,
4850    beginning with the lowest byte...) If we would use big endian
4851    we would need to process it from the highest address to the lowest,
4852    in order to be agnostic to the 32 vs 64 bits issue.
4853 
4854    returns 0 on failure, 1 if we successfully received it. */
4855 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4856 {
4857 	struct drbd_peer_device *peer_device;
4858 	struct drbd_device *device;
4859 	struct bm_xfer_ctx c;
4860 	int err;
4861 
4862 	peer_device = conn_peer_device(connection, pi->vnr);
4863 	if (!peer_device)
4864 		return -EIO;
4865 	device = peer_device->device;
4866 
4867 	drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4868 	/* you are supposed to send additional out-of-sync information
4869 	 * if you actually set bits during this phase */
4870 
4871 	c = (struct bm_xfer_ctx) {
4872 		.bm_bits = drbd_bm_bits(device),
4873 		.bm_words = drbd_bm_words(device),
4874 	};
4875 
4876 	for(;;) {
4877 		if (pi->cmd == P_BITMAP)
4878 			err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4879 		else if (pi->cmd == P_COMPRESSED_BITMAP) {
4880 			/* MAYBE: sanity check that we speak proto >= 90,
4881 			 * and the feature is enabled! */
4882 			struct p_compressed_bm *p = pi->data;
4883 
4884 			if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4885 				drbd_err(device, "ReportCBitmap packet too large\n");
4886 				err = -EIO;
4887 				goto out;
4888 			}
4889 			if (pi->size <= sizeof(*p)) {
4890 				drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4891 				err = -EIO;
4892 				goto out;
4893 			}
4894 			err = drbd_recv_all(peer_device->connection, p, pi->size);
4895 			if (err)
4896 			       goto out;
4897 			err = decode_bitmap_c(peer_device, p, &c, pi->size);
4898 		} else {
4899 			drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4900 			err = -EIO;
4901 			goto out;
4902 		}
4903 
4904 		c.packets[pi->cmd == P_BITMAP]++;
4905 		c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4906 
4907 		if (err <= 0) {
4908 			if (err < 0)
4909 				goto out;
4910 			break;
4911 		}
4912 		err = drbd_recv_header(peer_device->connection, pi);
4913 		if (err)
4914 			goto out;
4915 	}
4916 
4917 	INFO_bm_xfer_stats(device, "receive", &c);
4918 
4919 	if (device->state.conn == C_WF_BITMAP_T) {
4920 		enum drbd_state_rv rv;
4921 
4922 		err = drbd_send_bitmap(device);
4923 		if (err)
4924 			goto out;
4925 		/* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4926 		rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4927 		D_ASSERT(device, rv == SS_SUCCESS);
4928 	} else if (device->state.conn != C_WF_BITMAP_S) {
4929 		/* admin may have requested C_DISCONNECTING,
4930 		 * other threads may have noticed network errors */
4931 		drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4932 		    drbd_conn_str(device->state.conn));
4933 	}
4934 	err = 0;
4935 
4936  out:
4937 	drbd_bm_unlock(device);
4938 	if (!err && device->state.conn == C_WF_BITMAP_S)
4939 		drbd_start_resync(device, C_SYNC_SOURCE);
4940 	return err;
4941 }
4942 
4943 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4944 {
4945 	drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4946 		 pi->cmd, pi->size);
4947 
4948 	return ignore_remaining_packet(connection, pi);
4949 }
4950 
4951 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4952 {
4953 	/* Make sure we've acked all the TCP data associated
4954 	 * with the data requests being unplugged */
4955 	tcp_sock_set_quickack(connection->data.socket->sk, 2);
4956 	return 0;
4957 }
4958 
4959 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4960 {
4961 	struct drbd_peer_device *peer_device;
4962 	struct drbd_device *device;
4963 	struct p_block_desc *p = pi->data;
4964 
4965 	peer_device = conn_peer_device(connection, pi->vnr);
4966 	if (!peer_device)
4967 		return -EIO;
4968 	device = peer_device->device;
4969 
4970 	switch (device->state.conn) {
4971 	case C_WF_SYNC_UUID:
4972 	case C_WF_BITMAP_T:
4973 	case C_BEHIND:
4974 			break;
4975 	default:
4976 		drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4977 				drbd_conn_str(device->state.conn));
4978 	}
4979 
4980 	drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4981 
4982 	return 0;
4983 }
4984 
4985 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4986 {
4987 	struct drbd_peer_device *peer_device;
4988 	struct p_block_desc *p = pi->data;
4989 	struct drbd_device *device;
4990 	sector_t sector;
4991 	int size, err = 0;
4992 
4993 	peer_device = conn_peer_device(connection, pi->vnr);
4994 	if (!peer_device)
4995 		return -EIO;
4996 	device = peer_device->device;
4997 
4998 	sector = be64_to_cpu(p->sector);
4999 	size = be32_to_cpu(p->blksize);
5000 
5001 	dec_rs_pending(device);
5002 
5003 	if (get_ldev(device)) {
5004 		struct drbd_peer_request *peer_req;
5005 		const int op = REQ_OP_WRITE_ZEROES;
5006 
5007 		peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
5008 					       size, 0, GFP_NOIO);
5009 		if (!peer_req) {
5010 			put_ldev(device);
5011 			return -ENOMEM;
5012 		}
5013 
5014 		peer_req->w.cb = e_end_resync_block;
5015 		peer_req->submit_jif = jiffies;
5016 		peer_req->flags |= EE_TRIM;
5017 
5018 		spin_lock_irq(&device->resource->req_lock);
5019 		list_add_tail(&peer_req->w.list, &device->sync_ee);
