xref: /linux/drivers/block/drbd/drbd_receiver.c (revision 69bfec7548f4c1595bac0e3ddfc0458a5af31f4c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3    drbd_receiver.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11  */
12 
13 
14 #include <linux/module.h>
15 
16 #include <linux/uaccess.h>
17 #include <net/sock.h>
18 
19 #include <linux/drbd.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/in.h>
23 #include <linux/mm.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/slab.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/sched/signal.h>
29 #include <linux/pkt_sched.h>
30 #define __KERNEL_SYSCALLS__
31 #include <linux/unistd.h>
32 #include <linux/vmalloc.h>
33 #include <linux/random.h>
34 #include <linux/string.h>
35 #include <linux/scatterlist.h>
36 #include <linux/part_stat.h>
37 #include "drbd_int.h"
38 #include "drbd_protocol.h"
39 #include "drbd_req.h"
40 #include "drbd_vli.h"
41 
42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES)
43 
44 struct packet_info {
45 	enum drbd_packet cmd;
46 	unsigned int size;
47 	unsigned int vnr;
48 	void *data;
49 };
50 
51 enum finish_epoch {
52 	FE_STILL_LIVE,
53 	FE_DESTROYED,
54 	FE_RECYCLED,
55 };
56 
57 static int drbd_do_features(struct drbd_connection *connection);
58 static int drbd_do_auth(struct drbd_connection *connection);
59 static int drbd_disconnected(struct drbd_peer_device *);
60 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
62 static int e_end_block(struct drbd_work *, int);
63 
64 
65 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
66 
67 /*
68  * some helper functions to deal with single linked page lists,
69  * page->private being our "next" pointer.
70  */
71 
72 /* If at least n pages are linked at head, get n pages off.
73  * Otherwise, don't modify head, and return NULL.
74  * Locking is the responsibility of the caller.
75  */
76 static struct page *page_chain_del(struct page **head, int n)
77 {
78 	struct page *page;
79 	struct page *tmp;
80 
81 	BUG_ON(!n);
82 	BUG_ON(!head);
83 
84 	page = *head;
85 
86 	if (!page)
87 		return NULL;
88 
89 	while (page) {
90 		tmp = page_chain_next(page);
91 		if (--n == 0)
92 			break; /* found sufficient pages */
93 		if (tmp == NULL)
94 			/* insufficient pages, don't use any of them. */
95 			return NULL;
96 		page = tmp;
97 	}
98 
99 	/* add end of list marker for the returned list */
100 	set_page_private(page, 0);
101 	/* actual return value, and adjustment of head */
102 	page = *head;
103 	*head = tmp;
104 	return page;
105 }
106 
107 /* may be used outside of locks to find the tail of a (usually short)
108  * "private" page chain, before adding it back to a global chain head
109  * with page_chain_add() under a spinlock. */
110 static struct page *page_chain_tail(struct page *page, int *len)
111 {
112 	struct page *tmp;
113 	int i = 1;
114 	while ((tmp = page_chain_next(page))) {
115 		++i;
116 		page = tmp;
117 	}
118 	if (len)
119 		*len = i;
120 	return page;
121 }
122 
123 static int page_chain_free(struct page *page)
124 {
125 	struct page *tmp;
126 	int i = 0;
127 	page_chain_for_each_safe(page, tmp) {
128 		put_page(page);
129 		++i;
130 	}
131 	return i;
132 }
133 
134 static void page_chain_add(struct page **head,
135 		struct page *chain_first, struct page *chain_last)
136 {
137 #if 1
138 	struct page *tmp;
139 	tmp = page_chain_tail(chain_first, NULL);
140 	BUG_ON(tmp != chain_last);
141 #endif
142 
143 	/* add chain to head */
144 	set_page_private(chain_last, (unsigned long)*head);
145 	*head = chain_first;
146 }
147 
148 static struct page *__drbd_alloc_pages(struct drbd_device *device,
149 				       unsigned int number)
150 {
151 	struct page *page = NULL;
152 	struct page *tmp = NULL;
153 	unsigned int i = 0;
154 
155 	/* Yes, testing drbd_pp_vacant outside the lock is racy.
156 	 * So what. It saves a spin_lock. */
157 	if (drbd_pp_vacant >= number) {
158 		spin_lock(&drbd_pp_lock);
159 		page = page_chain_del(&drbd_pp_pool, number);
160 		if (page)
161 			drbd_pp_vacant -= number;
162 		spin_unlock(&drbd_pp_lock);
163 		if (page)
164 			return page;
165 	}
166 
167 	/* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
168 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
169 	 * which in turn might block on the other node at this very place.  */
170 	for (i = 0; i < number; i++) {
171 		tmp = alloc_page(GFP_TRY);
172 		if (!tmp)
173 			break;
174 		set_page_private(tmp, (unsigned long)page);
175 		page = tmp;
176 	}
177 
178 	if (i == number)
179 		return page;
180 
181 	/* Not enough pages immediately available this time.
182 	 * No need to jump around here, drbd_alloc_pages will retry this
183 	 * function "soon". */
184 	if (page) {
185 		tmp = page_chain_tail(page, NULL);
186 		spin_lock(&drbd_pp_lock);
187 		page_chain_add(&drbd_pp_pool, page, tmp);
188 		drbd_pp_vacant += i;
189 		spin_unlock(&drbd_pp_lock);
190 	}
191 	return NULL;
192 }
193 
194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
195 					   struct list_head *to_be_freed)
196 {
197 	struct drbd_peer_request *peer_req, *tmp;
198 
199 	/* The EEs are always appended to the end of the list. Since
200 	   they are sent in order over the wire, they have to finish
201 	   in order. As soon as we see the first not finished we can
202 	   stop to examine the list... */
203 
204 	list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
205 		if (drbd_peer_req_has_active_page(peer_req))
206 			break;
207 		list_move(&peer_req->w.list, to_be_freed);
208 	}
209 }
210 
211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
212 {
213 	LIST_HEAD(reclaimed);
214 	struct drbd_peer_request *peer_req, *t;
215 
216 	spin_lock_irq(&device->resource->req_lock);
217 	reclaim_finished_net_peer_reqs(device, &reclaimed);
218 	spin_unlock_irq(&device->resource->req_lock);
219 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
220 		drbd_free_net_peer_req(device, peer_req);
221 }
222 
223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
224 {
225 	struct drbd_peer_device *peer_device;
226 	int vnr;
227 
228 	rcu_read_lock();
229 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
230 		struct drbd_device *device = peer_device->device;
231 		if (!atomic_read(&device->pp_in_use_by_net))
232 			continue;
233 
234 		kref_get(&device->kref);
235 		rcu_read_unlock();
236 		drbd_reclaim_net_peer_reqs(device);
237 		kref_put(&device->kref, drbd_destroy_device);
238 		rcu_read_lock();
239 	}
240 	rcu_read_unlock();
241 }
242 
243 /**
244  * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
245  * @peer_device:	DRBD device.
246  * @number:		number of pages requested
247  * @retry:		whether to retry, if not enough pages are available right now
248  *
249  * Tries to allocate number pages, first from our own page pool, then from
250  * the kernel.
251  * Possibly retry until DRBD frees sufficient pages somewhere else.
252  *
253  * If this allocation would exceed the max_buffers setting, we throttle
254  * allocation (schedule_timeout) to give the system some room to breathe.
255  *
256  * We do not use max-buffers as hard limit, because it could lead to
257  * congestion and further to a distributed deadlock during online-verify or
258  * (checksum based) resync, if the max-buffers, socket buffer sizes and
259  * resync-rate settings are mis-configured.
260  *
261  * Returns a page chain linked via page->private.
262  */
263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
264 			      bool retry)
265 {
266 	struct drbd_device *device = peer_device->device;
267 	struct page *page = NULL;
268 	struct net_conf *nc;
269 	DEFINE_WAIT(wait);
270 	unsigned int mxb;
271 
272 	rcu_read_lock();
273 	nc = rcu_dereference(peer_device->connection->net_conf);
274 	mxb = nc ? nc->max_buffers : 1000000;
275 	rcu_read_unlock();
276 
277 	if (atomic_read(&device->pp_in_use) < mxb)
278 		page = __drbd_alloc_pages(device, number);
279 
280 	/* Try to keep the fast path fast, but occasionally we need
281 	 * to reclaim the pages we lended to the network stack. */
282 	if (page && atomic_read(&device->pp_in_use_by_net) > 512)
283 		drbd_reclaim_net_peer_reqs(device);
284 
285 	while (page == NULL) {
286 		prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
287 
288 		drbd_reclaim_net_peer_reqs(device);
289 
290 		if (atomic_read(&device->pp_in_use) < mxb) {
291 			page = __drbd_alloc_pages(device, number);
292 			if (page)
293 				break;
294 		}
295 
296 		if (!retry)
297 			break;
298 
299 		if (signal_pending(current)) {
300 			drbd_warn(device, "drbd_alloc_pages interrupted!\n");
301 			break;
302 		}
303 
304 		if (schedule_timeout(HZ/10) == 0)
305 			mxb = UINT_MAX;
306 	}
307 	finish_wait(&drbd_pp_wait, &wait);
308 
309 	if (page)
310 		atomic_add(number, &device->pp_in_use);
311 	return page;
312 }
313 
314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
315  * Is also used from inside an other spin_lock_irq(&resource->req_lock);
316  * Either links the page chain back to the global pool,
317  * or returns all pages to the system. */
318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
319 {
320 	atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
321 	int i;
322 
323 	if (page == NULL)
324 		return;
325 
326 	if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count)
327 		i = page_chain_free(page);
328 	else {
329 		struct page *tmp;
330 		tmp = page_chain_tail(page, &i);
331 		spin_lock(&drbd_pp_lock);
332 		page_chain_add(&drbd_pp_pool, page, tmp);
333 		drbd_pp_vacant += i;
334 		spin_unlock(&drbd_pp_lock);
335 	}
336 	i = atomic_sub_return(i, a);
337 	if (i < 0)
338 		drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
339 			is_net ? "pp_in_use_by_net" : "pp_in_use", i);
340 	wake_up(&drbd_pp_wait);
341 }
342 
343 /*
344 You need to hold the req_lock:
345  _drbd_wait_ee_list_empty()
346 
347 You must not have the req_lock:
348  drbd_free_peer_req()
349  drbd_alloc_peer_req()
350  drbd_free_peer_reqs()
351  drbd_ee_fix_bhs()
352  drbd_finish_peer_reqs()
353  drbd_clear_done_ee()
354  drbd_wait_ee_list_empty()
355 */
356 
357 /* normal: payload_size == request size (bi_size)
358  * w_same: payload_size == logical_block_size
359  * trim: payload_size == 0 */
360 struct drbd_peer_request *
361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
362 		    unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
363 {
364 	struct drbd_device *device = peer_device->device;
365 	struct drbd_peer_request *peer_req;
366 	struct page *page = NULL;
367 	unsigned int nr_pages = PFN_UP(payload_size);
368 
369 	if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
370 		return NULL;
371 
372 	peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
373 	if (!peer_req) {
374 		if (!(gfp_mask & __GFP_NOWARN))
375 			drbd_err(device, "%s: allocation failed\n", __func__);
376 		return NULL;
377 	}
378 
379 	if (nr_pages) {
380 		page = drbd_alloc_pages(peer_device, nr_pages,
381 					gfpflags_allow_blocking(gfp_mask));
382 		if (!page)
383 			goto fail;
384 	}
385 
386 	memset(peer_req, 0, sizeof(*peer_req));
387 	INIT_LIST_HEAD(&peer_req->w.list);
388 	drbd_clear_interval(&peer_req->i);
389 	peer_req->i.size = request_size;
390 	peer_req->i.sector = sector;
391 	peer_req->submit_jif = jiffies;
392 	peer_req->peer_device = peer_device;
393 	peer_req->pages = page;
394 	/*
395 	 * The block_id is opaque to the receiver.  It is not endianness
396 	 * converted, and sent back to the sender unchanged.
397 	 */
398 	peer_req->block_id = id;
399 
400 	return peer_req;
401 
402  fail:
403 	mempool_free(peer_req, &drbd_ee_mempool);
404 	return NULL;
405 }
406 
407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
408 		       int is_net)
409 {
410 	might_sleep();
411 	if (peer_req->flags & EE_HAS_DIGEST)
412 		kfree(peer_req->digest);
413 	drbd_free_pages(device, peer_req->pages, is_net);
414 	D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
415 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
416 	if (!expect(device, !(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
417 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
418 		drbd_al_complete_io(device, &peer_req->i);
419 	}
420 	mempool_free(peer_req, &drbd_ee_mempool);
421 }
422 
423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
424 {
425 	LIST_HEAD(work_list);
426 	struct drbd_peer_request *peer_req, *t;
427 	int count = 0;
428 	int is_net = list == &device->net_ee;
429 
430 	spin_lock_irq(&device->resource->req_lock);
431 	list_splice_init(list, &work_list);
432 	spin_unlock_irq(&device->resource->req_lock);
433 
434 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
435 		__drbd_free_peer_req(device, peer_req, is_net);
436 		count++;
437 	}
438 	return count;
439 }
440 
441 /*
442  * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
443  */
444 static int drbd_finish_peer_reqs(struct drbd_device *device)
445 {
446 	LIST_HEAD(work_list);
447 	LIST_HEAD(reclaimed);
448 	struct drbd_peer_request *peer_req, *t;
449 	int err = 0;
450 
451 	spin_lock_irq(&device->resource->req_lock);
452 	reclaim_finished_net_peer_reqs(device, &reclaimed);
453 	list_splice_init(&device->done_ee, &work_list);
454 	spin_unlock_irq(&device->resource->req_lock);
455 
456 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
457 		drbd_free_net_peer_req(device, peer_req);
458 
459 	/* possible callbacks here:
460 	 * e_end_block, and e_end_resync_block, e_send_superseded.
461 	 * all ignore the last argument.
462 	 */
463 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
464 		int err2;
465 
466 		/* list_del not necessary, next/prev members not touched */
467 		err2 = peer_req->w.cb(&peer_req->w, !!err);
468 		if (!err)
469 			err = err2;
470 		drbd_free_peer_req(device, peer_req);
471 	}
472 	wake_up(&device->ee_wait);
473 
474 	return err;
475 }
476 
477 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
478 				     struct list_head *head)
479 {
480 	DEFINE_WAIT(wait);
481 
482 	/* avoids spin_lock/unlock
483 	 * and calling prepare_to_wait in the fast path */
484 	while (!list_empty(head)) {
485 		prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
486 		spin_unlock_irq(&device->resource->req_lock);
487 		io_schedule();
488 		finish_wait(&device->ee_wait, &wait);
489 		spin_lock_irq(&device->resource->req_lock);
490 	}
491 }
492 
493 static void drbd_wait_ee_list_empty(struct drbd_device *device,
494 				    struct list_head *head)
495 {
496 	spin_lock_irq(&device->resource->req_lock);
497 	_drbd_wait_ee_list_empty(device, head);
498 	spin_unlock_irq(&device->resource->req_lock);
499 }
500 
501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
502 {
503 	struct kvec iov = {
504 		.iov_base = buf,
505 		.iov_len = size,
506 	};
507 	struct msghdr msg = {
508 		.msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
509 	};
510 	iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, size);
511 	return sock_recvmsg(sock, &msg, msg.msg_flags);
512 }
513 
514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
515 {
516 	int rv;
517 
518 	rv = drbd_recv_short(connection->data.socket, buf, size, 0);
519 
520 	if (rv < 0) {
521 		if (rv == -ECONNRESET)
522 			drbd_info(connection, "sock was reset by peer\n");
523 		else if (rv != -ERESTARTSYS)
524 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
525 	} else if (rv == 0) {
526 		if (test_bit(DISCONNECT_SENT, &connection->flags)) {
527 			long t;
528 			rcu_read_lock();
529 			t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
530 			rcu_read_unlock();
531 
532 			t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
533 
534 			if (t)
535 				goto out;
536 		}
537 		drbd_info(connection, "sock was shut down by peer\n");
538 	}
539 
540 	if (rv != size)
541 		conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
542 
543 out:
544 	return rv;
545 }
546 
547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
548 {
549 	int err;
550 
551 	err = drbd_recv(connection, buf, size);
552 	if (err != size) {
553 		if (err >= 0)
554 			err = -EIO;
555 	} else
556 		err = 0;
557 	return err;
558 }
559 
560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
561 {
562 	int err;
563 
564 	err = drbd_recv_all(connection, buf, size);
565 	if (err && !signal_pending(current))
566 		drbd_warn(connection, "short read (expected size %d)\n", (int)size);
567 	return err;
568 }
569 
570 /* quoting tcp(7):
571  *   On individual connections, the socket buffer size must be set prior to the
572  *   listen(2) or connect(2) calls in order to have it take effect.
573  * This is our wrapper to do so.
574  */
575 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
576 		unsigned int rcv)
577 {
578 	/* open coded SO_SNDBUF, SO_RCVBUF */
579 	if (snd) {
580 		sock->sk->sk_sndbuf = snd;
581 		sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
582 	}
583 	if (rcv) {
584 		sock->sk->sk_rcvbuf = rcv;
585 		sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
586 	}
587 }
588 
589 static struct socket *drbd_try_connect(struct drbd_connection *connection)
590 {
591 	const char *what;
592 	struct socket *sock;
593 	struct sockaddr_in6 src_in6;
594 	struct sockaddr_in6 peer_in6;
595 	struct net_conf *nc;
596 	int err, peer_addr_len, my_addr_len;
597 	int sndbuf_size, rcvbuf_size, connect_int;
598 	int disconnect_on_error = 1;
599 
600 	rcu_read_lock();
601 	nc = rcu_dereference(connection->net_conf);
602 	if (!nc) {
603 		rcu_read_unlock();
604 		return NULL;
605 	}
606 	sndbuf_size = nc->sndbuf_size;
607 	rcvbuf_size = nc->rcvbuf_size;
608 	connect_int = nc->connect_int;
609 	rcu_read_unlock();
610 
611 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
612 	memcpy(&src_in6, &connection->my_addr, my_addr_len);
613 
614 	if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
615 		src_in6.sin6_port = 0;
616 	else
617 		((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
618 
619 	peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
620 	memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
621 
622 	what = "sock_create_kern";
623 	err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
624 			       SOCK_STREAM, IPPROTO_TCP, &sock);
625 	if (err < 0) {
626 		sock = NULL;
627 		goto out;
628 	}
629 
630 	sock->sk->sk_rcvtimeo =
631 	sock->sk->sk_sndtimeo = connect_int * HZ;
632 	drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
633 
634        /* explicitly bind to the configured IP as source IP
635 	*  for the outgoing connections.
636 	*  This is needed for multihomed hosts and to be
637 	*  able to use lo: interfaces for drbd.
638 	* Make sure to use 0 as port number, so linux selects
639 	*  a free one dynamically.
640 	*/
641 	what = "bind before connect";
642 	err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
643 	if (err < 0)
644 		goto out;
645 
646 	/* connect may fail, peer not yet available.
647 	 * stay C_WF_CONNECTION, don't go Disconnecting! */
648 	disconnect_on_error = 0;
649 	what = "connect";
650 	err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
651 
652 out:
653 	if (err < 0) {
654 		if (sock) {
655 			sock_release(sock);
656 			sock = NULL;
657 		}
658 		switch (-err) {
659 			/* timeout, busy, signal pending */
660 		case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
661 		case EINTR: case ERESTARTSYS:
662 			/* peer not (yet) available, network problem */
663 		case ECONNREFUSED: case ENETUNREACH:
664 		case EHOSTDOWN:    case EHOSTUNREACH:
665 			disconnect_on_error = 0;
666 			break;
667 		default:
668 			drbd_err(connection, "%s failed, err = %d\n", what, err);
669 		}
670 		if (disconnect_on_error)
671 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
672 	}
673 
674 	return sock;
675 }
676 
677 struct accept_wait_data {
678 	struct drbd_connection *connection;
679 	struct socket *s_listen;
680 	struct completion door_bell;
681 	void (*original_sk_state_change)(struct sock *sk);
682 
683 };
684 
685 static void drbd_incoming_connection(struct sock *sk)
686 {
687 	struct accept_wait_data *ad = sk->sk_user_data;
688 	void (*state_change)(struct sock *sk);
689 
690 	state_change = ad->original_sk_state_change;
691 	if (sk->sk_state == TCP_ESTABLISHED)
692 		complete(&ad->door_bell);
693 	state_change(sk);
694 }
695 
696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
697 {
698 	int err, sndbuf_size, rcvbuf_size, my_addr_len;
699 	struct sockaddr_in6 my_addr;
700 	struct socket *s_listen;
701 	struct net_conf *nc;
702 	const char *what;
703 
704 	rcu_read_lock();
705 	nc = rcu_dereference(connection->net_conf);
706 	if (!nc) {
707 		rcu_read_unlock();
708 		return -EIO;
709 	}
710 	sndbuf_size = nc->sndbuf_size;
711 	rcvbuf_size = nc->rcvbuf_size;
712 	rcu_read_unlock();
713 
714 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
715 	memcpy(&my_addr, &connection->my_addr, my_addr_len);
716 
717 	what = "sock_create_kern";
718 	err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
719 			       SOCK_STREAM, IPPROTO_TCP, &s_listen);
720 	if (err) {
721 		s_listen = NULL;
722 		goto out;
723 	}
724 
725 	s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
726 	drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
727 
728 	what = "bind before listen";
729 	err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
730 	if (err < 0)
731 		goto out;
732 
733 	ad->s_listen = s_listen;
734 	write_lock_bh(&s_listen->sk->sk_callback_lock);
735 	ad->original_sk_state_change = s_listen->sk->sk_state_change;
736 	s_listen->sk->sk_state_change = drbd_incoming_connection;
737 	s_listen->sk->sk_user_data = ad;
738 	write_unlock_bh(&s_listen->sk->sk_callback_lock);
739 
740 	what = "listen";
741 	err = s_listen->ops->listen(s_listen, 5);
742 	if (err < 0)
743 		goto out;
744 
745 	return 0;
746 out:
747 	if (s_listen)
748 		sock_release(s_listen);
749 	if (err < 0) {
750 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
751 			drbd_err(connection, "%s failed, err = %d\n", what, err);
752 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
753 		}
754 	}
755 
756 	return -EIO;
757 }
758 
759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
760 {
761 	write_lock_bh(&sk->sk_callback_lock);
762 	sk->sk_state_change = ad->original_sk_state_change;
763 	sk->sk_user_data = NULL;
764 	write_unlock_bh(&sk->sk_callback_lock);
765 }
766 
767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
768 {
769 	int timeo, connect_int, err = 0;
770 	struct socket *s_estab = NULL;
771 	struct net_conf *nc;
772 
773 	rcu_read_lock();
774 	nc = rcu_dereference(connection->net_conf);
775 	if (!nc) {
776 		rcu_read_unlock();
777 		return NULL;
778 	}
779 	connect_int = nc->connect_int;
780 	rcu_read_unlock();
781 
782 	timeo = connect_int * HZ;
783 	/* 28.5% random jitter */
784 	timeo += get_random_u32_below(2) ? timeo / 7 : -timeo / 7;
785 
786 	err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
787 	if (err <= 0)
788 		return NULL;
789 
790 	err = kernel_accept(ad->s_listen, &s_estab, 0);
791 	if (err < 0) {
792 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
793 			drbd_err(connection, "accept failed, err = %d\n", err);
794 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
795 		}
796 	}
797 
798 	if (s_estab)
799 		unregister_state_change(s_estab->sk, ad);
800 
801 	return s_estab;
802 }
803 
804 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
805 
806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
807 			     enum drbd_packet cmd)
808 {
809 	if (!conn_prepare_command(connection, sock))
810 		return -EIO;
811 	return conn_send_command(connection, sock, cmd, 0, NULL, 0);
812 }
813 
814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
815 {
816 	unsigned int header_size = drbd_header_size(connection);
817 	struct packet_info pi;
818 	struct net_conf *nc;
819 	int err;
820 
821 	rcu_read_lock();
822 	nc = rcu_dereference(connection->net_conf);
823 	if (!nc) {
824 		rcu_read_unlock();
825 		return -EIO;
826 	}
827 	sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
828 	rcu_read_unlock();
829 
830 	err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
831 	if (err != header_size) {
832 		if (err >= 0)
833 			err = -EIO;
834 		return err;
835 	}
836 	err = decode_header(connection, connection->data.rbuf, &pi);
837 	if (err)
838 		return err;
839 	return pi.cmd;
840 }
841 
842 /**
843  * drbd_socket_okay() - Free the socket if its connection is not okay
844  * @sock:	pointer to the pointer to the socket.