5020 		spin_unlock_irq(&device->resource->req_lock);
5021 
5022 		atomic_add(pi->size >> 9, &device->rs_sect_ev);
5023 		err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR);
5024 
5025 		if (err) {
5026 			spin_lock_irq(&device->resource->req_lock);
5027 			list_del(&peer_req->w.list);
5028 			spin_unlock_irq(&device->resource->req_lock);
5029 
5030 			drbd_free_peer_req(device, peer_req);
5031 			put_ldev(device);
5032 			err = 0;
5033 			goto fail;
5034 		}
5035 
5036 		inc_unacked(device);
5037 
5038 		/* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
5039 		   as well as drbd_rs_complete_io() */
5040 	} else {
5041 	fail:
5042 		drbd_rs_complete_io(device, sector);
5043 		drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
5044 	}
5045 
5046 	atomic_add(size >> 9, &device->rs_sect_in);
5047 
5048 	return err;
5049 }
5050 
5051 struct data_cmd {
5052 	int expect_payload;
5053 	unsigned int pkt_size;
5054 	int (*fn)(struct drbd_connection *, struct packet_info *);
5055 };
5056 
5057 static struct data_cmd drbd_cmd_handler[] = {
5058 	[P_DATA]	    = { 1, sizeof(struct p_data), receive_Data },
5059 	[P_DATA_REPLY]	    = { 1, sizeof(struct p_data), receive_DataReply },
5060 	[P_RS_DATA_REPLY]   = { 1, sizeof(struct p_data), receive_RSDataReply } ,
5061 	[P_BARRIER]	    = { 0, sizeof(struct p_barrier), receive_Barrier } ,
5062 	[P_BITMAP]	    = { 1, 0, receive_bitmap } ,
5063 	[P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
5064 	[P_UNPLUG_REMOTE]   = { 0, 0, receive_UnplugRemote },
5065 	[P_DATA_REQUEST]    = { 0, sizeof(struct p_block_req), receive_DataRequest },
5066 	[P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5067 	[P_SYNC_PARAM]	    = { 1, 0, receive_SyncParam },
5068 	[P_SYNC_PARAM89]    = { 1, 0, receive_SyncParam },
5069 	[P_PROTOCOL]        = { 1, sizeof(struct p_protocol), receive_protocol },
5070 	[P_UUIDS]	    = { 0, sizeof(struct p_uuids), receive_uuids },
5071 	[P_SIZES]	    = { 0, sizeof(struct p_sizes), receive_sizes },
5072 	[P_STATE]	    = { 0, sizeof(struct p_state), receive_state },
5073 	[P_STATE_CHG_REQ]   = { 0, sizeof(struct p_req_state), receive_req_state },
5074 	[P_SYNC_UUID]       = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
5075 	[P_OV_REQUEST]      = { 0, sizeof(struct p_block_req), receive_DataRequest },
5076 	[P_OV_REPLY]        = { 1, sizeof(struct p_block_req), receive_DataRequest },
5077 	[P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
5078 	[P_RS_THIN_REQ]     = { 0, sizeof(struct p_block_req), receive_DataRequest },
5079 	[P_DELAY_PROBE]     = { 0, sizeof(struct p_delay_probe93), receive_skip },
5080 	[P_OUT_OF_SYNC]     = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
5081 	[P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
5082 	[P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
5083 	[P_TRIM]	    = { 0, sizeof(struct p_trim), receive_Data },
5084 	[P_ZEROES]	    = { 0, sizeof(struct p_trim), receive_Data },
5085 	[P_RS_DEALLOCATED]  = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
5086 	[P_WSAME]	    = { 1, sizeof(struct p_wsame), receive_Data },
5087 };
5088 
5089 static void drbdd(struct drbd_connection *connection)
5090 {
5091 	struct packet_info pi;
5092 	size_t shs; /* sub header size */
5093 	int err;
5094 
5095 	while (get_t_state(&connection->receiver) == RUNNING) {
5096 		struct data_cmd const *cmd;
5097 
5098 		drbd_thread_current_set_cpu(&connection->receiver);
5099 		update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug);
5100 		if (drbd_recv_header_maybe_unplug(connection, &pi))
5101 			goto err_out;
5102 
5103 		cmd = &drbd_cmd_handler[pi.cmd];
5104 		if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
5105 			drbd_err(connection, "Unexpected data packet %s (0x%04x)",
5106 				 cmdname(pi.cmd), pi.cmd);
5107 			goto err_out;
5108 		}
5109 
5110 		shs = cmd->pkt_size;
5111 		if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
5112 			shs += sizeof(struct o_qlim);
5113 		if (pi.size > shs && !cmd->expect_payload) {
5114 			drbd_err(connection, "No payload expected %s l:%d\n",
5115 				 cmdname(pi.cmd), pi.size);
5116 			goto err_out;
5117 		}
5118 		if (pi.size < shs) {
5119 			drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
5120 				 cmdname(pi.cmd), (int)shs, pi.size);
5121 			goto err_out;
5122 		}
5123 
5124 		if (shs) {
5125 			update_receiver_timing_details(connection, drbd_recv_all_warn);
5126 			err = drbd_recv_all_warn(connection, pi.data, shs);
5127 			if (err)
5128 				goto err_out;
5129 			pi.size -= shs;
5130 		}
5131 
5132 		update_receiver_timing_details(connection, cmd->fn);
5133 		err = cmd->fn(connection, &pi);
5134 		if (err) {
5135 			drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
5136 				 cmdname(pi.cmd), err, pi.size);
5137 			goto err_out;
5138 		}
5139 	}
5140 	return;
5141 
5142     err_out:
5143 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
5144 }
5145 
5146 static void conn_disconnect(struct drbd_connection *connection)
5147 {
5148 	struct drbd_peer_device *peer_device;
5149 	enum drbd_conns oc;
5150 	int vnr;
5151 
5152 	if (connection->cstate == C_STANDALONE)
5153 		return;
5154 
5155 	/* We are about to start the cleanup after connection loss.
5156 	 * Make sure drbd_make_request knows about that.
5157 	 * Usually we should be in some network failure state already,
5158 	 * but just in case we are not, we fix it up here.
5159 	 */
5160 	conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5161 
5162 	/* ack_receiver does not clean up anything. it must not interfere, either */
5163 	drbd_thread_stop(&connection->ack_receiver);
5164 	if (connection->ack_sender) {
5165 		destroy_workqueue(connection->ack_sender);
5166 		connection->ack_sender = NULL;
5167 	}
5168 	drbd_free_sock(connection);
5169 
5170 	rcu_read_lock();
5171 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5172 		struct drbd_device *device = peer_device->device;
5173 		kref_get(&device->kref);
5174 		rcu_read_unlock();
5175 		drbd_disconnected(peer_device);
5176 		kref_put(&device->kref, drbd_destroy_device);
5177 		rcu_read_lock();
5178 	}
5179 	rcu_read_unlock();
5180 
5181 	if (!list_empty(&connection->current_epoch->list))
5182 		drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5183 	/* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5184 	atomic_set(&connection->current_epoch->epoch_size, 0);
5185 	connection->send.seen_any_write_yet = false;
5186 
5187 	drbd_info(connection, "Connection closed\n");
5188 
5189 	if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5190 		conn_try_outdate_peer_async(connection);
5191 
5192 	spin_lock_irq(&connection->resource->req_lock);
5193 	oc = connection->cstate;
5194 	if (oc >= C_UNCONNECTED)
5195 		_conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5196 
5197 	spin_unlock_irq(&connection->resource->req_lock);
5198 
5199 	if (oc == C_DISCONNECTING)
5200 		conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5201 }
5202 
5203 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5204 {
5205 	struct drbd_device *device = peer_device->device;
5206 	unsigned int i;
5207 
5208 	/* wait for current activity to cease. */
5209 	spin_lock_irq(&device->resource->req_lock);
5210 	_drbd_wait_ee_list_empty(device, &device->active_ee);
5211 	_drbd_wait_ee_list_empty(device, &device->sync_ee);
5212 	_drbd_wait_ee_list_empty(device, &device->read_ee);
5213 	spin_unlock_irq(&device->resource->req_lock);
5214 
5215 	/* We do not have data structures that would allow us to
5216 	 * get the rs_pending_cnt down to 0 again.
5217 	 *  * On C_SYNC_TARGET we do not have any data structures describing
5218 	 *    the pending RSDataRequest's we have sent.
5219 	 *  * On C_SYNC_SOURCE there is no data structure that tracks
5220 	 *    the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5221 	 *  And no, it is not the sum of the reference counts in the
5222 	 *  resync_LRU. The resync_LRU tracks the whole operation including
5223 	 *  the disk-IO, while the rs_pending_cnt only tracks the blocks
5224 	 *  on the fly. */
5225 	drbd_rs_cancel_all(device);
5226 	device->rs_total = 0;
5227 	device->rs_failed = 0;
5228 	atomic_set(&device->rs_pending_cnt, 0);
5229 	wake_up(&device->misc_wait);
5230 
5231 	del_timer_sync(&device->resync_timer);
5232 	resync_timer_fn(&device->resync_timer);
5233 
5234 	/* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5235 	 * w_make_resync_request etc. which may still be on the worker queue
5236 	 * to be "canceled" */
5237 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5238 
5239 	drbd_finish_peer_reqs(device);
5240 
5241 	/* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5242 	   might have issued a work again. The one before drbd_finish_peer_reqs() is
5243 	   necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5244 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5245 
5246 	/* need to do it again, drbd_finish_peer_reqs() may have populated it
5247 	 * again via drbd_try_clear_on_disk_bm(). */
5248 	drbd_rs_cancel_all(device);
5249 
5250 	kfree(device->p_uuid);
5251 	device->p_uuid = NULL;
5252 
5253 	if (!drbd_suspended(device))
5254 		tl_clear(peer_device->connection);
5255 
5256 	drbd_md_sync(device);
5257 
5258 	if (get_ldev(device)) {
5259 		drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5260 				"write from disconnected", BM_LOCKED_CHANGE_ALLOWED);
5261 		put_ldev(device);
5262 	}
5263 
5264 	/* tcp_close and release of sendpage pages can be deferred.  I don't
5265 	 * want to use SO_LINGER, because apparently it can be deferred for
5266 	 * more than 20 seconds (longest time I checked).
5267 	 *
5268 	 * Actually we don't care for exactly when the network stack does its
5269 	 * put_page(), but release our reference on these pages right here.
5270 	 */
5271 	i = drbd_free_peer_reqs(device, &device->net_ee);
5272 	if (i)
5273 		drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5274 	i = atomic_read(&device->pp_in_use_by_net);
5275 	if (i)
5276 		drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5277 	i = atomic_read(&device->pp_in_use);
5278 	if (i)
5279 		drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5280 
5281 	D_ASSERT(device, list_empty(&device->read_ee));
5282 	D_ASSERT(device, list_empty(&device->active_ee));
5283 	D_ASSERT(device, list_empty(&device->sync_ee));
5284 	D_ASSERT(device, list_empty(&device->done_ee));
5285 
5286 	return 0;
5287 }
5288 
5289 /*
5290  * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5291  * we can agree on is stored in agreed_pro_version.
5292  *
5293  * feature flags and the reserved array should be enough room for future
5294  * enhancements of the handshake protocol, and possible plugins...
5295  *
5296  * for now, they are expected to be zero, but ignored.