845  */
846 static bool drbd_socket_okay(struct socket **sock)
847 {
848 	int rr;
849 	char tb[4];
850 
851 	if (!*sock)
852 		return false;
853 
854 	rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
855 
856 	if (rr > 0 || rr == -EAGAIN) {
857 		return true;
858 	} else {
859 		sock_release(*sock);
860 		*sock = NULL;
861 		return false;
862 	}
863 }
864 
865 static bool connection_established(struct drbd_connection *connection,
866 				   struct socket **sock1,
867 				   struct socket **sock2)
868 {
869 	struct net_conf *nc;
870 	int timeout;
871 	bool ok;
872 
873 	if (!*sock1 || !*sock2)
874 		return false;
875 
876 	rcu_read_lock();
877 	nc = rcu_dereference(connection->net_conf);
878 	timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
879 	rcu_read_unlock();
880 	schedule_timeout_interruptible(timeout);
881 
882 	ok = drbd_socket_okay(sock1);
883 	ok = drbd_socket_okay(sock2) && ok;
884 
885 	return ok;
886 }
887 
888 /* Gets called if a connection is established, or if a new minor gets created
889    in a connection */
890 int drbd_connected(struct drbd_peer_device *peer_device)
891 {
892 	struct drbd_device *device = peer_device->device;
893 	int err;
894 
895 	atomic_set(&device->packet_seq, 0);
896 	device->peer_seq = 0;
897 
898 	device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
899 		&peer_device->connection->cstate_mutex :
900 		&device->own_state_mutex;
901 
902 	err = drbd_send_sync_param(peer_device);
903 	if (!err)
904 		err = drbd_send_sizes(peer_device, 0, 0);
905 	if (!err)
906 		err = drbd_send_uuids(peer_device);
907 	if (!err)
908 		err = drbd_send_current_state(peer_device);
909 	clear_bit(USE_DEGR_WFC_T, &device->flags);
910 	clear_bit(RESIZE_PENDING, &device->flags);
911 	atomic_set(&device->ap_in_flight, 0);
912 	mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
913 	return err;
914 }
915 
916 /*
917  * return values:
918  *   1 yes, we have a valid connection
919  *   0 oops, did not work out, please try again
920  *  -1 peer talks different language,
921  *     no point in trying again, please go standalone.
922  *  -2 We do not have a network config...
923  */
924 static int conn_connect(struct drbd_connection *connection)
925 {
926 	struct drbd_socket sock, msock;
927 	struct drbd_peer_device *peer_device;
928 	struct net_conf *nc;
929 	int vnr, timeout, h;
930 	bool discard_my_data, ok;
931 	enum drbd_state_rv rv;
932 	struct accept_wait_data ad = {
933 		.connection = connection,
934 		.door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
935 	};
936 
937 	clear_bit(DISCONNECT_SENT, &connection->flags);
938 	if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
939 		return -2;
940 
941 	mutex_init(&sock.mutex);
942 	sock.sbuf = connection->data.sbuf;
943 	sock.rbuf = connection->data.rbuf;
944 	sock.socket = NULL;
945 	mutex_init(&msock.mutex);
946 	msock.sbuf = connection->meta.sbuf;
947 	msock.rbuf = connection->meta.rbuf;
948 	msock.socket = NULL;
949 
950 	/* Assume that the peer only understands protocol 80 until we know better.  */
951 	connection->agreed_pro_version = 80;
952 
953 	if (prepare_listen_socket(connection, &ad))
954 		return 0;
955 
956 	do {
957 		struct socket *s;
958 
959 		s = drbd_try_connect(connection);
960 		if (s) {
961 			if (!sock.socket) {
962 				sock.socket = s;
963 				send_first_packet(connection, &sock, P_INITIAL_DATA);
964 			} else if (!msock.socket) {
965 				clear_bit(RESOLVE_CONFLICTS, &connection->flags);
966 				msock.socket = s;
967 				send_first_packet(connection, &msock, P_INITIAL_META);
968 			} else {
969 				drbd_err(connection, "Logic error in conn_connect()\n");
970 				goto out_release_sockets;
971 			}
972 		}
973 
974 		if (connection_established(connection, &sock.socket, &msock.socket))
975 			break;
976 
977 retry:
978 		s = drbd_wait_for_connect(connection, &ad);
979 		if (s) {
980 			int fp = receive_first_packet(connection, s);
981 			drbd_socket_okay(&sock.socket);
982 			drbd_socket_okay(&msock.socket);
983 			switch (fp) {
984 			case P_INITIAL_DATA:
985 				if (sock.socket) {
986 					drbd_warn(connection, "initial packet S crossed\n");
987 					sock_release(sock.socket);
988 					sock.socket = s;
989 					goto randomize;
990 				}
991 				sock.socket = s;
992 				break;
993 			case P_INITIAL_META:
994 				set_bit(RESOLVE_CONFLICTS, &connection->flags);
995 				if (msock.socket) {
996 					drbd_warn(connection, "initial packet M crossed\n");
997 					sock_release(msock.socket);
998 					msock.socket = s;
999 					goto randomize;
1000 				}
1001 				msock.socket = s;
1002 				break;
1003 			default:
1004 				drbd_warn(connection, "Error receiving initial packet\n");
1005 				sock_release(s);
1006 randomize:
1007 				if (get_random_u32_below(2))
1008 					goto retry;
1009 			}
1010 		}
1011 
1012 		if (connection->cstate <= C_DISCONNECTING)
1013 			goto out_release_sockets;
1014 		if (signal_pending(current)) {
1015 			flush_signals(current);
1016 			smp_rmb();
1017 			if (get_t_state(&connection->receiver) == EXITING)
1018 				goto out_release_sockets;
1019 		}
1020 
1021 		ok = connection_established(connection, &sock.socket, &msock.socket);
1022 	} while (!ok);
1023 
1024 	if (ad.s_listen)
1025 		sock_release(ad.s_listen);
1026 
1027 	sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1028 	msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1029 
1030 	sock.socket->sk->sk_allocation = GFP_NOIO;
1031 	msock.socket->sk->sk_allocation = GFP_NOIO;
1032 
1033 	sock.socket->sk->sk_use_task_frag = false;
1034 	msock.socket->sk->sk_use_task_frag = false;
1035 
1036 	sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1037 	msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1038 
1039 	/* NOT YET ...
1040 	 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1041 	 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1042 	 * first set it to the P_CONNECTION_FEATURES timeout,
1043 	 * which we set to 4x the configured ping_timeout. */
1044 	rcu_read_lock();
1045 	nc = rcu_dereference(connection->net_conf);
1046 
1047 	sock.socket->sk->sk_sndtimeo =
1048 	sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1049 
1050 	msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1051 	timeout = nc->timeout * HZ / 10;
1052 	discard_my_data = nc->discard_my_data;
1053 	rcu_read_unlock();
1054 
1055 	msock.socket->sk->sk_sndtimeo = timeout;
1056 
1057 	/* we don't want delays.
1058 	 * we use TCP_CORK where appropriate, though */
1059 	tcp_sock_set_nodelay(sock.socket->sk);
1060 	tcp_sock_set_nodelay(msock.socket->sk);
1061 
1062 	connection->data.socket = sock.socket;
1063 	connection->meta.socket = msock.socket;
1064 	connection->last_received = jiffies;
1065 
1066 	h = drbd_do_features(connection);
1067 	if (h <= 0)
1068 		return h;
1069 
1070 	if (connection->cram_hmac_tfm) {
1071 		/* drbd_request_state(device, NS(conn, WFAuth)); */
1072 		switch (drbd_do_auth(connection)) {
1073 		case -1:
1074 			drbd_err(connection, "Authentication of peer failed\n");
1075 			return -1;
1076 		case 0:
1077 			drbd_err(connection, "Authentication of peer failed, trying again.\n");
1078 			return 0;
1079 		}
1080 	}
1081 
1082 	connection->data.socket->sk->sk_sndtimeo = timeout;
1083 	connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1084 
1085 	if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1086 		return -1;
1087 
1088 	/* Prevent a race between resync-handshake and
1089 	 * being promoted to Primary.
1090 	 *
1091 	 * Grab and release the state mutex, so we know that any current
1092 	 * drbd_set_role() is finished, and any incoming drbd_set_role
1093 	 * will see the STATE_SENT flag, and wait for it to be cleared.
1094 	 */
1095 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1096 		mutex_lock(peer_device->device->state_mutex);
1097 
1098 	/* avoid a race with conn_request_state( C_DISCONNECTING ) */
1099 	spin_lock_irq(&connection->resource->req_lock);
1100 	set_bit(STATE_SENT, &connection->flags);
1101 	spin_unlock_irq(&connection->resource->req_lock);
1102 
1103 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1104 		mutex_unlock(peer_device->device->state_mutex);
1105 
1106 	rcu_read_lock();
1107 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1108 		struct drbd_device *device = peer_device->device;
1109 		kref_get(&device->kref);
1110 		rcu_read_unlock();
1111 
1112 		if (discard_my_data)
1113 			set_bit(DISCARD_MY_DATA, &device->flags);
1114 		else
1115 			clear_bit(DISCARD_MY_DATA, &device->flags);
1116 
1117 		drbd_connected(peer_device);
1118 		kref_put(&device->kref, drbd_destroy_device);
1119 		rcu_read_lock();
1120 	}
1121 	rcu_read_unlock();
1122 
1123 	rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1124 	if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1125 		clear_bit(STATE_SENT, &connection->flags);
1126 		return 0;
1127 	}
1128 
1129 	drbd_thread_start(&connection->ack_receiver);
1130 	/* opencoded create_singlethread_workqueue(),
1131 	 * to be able to use format string arguments */
1132 	connection->ack_sender =
1133 		alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1134 	if (!connection->ack_sender) {
1135 		drbd_err(connection, "Failed to create workqueue ack_sender\n");
1136 		return 0;
1137 	}
1138 
1139 	mutex_lock(&connection->resource->conf_update);
1140 	/* The discard_my_data flag is a single-shot modifier to the next
1141 	 * connection attempt, the handshake of which is now well underway.
1142 	 * No need for rcu style copying of the whole struct
1143 	 * just to clear a single value. */
1144 	connection->net_conf->discard_my_data = 0;
1145 	mutex_unlock(&connection->resource->conf_update);
1146 
1147 	return h;
1148 
1149 out_release_sockets:
1150 	if (ad.s_listen)
1151 		sock_release(ad.s_listen);
1152 	if (sock.socket)
1153 		sock_release(sock.socket);
1154 	if (msock.socket)
1155 		sock_release(msock.socket);
1156 	return -1;
1157 }
1158 
1159 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1160 {
1161 	unsigned int header_size = drbd_header_size(connection);
1162 
1163 	if (header_size == sizeof(struct p_header100) &&
1164 	    *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1165 		struct p_header100 *h = header;
1166 		if (h->pad != 0) {
1167 			drbd_err(connection, "Header padding is not zero\n");
1168 			return -EINVAL;
1169 		}
1170 		pi->vnr = be16_to_cpu(h->volume);
1171 		pi->cmd = be16_to_cpu(h->command);
1172 		pi->size = be32_to_cpu(h->length);
1173 	} else if (header_size == sizeof(struct p_header95) &&
1174 		   *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1175 		struct p_header95 *h = header;
1176 		pi->cmd = be16_to_cpu(h->command);
1177 		pi->size = be32_to_cpu(h->length);
1178 		pi->vnr = 0;
1179 	} else if (header_size == sizeof(struct p_header80) &&
1180 		   *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1181 		struct p_header80 *h = header;
1182 		pi->cmd = be16_to_cpu(h->command);
1183 		pi->size = be16_to_cpu(h->length);
1184 		pi->vnr = 0;
1185 	} else {
1186 		drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1187 			 be32_to_cpu(*(__be32 *)header),
1188 			 connection->agreed_pro_version);
1189 		return -EINVAL;
1190 	}
1191 	pi->data = header + header_size;
1192 	return 0;
1193 }
1194 
1195 static void drbd_unplug_all_devices(struct drbd_connection *connection)
1196 {
1197 	if (current->plug == &connection->receiver_plug) {
1198 		blk_finish_plug(&connection->receiver_plug);
1199 		blk_start_plug(&connection->receiver_plug);
1200 	} /* else: maybe just schedule() ?? */
1201 }
1202 
1203 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1204 {
1205 	void *buffer = connection->data.rbuf;
1206 	int err;
1207 
1208 	err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1209 	if (err)
1210 		return err;
1211 
1212 	err = decode_header(connection, buffer, pi);
1213 	connection->last_received = jiffies;
1214 
1215 	return err;
1216 }
1217 
1218 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi)
1219 {
1220 	void *buffer = connection->data.rbuf;
1221 	unsigned int size = drbd_header_size(connection);
1222 	int err;
1223 
1224 	err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT);
1225 	if (err != size) {
1226 		/* If we have nothing in the receive buffer now, to reduce
1227 		 * application latency, try to drain the backend queues as
1228 		 * quickly as possible, and let remote TCP know what we have
1229 		 * received so far. */
1230 		if (err == -EAGAIN) {
1231 			tcp_sock_set_quickack(connection->data.socket->sk, 2);
1232 			drbd_unplug_all_devices(connection);
1233 		}
1234 		if (err > 0) {
1235 			buffer += err;
1236 			size -= err;
1237 		}
1238 		err = drbd_recv_all_warn(connection, buffer, size);
1239 		if (err)
1240 			return err;
1241 	}
1242 
1243 	err = decode_header(connection, connection->data.rbuf, pi);
1244 	connection->last_received = jiffies;
1245 
1246 	return err;
1247 }
1248 /* This is blkdev_issue_flush, but asynchronous.
1249  * We want to submit to all component volumes in parallel,
1250  * then wait for all completions.
1251  */
1252 struct issue_flush_context {
1253 	atomic_t pending;
1254 	int error;
1255 	struct completion done;
1256 };
1257 struct one_flush_context {
1258 	struct drbd_device *device;
1259 	struct issue_flush_context *ctx;
1260 };
1261 
1262 static void one_flush_endio(struct bio *bio)
1263 {
1264 	struct one_flush_context *octx = bio->bi_private;
1265 	struct drbd_device *device = octx->device;
1266 	struct issue_flush_context *ctx = octx->ctx;
1267 
1268 	if (bio->bi_status) {
1269 		ctx->error = blk_status_to_errno(bio->bi_status);
1270 		drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status);
1271 	}
1272 	kfree(octx);
1273 	bio_put(bio);
1274 
1275 	clear_bit(FLUSH_PENDING, &device->flags);
1276 	put_ldev(device);
1277 	kref_put(&device->kref, drbd_destroy_device);
1278 
1279 	if (atomic_dec_and_test(&ctx->pending))
1280 		complete(&ctx->done);
1281 }
1282 
1283 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1284 {
1285 	struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0,
1286 				    REQ_OP_FLUSH | REQ_PREFLUSH, GFP_NOIO);
1287 	struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1288 
1289 	if (!octx) {
1290 		drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n");
1291 		/* FIXME: what else can I do now?  disconnecting or detaching
1292 		 * really does not help to improve the state of the world, either.
1293 		 */
1294 		bio_put(bio);
1295 
1296 		ctx->error = -ENOMEM;
1297 		put_ldev(device);
1298 		kref_put(&device->kref, drbd_destroy_device);
1299 		return;
1300 	}
1301 
1302 	octx->device = device;
1303 	octx->ctx = ctx;
1304 	bio->bi_private = octx;
1305 	bio->bi_end_io = one_flush_endio;
1306 
1307 	device->flush_jif = jiffies;
1308 	set_bit(FLUSH_PENDING, &device->flags);
1309 	atomic_inc(&ctx->pending);
1310 	submit_bio(bio);
1311 }
1312 
1313 static void drbd_flush(struct drbd_connection *connection)
1314 {
1315 	if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1316 		struct drbd_peer_device *peer_device;
1317 		struct issue_flush_context ctx;
1318 		int vnr;
1319 
1320 		atomic_set(&ctx.pending, 1);
1321 		ctx.error = 0;
1322 		init_completion(&ctx.done);
1323 
1324 		rcu_read_lock();
1325 		idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1326 			struct drbd_device *device = peer_device->device;
1327 
1328 			if (!get_ldev(device))
1329 				continue;
1330 			kref_get(&device->kref);
1331 			rcu_read_unlock();
1332 
1333 			submit_one_flush(device, &ctx);
1334 
1335 			rcu_read_lock();
1336 		}
1337 		rcu_read_unlock();
1338 
1339 		/* Do we want to add a timeout,
1340 		 * if disk-timeout is set? */
1341 		if (!atomic_dec_and_test(&ctx.pending))
1342 			wait_for_completion(&ctx.done);
1343 
1344 		if (ctx.error) {
1345 			/* would rather check on EOPNOTSUPP, but that is not reliable.
1346 			 * don't try again for ANY return value != 0
1347 			 * if (rv == -EOPNOTSUPP) */
1348 			/* Any error is already reported by bio_endio callback. */
1349 			drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1350 		}
1351 	}
1352 }
1353 
1354 /**
1355  * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1356  * @connection:	DRBD connection.
1357  * @epoch:	Epoch object.
1358  * @ev:		Epoch event.
1359  */
1360 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1361 					       struct drbd_epoch *epoch,
1362 					       enum epoch_event ev)
1363 {
1364 	int epoch_size;
1365 	struct drbd_epoch *next_epoch;
1366 	enum finish_epoch rv = FE_STILL_LIVE;
1367 
1368 	spin_lock(&connection->epoch_lock);
1369 	do {
1370 		next_epoch = NULL;
1371 
1372 		epoch_size = atomic_read(&epoch->epoch_size);
1373 
1374 		switch (ev & ~EV_CLEANUP) {
1375 		case EV_PUT:
1376 			atomic_dec(&epoch->active);
1377 			break;
1378 		case EV_GOT_BARRIER_NR:
1379 			set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1380 			break;
1381 		case EV_BECAME_LAST:
1382 			/* nothing to do*/
1383 			break;
1384 		}
1385 
1386 		if (epoch_size != 0 &&
1387 		    atomic_read(&epoch->active) == 0 &&
1388 		    (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1389 			if (!(ev & EV_CLEANUP)) {
1390 				spin_unlock(&connection->epoch_lock);
1391 				drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1392 				spin_lock(&connection->epoch_lock);
1393 			}
1394 #if 0
1395 			/* FIXME: dec unacked on connection, once we have
1396 			 * something to count pending connection packets in. */
1397 			if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1398 				dec_unacked(epoch->connection);
1399 #endif
1400 
1401 			if (connection->current_epoch != epoch) {
1402 				next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1403 				list_del(&epoch->list);
1404 				ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1405 				connection->epochs--;
1406 				kfree(epoch);
1407 
1408 				if (rv == FE_STILL_LIVE)
1409 					rv = FE_DESTROYED;
1410 			} else {
1411 				epoch->flags = 0;
1412 				atomic_set(&epoch->epoch_size, 0);
1413 				/* atomic_set(&epoch->active, 0); is already zero */
1414 				if (rv == FE_STILL_LIVE)
1415 					rv = FE_RECYCLED;
1416 			}
1417 		}
1418 
1419 		if (!next_epoch)
1420 			break;
1421 
1422 		epoch = next_epoch;
1423 	} while (1);
1424 
1425 	spin_unlock(&connection->epoch_lock);
1426 
1427 	return rv;
1428 }
1429 
1430 static enum write_ordering_e
1431 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1432 {
1433 	struct disk_conf *dc;
1434 
1435 	dc = rcu_dereference(bdev->disk_conf);
1436 
1437 	if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1438 		wo = WO_DRAIN_IO;
1439 	if (wo == WO_DRAIN_IO && !dc->disk_drain)
1440 		wo = WO_NONE;
1441 
1442 	return wo;
1443 }
1444 
1445 /*
1446  * drbd_bump_write_ordering() - Fall back to an other write ordering method
1447  * @wo:		Write ordering method to try.
1448  */
1449 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1450 			      enum write_ordering_e wo)
1451 {
1452 	struct drbd_device *device;
1453 	enum write_ordering_e pwo;
1454 	int vnr;
1455 	static char *write_ordering_str[] = {
1456 		[WO_NONE] = "none",
1457 		[WO_DRAIN_IO] = "drain",
1458 		[WO_BDEV_FLUSH] = "flush",
1459 	};
1460 
1461 	pwo = resource->write_ordering;
1462 	if (wo != WO_BDEV_FLUSH)
1463 		wo = min(pwo, wo);
1464 	rcu_read_lock();
1465 	idr_for_each_entry(&resource->devices, device, vnr) {
1466 		if (get_ldev(device)) {
1467 			wo = max_allowed_wo(device->ldev, wo);
1468 			if (device->ldev == bdev)
1469 				bdev = NULL;
1470 			put_ldev(device);
1471 		}
1472 	}
1473 
1474 	if (bdev)
1475 		wo = max_allowed_wo(bdev, wo);
1476 
1477 	rcu_read_unlock();
1478 
1479 	resource->write_ordering = wo;
1480 	if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1481 		drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1482 }
1483 
1484 /*
1485  * Mapping "discard" to ZEROOUT with UNMAP does not work for us:
1486  * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it
1487  * will directly go to fallback mode, submitting normal writes, and
1488  * never even try to UNMAP.
1489  *
1490  * And dm-thin does not do this (yet), mostly because in general it has
1491  * to assume that "skip_block_zeroing" is set.  See also:
1492  * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html
1493  * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html
1494  *
1495  * We *may* ignore the discard-zeroes-data setting, if so configured.
1496  *
1497  * Assumption is that this "discard_zeroes_data=0" is only because the backend
1498  * may ignore partial unaligned discards.
1499  *
1500  * LVM/DM thin as of at least
1501  *   LVM version:     2.02.115(2)-RHEL7 (2015-01-28)
1502  *   Library version: 1.02.93-RHEL7 (2015-01-28)
1503  *   Driver version:  4.29.0
1504  * still behaves this way.
1505  *
1506  * For unaligned (wrt. alignment and granularity) or too small discards,
1507  * we zero-out the initial (and/or) trailing unaligned partial chunks,
1508  * but discard all the aligned full chunks.