5297  */
5298 static int drbd_send_features(struct drbd_connection *connection)
5299 {
5300 	struct drbd_socket *sock;
5301 	struct p_connection_features *p;
5302 
5303 	sock = &connection->data;
5304 	p = conn_prepare_command(connection, sock);
5305 	if (!p)
5306 		return -EIO;
5307 	memset(p, 0, sizeof(*p));
5308 	p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5309 	p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5310 	p->feature_flags = cpu_to_be32(PRO_FEATURES);
5311 	return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5312 }
5313 
5314 /*
5315  * return values:
5316  *   1 yes, we have a valid connection
5317  *   0 oops, did not work out, please try again
5318  *  -1 peer talks different language,
5319  *     no point in trying again, please go standalone.
5320  */
5321 static int drbd_do_features(struct drbd_connection *connection)
5322 {
5323 	/* ASSERT current == connection->receiver ... */
5324 	struct p_connection_features *p;
5325 	const int expect = sizeof(struct p_connection_features);
5326 	struct packet_info pi;
5327 	int err;
5328 
5329 	err = drbd_send_features(connection);
5330 	if (err)
5331 		return 0;
5332 
5333 	err = drbd_recv_header(connection, &pi);
5334 	if (err)
5335 		return 0;
5336 
5337 	if (pi.cmd != P_CONNECTION_FEATURES) {
5338 		drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5339 			 cmdname(pi.cmd), pi.cmd);
5340 		return -1;
5341 	}
5342 
5343 	if (pi.size != expect) {
5344 		drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5345 		     expect, pi.size);
5346 		return -1;
5347 	}
5348 
5349 	p = pi.data;
5350 	err = drbd_recv_all_warn(connection, p, expect);
5351 	if (err)
5352 		return 0;
5353 
5354 	p->protocol_min = be32_to_cpu(p->protocol_min);
5355 	p->protocol_max = be32_to_cpu(p->protocol_max);
5356 	if (p->protocol_max == 0)
5357 		p->protocol_max = p->protocol_min;
5358 
5359 	if (PRO_VERSION_MAX < p->protocol_min ||
5360 	    PRO_VERSION_MIN > p->protocol_max)
5361 		goto incompat;
5362 
5363 	connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5364 	connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5365 
5366 	drbd_info(connection, "Handshake successful: "
5367 	     "Agreed network protocol version %d\n", connection->agreed_pro_version);
5368 
5369 	drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n",
5370 		  connection->agreed_features,
5371 		  connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5372 		  connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5373 		  connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "",
5374 		  connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" :
5375 		  connection->agreed_features ? "" : " none");
5376 
5377 	return 1;
5378 
5379  incompat:
5380 	drbd_err(connection, "incompatible DRBD dialects: "
5381 	    "I support %d-%d, peer supports %d-%d\n",
5382 	    PRO_VERSION_MIN, PRO_VERSION_MAX,
5383 	    p->protocol_min, p->protocol_max);
5384 	return -1;
5385 }
5386 
5387 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
5388 static int drbd_do_auth(struct drbd_connection *connection)
5389 {
5390 	drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5391 	drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5392 	return -1;
5393 }
5394 #else
5395 #define CHALLENGE_LEN 64
5396 
5397 /* Return value:
5398 	1 - auth succeeded,
5399 	0 - failed, try again (network error),
5400 	-1 - auth failed, don't try again.
5401 */
5402 
5403 static int drbd_do_auth(struct drbd_connection *connection)
5404 {
5405 	struct drbd_socket *sock;
5406 	char my_challenge[CHALLENGE_LEN];  /* 64 Bytes... */
5407 	char *response = NULL;
5408 	char *right_response = NULL;
5409 	char *peers_ch = NULL;
5410 	unsigned int key_len;
5411 	char secret[SHARED_SECRET_MAX]; /* 64 byte */
5412 	unsigned int resp_size;
5413 	struct shash_desc *desc;
5414 	struct packet_info pi;
5415 	struct net_conf *nc;
5416 	int err, rv;
5417 
5418 	/* FIXME: Put the challenge/response into the preallocated socket buffer.  */
5419 
5420 	rcu_read_lock();
5421 	nc = rcu_dereference(connection->net_conf);
5422 	key_len = strlen(nc->shared_secret);
5423 	memcpy(secret, nc->shared_secret, key_len);
5424 	rcu_read_unlock();
5425 
5426 	desc = kmalloc(sizeof(struct shash_desc) +
5427 		       crypto_shash_descsize(connection->cram_hmac_tfm),
5428 		       GFP_KERNEL);
5429 	if (!desc) {
5430 		rv = -1;
5431 		goto fail;
5432 	}
5433 	desc->tfm = connection->cram_hmac_tfm;
5434 
5435 	rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5436 	if (rv) {
5437 		drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5438 		rv = -1;
5439 		goto fail;
5440 	}
5441 
5442 	get_random_bytes(my_challenge, CHALLENGE_LEN);
5443 
5444 	sock = &connection->data;
5445 	if (!conn_prepare_command(connection, sock)) {
5446 		rv = 0;
5447 		goto fail;
5448 	}
5449 	rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5450 				my_challenge, CHALLENGE_LEN);
5451 	if (!rv)
5452 		goto fail;
5453 
5454 	err = drbd_recv_header(connection, &pi);
5455 	if (err) {
5456 		rv = 0;
5457 		goto fail;
5458 	}
5459 
5460 	if (pi.cmd != P_AUTH_CHALLENGE) {
5461 		drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5462 			 cmdname(pi.cmd), pi.cmd);
5463 		rv = -1;
5464 		goto fail;
5465 	}
5466 
5467 	if (pi.size > CHALLENGE_LEN * 2) {
5468 		drbd_err(connection, "expected AuthChallenge payload too big.\n");
5469 		rv = -1;
5470 		goto fail;
5471 	}
5472 
5473 	if (pi.size < CHALLENGE_LEN) {
5474 		drbd_err(connection, "AuthChallenge payload too small.\n");
5475 		rv = -1;
5476 		goto fail;
5477 	}
5478 
5479 	peers_ch = kmalloc(pi.size, GFP_NOIO);
5480 	if (!peers_ch) {
5481 		rv = -1;
5482 		goto fail;
5483 	}
5484 
5485 	err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5486 	if (err) {
5487 		rv = 0;
5488 		goto fail;
5489 	}
5490 
5491 	if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5492 		drbd_err(connection, "Peer presented the same challenge!\n");
5493 		rv = -1;
5494 		goto fail;
5495 	}
5496 
5497 	resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5498 	response = kmalloc(resp_size, GFP_NOIO);
5499 	if (!response) {
5500 		rv = -1;
5501 		goto fail;
5502 	}
5503 
5504 	rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5505 	if (rv) {
5506 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5507 		rv = -1;
5508 		goto fail;
5509 	}
5510 
5511 	if (!conn_prepare_command(connection, sock)) {
5512 		rv = 0;
5513 		goto fail;
5514 	}
5515 	rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5516 				response, resp_size);
5517 	if (!rv)
5518 		goto fail;
5519 
5520 	err = drbd_recv_header(connection, &pi);
5521 	if (err) {
5522 		rv = 0;
5523 		goto fail;
5524 	}
5525 
5526 	if (pi.cmd != P_AUTH_RESPONSE) {
5527 		drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5528 			 cmdname(pi.cmd), pi.cmd);
5529 		rv = 0;
5530 		goto fail;
5531 	}
5532 
5533 	if (pi.size != resp_size) {
5534 		drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5535 		rv = 0;
5536 		goto fail;
5537 	}
5538 
5539 	err = drbd_recv_all_warn(connection, response , resp_size);
5540 	if (err) {
5541 		rv = 0;
5542 		goto fail;
5543 	}
5544 
5545 	right_response = kmalloc(resp_size, GFP_NOIO);
5546 	if (!right_response) {
5547 		rv = -1;
5548 		goto fail;
5549 	}
5550 
5551 	rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5552 				 right_response);
5553 	if (rv) {
5554 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5555 		rv = -1;
5556 		goto fail;
5557 	}
5558 
5559 	rv = !memcmp(response, right_response, resp_size);
5560 
5561 	if (rv)
5562 		drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5563 		     resp_size);
5564 	else
5565 		rv = -1;
5566 
5567  fail:
5568 	kfree(peers_ch);
5569 	kfree(response);
5570 	kfree(right_response);
5571 	if (desc) {
5572 		shash_desc_zero(desc);
5573 		kfree(desc);
5574 	}
5575 
5576 	return rv;
5577 }
5578 #endif
5579 
5580 int drbd_receiver(struct drbd_thread *thi)
5581 {
5582 	struct drbd_connection *connection = thi->connection;
5583 	int h;
5584 
5585 	drbd_info(connection, "receiver (re)started\n");
5586 
5587 	do {
5588 		h = conn_connect(connection);
5589 		if (h == 0) {
5590 			conn_disconnect(connection);
5591 			schedule_timeout_interruptible(HZ);
5592 		}
5593 		if (h == -1) {
5594 			drbd_warn(connection, "Discarding network configuration.\n");
5595 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5596 		}
5597 	} while (h == 0);
5598 
5599 	if (h > 0) {
5600 		blk_start_plug(&connection->receiver_plug);
5601 		drbdd(connection);
5602 		blk_finish_plug(&connection->receiver_plug);
5603 	}
5604 
5605 	conn_disconnect(connection);
5606 
5607 	drbd_info(connection, "receiver terminated\n");
5608 	return 0;
5609 }
5610 
5611 /* ********* acknowledge sender ******** */
5612 
5613 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5614 {
5615 	struct p_req_state_reply *p = pi->data;
5616 	int retcode = be32_to_cpu(p->retcode);
5617 
5618 	if (retcode >= SS_SUCCESS) {
5619 		set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5620 	} else {
5621 		set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5622 		drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5623 			 drbd_set_st_err_str(retcode), retcode);
5624 	}
5625 	wake_up(&connection->ping_wait);
5626 
5627 	return 0;
5628 }
5629 
5630 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5631 {
5632 	struct drbd_peer_device *peer_device;
5633 	struct drbd_device *device;
5634 	struct p_req_state_reply *p = pi->data;
5635 	int retcode = be32_to_cpu(p->retcode);
5636 
5637 	peer_device = conn_peer_device(connection, pi->vnr);
5638 	if (!peer_device)
5639 		return -EIO;
5640 	device = peer_device->device;
5641 
5642 	if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5643 		D_ASSERT(device, connection->agreed_pro_version < 100);
5644 		return got_conn_RqSReply(connection, pi);
5645 	}
5646 
5647 	if (retcode >= SS_SUCCESS) {
5648 		set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5649 	} else {
5650 		set_bit(CL_ST_CHG_FAIL, &device->flags);
5651 		drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5652 			drbd_set_st_err_str(retcode), retcode);
5653 	}
5654 	wake_up(&device->state_wait);
5655 
5656 	return 0;
5657 }
5658 
5659 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5660 {
5661 	return drbd_send_ping_ack(connection);
5662 
5663 }
5664 
5665 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5666 {
5667 	/* restore idle timeout */
5668 	connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5669 	if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5670 		wake_up(&connection->ping_wait);
5671 
5672 	return 0;
5673 }
5674 
5675 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5676 {
5677 	struct drbd_peer_device *peer_device;
5678 	struct drbd_device *device;
5679 	struct p_block_ack *p = pi->data;
5680 	sector_t sector = be64_to_cpu(p->sector);
5681 	int blksize = be32_to_cpu(p->blksize);
5682 
5683 	peer_device = conn_peer_device(connection, pi->vnr);
5684 	if (!peer_device)