1509  *
1510  * At least for LVM/DM thin, with skip_block_zeroing=false,
1511  * the result is effectively "discard_zeroes_data=1".
1512  */
1513 /* flags: EE_TRIM|EE_ZEROOUT */
1514 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags)
1515 {
1516 	struct block_device *bdev = device->ldev->backing_bdev;
1517 	sector_t tmp, nr;
1518 	unsigned int max_discard_sectors, granularity;
1519 	int alignment;
1520 	int err = 0;
1521 
1522 	if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM))
1523 		goto zero_out;
1524 
1525 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
1526 	granularity = max(bdev_discard_granularity(bdev) >> 9, 1U);
1527 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
1528 
1529 	max_discard_sectors = min(bdev_max_discard_sectors(bdev), (1U << 22));
1530 	max_discard_sectors -= max_discard_sectors % granularity;
1531 	if (unlikely(!max_discard_sectors))
1532 		goto zero_out;
1533 
1534 	if (nr_sectors < granularity)
1535 		goto zero_out;
1536 
1537 	tmp = start;
1538 	if (sector_div(tmp, granularity) != alignment) {
1539 		if (nr_sectors < 2*granularity)
1540 			goto zero_out;
1541 		/* start + gran - (start + gran - align) % gran */
1542 		tmp = start + granularity - alignment;
1543 		tmp = start + granularity - sector_div(tmp, granularity);
1544 
1545 		nr = tmp - start;
1546 		/* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many
1547 		 * layers are below us, some may have smaller granularity */
1548 		err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
1549 		nr_sectors -= nr;
1550 		start = tmp;
1551 	}
1552 	while (nr_sectors >= max_discard_sectors) {
1553 		err |= blkdev_issue_discard(bdev, start, max_discard_sectors,
1554 					    GFP_NOIO);
1555 		nr_sectors -= max_discard_sectors;
1556 		start += max_discard_sectors;
1557 	}
1558 	if (nr_sectors) {
1559 		/* max_discard_sectors is unsigned int (and a multiple of
1560 		 * granularity, we made sure of that above already);
1561 		 * nr is < max_discard_sectors;
1562 		 * I don't need sector_div here, even though nr is sector_t */
1563 		nr = nr_sectors;
1564 		nr -= (unsigned int)nr % granularity;
1565 		if (nr) {
1566 			err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO);
1567 			nr_sectors -= nr;
1568 			start += nr;
1569 		}
1570 	}
1571  zero_out:
1572 	if (nr_sectors) {
1573 		err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO,
1574 				(flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP);
1575 	}
1576 	return err != 0;
1577 }
1578 
1579 static bool can_do_reliable_discards(struct drbd_device *device)
1580 {
1581 	struct disk_conf *dc;
1582 	bool can_do;
1583 
1584 	if (!bdev_max_discard_sectors(device->ldev->backing_bdev))
1585 		return false;
1586 
1587 	rcu_read_lock();
1588 	dc = rcu_dereference(device->ldev->disk_conf);
1589 	can_do = dc->discard_zeroes_if_aligned;
1590 	rcu_read_unlock();
1591 	return can_do;
1592 }
1593 
1594 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req)
1595 {
1596 	/* If the backend cannot discard, or does not guarantee
1597 	 * read-back zeroes in discarded ranges, we fall back to
1598 	 * zero-out.  Unless configuration specifically requested
1599 	 * otherwise. */
1600 	if (!can_do_reliable_discards(device))
1601 		peer_req->flags |= EE_ZEROOUT;
1602 
1603 	if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
1604 	    peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM)))
1605 		peer_req->flags |= EE_WAS_ERROR;
1606 	drbd_endio_write_sec_final(peer_req);
1607 }
1608 
1609 static int peer_request_fault_type(struct drbd_peer_request *peer_req)
1610 {
1611 	if (peer_req_op(peer_req) == REQ_OP_READ) {
1612 		return peer_req->flags & EE_APPLICATION ?
1613 			DRBD_FAULT_DT_RD : DRBD_FAULT_RS_RD;
1614 	} else {
1615 		return peer_req->flags & EE_APPLICATION ?
1616 			DRBD_FAULT_DT_WR : DRBD_FAULT_RS_WR;
1617 	}
1618 }
1619 
1620 /**
1621  * drbd_submit_peer_request()
1622  * @peer_req:	peer request
1623  *
1624  * May spread the pages to multiple bios,
1625  * depending on bio_add_page restrictions.
1626  *
1627  * Returns 0 if all bios have been submitted,
1628  * -ENOMEM if we could not allocate enough bios,
1629  * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1630  *  single page to an empty bio (which should never happen and likely indicates
1631  *  that the lower level IO stack is in some way broken). This has been observed
1632  *  on certain Xen deployments.
1633  */
1634 /* TODO allocate from our own bio_set. */
1635 int drbd_submit_peer_request(struct drbd_peer_request *peer_req)
1636 {
1637 	struct drbd_device *device = peer_req->peer_device->device;
1638 	struct bio *bios = NULL;
1639 	struct bio *bio;
1640 	struct page *page = peer_req->pages;
1641 	sector_t sector = peer_req->i.sector;
1642 	unsigned int data_size = peer_req->i.size;
1643 	unsigned int n_bios = 0;
1644 	unsigned int nr_pages = PFN_UP(data_size);
1645 
1646 	/* TRIM/DISCARD: for now, always use the helper function
1647 	 * blkdev_issue_zeroout(..., discard=true).
1648 	 * It's synchronous, but it does the right thing wrt. bio splitting.
1649 	 * Correctness first, performance later.  Next step is to code an
1650 	 * asynchronous variant of the same.
1651 	 */
1652 	if (peer_req->flags & (EE_TRIM | EE_ZEROOUT)) {
1653 		/* wait for all pending IO completions, before we start
1654 		 * zeroing things out. */
1655 		conn_wait_active_ee_empty(peer_req->peer_device->connection);
1656 		/* add it to the active list now,
1657 		 * so we can find it to present it in debugfs */
1658 		peer_req->submit_jif = jiffies;
1659 		peer_req->flags |= EE_SUBMITTED;
1660 
1661 		/* If this was a resync request from receive_rs_deallocated(),
1662 		 * it is already on the sync_ee list */
1663 		if (list_empty(&peer_req->w.list)) {
1664 			spin_lock_irq(&device->resource->req_lock);
1665 			list_add_tail(&peer_req->w.list, &device->active_ee);
1666 			spin_unlock_irq(&device->resource->req_lock);
1667 		}
1668 
1669 		drbd_issue_peer_discard_or_zero_out(device, peer_req);
1670 		return 0;
1671 	}
1672 
1673 	/* In most cases, we will only need one bio.  But in case the lower
1674 	 * level restrictions happen to be different at this offset on this
1675 	 * side than those of the sending peer, we may need to submit the
1676 	 * request in more than one bio.
1677 	 *
1678 	 * Plain bio_alloc is good enough here, this is no DRBD internally
1679 	 * generated bio, but a bio allocated on behalf of the peer.
1680 	 */
1681 next_bio:
1682 	/* _DISCARD, _WRITE_ZEROES handled above.
1683 	 * REQ_OP_FLUSH (empty flush) not expected,
1684 	 * should have been mapped to a "drbd protocol barrier".
1685 	 * REQ_OP_SECURE_ERASE: I don't see how we could ever support that.
1686 	 */
1687 	if (!(peer_req_op(peer_req) == REQ_OP_WRITE ||
1688 				peer_req_op(peer_req) == REQ_OP_READ)) {
1689 		drbd_err(device, "Invalid bio op received: 0x%x\n", peer_req->opf);
1690 		return -EINVAL;
1691 	}
1692 
1693 	bio = bio_alloc(device->ldev->backing_bdev, nr_pages, peer_req->opf, GFP_NOIO);
1694 	/* > peer_req->i.sector, unless this is the first bio */
1695 	bio->bi_iter.bi_sector = sector;
1696 	bio->bi_private = peer_req;
1697 	bio->bi_end_io = drbd_peer_request_endio;
1698 
1699 	bio->bi_next = bios;
1700 	bios = bio;
1701 	++n_bios;
1702 
1703 	page_chain_for_each(page) {
1704 		unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1705 		if (!bio_add_page(bio, page, len, 0))
1706 			goto next_bio;
1707 		data_size -= len;
1708 		sector += len >> 9;
1709 		--nr_pages;
1710 	}
1711 	D_ASSERT(device, data_size == 0);
1712 	D_ASSERT(device, page == NULL);
1713 
1714 	atomic_set(&peer_req->pending_bios, n_bios);
1715 	/* for debugfs: update timestamp, mark as submitted */
1716 	peer_req->submit_jif = jiffies;
1717 	peer_req->flags |= EE_SUBMITTED;
1718 	do {
1719 		bio = bios;
1720 		bios = bios->bi_next;
1721 		bio->bi_next = NULL;
1722 
1723 		drbd_submit_bio_noacct(device, peer_request_fault_type(peer_req), bio);
1724 	} while (bios);
1725 	return 0;
1726 }
1727 
1728 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1729 					     struct drbd_peer_request *peer_req)
1730 {
1731 	struct drbd_interval *i = &peer_req->i;
1732 
1733 	drbd_remove_interval(&device->write_requests, i);
1734 	drbd_clear_interval(i);
1735 
1736 	/* Wake up any processes waiting for this peer request to complete.  */
1737 	if (i->waiting)
1738 		wake_up(&device->misc_wait);
1739 }
1740 
1741 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1742 {
1743 	struct drbd_peer_device *peer_device;
1744 	int vnr;
1745 
1746 	rcu_read_lock();
1747 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1748 		struct drbd_device *device = peer_device->device;
1749 
1750 		kref_get(&device->kref);
1751 		rcu_read_unlock();
1752 		drbd_wait_ee_list_empty(device, &device->active_ee);
1753 		kref_put(&device->kref, drbd_destroy_device);
1754 		rcu_read_lock();
1755 	}
1756 	rcu_read_unlock();
1757 }
1758 
1759 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1760 {
1761 	int rv;
1762 	struct p_barrier *p = pi->data;
1763 	struct drbd_epoch *epoch;
1764 
1765 	/* FIXME these are unacked on connection,
1766 	 * not a specific (peer)device.
1767 	 */
1768 	connection->current_epoch->barrier_nr = p->barrier;
1769 	connection->current_epoch->connection = connection;
1770 	rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1771 
1772 	/* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1773 	 * the activity log, which means it would not be resynced in case the
1774 	 * R_PRIMARY crashes now.
1775 	 * Therefore we must send the barrier_ack after the barrier request was
1776 	 * completed. */
1777 	switch (connection->resource->write_ordering) {
1778 	case WO_NONE:
1779 		if (rv == FE_RECYCLED)
1780 			return 0;
1781 
1782 		/* receiver context, in the writeout path of the other node.
1783 		 * avoid potential distributed deadlock */
1784 		epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1785 		if (epoch)
1786 			break;
1787 		else
1788 			drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1789 		fallthrough;
1790 
1791 	case WO_BDEV_FLUSH:
1792 	case WO_DRAIN_IO:
1793 		conn_wait_active_ee_empty(connection);
1794 		drbd_flush(connection);
1795 
1796 		if (atomic_read(&connection->current_epoch->epoch_size)) {
1797 			epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1798 			if (epoch)
1799 				break;
1800 		}
1801 
1802 		return 0;
1803 	default:
1804 		drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1805 			 connection->resource->write_ordering);
1806 		return -EIO;
1807 	}
1808 
1809 	epoch->flags = 0;
1810 	atomic_set(&epoch->epoch_size, 0);
1811 	atomic_set(&epoch->active, 0);
1812 
1813 	spin_lock(&connection->epoch_lock);
1814 	if (atomic_read(&connection->current_epoch->epoch_size)) {
1815 		list_add(&epoch->list, &connection->current_epoch->list);
1816 		connection->current_epoch = epoch;
1817 		connection->epochs++;
1818 	} else {
1819 		/* The current_epoch got recycled while we allocated this one... */
1820 		kfree(epoch);
1821 	}
1822 	spin_unlock(&connection->epoch_lock);
1823 
1824 	return 0;
1825 }
1826 
1827 /* quick wrapper in case payload size != request_size (write same) */
1828 static void drbd_csum_ee_size(struct crypto_shash *h,
1829 			      struct drbd_peer_request *r, void *d,
1830 			      unsigned int payload_size)
1831 {
1832 	unsigned int tmp = r->i.size;
1833 	r->i.size = payload_size;
1834 	drbd_csum_ee(h, r, d);
1835 	r->i.size = tmp;
1836 }
1837 
1838 /* used from receive_RSDataReply (recv_resync_read)
1839  * and from receive_Data.
1840  * data_size: actual payload ("data in")
1841  * 	for normal writes that is bi_size.
1842  * 	for discards, that is zero.
1843  * 	for write same, it is logical_block_size.
1844  * both trim and write same have the bi_size ("data len to be affected")
1845  * as extra argument in the packet header.
1846  */
1847 static struct drbd_peer_request *
1848 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1849 	      struct packet_info *pi) __must_hold(local)
1850 {
1851 	struct drbd_device *device = peer_device->device;
1852 	const sector_t capacity = get_capacity(device->vdisk);
1853 	struct drbd_peer_request *peer_req;
1854 	struct page *page;
1855 	int digest_size, err;
1856 	unsigned int data_size = pi->size, ds;
1857 	void *dig_in = peer_device->connection->int_dig_in;
1858 	void *dig_vv = peer_device->connection->int_dig_vv;
1859 	unsigned long *data;
1860 	struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1861 	struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL;
1862 
1863 	digest_size = 0;
1864 	if (!trim && peer_device->connection->peer_integrity_tfm) {
1865 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1866 		/*
1867 		 * FIXME: Receive the incoming digest into the receive buffer
1868 		 *	  here, together with its struct p_data?
1869 		 */
1870 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1871 		if (err)
1872 			return NULL;
1873 		data_size -= digest_size;
1874 	}
1875 
1876 	/* assume request_size == data_size, but special case trim. */
1877 	ds = data_size;
1878 	if (trim) {
1879 		if (!expect(peer_device, data_size == 0))
1880 			return NULL;
1881 		ds = be32_to_cpu(trim->size);
1882 	} else if (zeroes) {
1883 		if (!expect(peer_device, data_size == 0))
1884 			return NULL;
1885 		ds = be32_to_cpu(zeroes->size);
1886 	}
1887 
1888 	if (!expect(peer_device, IS_ALIGNED(ds, 512)))
1889 		return NULL;
1890 	if (trim || zeroes) {
1891 		if (!expect(peer_device, ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1892 			return NULL;
1893 	} else if (!expect(peer_device, ds <= DRBD_MAX_BIO_SIZE))
1894 		return NULL;
1895 
1896 	/* even though we trust out peer,
1897 	 * we sometimes have to double check. */
1898 	if (sector + (ds>>9) > capacity) {
1899 		drbd_err(device, "request from peer beyond end of local disk: "
1900 			"capacity: %llus < sector: %llus + size: %u\n",
1901 			(unsigned long long)capacity,
1902 			(unsigned long long)sector, ds);
1903 		return NULL;
1904 	}
1905 
1906 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1907 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
1908 	 * which in turn might block on the other node at this very place.  */
1909 	peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1910 	if (!peer_req)
1911 		return NULL;
1912 
1913 	peer_req->flags |= EE_WRITE;
1914 	if (trim) {
1915 		peer_req->flags |= EE_TRIM;
1916 		return peer_req;
1917 	}
1918 	if (zeroes) {
1919 		peer_req->flags |= EE_ZEROOUT;
1920 		return peer_req;
1921 	}
1922 
1923 	/* receive payload size bytes into page chain */
1924 	ds = data_size;
1925 	page = peer_req->pages;
1926 	page_chain_for_each(page) {
1927 		unsigned len = min_t(int, ds, PAGE_SIZE);
1928 		data = kmap(page);
1929 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1930 		if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1931 			drbd_err(device, "Fault injection: Corrupting data on receive\n");
1932 			data[0] = data[0] ^ (unsigned long)-1;
1933 		}
1934 		kunmap(page);
1935 		if (err) {
1936 			drbd_free_peer_req(device, peer_req);
1937 			return NULL;
1938 		}
1939 		ds -= len;
1940 	}
1941 
1942 	if (digest_size) {
1943 		drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1944 		if (memcmp(dig_in, dig_vv, digest_size)) {
1945 			drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1946 				(unsigned long long)sector, data_size);
1947 			drbd_free_peer_req(device, peer_req);
1948 			return NULL;
1949 		}
1950 	}
1951 	device->recv_cnt += data_size >> 9;
1952 	return peer_req;
1953 }
1954 
1955 /* drbd_drain_block() just takes a data block
1956  * out of the socket input buffer, and discards it.
1957  */
1958 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1959 {
1960 	struct page *page;
1961 	int err = 0;
1962 	void *data;
1963 
1964 	if (!data_size)
1965 		return 0;
1966 
1967 	page = drbd_alloc_pages(peer_device, 1, 1);
1968 
1969 	data = kmap(page);
1970 	while (data_size) {
1971 		unsigned int len = min_t(int, data_size, PAGE_SIZE);
1972 
1973 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1974 		if (err)
1975 			break;
1976 		data_size -= len;
1977 	}
1978 	kunmap(page);
1979 	drbd_free_pages(peer_device->device, page, 0);
1980 	return err;
1981 }
1982 
1983 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
1984 			   sector_t sector, int data_size)
1985 {
1986 	struct bio_vec bvec;
1987 	struct bvec_iter iter;
1988 	struct bio *bio;
1989 	int digest_size, err, expect;
1990 	void *dig_in = peer_device->connection->int_dig_in;
1991 	void *dig_vv = peer_device->connection->int_dig_vv;
1992 
1993 	digest_size = 0;
1994 	if (peer_device->connection->peer_integrity_tfm) {
1995 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1996 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1997 		if (err)
1998 			return err;
1999 		data_size -= digest_size;
2000 	}
2001 
2002 	/* optimistically update recv_cnt.  if receiving fails below,
2003 	 * we disconnect anyways, and counters will be reset. */
2004 	peer_device->device->recv_cnt += data_size>>9;
2005 
2006 	bio = req->master_bio;
2007 	D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
2008 
2009 	bio_for_each_segment(bvec, bio, iter) {
2010 		void *mapped = bvec_kmap_local(&bvec);
2011 		expect = min_t(int, data_size, bvec.bv_len);
2012 		err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
2013 		kunmap_local(mapped);
2014 		if (err)
2015 			return err;
2016 		data_size -= expect;
2017 	}
2018 
2019 	if (digest_size) {
2020 		drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
2021 		if (memcmp(dig_in, dig_vv, digest_size)) {
2022 			drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
2023 			return -EINVAL;
2024 		}
2025 	}
2026 
2027 	D_ASSERT(peer_device->device, data_size == 0);
2028 	return 0;
2029 }
2030 
2031 /*
2032  * e_end_resync_block() is called in ack_sender context via
2033  * drbd_finish_peer_reqs().
2034  */
2035 static int e_end_resync_block(struct drbd_work *w, int unused)
2036 {
2037 	struct drbd_peer_request *peer_req =
2038 		container_of(w, struct drbd_peer_request, w);
2039 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2040 	struct drbd_device *device = peer_device->device;
2041 	sector_t sector = peer_req->i.sector;
2042 	int err;
2043 
2044 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2045 
2046 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2047 		drbd_set_in_sync(device, sector, peer_req->i.size);
2048 		err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
2049 	} else {
2050 		/* Record failure to sync */
2051 		drbd_rs_failed_io(device, sector, peer_req->i.size);
2052 
2053 		err  = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2054 	}
2055 	dec_unacked(device);
2056 
2057 	return err;
2058 }
2059 
2060 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
2061 			    struct packet_info *pi) __releases(local)
2062 {
2063 	struct drbd_device *device = peer_device->device;
2064 	struct drbd_peer_request *peer_req;
2065 
2066 	peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
2067 	if (!peer_req)
2068 		goto fail;
2069 
2070 	dec_rs_pending(device);
2071 
2072 	inc_unacked(device);
2073 	/* corresponding dec_unacked() in e_end_resync_block()
2074 	 * respective _drbd_clear_done_ee */
2075 
2076 	peer_req->w.cb = e_end_resync_block;
2077 	peer_req->opf = REQ_OP_WRITE;
2078 	peer_req->submit_jif = jiffies;
2079 
2080 	spin_lock_irq(&device->resource->req_lock);
2081 	list_add_tail(&peer_req->w.list, &device->sync_ee);
2082 	spin_unlock_irq(&device->resource->req_lock);
2083 
2084 	atomic_add(pi->size >> 9, &device->rs_sect_ev);
2085 	if (drbd_submit_peer_request(peer_req) == 0)
2086 		return 0;
2087 
2088 	/* don't care for the reason here */
2089 	drbd_err(device, "submit failed, triggering re-connect\n");
2090 	spin_lock_irq(&device->resource->req_lock);
2091 	list_del(&peer_req->w.list);
2092 	spin_unlock_irq(&device->resource->req_lock);
2093 
2094 	drbd_free_peer_req(device, peer_req);
2095 fail:
2096 	put_ldev(device);
2097 	return -EIO;
2098 }
2099 
2100 static struct drbd_request *
2101 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2102 	     sector_t sector, bool missing_ok, const char *func)
2103 {
2104 	struct drbd_request *req;
2105 
2106 	/* Request object according to our peer */
2107 	req = (struct drbd_request *)(unsigned long)id;
2108 	if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2109 		return req;
2110 	if (!missing_ok) {
2111 		drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2112 			(unsigned long)id, (unsigned long long)sector);
2113 	}
2114 	return NULL;
2115 }
2116 
2117 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2118 {
2119 	struct drbd_peer_device *peer_device;
2120 	struct drbd_device *device;
2121 	struct drbd_request *req;
2122 	sector_t sector;
2123 	int err;
2124 	struct p_data *p = pi->data;
2125 
2126 	peer_device = conn_peer_device(connection, pi->vnr);
2127 	if (!peer_device)
2128 		return -EIO;
2129 	device = peer_device->device;
2130 
2131 	sector = be64_to_cpu(p->sector);
2132 
2133 	spin_lock_irq(&device->resource->req_lock);
2134 	req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2135 	spin_unlock_irq(&device->resource->req_lock);
2136 	if (unlikely(!req))
2137 		return -EIO;
2138 
2139 	err = recv_dless_read(peer_device, req, sector, pi->size);
2140 	if (!err)
2141 		req_mod(req, DATA_RECEIVED);
2142 	/* else: nothing. handled from drbd_disconnect...
2143 	 * I don't think we may complete this just yet
2144 	 * in case we are "on-disconnect: freeze" */
2145 
2146 	return err;
2147 }
2148 
2149 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2150 {
2151 	struct drbd_peer_device *peer_device;
2152 	struct drbd_device *device;
2153 	sector_t sector;
2154 	int err;
2155 	struct p_data *p = pi->data;
2156 
2157 	peer_device = conn_peer_device(connection, pi->vnr);
2158 	if (!peer_device)
2159 		return -EIO;
2160 	device = peer_device->device;
2161 
2162 	sector = be64_to_cpu(p->sector);
2163 	D_ASSERT(device, p->block_id == ID_SYNCER);
2164 
2165 	if (get_ldev(device)) {
2166 		/* data is submitted to disk within recv_resync_read.
2167 		 * corresponding put_ldev done below on error,
2168 		 * or in drbd_peer_request_endio. */
2169 		err = recv_resync_read(peer_device, sector, pi);
2170 	} else {
2171 		if (drbd_ratelimit())
2172 			drbd_err(device, "Can not write resync data to local disk.\n");
2173 
2174 		err = drbd_drain_block(peer_device, pi->size);
2175 
2176 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2177 	}
2178 
2179 	atomic_add(pi->size >> 9, &device->rs_sect_in);
2180 
2181 	return err;
2182 }
2183 
2184 static void restart_conflicting_writes(struct drbd_device *device,
2185 				       sector_t sector, int size)
2186 {
2187 	struct drbd_interval *i;
2188 	struct drbd_request *req;
2189 
2190 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2191 		if (!i->local)
2192 			continue;
2193 		req = container_of(i, struct drbd_request, i);
2194 		if (req->rq_state & RQ_LOCAL_PENDING ||
2195 		    !(req->rq_state & RQ_POSTPONED))
2196 			continue;
2197 		/* as it is RQ_POSTPONED, this will cause it to
2198 		 * be queued on the retry workqueue. */
2199 		__req_mod(req, CONFLICT_RESOLVED, NULL);
2200 	}
2201 }
2202 
2203 /*
2204  * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2205  */
2206 static int e_end_block(struct drbd_work *w, int cancel)
2207 {
2208 	struct drbd_peer_request *peer_req =
2209 		container_of(w, struct drbd_peer_request, w);
2210 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2211 	struct drbd_device *device = peer_device->device;
2212 	sector_t sector = peer_req->i.sector;
2213 	int err = 0, pcmd;
2214 
2215 	if (peer_req->flags & EE_SEND_WRITE_ACK) {
2216 		if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2217 			pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2218 				device->state.conn <= C_PAUSED_SYNC_T &&
2219 				peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2220 				P_RS_WRITE_ACK : P_WRITE_ACK;
2221 			err = drbd_send_ack(peer_device, pcmd, peer_req);
2222 			if (pcmd == P_RS_WRITE_ACK)
2223 				drbd_set_in_sync(device, sector, peer_req->i.size);
2224 		} else {
2225 			err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2226 			/* we expect it to be marked out of sync anyways...
2227 			 * maybe assert this?  */
2228 		}
2229 		dec_unacked(device);
2230 	}
2231 
2232 	/* we delete from the conflict detection hash _after_ we sent out the
2233 	 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right.  */
2234 	if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2235 		spin_lock_irq(&device->resource->req_lock);
2236 		D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2237 		drbd_remove_epoch_entry_interval(device, peer_req);
2238 		if (peer_req->flags & EE_RESTART_REQUESTS)
2239 			restart_conflicting_writes(device, sector, peer_req->i.size);
2240 		spin_unlock_irq(&device->resource->req_lock);
2241 	} else
2242 		D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2243 
2244 	drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2245 
2246 	return err;
2247 }
2248 
2249 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2250 {
2251 	struct drbd_peer_request *peer_req =
2252 		container_of(w, struct drbd_peer_request, w);
2253 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2254 	int err;
2255 
2256 	err = drbd_send_ack(peer_device, ack, peer_req);
2257 	dec_unacked(peer_device->device);
2258 
2259 	return err;
2260 }
2261 
2262 static int e_send_superseded(struct drbd_work *w, int unused)
2263 {
2264 	return e_send_ack(w, P_SUPERSEDED);
2265 }
2266 
2267 static int e_send_retry_write(struct drbd_work *w, int unused)
2268 {
2269 	struct drbd_peer_request *peer_req =
2270 		container_of(w, struct drbd_peer_request, w);
2271 	struct drbd_connection *connection = peer_req->peer_device->connection;
2272 
2273 	return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2274 			     P_RETRY_WRITE : P_SUPERSEDED);
2275 }
2276 
2277 static bool seq_greater(u32 a, u32 b)
2278 {
2279 	/*
2280 	 * We assume 32-bit wrap-around here.
2281 	 * For 24-bit wrap-around, we would have to shift:
2282 	 *  a <<= 8; b <<= 8;
2283 	 */
2284 	return (s32)a - (s32)b > 0;
2285 }
2286 
2287 static u32 seq_max(u32 a, u32 b)
2288 {
2289 	return seq_greater(a, b) ? a : b;
2290 }
2291 
2292 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2293 {
2294 	struct drbd_device *device = peer_device->device;
2295 	unsigned int newest_peer_seq;
2296 
2297 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2298 		spin_lock(&device->peer_seq_lock);
2299 		newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2300 		device->peer_seq = newest_peer_seq;
2301 		spin_unlock(&device->peer_seq_lock);
2302 		/* wake up only if we actually changed device->peer_seq */
2303 		if (peer_seq == newest_peer_seq)
2304 			wake_up(&device->seq_wait);
2305 	}
2306 }
2307 
2308 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2309 {
2310 	return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2311 }
2312 
2313 /* maybe change sync_ee into interval trees as well? */
2314 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2315 {
2316 	struct drbd_peer_request *rs_req;
2317 	bool rv = false;
2318 
2319 	spin_lock_irq(&device->resource->req_lock);
2320 	list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2321 		if (overlaps(peer_req->i.sector, peer_req->i.size,
2322 			     rs_req->i.sector, rs_req->i.size)) {
2323 			rv = true;
2324 			break;
2325 		}
2326 	}
2327 	spin_unlock_irq(&device->resource->req_lock);
2328 
2329 	return rv;
2330 }
2331 
2332 /* Called from receive_Data.
2333  * Synchronize packets on sock with packets on msock.
2334  *
2335  * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2336  * packet traveling on msock, they are still processed in the order they have
2337  * been sent.
2338  *
2339  * Note: we don't care for Ack packets overtaking P_DATA packets.
2340  *
2341  * In case packet_seq is larger than device->peer_seq number, there are
2342  * outstanding packets on the msock. We wait for them to arrive.
2343  * In case we are the logically next packet, we update device->peer_seq
2344  * ourselves. Correctly handles 32bit wrap around.
2345  *
2346  * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2347  * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2348  * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2349  * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2350  *
2351  * returns 0 if we may process the packet,
2352  * -ERESTARTSYS if we were interrupted (by disconnect signal). */
2353 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2354 {
2355 	struct drbd_device *device = peer_device->device;
2356 	DEFINE_WAIT(wait);
2357 	long timeout;
2358 	int ret = 0, tp;
2359 
2360 	if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2361 		return 0;
2362 
2363 	spin_lock(&device->peer_seq_lock);
2364 	for (;;) {
2365 		if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2366 			device->peer_seq = seq_max(device->peer_seq, peer_seq);
2367 			break;
2368 		}
2369 
2370 		if (signal_pending(current)) {
2371 			ret = -ERESTARTSYS;
2372 			break;
2373 		}
2374 
2375 		rcu_read_lock();
2376 		tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2377 		rcu_read_unlock();
2378 
2379 		if (!tp)
2380 			break;
2381 
2382 		/* Only need to wait if two_primaries is enabled */
2383 		prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2384 		spin_unlock(&device->peer_seq_lock);
2385 		rcu_read_lock();
2386 		timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2387 		rcu_read_unlock();
2388 		timeout = schedule_timeout(timeout);
2389 		spin_lock(&device->peer_seq_lock);
2390 		if (!timeout) {
2391 			ret = -ETIMEDOUT;
2392 			drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2393 			break;
2394 		}
2395 	}
2396 	spin_unlock(&device->peer_seq_lock);
2397 	finish_wait(&device->seq_wait, &wait);
2398 	return ret;
2399 }
2400 
2401 static enum req_op wire_flags_to_bio_op(u32 dpf)
2402 {
2403 	if (dpf & DP_ZEROES)
2404 		return REQ_OP_WRITE_ZEROES;
2405 	if (dpf & DP_DISCARD)
2406 		return REQ_OP_DISCARD;
2407 	else
2408 		return REQ_OP_WRITE;
2409 }
2410 
2411 /* see also bio_flags_to_wire() */
2412 static blk_opf_t wire_flags_to_bio(struct drbd_connection *connection, u32 dpf)
2413 {
2414 	return wire_flags_to_bio_op(dpf) |
2415 		(dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2416 		(dpf & DP_FUA ? REQ_FUA : 0) |
2417 		(dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2418 }
2419 
2420 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2421 				    unsigned int size)
2422 {
2423 	struct drbd_interval *i;
2424 
2425     repeat:
2426 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2427 		struct drbd_request *req;
2428 		struct bio_and_error m;
2429 
2430 		if (!i->local)
2431 			continue;
2432 		req = container_of(i, struct drbd_request, i);
2433 		if (!(req->rq_state & RQ_POSTPONED))
2434 			continue;
2435 		req->rq_state &= ~RQ_POSTPONED;
2436 		__req_mod(req, NEG_ACKED, &m);
2437 		spin_unlock_irq(&device->resource->req_lock);
2438 		if (m.bio)
2439 			complete_master_bio(device, &m);
2440 		spin_lock_irq(&device->resource->req_lock);
2441 		goto repeat;
2442 	}
2443 }
2444 
2445 static int handle_write_conflicts(struct drbd_device *device,
2446 				  struct drbd_peer_request *peer_req)
2447 {
2448 	struct drbd_connection *connection = peer_req->peer_device->connection;
2449 	bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2450 	sector_t sector = peer_req->i.sector;
2451 	const unsigned int size = peer_req->i.size;
2452 	struct drbd_interval *i;
2453 	bool equal;
2454 	int err;
2455 
2456 	/*
2457 	 * Inserting the peer request into the write_requests tree will prevent
2458 	 * new conflicting local requests from being added.
2459 	 */
2460 	drbd_insert_interval(&device->write_requests, &peer_req->i);
2461 
2462     repeat:
2463 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2464 		if (i == &peer_req->i)
2465 			continue;
2466 		if (i->completed)
2467 			continue;
2468 
2469 		if (!i->local) {
2470 			/*
2471 			 * Our peer has sent a conflicting remote request; this
2472 			 * should not happen in a two-node setup.  Wait for the
2473 			 * earlier peer request to complete.
2474 			 */
2475 			err = drbd_wait_misc(device, i);
2476 			if (err)
2477 				goto out;
2478 			goto repeat;
2479 		}
2480 
2481 		equal = i->sector == sector && i->size == size;
2482 		if (resolve_conflicts) {
2483 			/*
2484 			 * If the peer request is fully contained within the
2485 			 * overlapping request, it can be considered overwritten
2486 			 * and thus superseded; otherwise, it will be retried
2487 			 * once all overlapping requests have completed.
2488 			 */
2489 			bool superseded = i->sector <= sector && i->sector +
2490 				       (i->size >> 9) >= sector + (size >> 9);
2491 
2492 			if (!equal)
2493 				drbd_alert(device, "Concurrent writes detected: "
2494 					       "local=%llus +%u, remote=%llus +%u, "
2495 					       "assuming %s came first\n",
2496 					  (unsigned long long)i->sector, i->size,
2497 					  (unsigned long long)sector, size,
2498 					  superseded ? "local" : "remote");
2499 
2500 			peer_req->w.cb = superseded ? e_send_superseded :
2501 						   e_send_retry_write;
2502 			list_add_tail(&peer_req->w.list, &device->done_ee);
2503 			queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
2504 
2505 			err = -ENOENT;
2506 			goto out;
2507 		} else {
2508 			struct drbd_request *req =
2509 				container_of(i, struct drbd_request, i);
2510 
2511 			if (!equal)
2512 				drbd_alert(device, "Concurrent writes detected: "
2513 					       "local=%llus +%u, remote=%llus +%u\n",
2514 					  (unsigned long long)i->sector, i->size,
2515 					  (unsigned long long)sector, size);
2516 
2517 			if (req->rq_state & RQ_LOCAL_PENDING ||
2518 			    !(req->rq_state & RQ_POSTPONED)) {
2519 				/*
2520 				 * Wait for the node with the discard flag to
2521 				 * decide if this request has been superseded
2522 				 * or needs to be retried.
2523 				 * Requests that have been superseded will
2524 				 * disappear from the write_requests tree.
2525 				 *
2526 				 * In addition, wait for the conflicting
2527 				 * request to finish locally before submitting
2528 				 * the conflicting peer request.
2529 				 */
2530 				err = drbd_wait_misc(device, &req->i);
2531 				if (err) {
2532 					_conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2533 					fail_postponed_requests(device, sector, size);
2534 					goto out;
2535 				}
2536 				goto repeat;
2537 			}
2538 			/*
2539 			 * Remember to restart the conflicting requests after
2540 			 * the new peer request has completed.
2541 			 */
2542 			peer_req->flags |= EE_RESTART_REQUESTS;
2543 		}
2544 	}
2545 	err = 0;
2546 
2547     out:
2548 	if (err)
2549 		drbd_remove_epoch_entry_interval(device, peer_req);
2550 	return err;
2551 }
2552 
2553 /* mirrored write */
2554 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2555 {
2556 	struct drbd_peer_device *peer_device;
2557 	struct drbd_device *device;
2558 	struct net_conf *nc;
2559 	sector_t sector;
2560 	struct drbd_peer_request *peer_req;
2561 	struct p_data *p = pi->data;
2562 	u32 peer_seq = be32_to_cpu(p->seq_num);
2563 	u32 dp_flags;
2564 	int err, tp;
2565 
2566 	peer_device = conn_peer_device(connection, pi->vnr);
2567 	if (!peer_device)
2568 		return -EIO;
2569 	device = peer_device->device;
2570 
2571 	if (!get_ldev(device)) {
2572 		int err2;
2573 
2574 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2575 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2576 		atomic_inc(&connection->current_epoch->epoch_size);
2577 		err2 = drbd_drain_block(peer_device, pi->size);
2578 		if (!err)
2579 			err = err2;
2580 		return err;
2581 	}
2582 
2583 	/*
2584 	 * Corresponding put_ldev done either below (on various errors), or in
2585 	 * drbd_peer_request_endio, if we successfully submit the data at the
2586 	 * end of this function.
2587 	 */
2588 
2589 	sector = be64_to_cpu(p->sector);
2590 	peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2591 	if (!peer_req) {
2592 		put_ldev(device);
2593 		return -EIO;
2594 	}
2595 
2596 	peer_req->w.cb = e_end_block;
2597 	peer_req->submit_jif = jiffies;
2598 	peer_req->flags |= EE_APPLICATION;
2599 
2600 	dp_flags = be32_to_cpu(p->dp_flags);
2601 	peer_req->opf = wire_flags_to_bio(connection, dp_flags);
2602 	if (pi->cmd == P_TRIM) {
2603 		D_ASSERT(peer_device, peer_req->i.size > 0);
2604 		D_ASSERT(peer_device, peer_req_op(peer_req) == REQ_OP_DISCARD);
2605 		D_ASSERT(peer_device, peer_req->pages == NULL);
2606 		/* need to play safe: an older DRBD sender
2607 		 * may mean zero-out while sending P_TRIM. */
2608 		if (0 == (connection->agreed_features & DRBD_FF_WZEROES))
2609 			peer_req->flags |= EE_ZEROOUT;
2610 	} else if (pi->cmd == P_ZEROES) {
2611 		D_ASSERT(peer_device, peer_req->i.size > 0);
2612 		D_ASSERT(peer_device, peer_req_op(peer_req) == REQ_OP_WRITE_ZEROES);
2613 		D_ASSERT(peer_device, peer_req->pages == NULL);
2614 		/* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */
2615 		if (dp_flags & DP_DISCARD)
2616 			peer_req->flags |= EE_TRIM;
2617 	} else if (peer_req->pages == NULL) {
2618 		D_ASSERT(device, peer_req->i.size == 0);
2619 		D_ASSERT(device, dp_flags & DP_FLUSH);
2620 	}
2621 
2622 	if (dp_flags & DP_MAY_SET_IN_SYNC)
2623 		peer_req->flags |= EE_MAY_SET_IN_SYNC;
2624 
2625 	spin_lock(&connection->epoch_lock);
2626 	peer_req->epoch = connection->current_epoch;
2627 	atomic_inc(&peer_req->epoch->epoch_size);
2628 	atomic_inc(&peer_req->epoch->active);
2629 	spin_unlock(&connection->epoch_lock);
2630 
2631 	rcu_read_lock();
2632 	nc = rcu_dereference(peer_device->connection->net_conf);
2633 	tp = nc->two_primaries;
2634 	if (peer_device->connection->agreed_pro_version < 100) {
2635 		switch (nc->wire_protocol) {
2636 		case DRBD_PROT_C:
2637 			dp_flags |= DP_SEND_WRITE_ACK;
2638 			break;
2639 		case DRBD_PROT_B:
2640 			dp_flags |= DP_SEND_RECEIVE_ACK;
2641 			break;
2642 		}
2643 	}
2644 	rcu_read_unlock();
2645 
2646 	if (dp_flags & DP_SEND_WRITE_ACK) {
2647 		peer_req->flags |= EE_SEND_WRITE_ACK;
2648 		inc_unacked(device);
2649 		/* corresponding dec_unacked() in e_end_block()
2650 		 * respective _drbd_clear_done_ee */
2651 	}
2652 
2653 	if (dp_flags & DP_SEND_RECEIVE_ACK) {
2654 		/* I really don't like it that the receiver thread
2655 		 * sends on the msock, but anyways */
2656 		drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2657 	}
2658 
2659 	if (tp) {
2660 		/* two primaries implies protocol C */
2661 		D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2662 		peer_req->flags |= EE_IN_INTERVAL_TREE;
2663 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2664 		if (err)
2665 			goto out_interrupted;
2666 		spin_lock_irq(&device->resource->req_lock);
2667 		err = handle_write_conflicts(device, peer_req);
2668 		if (err) {
2669 			spin_unlock_irq(&device->resource->req_lock);
2670 			if (err == -ENOENT) {
2671 				put_ldev(device);
2672 				return 0;
2673 			}
2674 			goto out_interrupted;
2675 		}
2676 	} else {
2677 		update_peer_seq(peer_device, peer_seq);
2678 		spin_lock_irq(&device->resource->req_lock);
2679 	}
2680 	/* TRIM and is processed synchronously,
2681 	 * we wait for all pending requests, respectively wait for
2682 	 * active_ee to become empty in drbd_submit_peer_request();
2683 	 * better not add ourselves here. */
2684 	if ((peer_req->flags & (EE_TRIM | EE_ZEROOUT)) == 0)
2685 		list_add_tail(&peer_req->w.list, &device->active_ee);
2686 	spin_unlock_irq(&device->resource->req_lock);
2687 
2688 	if (device->state.conn == C_SYNC_TARGET)
2689 		wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2690 
2691 	if (device->state.pdsk < D_INCONSISTENT) {
2692 		/* In case we have the only disk of the cluster, */
2693 		drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
2694 		peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2695 		drbd_al_begin_io(device, &peer_req->i);
2696 		peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2697 	}
2698 
2699 	err = drbd_submit_peer_request(peer_req);
2700 	if (!err)
2701 		return 0;
2702 
2703 	/* don't care for the reason here */
2704 	drbd_err(device, "submit failed, triggering re-connect\n");
2705 	spin_lock_irq(&device->resource->req_lock);
2706 	list_del(&peer_req->w.list);
2707 	drbd_remove_epoch_entry_interval(device, peer_req);
2708 	spin_unlock_irq(&device->resource->req_lock);
2709 	if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2710 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2711 		drbd_al_complete_io(device, &peer_req->i);
2712 	}
2713 
2714 out_interrupted:
2715 	drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2716 	put_ldev(device);
2717 	drbd_free_peer_req(device, peer_req);
2718 	return err;
2719 }
2720 
2721 /* We may throttle resync, if the lower device seems to be busy,
2722  * and current sync rate is above c_min_rate.
2723  *
2724  * To decide whether or not the lower device is busy, we use a scheme similar
2725  * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2726  * (more than 64 sectors) of activity we cannot account for with our own resync
2727  * activity, it obviously is "busy".
2728  *
2729  * The current sync rate used here uses only the most recent two step marks,
2730  * to have a short time average so we can react faster.