5685 		return -EIO;
5686 	device = peer_device->device;
5687 
5688 	D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5689 
5690 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5691 
5692 	if (get_ldev(device)) {
5693 		drbd_rs_complete_io(device, sector);
5694 		drbd_set_in_sync(device, sector, blksize);
5695 		/* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5696 		device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5697 		put_ldev(device);
5698 	}
5699 	dec_rs_pending(device);
5700 	atomic_add(blksize >> 9, &device->rs_sect_in);
5701 
5702 	return 0;
5703 }
5704 
5705 static int
5706 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector,
5707 			      struct rb_root *root, const char *func,
5708 			      enum drbd_req_event what, bool missing_ok)
5709 {
5710 	struct drbd_request *req;
5711 	struct bio_and_error m;
5712 
5713 	spin_lock_irq(&device->resource->req_lock);
5714 	req = find_request(device, root, id, sector, missing_ok, func);
5715 	if (unlikely(!req)) {
5716 		spin_unlock_irq(&device->resource->req_lock);
5717 		return -EIO;
5718 	}
5719 	__req_mod(req, what, &m);
5720 	spin_unlock_irq(&device->resource->req_lock);
5721 
5722 	if (m.bio)
5723 		complete_master_bio(device, &m);
5724 	return 0;
5725 }
5726 
5727 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5728 {
5729 	struct drbd_peer_device *peer_device;
5730 	struct drbd_device *device;
5731 	struct p_block_ack *p = pi->data;
5732 	sector_t sector = be64_to_cpu(p->sector);
5733 	int blksize = be32_to_cpu(p->blksize);
5734 	enum drbd_req_event what;
5735 
5736 	peer_device = conn_peer_device(connection, pi->vnr);
5737 	if (!peer_device)
5738 		return -EIO;
5739 	device = peer_device->device;
5740 
5741 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5742 
5743 	if (p->block_id == ID_SYNCER) {
5744 		drbd_set_in_sync(device, sector, blksize);
5745 		dec_rs_pending(device);
5746 		return 0;
5747 	}
5748 	switch (pi->cmd) {
5749 	case P_RS_WRITE_ACK:
5750 		what = WRITE_ACKED_BY_PEER_AND_SIS;
5751 		break;
5752 	case P_WRITE_ACK:
5753 		what = WRITE_ACKED_BY_PEER;
5754 		break;
5755 	case P_RECV_ACK:
5756 		what = RECV_ACKED_BY_PEER;
5757 		break;
5758 	case P_SUPERSEDED:
5759 		what = CONFLICT_RESOLVED;
5760 		break;
5761 	case P_RETRY_WRITE:
5762 		what = POSTPONE_WRITE;
5763 		break;
5764 	default:
5765 		BUG();
5766 	}
5767 
5768 	return validate_req_change_req_state(device, p->block_id, sector,
5769 					     &device->write_requests, __func__,
5770 					     what, false);
5771 }
5772 
5773 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5774 {
5775 	struct drbd_peer_device *peer_device;
5776 	struct drbd_device *device;
5777 	struct p_block_ack *p = pi->data;
5778 	sector_t sector = be64_to_cpu(p->sector);
5779 	int size = be32_to_cpu(p->blksize);
5780 	int err;
5781 
5782 	peer_device = conn_peer_device(connection, pi->vnr);
5783 	if (!peer_device)
5784 		return -EIO;
5785 	device = peer_device->device;
5786 
5787 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5788 
5789 	if (p->block_id == ID_SYNCER) {
5790 		dec_rs_pending(device);
5791 		drbd_rs_failed_io(device, sector, size);
5792 		return 0;
5793 	}
5794 
5795 	err = validate_req_change_req_state(device, p->block_id, sector,
5796 					    &device->write_requests, __func__,
5797 					    NEG_ACKED, true);
5798 	if (err) {
5799 		/* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5800 		   The master bio might already be completed, therefore the
5801 		   request is no longer in the collision hash. */
5802 		/* In Protocol B we might already have got a P_RECV_ACK
5803 		   but then get a P_NEG_ACK afterwards. */
5804 		drbd_set_out_of_sync(device, sector, size);
5805 	}
5806 	return 0;
5807 }
5808 
5809 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5810 {
5811 	struct drbd_peer_device *peer_device;
5812 	struct drbd_device *device;
5813 	struct p_block_ack *p = pi->data;
5814 	sector_t sector = be64_to_cpu(p->sector);
5815 
5816 	peer_device = conn_peer_device(connection, pi->vnr);
5817 	if (!peer_device)
5818 		return -EIO;
5819 	device = peer_device->device;
5820 
5821 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5822 
5823 	drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5824 	    (unsigned long long)sector, be32_to_cpu(p->blksize));
5825 
5826 	return validate_req_change_req_state(device, p->block_id, sector,
5827 					     &device->read_requests, __func__,
5828 					     NEG_ACKED, false);
5829 }
5830 
5831 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5832 {
5833 	struct drbd_peer_device *peer_device;
5834 	struct drbd_device *device;
5835 	sector_t sector;
5836 	int size;
5837 	struct p_block_ack *p = pi->data;
5838 
5839 	peer_device = conn_peer_device(connection, pi->vnr);
5840 	if (!peer_device)
5841 		return -EIO;
5842 	device = peer_device->device;
5843 
5844 	sector = be64_to_cpu(p->sector);
5845 	size = be32_to_cpu(p->blksize);
5846 
5847 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5848 
5849 	dec_rs_pending(device);
5850 
5851 	if (get_ldev_if_state(device, D_FAILED)) {
5852 		drbd_rs_complete_io(device, sector);
5853 		switch (pi->cmd) {
5854 		case P_NEG_RS_DREPLY:
5855 			drbd_rs_failed_io(device, sector, size);
5856 			break;
5857 		case P_RS_CANCEL:
5858 			break;
5859 		default:
5860 			BUG();
5861 		}
5862 		put_ldev(device);
5863 	}
5864 
5865 	return 0;
5866 }
5867 
5868 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5869 {
5870 	struct p_barrier_ack *p = pi->data;