2731  */
2732 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector,
2733 		bool throttle_if_app_is_waiting)
2734 {
2735 	struct lc_element *tmp;
2736 	bool throttle = drbd_rs_c_min_rate_throttle(device);
2737 
2738 	if (!throttle || throttle_if_app_is_waiting)
2739 		return throttle;
2740 
2741 	spin_lock_irq(&device->al_lock);
2742 	tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2743 	if (tmp) {
2744 		struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2745 		if (test_bit(BME_PRIORITY, &bm_ext->flags))
2746 			throttle = false;
2747 		/* Do not slow down if app IO is already waiting for this extent,
2748 		 * and our progress is necessary for application IO to complete. */
2749 	}
2750 	spin_unlock_irq(&device->al_lock);
2751 
2752 	return throttle;
2753 }
2754 
2755 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2756 {
2757 	struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
2758 	unsigned long db, dt, dbdt;
2759 	unsigned int c_min_rate;
2760 	int curr_events;
2761 
2762 	rcu_read_lock();
2763 	c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2764 	rcu_read_unlock();
2765 
2766 	/* feature disabled? */
2767 	if (c_min_rate == 0)
2768 		return false;
2769 
2770 	curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
2771 			atomic_read(&device->rs_sect_ev);
2772 
2773 	if (atomic_read(&device->ap_actlog_cnt)
2774 	    || curr_events - device->rs_last_events > 64) {
2775 		unsigned long rs_left;
2776 		int i;
2777 
2778 		device->rs_last_events = curr_events;
2779 
2780 		/* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2781 		 * approx. */
2782 		i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2783 
2784 		if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2785 			rs_left = device->ov_left;
2786 		else
2787 			rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2788 
2789 		dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2790 		if (!dt)
2791 			dt++;
2792 		db = device->rs_mark_left[i] - rs_left;
2793 		dbdt = Bit2KB(db/dt);
2794 
2795 		if (dbdt > c_min_rate)
2796 			return true;
2797 	}
2798 	return false;
2799 }
2800 
2801 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2802 {
2803 	struct drbd_peer_device *peer_device;
2804 	struct drbd_device *device;
2805 	sector_t sector;
2806 	sector_t capacity;
2807 	struct drbd_peer_request *peer_req;
2808 	struct digest_info *di = NULL;
2809 	int size, verb;
2810 	struct p_block_req *p =	pi->data;
2811 
2812 	peer_device = conn_peer_device(connection, pi->vnr);
2813 	if (!peer_device)
2814 		return -EIO;
2815 	device = peer_device->device;
2816 	capacity = get_capacity(device->vdisk);
2817 
2818 	sector = be64_to_cpu(p->sector);
2819 	size   = be32_to_cpu(p->blksize);
2820 
2821 	if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2822 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2823 				(unsigned long long)sector, size);
2824 		return -EINVAL;
2825 	}
2826 	if (sector + (size>>9) > capacity) {
2827 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2828 				(unsigned long long)sector, size);
2829 		return -EINVAL;
2830 	}
2831 
2832 	if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2833 		verb = 1;
2834 		switch (pi->cmd) {
2835 		case P_DATA_REQUEST:
2836 			drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2837 			break;
2838 		case P_RS_THIN_REQ:
2839 		case P_RS_DATA_REQUEST:
2840 		case P_CSUM_RS_REQUEST:
2841 		case P_OV_REQUEST:
2842 			drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2843 			break;
2844 		case P_OV_REPLY:
2845 			verb = 0;
2846 			dec_rs_pending(device);
2847 			drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2848 			break;
2849 		default:
2850 			BUG();
2851 		}
2852 		if (verb && drbd_ratelimit())
2853 			drbd_err(device, "Can not satisfy peer's read request, "
2854 			    "no local data.\n");
2855 
2856 		/* drain possibly payload */
2857 		return drbd_drain_block(peer_device, pi->size);
2858 	}
2859 
2860 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2861 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
2862 	 * which in turn might block on the other node at this very place.  */
2863 	peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2864 			size, GFP_NOIO);
2865 	if (!peer_req) {
2866 		put_ldev(device);
2867 		return -ENOMEM;
2868 	}
2869 	peer_req->opf = REQ_OP_READ;
2870 
2871 	switch (pi->cmd) {
2872 	case P_DATA_REQUEST:
2873 		peer_req->w.cb = w_e_end_data_req;
2874 		/* application IO, don't drbd_rs_begin_io */
2875 		peer_req->flags |= EE_APPLICATION;
2876 		goto submit;
2877 
2878 	case P_RS_THIN_REQ:
2879 		/* If at some point in the future we have a smart way to
2880 		   find out if this data block is completely deallocated,
2881 		   then we would do something smarter here than reading
2882 		   the block... */
2883 		peer_req->flags |= EE_RS_THIN_REQ;
2884 		fallthrough;
2885 	case P_RS_DATA_REQUEST:
2886 		peer_req->w.cb = w_e_end_rsdata_req;
2887 		/* used in the sector offset progress display */
2888 		device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2889 		break;
2890 
2891 	case P_OV_REPLY:
2892 	case P_CSUM_RS_REQUEST:
2893 		di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2894 		if (!di)
2895 			goto out_free_e;
2896 
2897 		di->digest_size = pi->size;
2898 		di->digest = (((char *)di)+sizeof(struct digest_info));
2899 
2900 		peer_req->digest = di;
2901 		peer_req->flags |= EE_HAS_DIGEST;
2902 
2903 		if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2904 			goto out_free_e;
2905 
2906 		if (pi->cmd == P_CSUM_RS_REQUEST) {
2907 			D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2908 			peer_req->w.cb = w_e_end_csum_rs_req;
2909 			/* used in the sector offset progress display */
2910 			device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2911 			/* remember to report stats in drbd_resync_finished */
2912 			device->use_csums = true;
2913 		} else if (pi->cmd == P_OV_REPLY) {
2914 			/* track progress, we may need to throttle */
2915 			atomic_add(size >> 9, &device->rs_sect_in);
2916 			peer_req->w.cb = w_e_end_ov_reply;
2917 			dec_rs_pending(device);
2918 			/* drbd_rs_begin_io done when we sent this request,
2919 			 * but accounting still needs to be done. */
2920 			goto submit_for_resync;
2921 		}
2922 		break;
2923 
2924 	case P_OV_REQUEST:
2925 		if (device->ov_start_sector == ~(sector_t)0 &&
2926 		    peer_device->connection->agreed_pro_version >= 90) {
2927 			unsigned long now = jiffies;
2928 			int i;
2929 			device->ov_start_sector = sector;
2930 			device->ov_position = sector;
2931 			device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2932 			device->rs_total = device->ov_left;
2933 			for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2934 				device->rs_mark_left[i] = device->ov_left;
2935 				device->rs_mark_time[i] = now;
2936 			}
2937 			drbd_info(device, "Online Verify start sector: %llu\n",
2938 					(unsigned long long)sector);
2939 		}
2940 		peer_req->w.cb = w_e_end_ov_req;
2941 		break;
2942 
2943 	default:
2944 		BUG();
2945 	}
2946 
2947 	/* Throttle, drbd_rs_begin_io and submit should become asynchronous
2948 	 * wrt the receiver, but it is not as straightforward as it may seem.
2949 	 * Various places in the resync start and stop logic assume resync
2950 	 * requests are processed in order, requeuing this on the worker thread
2951 	 * introduces a bunch of new code for synchronization between threads.
2952 	 *
2953 	 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2954 	 * "forever", throttling after drbd_rs_begin_io will lock that extent
2955 	 * for application writes for the same time.  For now, just throttle
2956 	 * here, where the rest of the code expects the receiver to sleep for
2957 	 * a while, anyways.
2958 	 */
2959 
2960 	/* Throttle before drbd_rs_begin_io, as that locks out application IO;
2961 	 * this defers syncer requests for some time, before letting at least
2962 	 * on request through.  The resync controller on the receiving side
2963 	 * will adapt to the incoming rate accordingly.
2964 	 *
2965 	 * We cannot throttle here if remote is Primary/SyncTarget:
2966 	 * we would also throttle its application reads.
2967 	 * In that case, throttling is done on the SyncTarget only.
2968 	 */
2969 
2970 	/* Even though this may be a resync request, we do add to "read_ee";
2971 	 * "sync_ee" is only used for resync WRITEs.
2972 	 * Add to list early, so debugfs can find this request
2973 	 * even if we have to sleep below. */
2974 	spin_lock_irq(&device->resource->req_lock);
2975 	list_add_tail(&peer_req->w.list, &device->read_ee);
2976 	spin_unlock_irq(&device->resource->req_lock);
2977 
2978 	update_receiver_timing_details(connection, drbd_rs_should_slow_down);
2979 	if (device->state.peer != R_PRIMARY
2980 	&& drbd_rs_should_slow_down(device, sector, false))
2981 		schedule_timeout_uninterruptible(HZ/10);
2982 	update_receiver_timing_details(connection, drbd_rs_begin_io);
2983 	if (drbd_rs_begin_io(device, sector))
2984 		goto out_free_e;
2985 
2986 submit_for_resync:
2987 	atomic_add(size >> 9, &device->rs_sect_ev);
2988 
2989 submit:
2990 	update_receiver_timing_details(connection, drbd_submit_peer_request);
2991 	inc_unacked(device);
2992 	if (drbd_submit_peer_request(peer_req) == 0)
2993 		return 0;
2994 
2995 	/* don't care for the reason here */
2996 	drbd_err(device, "submit failed, triggering re-connect\n");
2997 
2998 out_free_e:
2999 	spin_lock_irq(&device->resource->req_lock);
3000 	list_del(&peer_req->w.list);
3001 	spin_unlock_irq(&device->resource->req_lock);
3002 	/* no drbd_rs_complete_io(), we are dropping the connection anyways */
3003 
3004 	put_ldev(device);
3005 	drbd_free_peer_req(device, peer_req);
3006 	return -EIO;
3007 }
3008 
3009 /*
3010  * drbd_asb_recover_0p  -  Recover after split-brain with no remaining primaries
3011  */
3012 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
3013 {
3014 	struct drbd_device *device = peer_device->device;
3015 	int self, peer, rv = -100;
3016 	unsigned long ch_self, ch_peer;
3017 	enum drbd_after_sb_p after_sb_0p;
3018 
3019 	self = device->ldev->md.uuid[UI_BITMAP] & 1;
3020 	peer = device->p_uuid[UI_BITMAP] & 1;
3021 
3022 	ch_peer = device->p_uuid[UI_SIZE];
3023 	ch_self = device->comm_bm_set;
3024 
3025 	rcu_read_lock();
3026 	after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
3027 	rcu_read_unlock();
3028 	switch (after_sb_0p) {
3029 	case ASB_CONSENSUS:
3030 	case ASB_DISCARD_SECONDARY:
3031 	case ASB_CALL_HELPER:
3032 	case ASB_VIOLENTLY:
3033 		drbd_err(device, "Configuration error.\n");
3034 		break;
3035 	case ASB_DISCONNECT:
3036 		break;
3037 	case ASB_DISCARD_YOUNGER_PRI:
3038 		if (self == 0 && peer == 1) {
3039 			rv = -1;
3040 			break;
3041 		}
3042 		if (self == 1 && peer == 0) {
3043 			rv =  1;
3044 			break;
3045 		}
3046 		fallthrough;	/* to one of the other strategies */
3047 	case ASB_DISCARD_OLDER_PRI:
3048 		if (self == 0 && peer == 1) {
3049 			rv = 1;
3050 			break;
3051 		}
3052 		if (self == 1 && peer == 0) {
3053 			rv = -1;
3054 			break;
3055 		}
3056 		/* Else fall through to one of the other strategies... */
3057 		drbd_warn(device, "Discard younger/older primary did not find a decision\n"
3058 		     "Using discard-least-changes instead\n");
3059 		fallthrough;
3060 	case ASB_DISCARD_ZERO_CHG:
3061 		if (ch_peer == 0 && ch_self == 0) {
3062 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3063 				? -1 : 1;
3064 			break;
3065 		} else {
3066 			if (ch_peer == 0) { rv =  1; break; }
3067 			if (ch_self == 0) { rv = -1; break; }
3068 		}
3069 		if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
3070 			break;
3071 		fallthrough;
3072 	case ASB_DISCARD_LEAST_CHG:
3073 		if	(ch_self < ch_peer)
3074 			rv = -1;
3075 		else if (ch_self > ch_peer)
3076 			rv =  1;
3077 		else /* ( ch_self == ch_peer ) */
3078 		     /* Well, then use something else. */
3079 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3080 				? -1 : 1;
3081 		break;
3082 	case ASB_DISCARD_LOCAL:
3083 		rv = -1;
3084 		break;
3085 	case ASB_DISCARD_REMOTE:
3086 		rv =  1;
3087 	}
3088 
3089 	return rv;
3090 }
3091 
3092 /*
3093  * drbd_asb_recover_1p  -  Recover after split-brain with one remaining primary
3094  */
3095 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3096 {
3097 	struct drbd_device *device = peer_device->device;
3098 	int hg, rv = -100;
3099 	enum drbd_after_sb_p after_sb_1p;
3100 
3101 	rcu_read_lock();
3102 	after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3103 	rcu_read_unlock();
3104 	switch (after_sb_1p) {
3105 	case ASB_DISCARD_YOUNGER_PRI:
3106 	case ASB_DISCARD_OLDER_PRI:
3107 	case ASB_DISCARD_LEAST_CHG:
3108 	case ASB_DISCARD_LOCAL:
3109 	case ASB_DISCARD_REMOTE:
3110 	case ASB_DISCARD_ZERO_CHG:
3111 		drbd_err(device, "Configuration error.\n");
3112 		break;
3113 	case ASB_DISCONNECT:
3114 		break;
3115 	case ASB_CONSENSUS:
3116 		hg = drbd_asb_recover_0p(peer_device);
3117 		if (hg == -1 && device->state.role == R_SECONDARY)
3118 			rv = hg;
3119 		if (hg == 1  && device->state.role == R_PRIMARY)
3120 			rv = hg;
3121 		break;
3122 	case ASB_VIOLENTLY:
3123 		rv = drbd_asb_recover_0p(peer_device);
3124 		break;
3125 	case ASB_DISCARD_SECONDARY:
3126 		return device->state.role == R_PRIMARY ? 1 : -1;
3127 	case ASB_CALL_HELPER:
3128 		hg = drbd_asb_recover_0p(peer_device);
3129 		if (hg == -1 && device->state.role == R_PRIMARY) {
3130 			enum drbd_state_rv rv2;
3131 
3132 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3133 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3134 			  * we do not need to wait for the after state change work either. */
3135 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3136 			if (rv2 != SS_SUCCESS) {
3137 				drbd_khelper(device, "pri-lost-after-sb");
3138 			} else {
3139 				drbd_warn(device, "Successfully gave up primary role.\n");
3140 				rv = hg;
3141 			}
3142 		} else
3143 			rv = hg;
3144 	}
3145 
3146 	return rv;
3147 }
3148 
3149 /*
3150  * drbd_asb_recover_2p  -  Recover after split-brain with two remaining primaries
3151  */
3152 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3153 {
3154 	struct drbd_device *device = peer_device->device;
3155 	int hg, rv = -100;
3156 	enum drbd_after_sb_p after_sb_2p;
3157 
3158 	rcu_read_lock();
3159 	after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3160 	rcu_read_unlock();
3161 	switch (after_sb_2p) {
3162 	case ASB_DISCARD_YOUNGER_PRI:
3163 	case ASB_DISCARD_OLDER_PRI:
3164 	case ASB_DISCARD_LEAST_CHG:
3165 	case ASB_DISCARD_LOCAL:
3166 	case ASB_DISCARD_REMOTE:
3167 	case ASB_CONSENSUS:
3168 	case ASB_DISCARD_SECONDARY:
3169 	case ASB_DISCARD_ZERO_CHG:
3170 		drbd_err(device, "Configuration error.\n");
3171 		break;
3172 	case ASB_VIOLENTLY:
3173 		rv = drbd_asb_recover_0p(peer_device);
3174 		break;
3175 	case ASB_DISCONNECT:
3176 		break;
3177 	case ASB_CALL_HELPER:
3178 		hg = drbd_asb_recover_0p(peer_device);
3179 		if (hg == -1) {
3180 			enum drbd_state_rv rv2;
3181 
3182 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3183 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3184 			  * we do not need to wait for the after state change work either. */
3185 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3186 			if (rv2 != SS_SUCCESS) {
3187 				drbd_khelper(device, "pri-lost-after-sb");
3188 			} else {
3189 				drbd_warn(device, "Successfully gave up primary role.\n");
3190 				rv = hg;
3191 			}
3192 		} else
3193 			rv = hg;
3194 	}
3195 
3196 	return rv;
3197 }
3198 
3199 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3200 			   u64 bits, u64 flags)
3201 {
3202 	if (!uuid) {
3203 		drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3204 		return;
3205 	}
3206 	drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3207 	     text,
3208 	     (unsigned long long)uuid[UI_CURRENT],
3209 	     (unsigned long long)uuid[UI_BITMAP],
3210 	     (unsigned long long)uuid[UI_HISTORY_START],
3211 	     (unsigned long long)uuid[UI_HISTORY_END],
3212 	     (unsigned long long)bits,
3213 	     (unsigned long long)flags);
3214 }
3215 
3216 /*
3217   100	after split brain try auto recover
3218     2	C_SYNC_SOURCE set BitMap
3219     1	C_SYNC_SOURCE use BitMap
3220     0	no Sync
3221    -1	C_SYNC_TARGET use BitMap
3222    -2	C_SYNC_TARGET set BitMap
3223  -100	after split brain, disconnect
3224 -1000	unrelated data
3225 -1091   requires proto 91
3226 -1096   requires proto 96
3227  */
3228 
3229 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3230 {
3231 	struct drbd_peer_device *const peer_device = first_peer_device(device);
3232 	struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
3233 	u64 self, peer;
3234 	int i, j;
3235 
3236 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3237 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3238 
3239 	*rule_nr = 10;
3240 	if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3241 		return 0;
3242 
3243 	*rule_nr = 20;
3244 	if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3245 	     peer != UUID_JUST_CREATED)
3246 		return -2;
3247 
3248 	*rule_nr = 30;
3249 	if (self != UUID_JUST_CREATED &&
3250 	    (peer == UUID_JUST_CREATED || peer == (u64)0))
3251 		return 2;
3252 
3253 	if (self == peer) {
3254 		int rct, dc; /* roles at crash time */
3255 
3256 		if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3257 
3258 			if (connection->agreed_pro_version < 91)
3259 				return -1091;
3260 
3261 			if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3262 			    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3263 				drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3264 				drbd_uuid_move_history(device);
3265 				device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3266 				device->ldev->md.uuid[UI_BITMAP] = 0;
3267 
3268 				drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3269 					       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3270 				*rule_nr = 34;
3271 			} else {
3272 				drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3273 				*rule_nr = 36;
3274 			}
3275 
3276 			return 1;
3277 		}
3278 
3279 		if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3280 
3281 			if (connection->agreed_pro_version < 91)
3282 				return -1091;
3283 
3284 			if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3285 			    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3286 				drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3287 
3288 				device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3289 				device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3290 				device->p_uuid[UI_BITMAP] = 0UL;
3291 
3292 				drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3293 				*rule_nr = 35;
3294 			} else {
3295 				drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3296 				*rule_nr = 37;
3297 			}
3298 
3299 			return -1;
3300 		}
3301 
3302 		/* Common power [off|failure] */
3303 		rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3304 			(device->p_uuid[UI_FLAGS] & 2);
3305 		/* lowest bit is set when we were primary,
3306 		 * next bit (weight 2) is set when peer was primary */
3307 		*rule_nr = 40;
3308 
3309 		/* Neither has the "crashed primary" flag set,
3310 		 * only a replication link hickup. */
3311 		if (rct == 0)
3312 			return 0;
3313 
3314 		/* Current UUID equal and no bitmap uuid; does not necessarily
3315 		 * mean this was a "simultaneous hard crash", maybe IO was
3316 		 * frozen, so no UUID-bump happened.
3317 		 * This is a protocol change, overload DRBD_FF_WSAME as flag
3318 		 * for "new-enough" peer DRBD version. */
3319 		if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3320 			*rule_nr = 41;
3321 			if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3322 				drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3323 				return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3324 			}
3325 			if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3326 				/* At least one has the "crashed primary" bit set,
3327 				 * both are primary now, but neither has rotated its UUIDs?
3328 				 * "Can not happen." */
3329 				drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3330 				return -100;
3331 			}
3332 			if (device->state.role == R_PRIMARY)
3333 				return 1;
3334 			return -1;
3335 		}
3336 
3337 		/* Both are secondary.
3338 		 * Really looks like recovery from simultaneous hard crash.
3339 		 * Check which had been primary before, and arbitrate. */
3340 		switch (rct) {
3341 		case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3342 		case 1: /*  self_pri && !peer_pri */ return 1;
3343 		case 2: /* !self_pri &&  peer_pri */ return -1;
3344 		case 3: /*  self_pri &&  peer_pri */
3345 			dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3346 			return dc ? -1 : 1;
3347 		}
3348 	}
3349 
3350 	*rule_nr = 50;
3351 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3352 	if (self == peer)
3353 		return -1;
3354 
3355 	*rule_nr = 51;
3356 	peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3357 	if (self == peer) {
3358 		if (connection->agreed_pro_version < 96 ?
3359 		    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3360 		    (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3361 		    peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3362 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3363 			   resync as sync source modifications of the peer's UUIDs. */
3364 
3365 			if (connection->agreed_pro_version < 91)
3366 				return -1091;
3367 
3368 			device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3369 			device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3370 
3371 			drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3372 			drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3373 
3374 			return -1;
3375 		}
3376 	}
3377 
3378 	*rule_nr = 60;
3379 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3380 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3381 		peer = device->p_uuid[i] & ~((u64)1);
3382 		if (self == peer)
3383 			return -2;
3384 	}
3385 
3386 	*rule_nr = 70;
3387 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3388 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3389 	if (self == peer)
3390 		return 1;
3391 
3392 	*rule_nr = 71;
3393 	self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3394 	if (self == peer) {
3395 		if (connection->agreed_pro_version < 96 ?
3396 		    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3397 		    (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3398 		    self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3399 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3400 			   resync as sync source modifications of our UUIDs. */
3401 
3402 			if (connection->agreed_pro_version < 91)
3403 				return -1091;
3404 
3405 			__drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3406 			__drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3407 
3408 			drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3409 			drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3410 				       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3411 
3412 			return 1;
3413 		}
3414 	}
3415 
3416 
3417 	*rule_nr = 80;
3418 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3419 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3420 		self = device->ldev->md.uuid[i] & ~((u64)1);
3421 		if (self == peer)
3422 			return 2;
3423 	}
3424 
3425 	*rule_nr = 90;
3426 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3427 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3428 	if (self == peer && self != ((u64)0))
3429 		return 100;
3430 
3431 	*rule_nr = 100;
3432 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3433 		self = device->ldev->md.uuid[i] & ~((u64)1);
3434 		for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3435 			peer = device->p_uuid[j] & ~((u64)1);
3436 			if (self == peer)
3437 				return -100;
3438 		}
3439 	}
3440 
3441 	return -1000;
3442 }
3443 
3444 /* drbd_sync_handshake() returns the new conn state on success, or
3445    CONN_MASK (-1) on failure.
3446  */
3447 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3448 					   enum drbd_role peer_role,
3449 					   enum drbd_disk_state peer_disk) __must_hold(local)
3450 {
3451 	struct drbd_device *device = peer_device->device;
3452 	enum drbd_conns rv = C_MASK;
3453 	enum drbd_disk_state mydisk;
3454 	struct net_conf *nc;
3455 	int hg, rule_nr, rr_conflict, tentative, always_asbp;
3456 
3457 	mydisk = device->state.disk;
3458 	if (mydisk == D_NEGOTIATING)
3459 		mydisk = device->new_state_tmp.disk;
3460 
3461 	drbd_info(device, "drbd_sync_handshake:\n");
3462 
3463 	spin_lock_irq(&device->ldev->md.uuid_lock);
3464 	drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3465 	drbd_uuid_dump(device, "peer", device->p_uuid,
3466 		       device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3467 
3468 	hg = drbd_uuid_compare(device, peer_role, &rule_nr);
3469 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3470 
3471 	drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3472 
3473 	if (hg == -1000) {
3474 		drbd_alert(device, "Unrelated data, aborting!\n");
3475 		return C_MASK;
3476 	}
3477 	if (hg < -0x10000) {
3478 		int proto, fflags;
3479 		hg = -hg;
3480 		proto = hg & 0xff;
3481 		fflags = (hg >> 8) & 0xff;
3482 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3483 					proto, fflags);
3484 		return C_MASK;
3485 	}
3486 	if (hg < -1000) {
3487 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3488 		return C_MASK;
3489 	}
3490 
3491 	if    ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3492 	    (peer_disk == D_INCONSISTENT && mydisk    > D_INCONSISTENT)) {
3493 		int f = (hg == -100) || abs(hg) == 2;
3494 		hg = mydisk > D_INCONSISTENT ? 1 : -1;
3495 		if (f)
3496 			hg = hg*2;
3497 		drbd_info(device, "Becoming sync %s due to disk states.\n",
3498 		     hg > 0 ? "source" : "target");
3499 	}
3500 
3501 	if (abs(hg) == 100)
3502 		drbd_khelper(device, "initial-split-brain");
3503 
3504 	rcu_read_lock();
3505 	nc = rcu_dereference(peer_device->connection->net_conf);
3506 	always_asbp = nc->always_asbp;
3507 	rr_conflict = nc->rr_conflict;
3508 	tentative = nc->tentative;
3509 	rcu_read_unlock();
3510 
3511 	if (hg == 100 || (hg == -100 && always_asbp)) {
3512 		int pcount = (device->state.role == R_PRIMARY)
3513 			   + (peer_role == R_PRIMARY);
3514 		int forced = (hg == -100);
3515 
3516 		switch (pcount) {
3517 		case 0:
3518 			hg = drbd_asb_recover_0p(peer_device);
3519 			break;
3520 		case 1:
3521 			hg = drbd_asb_recover_1p(peer_device);
3522 			break;
3523 		case 2:
3524 			hg = drbd_asb_recover_2p(peer_device);
3525 			break;
3526 		}
3527 		if (abs(hg) < 100) {
3528 			drbd_warn(device, "Split-Brain detected, %d primaries, "
3529 			     "automatically solved. Sync from %s node\n",
3530 			     pcount, (hg < 0) ? "peer" : "this");
3531 			if (forced) {
3532 				drbd_warn(device, "Doing a full sync, since"
3533 				     " UUIDs where ambiguous.\n");
3534 				hg = hg*2;
3535 			}
3536 		}
3537 	}
3538 
3539 	if (hg == -100) {
3540 		if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3541 			hg = -1;
3542 		if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3543 			hg = 1;
3544 
3545 		if (abs(hg) < 100)
3546 			drbd_warn(device, "Split-Brain detected, manually solved. "
3547 			     "Sync from %s node\n",
3548 			     (hg < 0) ? "peer" : "this");
3549 	}
3550 
3551 	if (hg == -100) {
3552 		/* FIXME this log message is not correct if we end up here
3553 		 * after an attempted attach on a diskless node.
3554 		 * We just refuse to attach -- well, we drop the "connection"
3555 		 * to that disk, in a way... */
3556 		drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3557 		drbd_khelper(device, "split-brain");
3558 		return C_MASK;
3559 	}
3560 
3561 	if (hg > 0 && mydisk <= D_INCONSISTENT) {
3562 		drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3563 		return C_MASK;
3564 	}
3565 
3566 	if (hg < 0 && /* by intention we do not use mydisk here. */
3567 	    device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3568 		switch (rr_conflict) {
3569 		case ASB_CALL_HELPER:
3570 			drbd_khelper(device, "pri-lost");
3571 			fallthrough;
3572 		case ASB_DISCONNECT:
3573 			drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3574 			return C_MASK;
3575 		case ASB_VIOLENTLY:
3576 			drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3577 			     "assumption\n");
3578 		}
3579 	}
3580 
3581 	if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3582 		if (hg == 0)
3583 			drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3584 		else
3585 			drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3586 				 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3587 				 abs(hg) >= 2 ? "full" : "bit-map based");
3588 		return C_MASK;
3589 	}
3590 
3591 	if (abs(hg) >= 2) {
3592 		drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3593 		if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3594 					BM_LOCKED_SET_ALLOWED))
3595 			return C_MASK;
3596 	}
3597 
3598 	if (hg > 0) { /* become sync source. */
3599 		rv = C_WF_BITMAP_S;
3600 	} else if (hg < 0) { /* become sync target */
3601 		rv = C_WF_BITMAP_T;
3602 	} else {
3603 		rv = C_CONNECTED;
3604 		if (drbd_bm_total_weight(device)) {
3605 			drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3606 			     drbd_bm_total_weight(device));
3607 		}
3608 	}
3609 
3610 	return rv;
3611 }
3612 
3613 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3614 {
3615 	/* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3616 	if (peer == ASB_DISCARD_REMOTE)
3617 		return ASB_DISCARD_LOCAL;
3618 
3619 	/* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3620 	if (peer == ASB_DISCARD_LOCAL)
3621 		return ASB_DISCARD_REMOTE;
3622 
3623 	/* everything else is valid if they are equal on both sides. */
3624 	return peer;
3625 }
3626 
3627 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3628 {
3629 	struct p_protocol *p = pi->data;
3630 	enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3631 	int p_proto, p_discard_my_data, p_two_primaries, cf;
3632 	struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3633 	char integrity_alg[SHARED_SECRET_MAX] = "";
3634 	struct crypto_shash *peer_integrity_tfm = NULL;
3635 	void *int_dig_in = NULL, *int_dig_vv = NULL;
3636 
3637 	p_proto		= be32_to_cpu(p->protocol);
3638 	p_after_sb_0p	= be32_to_cpu(p->after_sb_0p);
3639 	p_after_sb_1p	= be32_to_cpu(p->after_sb_1p);
3640 	p_after_sb_2p	= be32_to_cpu(p->after_sb_2p);
3641 	p_two_primaries = be32_to_cpu(p->two_primaries);
3642 	cf		= be32_to_cpu(p->conn_flags);
3643 	p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3644 
3645 	if (connection->agreed_pro_version >= 87) {
3646 		int err;
3647 
3648 		if (pi->size > sizeof(integrity_alg))
3649 			return -EIO;
3650 		err = drbd_recv_all(connection, integrity_alg, pi->size);
3651 		if (err)
3652 			return err;
3653 		integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3654 	}
3655 
3656 	if (pi->cmd != P_PROTOCOL_UPDATE) {
3657 		clear_bit(CONN_DRY_RUN, &connection->flags);
3658 
3659 		if (cf & CF_DRY_RUN)
3660 			set_bit(CONN_DRY_RUN, &connection->flags);
3661 
3662 		rcu_read_lock();
3663 		nc = rcu_dereference(connection->net_conf);
3664 
3665 		if (p_proto != nc->wire_protocol) {
3666 			drbd_err(connection, "incompatible %s settings\n", "protocol");
3667 			goto disconnect_rcu_unlock;
3668 		}
3669 
3670 		if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3671 			drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3672 			goto disconnect_rcu_unlock;
3673 		}
3674 
3675 		if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3676 			drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3677 			goto disconnect_rcu_unlock;
3678 		}
3679 
3680 		if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3681 			drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3682 			goto disconnect_rcu_unlock;
3683 		}
3684 
3685 		if (p_discard_my_data && nc->discard_my_data) {
3686 			drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3687 			goto disconnect_rcu_unlock;
3688 		}
3689 
3690 		if (p_two_primaries != nc->two_primaries) {
3691 			drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3692 			goto disconnect_rcu_unlock;
3693 		}
3694 
3695 		if (strcmp(integrity_alg, nc->integrity_alg)) {
3696 			drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3697 			goto disconnect_rcu_unlock;
3698 		}
3699 
3700 		rcu_read_unlock();
3701 	}
3702 
3703 	if (integrity_alg[0]) {
3704 		int hash_size;
3705 
3706 		/*
3707 		 * We can only change the peer data integrity algorithm
3708 		 * here.  Changing our own data integrity algorithm
3709 		 * requires that we send a P_PROTOCOL_UPDATE packet at
3710 		 * the same time; otherwise, the peer has no way to
3711 		 * tell between which packets the algorithm should
3712 		 * change.
3713 		 */
3714 
3715 		peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0);
3716 		if (IS_ERR(peer_integrity_tfm)) {
3717 			peer_integrity_tfm = NULL;
3718 			drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3719 				 integrity_alg);
3720 			goto disconnect;
3721 		}
3722 
3723 		hash_size = crypto_shash_digestsize(peer_integrity_tfm);
3724 		int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3725 		int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3726 		if (!(int_dig_in && int_dig_vv)) {
3727 			drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3728 			goto disconnect;
3729 		}
3730 	}
3731 
3732 	new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3733 	if (!new_net_conf)
3734 		goto disconnect;
3735 
3736 	mutex_lock(&connection->data.mutex);
3737 	mutex_lock(&connection->resource->conf_update);
3738 	old_net_conf = connection->net_conf;
3739 	*new_net_conf = *old_net_conf;
3740 
3741 	new_net_conf->wire_protocol = p_proto;
3742 	new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3743 	new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3744 	new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3745 	new_net_conf->two_primaries = p_two_primaries;
3746 
3747 	rcu_assign_pointer(connection->net_conf, new_net_conf);
3748 	mutex_unlock(&connection->resource->conf_update);
3749 	mutex_unlock(&connection->data.mutex);
3750 
3751 	crypto_free_shash(connection->peer_integrity_tfm);
3752 	kfree(connection->int_dig_in);
3753 	kfree(connection->int_dig_vv);
3754 	connection->peer_integrity_tfm = peer_integrity_tfm;
3755 	connection->int_dig_in = int_dig_in;
3756 	connection->int_dig_vv = int_dig_vv;
3757 
3758 	if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3759 		drbd_info(connection, "peer data-integrity-alg: %s\n",
3760 			  integrity_alg[0] ? integrity_alg : "(none)");
3761 
3762 	kvfree_rcu(old_net_conf);
3763 	return 0;
3764 
3765 disconnect_rcu_unlock:
3766 	rcu_read_unlock();
3767 disconnect:
3768 	crypto_free_shash(peer_integrity_tfm);
3769 	kfree(int_dig_in);
3770 	kfree(int_dig_vv);
3771 	conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3772 	return -EIO;
3773 }
3774 
3775 /* helper function
3776  * input: alg name, feature name
3777  * return: NULL (alg name was "")
3778  *         ERR_PTR(error) if something goes wrong
3779  *         or the crypto hash ptr, if it worked out ok. */
3780 static struct crypto_shash *drbd_crypto_alloc_digest_safe(
3781 		const struct drbd_device *device,
3782 		const char *alg, const char *name)
3783 {
3784 	struct crypto_shash *tfm;
3785 
3786 	if (!alg[0])
3787 		return NULL;
3788 
3789 	tfm = crypto_alloc_shash(alg, 0, 0);
3790 	if (IS_ERR(tfm)) {
3791 		drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3792 			alg, name, PTR_ERR(tfm));
3793 		return tfm;
3794 	}
3795 	return tfm;
3796 }
3797 
3798 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3799 {
3800 	void *buffer = connection->data.rbuf;
3801 	int size = pi->size;
3802 
3803 	while (size) {
3804 		int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3805 		s = drbd_recv(connection, buffer, s);
3806 		if (s <= 0) {
3807 			if (s < 0)
3808 				return s;
3809 			break;
3810 		}
3811 		size -= s;
3812 	}
3813 	if (size)
3814 		return -EIO;
3815 	return 0;
3816 }
3817 
3818 /*
3819  * config_unknown_volume  -  device configuration command for unknown volume
3820  *
3821  * When a device is added to an existing connection, the node on which the
3822  * device is added first will send configuration commands to its peer but the
3823  * peer will not know about the device yet.  It will warn and ignore these
3824  * commands.  Once the device is added on the second node, the second node will
3825  * send the same device configuration commands, but in the other direction.
3826  *
3827  * (We can also end up here if drbd is misconfigured.)
3828  */
3829 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3830 {
3831 	drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3832 		  cmdname(pi->cmd), pi->vnr);
3833 	return ignore_remaining_packet(connection, pi);
3834 }
3835 
3836 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3837 {
3838 	struct drbd_peer_device *peer_device;
3839 	struct drbd_device *device;
3840 	struct p_rs_param_95 *p;
3841 	unsigned int header_size, data_size, exp_max_sz;
3842 	struct crypto_shash *verify_tfm = NULL;
3843 	struct crypto_shash *csums_tfm = NULL;
3844 	struct net_conf *old_net_conf, *new_net_conf = NULL;
3845 	struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3846 	const int apv = connection->agreed_pro_version;
3847 	struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3848 	unsigned int fifo_size = 0;
3849 	int err;
3850 
3851 	peer_device = conn_peer_device(connection, pi->vnr);
3852 	if (!peer_device)
3853 		return config_unknown_volume(connection, pi);
3854 	device = peer_device->device;
3855 
3856 	exp_max_sz  = apv <= 87 ? sizeof(struct p_rs_param)
3857 		    : apv == 88 ? sizeof(struct p_rs_param)
3858 					+ SHARED_SECRET_MAX
3859 		    : apv <= 94 ? sizeof(struct p_rs_param_89)
3860 		    : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3861 
3862 	if (pi->size > exp_max_sz) {
3863 		drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3864 		    pi->size, exp_max_sz);
3865 		return -EIO;
3866 	}
3867 
3868 	if (apv <= 88) {
3869 		header_size = sizeof(struct p_rs_param);
3870 		data_size = pi->size - header_size;
3871 	} else if (apv <= 94) {
3872 		header_size = sizeof(struct p_rs_param_89);
3873 		data_size = pi->size - header_size;
3874 		D_ASSERT(device, data_size == 0);
3875 	} else {
3876 		header_size = sizeof(struct p_rs_param_95);
3877 		data_size = pi->size - header_size;
3878 		D_ASSERT(device, data_size == 0);
3879 	}
3880 
3881 	/* initialize verify_alg and csums_alg */
3882 	p = pi->data;
3883 	BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
3884 	memset(&p->algs, 0, sizeof(p->algs));
3885 
3886 	err = drbd_recv_all(peer_device->connection, p, header_size);
3887 	if (err)
3888 		return err;
3889 
3890 	mutex_lock(&connection->resource->conf_update);
3891 	old_net_conf = peer_device->connection->net_conf;
3892 	if (get_ldev(device)) {
3893 		new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3894 		if (!new_disk_conf) {
3895 			put_ldev(device);
3896 			mutex_unlock(&connection->resource->conf_update);
3897 			drbd_err(device, "Allocation of new disk_conf failed\n");
3898 			return -ENOMEM;
3899 		}
3900 
3901 		old_disk_conf = device->ldev->disk_conf;
3902 		*new_disk_conf = *old_disk_conf;
3903 
3904 		new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3905 	}
3906 
3907 	if (apv >= 88) {
3908 		if (apv == 88) {
3909 			if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3910 				drbd_err(device, "verify-alg of wrong size, "
3911 					"peer wants %u, accepting only up to %u byte\n",
3912 					data_size, SHARED_SECRET_MAX);
3913 				goto reconnect;
3914 			}
3915 
3916 			err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3917 			if (err)
3918 				goto reconnect;
3919 			/* we expect NUL terminated string */
3920 			/* but just in case someone tries to be evil */
3921 			D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3922 			p->verify_alg[data_size-1] = 0;
3923 
3924 		} else /* apv >= 89 */ {
3925 			/* we still expect NUL terminated strings */
3926 			/* but just in case someone tries to be evil */
3927 			D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3928 			D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3929 			p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3930 			p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3931 		}
3932 
3933 		if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3934 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3935 				drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3936 				    old_net_conf->verify_alg, p->verify_alg);
3937 				goto disconnect;
3938 			}
3939 			verify_tfm = drbd_crypto_alloc_digest_safe(device,
3940 					p->verify_alg, "verify-alg");
3941 			if (IS_ERR(verify_tfm)) {
3942 				verify_tfm = NULL;
3943 				goto disconnect;
3944 			}
3945 		}
3946 
3947 		if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3948 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3949 				drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3950 				    old_net_conf->csums_alg, p->csums_alg);
3951 				goto disconnect;
3952 			}
3953 			csums_tfm = drbd_crypto_alloc_digest_safe(device,
3954 					p->csums_alg, "csums-alg");
3955 			if (IS_ERR(csums_tfm)) {
3956 				csums_tfm = NULL;
3957 				goto disconnect;
3958 			}
3959 		}
3960 
3961 		if (apv > 94 && new_disk_conf) {
3962 			new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
3963 			new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
3964 			new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
3965 			new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
3966 
3967 			fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
3968 			if (fifo_size != device->rs_plan_s->size) {
3969 				new_plan = fifo_alloc(fifo_size);
3970 				if (!new_plan) {
3971 					drbd_err(device, "kmalloc of fifo_buffer failed");
3972 					put_ldev(device);
3973 					goto disconnect;
3974 				}
3975 			}
3976 		}
3977 
3978 		if (verify_tfm || csums_tfm) {
3979 			new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
3980 			if (!new_net_conf)
3981 				goto disconnect;
3982 
3983 			*new_net_conf = *old_net_conf;
3984 
3985 			if (verify_tfm) {
3986 				strcpy(new_net_conf->verify_alg, p->verify_alg);
3987 				new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
3988 				crypto_free_shash(peer_device->connection->verify_tfm);
3989 				peer_device->connection->verify_tfm = verify_tfm;
3990 				drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
3991 			}
3992 			if (csums_tfm) {
3993 				strcpy(new_net_conf->csums_alg, p->csums_alg);
3994 				new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
3995 				crypto_free_shash(peer_device->connection->csums_tfm);
3996 				peer_device->connection->csums_tfm = csums_tfm;
3997 				drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
3998 			}
3999 			rcu_assign_pointer(connection->net_conf, new_net_conf);
4000 		}
4001 	}
4002 
4003 	if (new_disk_conf) {
4004 		rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4005 		put_ldev(device);
4006 	}
4007 
4008 	if (new_plan) {
4009 		old_plan = device->rs_plan_s;
4010 		rcu_assign_pointer(device->rs_plan_s, new_plan);
4011 	}
4012 
4013 	mutex_unlock(&connection->resource->conf_update);
4014 	synchronize_rcu();
4015 	if (new_net_conf)
4016 		kfree(old_net_conf);
4017 	kfree(old_disk_conf);
4018 	kfree(old_plan);
4019 
4020 	return 0;
4021 
4022 reconnect:
4023 	if (new_disk_conf) {
4024 		put_ldev(device);
4025 		kfree(new_disk_conf);
4026 	}
4027 	mutex_unlock(&connection->resource->conf_update);
4028 	return -EIO;
4029 
4030 disconnect:
4031 	kfree(new_plan);
4032 	if (new_disk_conf) {
4033 		put_ldev(device);
4034 		kfree(new_disk_conf);
4035 	}
4036 	mutex_unlock(&connection->resource->conf_update);
4037 	/* just for completeness: actually not needed,
4038 	 * as this is not reached if csums_tfm was ok. */
4039 	crypto_free_shash(csums_tfm);
4040 	/* but free the verify_tfm again, if csums_tfm did not work out */
4041 	crypto_free_shash(verify_tfm);
4042 	conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4043 	return -EIO;
4044 }
4045 
4046 /* warn if the arguments differ by more than 12.5% */
4047 static void warn_if_differ_considerably(struct drbd_device *device,
4048 	const char *s, sector_t a, sector_t b)
4049 {
4050 	sector_t d;
4051 	if (a == 0 || b == 0)
4052 		return;
4053 	d = (a > b) ? (a - b) : (b - a);
4054 	if (d > (a>>3) || d > (b>>3))
4055 		drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
4056 		     (unsigned long long)a, (unsigned long long)b);
4057 }
4058 
4059 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
4060 {
4061 	struct drbd_peer_device *peer_device;
4062 	struct drbd_device *device;
4063 	struct p_sizes *p = pi->data;
4064 	struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
4065 	enum determine_dev_size dd = DS_UNCHANGED;
4066 	sector_t p_size, p_usize, p_csize, my_usize;
4067 	sector_t new_size, cur_size;
4068 	int ldsc = 0; /* local disk size changed */
4069 	enum dds_flags ddsf;
4070 
4071 	peer_device = conn_peer_device(connection, pi->vnr);
4072 	if (!peer_device)
4073 		return config_unknown_volume(connection, pi);
4074 	device = peer_device->device;
4075 	cur_size = get_capacity(device->vdisk);
4076 
4077 	p_size = be64_to_cpu(p->d_size);
4078 	p_usize = be64_to_cpu(p->u_size);
4079 	p_csize = be64_to_cpu(p->c_size);
4080 
4081 	/* just store the peer's disk size for now.
4082 	 * we still need to figure out whether we accept that. */
4083 	device->p_size = p_size;
4084 
4085 	if (get_ldev(device)) {
4086 		rcu_read_lock();
4087 		my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4088 		rcu_read_unlock();
4089 
4090 		warn_if_differ_considerably(device, "lower level device sizes",
4091 			   p_size, drbd_get_max_capacity(device->ldev));
4092 		warn_if_differ_considerably(device, "user requested size",
4093 					    p_usize, my_usize);
4094 
4095 		/* if this is the first connect, or an otherwise expected
4096 		 * param exchange, choose the minimum */
4097 		if (device->state.conn == C_WF_REPORT_PARAMS)
4098 			p_usize = min_not_zero(my_usize, p_usize);
4099 
4100 		/* Never shrink a device with usable data during connect,
4101 		 * or "attach" on the peer.
4102 		 * But allow online shrinking if we are connected. */
4103 		new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4104 		if (new_size < cur_size &&
4105 		    device->state.disk >= D_OUTDATED &&
4106 		    (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) {
4107 			drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4108 					(unsigned long long)new_size, (unsigned long long)cur_size);
4109 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4110 			put_ldev(device);
4111 			return -EIO;
4112 		}
4113 
4114 		if (my_usize != p_usize) {
4115 			struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4116 
4117 			new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4118 			if (!new_disk_conf) {
4119 				put_ldev(device);
4120 				return -ENOMEM;
4121 			}
4122 
4123 			mutex_lock(&connection->resource->conf_update);
4124 			old_disk_conf = device->ldev->disk_conf;
4125 			*new_disk_conf = *old_disk_conf;
4126 			new_disk_conf->disk_size = p_usize;
4127 
4128 			rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4129 			mutex_unlock(&connection->resource->conf_update);
4130 			kvfree_rcu(old_disk_conf);
4131 
4132 			drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n",
4133 				 (unsigned long)p_usize, (unsigned long)my_usize);
4134 		}
4135 
4136 		put_ldev(device);
4137 	}
4138 
4139 	device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4140 	/* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4141 	   In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4142 	   drbd_reconsider_queue_parameters(), we can be sure that after
4143 	   drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4144 
4145 	ddsf = be16_to_cpu(p->dds_flags);
4146 	if (get_ldev(device)) {
4147 		drbd_reconsider_queue_parameters(device, device->ldev, o);
4148 		dd = drbd_determine_dev_size(device, ddsf, NULL);
4149 		put_ldev(device);
4150 		if (dd == DS_ERROR)
4151 			return -EIO;
4152 		drbd_md_sync(device);
4153 	} else {
4154 		/*
4155 		 * I am diskless, need to accept the peer's *current* size.
4156 		 * I must NOT accept the peers backing disk size,
4157 		 * it may have been larger than mine all along...
4158 		 *
4159 		 * At this point, the peer knows more about my disk, or at
4160 		 * least about what we last agreed upon, than myself.
4161 		 * So if his c_size is less than his d_size, the most likely
4162 		 * reason is that *my* d_size was smaller last time we checked.
4163 		 *
4164 		 * However, if he sends a zero current size,
4165 		 * take his (user-capped or) backing disk size anyways.
4166 		 *
4167 		 * Unless of course he does not have a disk himself.
4168 		 * In which case we ignore this completely.