5871 	struct drbd_peer_device *peer_device;
5872 	int vnr;
5873 
5874 	tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5875 
5876 	rcu_read_lock();
5877 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5878 		struct drbd_device *device = peer_device->device;
5879 
5880 		if (device->state.conn == C_AHEAD &&
5881 		    atomic_read(&device->ap_in_flight) == 0 &&
5882 		    !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5883 			device->start_resync_timer.expires = jiffies + HZ;
5884 			add_timer(&device->start_resync_timer);
5885 		}
5886 	}
5887 	rcu_read_unlock();
5888 
5889 	return 0;
5890 }
5891 
5892 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5893 {
5894 	struct drbd_peer_device *peer_device;
5895 	struct drbd_device *device;
5896 	struct p_block_ack *p = pi->data;
5897 	struct drbd_device_work *dw;
5898 	sector_t sector;
5899 	int size;
5900 
5901 	peer_device = conn_peer_device(connection, pi->vnr);
5902 	if (!peer_device)
5903 		return -EIO;
5904 	device = peer_device->device;
5905 
5906 	sector = be64_to_cpu(p->sector);
5907 	size = be32_to_cpu(p->blksize);
5908 
5909 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5910 
5911 	if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5912 		drbd_ov_out_of_sync_found(device, sector, size);
5913 	else
5914 		ov_out_of_sync_print(device);
5915 
5916 	if (!get_ldev(device))
5917 		return 0;
5918 
5919 	drbd_rs_complete_io(device, sector);
5920 	dec_rs_pending(device);
5921 
5922 	--device->ov_left;
5923 
5924 	/* let's advance progress step marks only for every other megabyte */
5925 	if ((device->ov_left & 0x200) == 0x200)
5926 		drbd_advance_rs_marks(device, device->ov_left);
5927 
5928 	if (device->ov_left == 0) {
5929 		dw = kmalloc(sizeof(*dw), GFP_NOIO);
5930 		if (dw) {
5931 			dw->w.cb = w_ov_finished;
5932 			dw->device = device;
5933 			drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5934 		} else {
5935 			drbd_err(device, "kmalloc(dw) failed.");
5936 			ov_out_of_sync_print(device);
5937 			drbd_resync_finished(device);
5938 		}
5939 	}
5940 	put_ldev(device);
5941 	return 0;
5942 }
5943 
5944 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5945 {
5946 	return 0;
5947 }
5948 
5949 struct meta_sock_cmd {
5950 	size_t pkt_size;
5951 	int (*fn)(struct drbd_connection *connection, struct packet_info *);
5952 };
5953 
5954 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5955 {
5956 	long t;
5957 	struct net_conf *nc;
5958 
5959 	rcu_read_lock();
5960 	nc = rcu_dereference(connection->net_conf);
5961 	t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5962 	rcu_read_unlock();
5963 
5964 	t *= HZ;
5965 	if (ping_timeout)
5966 		t /= 10;
5967 
5968 	connection->meta.socket->sk->sk_rcvtimeo = t;
5969 }
5970 
5971 static void set_ping_timeout(struct drbd_connection *connection)
5972 {
5973 	set_rcvtimeo(connection, 1);
5974 }
5975 
5976 static void set_idle_timeout(struct drbd_connection *connection)
5977 {
5978 	set_rcvtimeo(connection, 0);
5979 }
5980 
5981 static struct meta_sock_cmd ack_receiver_tbl[] = {
5982 	[P_PING]	    = { 0, got_Ping },
5983 	[P_PING_ACK]	    = { 0, got_PingAck },
5984 	[P_RECV_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5985 	[P_WRITE_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5986 	[P_RS_WRITE_ACK]    = { sizeof(struct p_block_ack), got_BlockAck },
5987 	[P_SUPERSEDED]   = { sizeof(struct p_block_ack), got_BlockAck },
5988 	[P_NEG_ACK]	    = { sizeof(struct p_block_ack), got_NegAck },
5989 	[P_NEG_DREPLY]	    = { sizeof(struct p_block_ack), got_NegDReply },
5990 	[P_NEG_RS_DREPLY]   = { sizeof(struct p_block_ack), got_NegRSDReply },
5991 	[P_OV_RESULT]	    = { sizeof(struct p_block_ack), got_OVResult },
5992 	[P_BARRIER_ACK]	    = { sizeof(struct p_barrier_ack), got_BarrierAck },
5993 	[P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5994 	[P_RS_IS_IN_SYNC]   = { sizeof(struct p_block_ack), got_IsInSync },
5995 	[P_DELAY_PROBE]     = { sizeof(struct p_delay_probe93), got_skip },
5996 	[P_RS_CANCEL]       = { sizeof(struct p_block_ack), got_NegRSDReply },
5997 	[P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5998 	[P_RETRY_WRITE]	    = { sizeof(struct p_block_ack), got_BlockAck },
5999 };
6000 
6001 int drbd_ack_receiver(struct drbd_thread *thi)
6002 {
6003 	struct drbd_connection *connection = thi->connection;
6004 	struct meta_sock_cmd *cmd = NULL;
6005 	struct packet_info pi;
6006 	unsigned long pre_recv_jif;
6007 	int rv;
6008 	void *buf    = connection->meta.rbuf;
6009 	int received = 0;
6010 	unsigned int header_size = drbd_header_size(connection);
6011 	int expect   = header_size;
6012 	bool ping_timeout_active = false;
6013 
6014 	sched_set_fifo_low(current);
6015 
6016 	while (get_t_state(thi) == RUNNING) {
6017 		drbd_thread_current_set_cpu(thi);
6018 
6019 		conn_reclaim_net_peer_reqs(connection);
6020 
6021 		if (test_and_clear_bit(SEND_PING, &connection->flags)) {
6022 			if (drbd_send_ping(connection)) {
6023 				drbd_err(connection, "drbd_send_ping has failed\n");
6024 				goto reconnect;
6025 			}
6026 			set_ping_timeout(connection);
6027 			ping_timeout_active = true;
6028 		}
6029 
6030 		pre_recv_jif = jiffies;
6031 		rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
6032 
6033 		/* Note:
6034 		 * -EINTR	 (on meta) we got a signal
6035 		 * -EAGAIN	 (on meta) rcvtimeo expired
6036 		 * -ECONNRESET	 other side closed the connection
6037 		 * -ERESTARTSYS  (on data) we got a signal
6038 		 * rv <  0	 other than above: unexpected error!