4169 		 */
4170 		sector_t new_size = p_csize ?: p_usize ?: p_size;
4171 		drbd_reconsider_queue_parameters(device, NULL, o);
4172 		if (new_size == 0) {
4173 			/* Ignore, peer does not know nothing. */
4174 		} else if (new_size == cur_size) {
4175 			/* nothing to do */
4176 		} else if (cur_size != 0 && p_size == 0) {
4177 			drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n",
4178 					(unsigned long long)new_size, (unsigned long long)cur_size);
4179 		} else if (new_size < cur_size && device->state.role == R_PRIMARY) {
4180 			drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n",
4181 					(unsigned long long)new_size, (unsigned long long)cur_size);
4182 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4183 			return -EIO;
4184 		} else {
4185 			/* I believe the peer, if
4186 			 *  - I don't have a current size myself
4187 			 *  - we agree on the size anyways
4188 			 *  - I do have a current size, am Secondary,
4189 			 *    and he has the only disk
4190 			 *  - I do have a current size, am Primary,
4191 			 *    and he has the only disk,
4192 			 *    which is larger than my current size
4193 			 */
4194 			drbd_set_my_capacity(device, new_size);
4195 		}
4196 	}
4197 
4198 	if (get_ldev(device)) {
4199 		if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4200 			device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4201 			ldsc = 1;
4202 		}
4203 
4204 		put_ldev(device);
4205 	}
4206 
4207 	if (device->state.conn > C_WF_REPORT_PARAMS) {
4208 		if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) ||
4209 		    ldsc) {
4210 			/* we have different sizes, probably peer
4211 			 * needs to know my new size... */
4212 			drbd_send_sizes(peer_device, 0, ddsf);
4213 		}
4214 		if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4215 		    (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4216 			if (device->state.pdsk >= D_INCONSISTENT &&
4217 			    device->state.disk >= D_INCONSISTENT) {
4218 				if (ddsf & DDSF_NO_RESYNC)
4219 					drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4220 				else
4221 					resync_after_online_grow(device);
4222 			} else
4223 				set_bit(RESYNC_AFTER_NEG, &device->flags);
4224 		}
4225 	}
4226 
4227 	return 0;
4228 }
4229 
4230 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4231 {
4232 	struct drbd_peer_device *peer_device;
4233 	struct drbd_device *device;
4234 	struct p_uuids *p = pi->data;
4235 	u64 *p_uuid;
4236 	int i, updated_uuids = 0;
4237 
4238 	peer_device = conn_peer_device(connection, pi->vnr);
4239 	if (!peer_device)
4240 		return config_unknown_volume(connection, pi);
4241 	device = peer_device->device;
4242 
4243 	p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO);
4244 	if (!p_uuid)
4245 		return false;
4246 
4247 	for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4248 		p_uuid[i] = be64_to_cpu(p->uuid[i]);
4249 
4250 	kfree(device->p_uuid);
4251 	device->p_uuid = p_uuid;
4252 
4253 	if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) &&
4254 	    device->state.disk < D_INCONSISTENT &&
4255 	    device->state.role == R_PRIMARY &&
4256 	    (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4257 		drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4258 		    (unsigned long long)device->ed_uuid);
4259 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4260 		return -EIO;
4261 	}
4262 
4263 	if (get_ldev(device)) {
4264 		int skip_initial_sync =
4265 			device->state.conn == C_CONNECTED &&
4266 			peer_device->connection->agreed_pro_version >= 90 &&
4267 			device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4268 			(p_uuid[UI_FLAGS] & 8);
4269 		if (skip_initial_sync) {
4270 			drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4271 			drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4272 					"clear_n_write from receive_uuids",
4273 					BM_LOCKED_TEST_ALLOWED);
4274 			_drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4275 			_drbd_uuid_set(device, UI_BITMAP, 0);
4276 			_drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4277 					CS_VERBOSE, NULL);
4278 			drbd_md_sync(device);
4279 			updated_uuids = 1;
4280 		}
4281 		put_ldev(device);
4282 	} else if (device->state.disk < D_INCONSISTENT &&
4283 		   device->state.role == R_PRIMARY) {
4284 		/* I am a diskless primary, the peer just created a new current UUID
4285 		   for me. */
4286 		updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4287 	}
4288 
4289 	/* Before we test for the disk state, we should wait until an eventually
4290 	   ongoing cluster wide state change is finished. That is important if
4291 	   we are primary and are detaching from our disk. We need to see the
4292 	   new disk state... */
4293 	mutex_lock(device->state_mutex);
4294 	mutex_unlock(device->state_mutex);
4295 	if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4296 		updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4297 
4298 	if (updated_uuids)
4299 		drbd_print_uuids(device, "receiver updated UUIDs to");
4300 
4301 	return 0;
4302 }
4303 
4304 /**
4305  * convert_state() - Converts the peer's view of the cluster state to our point of view
4306  * @ps:		The state as seen by the peer.
4307  */
4308 static union drbd_state convert_state(union drbd_state ps)
4309 {
4310 	union drbd_state ms;
4311 
4312 	static enum drbd_conns c_tab[] = {
4313 		[C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4314 		[C_CONNECTED] = C_CONNECTED,
4315 
4316 		[C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4317 		[C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4318 		[C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4319 		[C_VERIFY_S]       = C_VERIFY_T,
4320 		[C_MASK]   = C_MASK,
4321 	};
4322 
4323 	ms.i = ps.i;
4324 
4325 	ms.conn = c_tab[ps.conn];
4326 	ms.peer = ps.role;
4327 	ms.role = ps.peer;
4328 	ms.pdsk = ps.disk;
4329 	ms.disk = ps.pdsk;
4330 	ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4331 
4332 	return ms;
4333 }
4334 
4335 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4336 {
4337 	struct drbd_peer_device *peer_device;
4338 	struct drbd_device *device;
4339 	struct p_req_state *p = pi->data;
4340 	union drbd_state mask, val;
4341 	enum drbd_state_rv rv;
4342 
4343 	peer_device = conn_peer_device(connection, pi->vnr);
4344 	if (!peer_device)
4345 		return -EIO;
4346 	device = peer_device->device;
4347 
4348 	mask.i = be32_to_cpu(p->mask);
4349 	val.i = be32_to_cpu(p->val);
4350 
4351 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4352 	    mutex_is_locked(device->state_mutex)) {
4353 		drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4354 		return 0;
4355 	}
4356 
4357 	mask = convert_state(mask);
4358 	val = convert_state(val);
4359 
4360 	rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4361 	drbd_send_sr_reply(peer_device, rv);
4362 
4363 	drbd_md_sync(device);
4364 
4365 	return 0;
4366 }
4367 
4368 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4369 {
4370 	struct p_req_state *p = pi->data;
4371 	union drbd_state mask, val;
4372 	enum drbd_state_rv rv;
4373 
4374 	mask.i = be32_to_cpu(p->mask);
4375 	val.i = be32_to_cpu(p->val);
4376 
4377 	if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4378 	    mutex_is_locked(&connection->cstate_mutex)) {
4379 		conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4380 		return 0;
4381 	}
4382 
4383 	mask = convert_state(mask);
4384 	val = convert_state(val);
4385 
4386 	rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4387 	conn_send_sr_reply(connection, rv);
4388 
4389 	return 0;
4390 }
4391 
4392 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4393 {
4394 	struct drbd_peer_device *peer_device;
4395 	struct drbd_device *device;
4396 	struct p_state *p = pi->data;
4397 	union drbd_state os, ns, peer_state;
4398 	enum drbd_disk_state real_peer_disk;
4399 	enum chg_state_flags cs_flags;
4400 	int rv;
4401 
4402 	peer_device = conn_peer_device(connection, pi->vnr);
4403 	if (!peer_device)
4404 		return config_unknown_volume(connection, pi);
4405 	device = peer_device->device;
4406 
4407 	peer_state.i = be32_to_cpu(p->state);
4408 
4409 	real_peer_disk = peer_state.disk;
4410 	if (peer_state.disk == D_NEGOTIATING) {
4411 		real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4412 		drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4413 	}
4414 
4415 	spin_lock_irq(&device->resource->req_lock);
4416  retry:
4417 	os = ns = drbd_read_state(device);
4418 	spin_unlock_irq(&device->resource->req_lock);
4419 
4420 	/* If some other part of the code (ack_receiver thread, timeout)
4421 	 * already decided to close the connection again,
4422 	 * we must not "re-establish" it here. */
4423 	if (os.conn <= C_TEAR_DOWN)
4424 		return -ECONNRESET;
4425 
4426 	/* If this is the "end of sync" confirmation, usually the peer disk
4427 	 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4428 	 * set) resync started in PausedSyncT, or if the timing of pause-/
4429 	 * unpause-sync events has been "just right", the peer disk may
4430 	 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4431 	 */
4432 	if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4433 	    real_peer_disk == D_UP_TO_DATE &&
4434 	    os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4435 		/* If we are (becoming) SyncSource, but peer is still in sync
4436 		 * preparation, ignore its uptodate-ness to avoid flapping, it
4437 		 * will change to inconsistent once the peer reaches active
4438 		 * syncing states.
4439 		 * It may have changed syncer-paused flags, however, so we
4440 		 * cannot ignore this completely. */
4441 		if (peer_state.conn > C_CONNECTED &&
4442 		    peer_state.conn < C_SYNC_SOURCE)
4443 			real_peer_disk = D_INCONSISTENT;
4444 
4445 		/* if peer_state changes to connected at the same time,
4446 		 * it explicitly notifies us that it finished resync.
4447 		 * Maybe we should finish it up, too? */
4448 		else if (os.conn >= C_SYNC_SOURCE &&
4449 			 peer_state.conn == C_CONNECTED) {
4450 			if (drbd_bm_total_weight(device) <= device->rs_failed)
4451 				drbd_resync_finished(device);
4452 			return 0;
4453 		}
4454 	}
4455 
4456 	/* explicit verify finished notification, stop sector reached. */
4457 	if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4458 	    peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4459 		ov_out_of_sync_print(device);
4460 		drbd_resync_finished(device);
4461 		return 0;
4462 	}
4463 
4464 	/* peer says his disk is inconsistent, while we think it is uptodate,
4465 	 * and this happens while the peer still thinks we have a sync going on,
4466 	 * but we think we are already done with the sync.
4467 	 * We ignore this to avoid flapping pdsk.
4468 	 * This should not happen, if the peer is a recent version of drbd. */
4469 	if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4470 	    os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4471 		real_peer_disk = D_UP_TO_DATE;
4472 
4473 	if (ns.conn == C_WF_REPORT_PARAMS)
4474 		ns.conn = C_CONNECTED;
4475 
4476 	if (peer_state.conn == C_AHEAD)
4477 		ns.conn = C_BEHIND;
4478 
4479 	/* TODO:
4480 	 * if (primary and diskless and peer uuid != effective uuid)
4481 	 *     abort attach on peer;
4482 	 *
4483 	 * If this node does not have good data, was already connected, but
4484 	 * the peer did a late attach only now, trying to "negotiate" with me,
4485 	 * AND I am currently Primary, possibly frozen, with some specific
4486 	 * "effective" uuid, this should never be reached, really, because
4487 	 * we first send the uuids, then the current state.
4488 	 *
4489 	 * In this scenario, we already dropped the connection hard
4490 	 * when we received the unsuitable uuids (receive_uuids().
4491 	 *
4492 	 * Should we want to change this, that is: not drop the connection in
4493 	 * receive_uuids() already, then we would need to add a branch here
4494 	 * that aborts the attach of "unsuitable uuids" on the peer in case
4495 	 * this node is currently Diskless Primary.
4496 	 */
4497 
4498 	if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4499 	    get_ldev_if_state(device, D_NEGOTIATING)) {
4500 		int cr; /* consider resync */
4501 
4502 		/* if we established a new connection */
4503 		cr  = (os.conn < C_CONNECTED);
4504 		/* if we had an established connection
4505 		 * and one of the nodes newly attaches a disk */
4506 		cr |= (os.conn == C_CONNECTED &&
4507 		       (peer_state.disk == D_NEGOTIATING ||
4508 			os.disk == D_NEGOTIATING));
4509 		/* if we have both been inconsistent, and the peer has been
4510 		 * forced to be UpToDate with --force */
4511 		cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4512 		/* if we had been plain connected, and the admin requested to
4513 		 * start a sync by "invalidate" or "invalidate-remote" */
4514 		cr |= (os.conn == C_CONNECTED &&
4515 				(peer_state.conn >= C_STARTING_SYNC_S &&
4516 				 peer_state.conn <= C_WF_BITMAP_T));
4517 
4518 		if (cr)
4519 			ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4520 
4521 		put_ldev(device);
4522 		if (ns.conn == C_MASK) {
4523 			ns.conn = C_CONNECTED;
4524 			if (device->state.disk == D_NEGOTIATING) {
4525 				drbd_force_state(device, NS(disk, D_FAILED));
4526 			} else if (peer_state.disk == D_NEGOTIATING) {
4527 				drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4528 				peer_state.disk = D_DISKLESS;
4529 				real_peer_disk = D_DISKLESS;
4530 			} else {
4531 				if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4532 					return -EIO;
4533 				D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4534 				conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4535 				return -EIO;
4536 			}
4537 		}
4538 	}
4539 
4540 	spin_lock_irq(&device->resource->req_lock);
4541 	if (os.i != drbd_read_state(device).i)
4542 		goto retry;
4543 	clear_bit(CONSIDER_RESYNC, &device->flags);
4544 	ns.peer = peer_state.role;
4545 	ns.pdsk = real_peer_disk;
4546 	ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4547 	if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4548 		ns.disk = device->new_state_tmp.disk;
4549 	cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4550 	if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4551 	    test_bit(NEW_CUR_UUID, &device->flags)) {
4552 		/* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4553 		   for temporal network outages! */
4554 		spin_unlock_irq(&device->resource->req_lock);
4555 		drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4556 		tl_clear(peer_device->connection);
4557 		drbd_uuid_new_current(device);
4558 		clear_bit(NEW_CUR_UUID, &device->flags);
4559 		conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4560 		return -EIO;
4561 	}
4562 	rv = _drbd_set_state(device, ns, cs_flags, NULL);
4563 	ns = drbd_read_state(device);
4564 	spin_unlock_irq(&device->resource->req_lock);
4565 
4566 	if (rv < SS_SUCCESS) {
4567 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4568 		return -EIO;
4569 	}
4570 
4571 	if (os.conn > C_WF_REPORT_PARAMS) {
4572 		if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4573 		    peer_state.disk != D_NEGOTIATING ) {
4574 			/* we want resync, peer has not yet decided to sync... */
4575 			/* Nowadays only used when forcing a node into primary role and
4576 			   setting its disk to UpToDate with that */
4577 			drbd_send_uuids(peer_device);
4578 			drbd_send_current_state(peer_device);
4579 		}
4580 	}
4581 
4582 	clear_bit(DISCARD_MY_DATA, &device->flags);
4583 
4584 	drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4585 
4586 	return 0;
4587 }
4588 
4589 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4590 {
4591 	struct drbd_peer_device *peer_device;
4592 	struct drbd_device *device;
4593 	struct p_rs_uuid *p = pi->data;
4594 
4595 	peer_device = conn_peer_device(connection, pi->vnr);
4596 	if (!peer_device)
4597 		return -EIO;
4598 	device = peer_device->device;
4599 
4600 	wait_event(device->misc_wait,
4601 		   device->state.conn == C_WF_SYNC_UUID ||
4602 		   device->state.conn == C_BEHIND ||
4603 		   device->state.conn < C_CONNECTED ||
4604 		   device->state.disk < D_NEGOTIATING);
4605 
4606 	/* D_ASSERT(device,  device->state.conn == C_WF_SYNC_UUID ); */
4607 
4608 	/* Here the _drbd_uuid_ functions are right, current should
4609 	   _not_ be rotated into the history */
4610 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
4611 		_drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4612 		_drbd_uuid_set(device, UI_BITMAP, 0UL);
4613 
4614 		drbd_print_uuids(device, "updated sync uuid");
4615 		drbd_start_resync(device, C_SYNC_TARGET);
4616 
4617 		put_ldev(device);
4618 	} else
4619 		drbd_err(device, "Ignoring SyncUUID packet!\n");
4620 
4621 	return 0;
4622 }
4623 
4624 /*
4625  * receive_bitmap_plain
4626  *
4627  * Return 0 when done, 1 when another iteration is needed, and a negative error
4628  * code upon failure.
4629  */
4630 static int
4631 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4632 		     unsigned long *p, struct bm_xfer_ctx *c)
4633 {
4634 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4635 				 drbd_header_size(peer_device->connection);
4636 	unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4637 				       c->bm_words - c->word_offset);
4638 	unsigned int want = num_words * sizeof(*p);
4639 	int err;
4640 
4641 	if (want != size) {
4642 		drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4643 		return -EIO;
4644 	}
4645 	if (want == 0)
4646 		return 0;
4647 	err = drbd_recv_all(peer_device->connection, p, want);
4648 	if (err)
4649 		return err;
4650 
4651 	drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4652 
4653 	c->word_offset += num_words;
4654 	c->bit_offset = c->word_offset * BITS_PER_LONG;
4655 	if (c->bit_offset > c->bm_bits)
4656 		c->bit_offset = c->bm_bits;
4657 
4658 	return 1;
4659 }
4660 
4661 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4662 {
4663 	return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4664 }
4665 
4666 static int dcbp_get_start(struct p_compressed_bm *p)
4667 {
4668 	return (p->encoding & 0x80) != 0;
4669 }
4670 
4671 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4672 {
4673 	return (p->encoding >> 4) & 0x7;
4674 }
4675 
4676 /*
4677  * recv_bm_rle_bits
4678  *
4679  * Return 0 when done, 1 when another iteration is needed, and a negative error
4680  * code upon failure.
4681  */
4682 static int
4683 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4684 		struct p_compressed_bm *p,
4685 		 struct bm_xfer_ctx *c,
4686 		 unsigned int len)
4687 {
4688 	struct bitstream bs;
4689 	u64 look_ahead;
4690 	u64 rl;
4691 	u64 tmp;
4692 	unsigned long s = c->bit_offset;
4693 	unsigned long e;
4694 	int toggle = dcbp_get_start(p);
4695 	int have;
4696 	int bits;
4697 
4698 	bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4699 
4700 	bits = bitstream_get_bits(&bs, &look_ahead, 64);
4701 	if (bits < 0)
4702 		return -EIO;
4703 
4704 	for (have = bits; have > 0; s += rl, toggle = !toggle) {
4705 		bits = vli_decode_bits(&rl, look_ahead);
4706 		if (bits <= 0)
4707 			return -EIO;
4708 
4709 		if (toggle) {
4710 			e = s + rl -1;
4711 			if (e >= c->bm_bits) {
4712 				drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4713 				return -EIO;
4714 			}
4715 			_drbd_bm_set_bits(peer_device->device, s, e);
4716 		}
4717 
4718 		if (have < bits) {
4719 			drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4720 				have, bits, look_ahead,
4721 				(unsigned int)(bs.cur.b - p->code),
4722 				(unsigned int)bs.buf_len);
4723 			return -EIO;
4724 		}
4725 		/* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4726 		if (likely(bits < 64))
4727 			look_ahead >>= bits;
4728 		else
4729 			look_ahead = 0;
4730 		have -= bits;
4731 
4732 		bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4733 		if (bits < 0)
4734 			return -EIO;
4735 		look_ahead |= tmp << have;
4736 		have += bits;
4737 	}
4738 
4739 	c->bit_offset = s;
4740 	bm_xfer_ctx_bit_to_word_offset(c);
4741 
4742 	return (s != c->bm_bits);
4743 }
4744 
4745 /*
4746  * decode_bitmap_c
4747  *
4748  * Return 0 when done, 1 when another iteration is needed, and a negative error
4749  * code upon failure.
4750  */
4751 static int
4752 decode_bitmap_c(struct drbd_peer_device *peer_device,
4753 		struct p_compressed_bm *p,
4754 		struct bm_xfer_ctx *c,
4755 		unsigned int len)
4756 {
4757 	if (dcbp_get_code(p) == RLE_VLI_Bits)
4758 		return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4759 
4760 	/* other variants had been implemented for evaluation,
4761 	 * but have been dropped as this one turned out to be "best"
4762 	 * during all our tests. */
4763 
4764 	drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4765 	conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4766 	return -EIO;
4767 }
4768 
4769 void INFO_bm_xfer_stats(struct drbd_device *device,
4770 		const char *direction, struct bm_xfer_ctx *c)
4771 {
4772 	/* what would it take to transfer it "plaintext" */
4773 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
4774 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4775 	unsigned int plain =
4776 		header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4777 		c->bm_words * sizeof(unsigned long);
4778 	unsigned int total = c->bytes[0] + c->bytes[1];
4779 	unsigned int r;
4780 
4781 	/* total can not be zero. but just in case: */
4782 	if (total == 0)
4783 		return;
4784 
4785 	/* don't report if not compressed */
4786 	if (total >= plain)
4787 		return;
4788 
4789 	/* total < plain. check for overflow, still */
4790 	r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4791 		                    : (1000 * total / plain);
4792 
4793 	if (r > 1000)
4794 		r = 1000;
4795 
4796 	r = 1000 - r;
4797 	drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4798 	     "total %u; compression: %u.%u%%\n",
4799 			direction,
4800 			c->bytes[1], c->packets[1],
4801 			c->bytes[0], c->packets[0],
4802 			total, r/10, r % 10);
4803 }
4804 
4805 /* Since we are processing the bitfield from lower addresses to higher,
4806    it does not matter if the process it in 32 bit chunks or 64 bit
4807    chunks as long as it is little endian. (Understand it as byte stream,
4808    beginning with the lowest byte...) If we would use big endian
4809    we would need to process it from the highest address to the lowest,
4810    in order to be agnostic to the 32 vs 64 bits issue.