6039 		 * rv == expected: full header or command
6040 		 * rv <  expected: "woken" by signal during receive
6041 		 * rv == 0	 : "connection shut down by peer"
6042 		 */
6043 		if (likely(rv > 0)) {
6044 			received += rv;
6045 			buf	 += rv;
6046 		} else if (rv == 0) {
6047 			if (test_bit(DISCONNECT_SENT, &connection->flags)) {
6048 				long t;
6049 				rcu_read_lock();
6050 				t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
6051 				rcu_read_unlock();
6052 
6053 				t = wait_event_timeout(connection->ping_wait,
6054 						       connection->cstate < C_WF_REPORT_PARAMS,
6055 						       t);
6056 				if (t)
6057 					break;
6058 			}
6059 			drbd_err(connection, "meta connection shut down by peer.\n");
6060 			goto reconnect;
6061 		} else if (rv == -EAGAIN) {
6062 			/* If the data socket received something meanwhile,
6063 			 * that is good enough: peer is still alive. */
6064 			if (time_after(connection->last_received, pre_recv_jif))
6065 				continue;
6066 			if (ping_timeout_active) {
6067 				drbd_err(connection, "PingAck did not arrive in time.\n");
6068 				goto reconnect;
6069 			}
6070 			set_bit(SEND_PING, &connection->flags);
6071 			continue;
6072 		} else if (rv == -EINTR) {
6073 			/* maybe drbd_thread_stop(): the while condition will notice.
6074 			 * maybe woken for send_ping: we'll send a ping above,
6075 			 * and change the rcvtimeo */
6076 			flush_signals(current);
6077 			continue;
6078 		} else {
6079 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
6080 			goto reconnect;
6081 		}
6082 
6083 		if (received == expect && cmd == NULL) {
6084 			if (decode_header(connection, connection->meta.rbuf, &pi))
6085 				goto reconnect;
6086 			cmd = &ack_receiver_tbl[pi.cmd];
6087 			if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
6088 				drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
6089 					 cmdname(pi.cmd), pi.cmd);
6090 				goto disconnect;
6091 			}
6092 			expect = header_size + cmd->pkt_size;
6093 			if (pi.size != expect - header_size) {
6094 				drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
6095 					pi.cmd, pi.size);
6096 				goto reconnect;
6097 			}
6098 		}
6099 		if (received == expect) {
6100 			bool err;
6101 
6102 			err = cmd->fn(connection, &pi);
6103 			if (err) {
6104 				drbd_err(connection, "%ps failed\n", cmd->fn);
6105 				goto reconnect;
6106 			}
6107 
6108 			connection->last_received = jiffies;
6109 
6110 			if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
6111 				set_idle_timeout(connection);
6112 				ping_timeout_active = false;
6113 			}
6114 
6115 			buf	 = connection->meta.rbuf;
6116 			received = 0;
6117 			expect	 = header_size;
6118 			cmd	 = NULL;
6119 		}
6120 	}
6121 
6122 	if (0) {
6123 reconnect:
6124 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6125 		conn_md_sync(connection);
6126 	}
6127 	if (0) {
6128 disconnect:
6129 		conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
6130 	}
6131 
6132 	drbd_info(connection, "ack_receiver terminated\n");
6133 
6134 	return 0;
6135 }
6136 
6137 void drbd_send_acks_wf(struct work_struct *ws)
6138 {
6139 	struct drbd_peer_device *peer_device =
6140 		container_of(ws, struct drbd_peer_device, send_acks_work);
6141 	struct drbd_connection *connection = peer_device->connection;
6142 	struct drbd_device *device = peer_device->device;
6143 	struct net_conf *nc;
6144 	int tcp_cork, err;
6145 
6146 	rcu_read_lock();
6147 	nc = rcu_dereference(connection->net_conf);
6148 	tcp_cork = nc->tcp_cork;
6149 	rcu_read_unlock();
6150 
6151 	if (tcp_cork)
6152 		tcp_sock_set_cork(connection->meta.socket->sk, true);
6153 
6154 	err = drbd_finish_peer_reqs(device);
6155 	kref_put(&device->kref, drbd_destroy_device);
6156 	/* get is in drbd_endio_write_sec_final(). That is necessary to keep the
6157 	   struct work_struct send_acks_work alive, which is in the peer_device object */
6158 
6159 	if (err) {
6160 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6161 		return;
6162 	}
6163 
6164 	if (tcp_cork)
6165 		tcp_sock_set_cork(connection->meta.socket->sk, false);
6166 
6167 	return;
6168 }
6169