4811 
4812    returns 0 on failure, 1 if we successfully received it. */
4813 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4814 {
4815 	struct drbd_peer_device *peer_device;
4816 	struct drbd_device *device;
4817 	struct bm_xfer_ctx c;
4818 	int err;
4819 
4820 	peer_device = conn_peer_device(connection, pi->vnr);
4821 	if (!peer_device)
4822 		return -EIO;
4823 	device = peer_device->device;
4824 
4825 	drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4826 	/* you are supposed to send additional out-of-sync information
4827 	 * if you actually set bits during this phase */
4828 
4829 	c = (struct bm_xfer_ctx) {
4830 		.bm_bits = drbd_bm_bits(device),
4831 		.bm_words = drbd_bm_words(device),
4832 	};
4833 
4834 	for(;;) {
4835 		if (pi->cmd == P_BITMAP)
4836 			err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4837 		else if (pi->cmd == P_COMPRESSED_BITMAP) {
4838 			/* MAYBE: sanity check that we speak proto >= 90,
4839 			 * and the feature is enabled! */
4840 			struct p_compressed_bm *p = pi->data;
4841 
4842 			if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4843 				drbd_err(device, "ReportCBitmap packet too large\n");
4844 				err = -EIO;
4845 				goto out;
4846 			}
4847 			if (pi->size <= sizeof(*p)) {
4848 				drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4849 				err = -EIO;
4850 				goto out;
4851 			}
4852 			err = drbd_recv_all(peer_device->connection, p, pi->size);
4853 			if (err)
4854 			       goto out;
4855 			err = decode_bitmap_c(peer_device, p, &c, pi->size);
4856 		} else {
4857 			drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4858 			err = -EIO;
4859 			goto out;
4860 		}
4861 
4862 		c.packets[pi->cmd == P_BITMAP]++;
4863 		c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4864 
4865 		if (err <= 0) {
4866 			if (err < 0)
4867 				goto out;
4868 			break;
4869 		}
4870 		err = drbd_recv_header(peer_device->connection, pi);
4871 		if (err)
4872 			goto out;
4873 	}
4874 
4875 	INFO_bm_xfer_stats(device, "receive", &c);
4876 
4877 	if (device->state.conn == C_WF_BITMAP_T) {
4878 		enum drbd_state_rv rv;
4879 
4880 		err = drbd_send_bitmap(device);
4881 		if (err)
4882 			goto out;
4883 		/* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4884 		rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4885 		D_ASSERT(device, rv == SS_SUCCESS);
4886 	} else if (device->state.conn != C_WF_BITMAP_S) {
4887 		/* admin may have requested C_DISCONNECTING,
4888 		 * other threads may have noticed network errors */
4889 		drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4890 		    drbd_conn_str(device->state.conn));
4891 	}
4892 	err = 0;
4893 
4894  out:
4895 	drbd_bm_unlock(device);
4896 	if (!err && device->state.conn == C_WF_BITMAP_S)
4897 		drbd_start_resync(device, C_SYNC_SOURCE);
4898 	return err;
4899 }
4900 
4901 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4902 {
4903 	drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4904 		 pi->cmd, pi->size);
4905 
4906 	return ignore_remaining_packet(connection, pi);
4907 }
4908 
4909 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4910 {
4911 	/* Make sure we've acked all the TCP data associated
4912 	 * with the data requests being unplugged */
4913 	tcp_sock_set_quickack(connection->data.socket->sk, 2);
4914 	return 0;
4915 }
4916 
4917 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4918 {
4919 	struct drbd_peer_device *peer_device;
4920 	struct drbd_device *device;
4921 	struct p_block_desc *p = pi->data;
4922 
4923 	peer_device = conn_peer_device(connection, pi->vnr);
4924 	if (!peer_device)
4925 		return -EIO;
4926 	device = peer_device->device;
4927 
4928 	switch (device->state.conn) {
4929 	case C_WF_SYNC_UUID:
4930 	case C_WF_BITMAP_T:
4931 	case C_BEHIND:
4932 			break;
4933 	default:
4934 		drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4935 				drbd_conn_str(device->state.conn));
4936 	}
4937 
4938 	drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4939 
4940 	return 0;
4941 }
4942 
4943 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4944 {
4945 	struct drbd_peer_device *peer_device;
4946 	struct p_block_desc *p = pi->data;
4947 	struct drbd_device *device;
4948 	sector_t sector;
4949 	int size, err = 0;
4950 
4951 	peer_device = conn_peer_device(connection, pi->vnr);
4952 	if (!peer_device)
4953 		return -EIO;
4954 	device = peer_device->device;
4955 
4956 	sector = be64_to_cpu(p->sector);
4957 	size = be32_to_cpu(p->blksize);
4958 
4959 	dec_rs_pending(device);
4960 
4961 	if (get_ldev(device)) {
4962 		struct drbd_peer_request *peer_req;
4963 
4964 		peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
4965 					       size, 0, GFP_NOIO);
4966 		if (!peer_req) {
4967 			put_ldev(device);
4968 			return -ENOMEM;
4969 		}
4970 
4971 		peer_req->w.cb = e_end_resync_block;
4972 		peer_req->opf = REQ_OP_DISCARD;
4973 		peer_req->submit_jif = jiffies;
4974 		peer_req->flags |= EE_TRIM;
4975 
4976 		spin_lock_irq(&device->resource->req_lock);
4977 		list_add_tail(&peer_req->w.list, &device->sync_ee);
4978 		spin_unlock_irq(&device->resource->req_lock);
4979 
4980 		atomic_add(pi->size >> 9, &device->rs_sect_ev);
4981 		err = drbd_submit_peer_request(peer_req);
4982 
4983 		if (err) {
4984 			spin_lock_irq(&device->resource->req_lock);
4985 			list_del(&peer_req->w.list);
4986 			spin_unlock_irq(&device->resource->req_lock);
4987 
4988 			drbd_free_peer_req(device, peer_req);
4989 			put_ldev(device);
4990 			err = 0;
4991 			goto fail;
4992 		}
4993 
4994 		inc_unacked(device);
4995 
4996 		/* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
4997 		   as well as drbd_rs_complete_io() */
4998 	} else {
4999 	fail:
5000 		drbd_rs_complete_io(device, sector);
5001 		drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
5002 	}
5003 
5004 	atomic_add(size >> 9, &device->rs_sect_in);
5005 
5006 	return err;
5007 }
5008 
5009 struct data_cmd {
5010 	int expect_payload;
5011 	unsigned int pkt_size;
5012 	int (*fn)(struct drbd_connection *, struct packet_info *);
5013 };
5014 
5015 static struct data_cmd drbd_cmd_handler[] = {
5016 	[P_DATA]	    = { 1, sizeof(struct p_data), receive_Data },
5017 	[P_DATA_REPLY]	    = { 1, sizeof(struct p_data), receive_DataReply },
5018 	[P_RS_DATA_REPLY]   = { 1, sizeof(struct p_data), receive_RSDataReply } ,
5019 	[P_BARRIER]	    = { 0, sizeof(struct p_barrier), receive_Barrier } ,
5020 	[P_BITMAP]	    = { 1, 0, receive_bitmap } ,
5021 	[P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
5022 	[P_UNPLUG_REMOTE]   = { 0, 0, receive_UnplugRemote },
5023 	[P_DATA_REQUEST]    = { 0, sizeof(struct p_block_req), receive_DataRequest },
5024 	[P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5025 	[P_SYNC_PARAM]	    = { 1, 0, receive_SyncParam },
5026 	[P_SYNC_PARAM89]    = { 1, 0, receive_SyncParam },
5027 	[P_PROTOCOL]        = { 1, sizeof(struct p_protocol), receive_protocol },
5028 	[P_UUIDS]	    = { 0, sizeof(struct p_uuids), receive_uuids },
5029 	[P_SIZES]	    = { 0, sizeof(struct p_sizes), receive_sizes },
5030 	[P_STATE]	    = { 0, sizeof(struct p_state), receive_state },
5031 	[P_STATE_CHG_REQ]   = { 0, sizeof(struct p_req_state), receive_req_state },
5032 	[P_SYNC_UUID]       = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
5033 	[P_OV_REQUEST]      = { 0, sizeof(struct p_block_req), receive_DataRequest },
5034 	[P_OV_REPLY]        = { 1, sizeof(struct p_block_req), receive_DataRequest },
5035 	[P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
5036 	[P_RS_THIN_REQ]     = { 0, sizeof(struct p_block_req), receive_DataRequest },
5037 	[P_DELAY_PROBE]     = { 0, sizeof(struct p_delay_probe93), receive_skip },
5038 	[P_OUT_OF_SYNC]     = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
5039 	[P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
5040 	[P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
5041 	[P_TRIM]	    = { 0, sizeof(struct p_trim), receive_Data },
5042 	[P_ZEROES]	    = { 0, sizeof(struct p_trim), receive_Data },
5043 	[P_RS_DEALLOCATED]  = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
5044 };
5045 
5046 static void drbdd(struct drbd_connection *connection)
5047 {
5048 	struct packet_info pi;
5049 	size_t shs; /* sub header size */
5050 	int err;
5051 
5052 	while (get_t_state(&connection->receiver) == RUNNING) {
5053 		struct data_cmd const *cmd;
5054 
5055 		drbd_thread_current_set_cpu(&connection->receiver);
5056 		update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug);
5057 		if (drbd_recv_header_maybe_unplug(connection, &pi))
5058 			goto err_out;
5059 
5060 		cmd = &drbd_cmd_handler[pi.cmd];
5061 		if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
5062 			drbd_err(connection, "Unexpected data packet %s (0x%04x)",
5063 				 cmdname(pi.cmd), pi.cmd);
5064 			goto err_out;
5065 		}
5066 
5067 		shs = cmd->pkt_size;
5068 		if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
5069 			shs += sizeof(struct o_qlim);
5070 		if (pi.size > shs && !cmd->expect_payload) {
5071 			drbd_err(connection, "No payload expected %s l:%d\n",
5072 				 cmdname(pi.cmd), pi.size);
5073 			goto err_out;
5074 		}
5075 		if (pi.size < shs) {
5076 			drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
5077 				 cmdname(pi.cmd), (int)shs, pi.size);
5078 			goto err_out;
5079 		}
5080 
5081 		if (shs) {
5082 			update_receiver_timing_details(connection, drbd_recv_all_warn);
5083 			err = drbd_recv_all_warn(connection, pi.data, shs);
5084 			if (err)
5085 				goto err_out;
5086 			pi.size -= shs;
5087 		}
5088 
5089 		update_receiver_timing_details(connection, cmd->fn);
5090 		err = cmd->fn(connection, &pi);
5091 		if (err) {
5092 			drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
5093 				 cmdname(pi.cmd), err, pi.size);
5094 			goto err_out;
5095 		}
5096 	}
5097 	return;
5098 
5099     err_out:
5100 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
5101 }
5102 
5103 static void conn_disconnect(struct drbd_connection *connection)
5104 {
5105 	struct drbd_peer_device *peer_device;
5106 	enum drbd_conns oc;
5107 	int vnr;
5108 
5109 	if (connection->cstate == C_STANDALONE)
5110 		return;
5111 
5112 	/* We are about to start the cleanup after connection loss.
5113 	 * Make sure drbd_make_request knows about that.
5114 	 * Usually we should be in some network failure state already,
5115 	 * but just in case we are not, we fix it up here.
5116 	 */
5117 	conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5118 
5119 	/* ack_receiver does not clean up anything. it must not interfere, either */
5120 	drbd_thread_stop(&connection->ack_receiver);
5121 	if (connection->ack_sender) {
5122 		destroy_workqueue(connection->ack_sender);
5123 		connection->ack_sender = NULL;
5124 	}
5125 	drbd_free_sock(connection);
5126 
5127 	rcu_read_lock();
5128 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5129 		struct drbd_device *device = peer_device->device;
5130 		kref_get(&device->kref);
5131 		rcu_read_unlock();
5132 		drbd_disconnected(peer_device);
5133 		kref_put(&device->kref, drbd_destroy_device);
5134 		rcu_read_lock();
5135 	}
5136 	rcu_read_unlock();
5137 
5138 	if (!list_empty(&connection->current_epoch->list))
5139 		drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5140 	/* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5141 	atomic_set(&connection->current_epoch->epoch_size, 0);
5142 	connection->send.seen_any_write_yet = false;
5143 
5144 	drbd_info(connection, "Connection closed\n");
5145 
5146 	if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5147 		conn_try_outdate_peer_async(connection);
5148 
5149 	spin_lock_irq(&connection->resource->req_lock);
5150 	oc = connection->cstate;
5151 	if (oc >= C_UNCONNECTED)
5152 		_conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5153 
5154 	spin_unlock_irq(&connection->resource->req_lock);
5155 
5156 	if (oc == C_DISCONNECTING)
5157 		conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5158 }
5159 
5160 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5161 {
5162 	struct drbd_device *device = peer_device->device;
5163 	unsigned int i;
5164 
5165 	/* wait for current activity to cease. */
5166 	spin_lock_irq(&device->resource->req_lock);
5167 	_drbd_wait_ee_list_empty(device, &device->active_ee);
5168 	_drbd_wait_ee_list_empty(device, &device->sync_ee);
5169 	_drbd_wait_ee_list_empty(device, &device->read_ee);
5170 	spin_unlock_irq(&device->resource->req_lock);
5171 
5172 	/* We do not have data structures that would allow us to
5173 	 * get the rs_pending_cnt down to 0 again.
5174 	 *  * On C_SYNC_TARGET we do not have any data structures describing
5175 	 *    the pending RSDataRequest's we have sent.
5176 	 *  * On C_SYNC_SOURCE there is no data structure that tracks
5177 	 *    the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5178 	 *  And no, it is not the sum of the reference counts in the
5179 	 *  resync_LRU. The resync_LRU tracks the whole operation including
5180 	 *  the disk-IO, while the rs_pending_cnt only tracks the blocks
5181 	 *  on the fly. */
5182 	drbd_rs_cancel_all(device);
5183 	device->rs_total = 0;
5184 	device->rs_failed = 0;
5185 	atomic_set(&device->rs_pending_cnt, 0);
5186 	wake_up(&device->misc_wait);
5187 
5188 	del_timer_sync(&device->resync_timer);
5189 	resync_timer_fn(&device->resync_timer);
5190 
5191 	/* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5192 	 * w_make_resync_request etc. which may still be on the worker queue
5193 	 * to be "canceled" */
5194 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5195 
5196 	drbd_finish_peer_reqs(device);
5197 
5198 	/* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5199 	   might have issued a work again. The one before drbd_finish_peer_reqs() is
5200 	   necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5201 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5202 
5203 	/* need to do it again, drbd_finish_peer_reqs() may have populated it
5204 	 * again via drbd_try_clear_on_disk_bm(). */
5205 	drbd_rs_cancel_all(device);
5206 
5207 	kfree(device->p_uuid);
5208 	device->p_uuid = NULL;
5209 
5210 	if (!drbd_suspended(device))
5211 		tl_clear(peer_device->connection);
5212 
5213 	drbd_md_sync(device);
5214 
5215 	if (get_ldev(device)) {
5216 		drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5217 				"write from disconnected", BM_LOCKED_CHANGE_ALLOWED);
5218 		put_ldev(device);
5219 	}
5220 
5221 	/* tcp_close and release of sendpage pages can be deferred.  I don't
5222 	 * want to use SO_LINGER, because apparently it can be deferred for
5223 	 * more than 20 seconds (longest time I checked).
5224 	 *
5225 	 * Actually we don't care for exactly when the network stack does its
5226 	 * put_page(), but release our reference on these pages right here.
5227 	 */
5228 	i = drbd_free_peer_reqs(device, &device->net_ee);
5229 	if (i)
5230 		drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5231 	i = atomic_read(&device->pp_in_use_by_net);
5232 	if (i)
5233 		drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5234 	i = atomic_read(&device->pp_in_use);
5235 	if (i)
5236 		drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5237 
5238 	D_ASSERT(device, list_empty(&device->read_ee));
5239 	D_ASSERT(device, list_empty(&device->active_ee));
5240 	D_ASSERT(device, list_empty(&device->sync_ee));
5241 	D_ASSERT(device, list_empty(&device->done_ee));
5242 
5243 	return 0;
5244 }
5245 
5246 /*
5247  * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5248  * we can agree on is stored in agreed_pro_version.
5249  *
5250  * feature flags and the reserved array should be enough room for future
5251  * enhancements of the handshake protocol, and possible plugins...
5252  *
5253  * for now, they are expected to be zero, but ignored.
5254  */
5255 static int drbd_send_features(struct drbd_connection *connection)
5256 {
5257 	struct drbd_socket *sock;
5258 	struct p_connection_features *p;
5259 
5260 	sock = &connection->data;
5261 	p = conn_prepare_command(connection, sock);
5262 	if (!p)
5263 		return -EIO;
5264 	memset(p, 0, sizeof(*p));
5265 	p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5266 	p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5267 	p->feature_flags = cpu_to_be32(PRO_FEATURES);
5268 	return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5269 }
5270 
5271 /*
5272  * return values:
5273  *   1 yes, we have a valid connection
5274  *   0 oops, did not work out, please try again
5275  *  -1 peer talks different language,
5276  *     no point in trying again, please go standalone.
5277  */
5278 static int drbd_do_features(struct drbd_connection *connection)
5279 {
5280 	/* ASSERT current == connection->receiver ... */
5281 	struct p_connection_features *p;
5282 	const int expect = sizeof(struct p_connection_features);
5283 	struct packet_info pi;
5284 	int err;
5285 
5286 	err = drbd_send_features(connection);
5287 	if (err)
5288 		return 0;
5289 
5290 	err = drbd_recv_header(connection, &pi);
5291 	if (err)
5292 		return 0;
5293 
5294 	if (pi.cmd != P_CONNECTION_FEATURES) {
5295 		drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5296 			 cmdname(pi.cmd), pi.cmd);
5297 		return -1;
5298 	}
5299 
5300 	if (pi.size != expect) {
5301 		drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5302 		     expect, pi.size);
5303 		return -1;
5304 	}
5305 
5306 	p = pi.data;
5307 	err = drbd_recv_all_warn(connection, p, expect);
5308 	if (err)
5309 		return 0;
5310 
5311 	p->protocol_min = be32_to_cpu(p->protocol_min);
5312 	p->protocol_max = be32_to_cpu(p->protocol_max);
5313 	if (p->protocol_max == 0)
5314 		p->protocol_max = p->protocol_min;
5315 
5316 	if (PRO_VERSION_MAX < p->protocol_min ||
5317 	    PRO_VERSION_MIN > p->protocol_max)
5318 		goto incompat;
5319 
5320 	connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5321 	connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5322 
5323 	drbd_info(connection, "Handshake successful: "
5324 	     "Agreed network protocol version %d\n", connection->agreed_pro_version);
5325 
5326 	drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n",
5327 		  connection->agreed_features,
5328 		  connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5329 		  connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5330 		  connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "",
5331 		  connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" :
5332 		  connection->agreed_features ? "" : " none");
5333 
5334 	return 1;
5335 
5336  incompat:
5337 	drbd_err(connection, "incompatible DRBD dialects: "
5338 	    "I support %d-%d, peer supports %d-%d\n",
5339 	    PRO_VERSION_MIN, PRO_VERSION_MAX,
5340 	    p->protocol_min, p->protocol_max);
5341 	return -1;
5342 }
5343 
5344 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
5345 static int drbd_do_auth(struct drbd_connection *connection)
5346 {
5347 	drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5348 	drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5349 	return -1;
5350 }
5351 #else
5352 #define CHALLENGE_LEN 64
5353 
5354 /* Return value:
5355 	1 - auth succeeded,
5356 	0 - failed, try again (network error),
5357 	-1 - auth failed, don't try again.
5358 */
5359 
5360 static int drbd_do_auth(struct drbd_connection *connection)
5361 {
5362 	struct drbd_socket *sock;
5363 	char my_challenge[CHALLENGE_LEN];  /* 64 Bytes... */
5364 	char *response = NULL;
5365 	char *right_response = NULL;
5366 	char *peers_ch = NULL;
5367 	unsigned int key_len;
5368 	char secret[SHARED_SECRET_MAX]; /* 64 byte */
5369 	unsigned int resp_size;
5370 	struct shash_desc *desc;
5371 	struct packet_info pi;
5372 	struct net_conf *nc;
5373 	int err, rv;
5374 
5375 	/* FIXME: Put the challenge/response into the preallocated socket buffer.  */
5376 
5377 	rcu_read_lock();
5378 	nc = rcu_dereference(connection->net_conf);
5379 	key_len = strlen(nc->shared_secret);
5380 	memcpy(secret, nc->shared_secret, key_len);
5381 	rcu_read_unlock();
5382 
5383 	desc = kmalloc(sizeof(struct shash_desc) +
5384 		       crypto_shash_descsize(connection->cram_hmac_tfm),
5385 		       GFP_KERNEL);
5386 	if (!desc) {
5387 		rv = -1;
5388 		goto fail;
5389 	}
5390 	desc->tfm = connection->cram_hmac_tfm;
5391 
5392 	rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5393 	if (rv) {
5394 		drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5395 		rv = -1;
5396 		goto fail;
5397 	}
5398 
5399 	get_random_bytes(my_challenge, CHALLENGE_LEN);
5400 
5401 	sock = &connection->data;
5402 	if (!conn_prepare_command(connection, sock)) {
5403 		rv = 0;
5404 		goto fail;
5405 	}
5406 	rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5407 				my_challenge, CHALLENGE_LEN);
5408 	if (!rv)
5409 		goto fail;
5410 
5411 	err = drbd_recv_header(connection, &pi);
5412 	if (err) {
5413 		rv = 0;
5414 		goto fail;
5415 	}
5416 
5417 	if (pi.cmd != P_AUTH_CHALLENGE) {
5418 		drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5419 			 cmdname(pi.cmd), pi.cmd);
5420 		rv = -1;
5421 		goto fail;
5422 	}
5423 
5424 	if (pi.size > CHALLENGE_LEN * 2) {
5425 		drbd_err(connection, "expected AuthChallenge payload too big.\n");
5426 		rv = -1;
5427 		goto fail;
5428 	}
5429 
5430 	if (pi.size < CHALLENGE_LEN) {
5431 		drbd_err(connection, "AuthChallenge payload too small.\n");
5432 		rv = -1;
5433 		goto fail;
5434 	}
5435 
5436 	peers_ch = kmalloc(pi.size, GFP_NOIO);
5437 	if (!peers_ch) {
5438 		rv = -1;
5439 		goto fail;
5440 	}
5441 
5442 	err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5443 	if (err) {
5444 		rv = 0;
5445 		goto fail;
5446 	}
5447 
5448 	if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5449 		drbd_err(connection, "Peer presented the same challenge!\n");
5450 		rv = -1;
5451 		goto fail;
5452 	}
5453 
5454 	resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5455 	response = kmalloc(resp_size, GFP_NOIO);
5456 	if (!response) {
5457 		rv = -1;
5458 		goto fail;
5459 	}
5460 
5461 	rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5462 	if (rv) {
5463 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5464 		rv = -1;
5465 		goto fail;
5466 	}
5467 
5468 	if (!conn_prepare_command(connection, sock)) {
5469 		rv = 0;
5470 		goto fail;
5471 	}
5472 	rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5473 				response, resp_size);
5474 	if (!rv)
5475 		goto fail;
5476 
5477 	err = drbd_recv_header(connection, &pi);
5478 	if (err) {
5479 		rv = 0;
5480 		goto fail;
5481 	}
5482 
5483 	if (pi.cmd != P_AUTH_RESPONSE) {
5484 		drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5485 			 cmdname(pi.cmd), pi.cmd);
5486 		rv = 0;
5487 		goto fail;
5488 	}
5489 
5490 	if (pi.size != resp_size) {
5491 		drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5492 		rv = 0;
5493 		goto fail;
5494 	}
5495 
5496 	err = drbd_recv_all_warn(connection, response , resp_size);
5497 	if (err) {
5498 		rv = 0;
5499 		goto fail;
5500 	}
5501 
5502 	right_response = kmalloc(resp_size, GFP_NOIO);
5503 	if (!right_response) {
5504 		rv = -1;
5505 		goto fail;
5506 	}
5507 
5508 	rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5509 				 right_response);
5510 	if (rv) {
5511 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5512 		rv = -1;
5513 		goto fail;
5514 	}
5515 
5516 	rv = !memcmp(response, right_response, resp_size);
5517 
5518 	if (rv)
5519 		drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5520 		     resp_size);
5521 	else
5522 		rv = -1;
5523 
5524  fail:
5525 	kfree(peers_ch);
5526 	kfree(response);
5527 	kfree(right_response);
5528 	if (desc) {
5529 		shash_desc_zero(desc);
5530 		kfree(desc);
5531 	}
5532 
5533 	return rv;
5534 }
5535 #endif
5536 
5537 int drbd_receiver(struct drbd_thread *thi)
5538 {
5539 	struct drbd_connection *connection = thi->connection;
5540 	int h;
5541 
5542 	drbd_info(connection, "receiver (re)started\n");
5543 
5544 	do {
5545 		h = conn_connect(connection);
5546 		if (h == 0) {
5547 			conn_disconnect(connection);
5548 			schedule_timeout_interruptible(HZ);
5549 		}
5550 		if (h == -1) {
5551 			drbd_warn(connection, "Discarding network configuration.\n");
5552 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5553 		}
5554 	} while (h == 0);
5555 
5556 	if (h > 0) {
5557 		blk_start_plug(&connection->receiver_plug);
5558 		drbdd(connection);
5559 		blk_finish_plug(&connection->receiver_plug);
5560 	}
5561 
5562 	conn_disconnect(connection);
5563 
5564 	drbd_info(connection, "receiver terminated\n");
5565 	return 0;
5566 }
5567 
5568 /* ********* acknowledge sender ******** */
5569 
5570 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5571 {
5572 	struct p_req_state_reply *p = pi->data;
5573 	int retcode = be32_to_cpu(p->retcode);
5574 
5575 	if (retcode >= SS_SUCCESS) {
5576 		set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5577 	} else {
5578 		set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5579 		drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5580 			 drbd_set_st_err_str(retcode), retcode);
5581 	}
5582 	wake_up(&connection->ping_wait);
5583 
5584 	return 0;
5585 }
5586 
5587 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5588 {
5589 	struct drbd_peer_device *peer_device;
5590 	struct drbd_device *device;
5591 	struct p_req_state_reply *p = pi->data;
5592 	int retcode = be32_to_cpu(p->retcode);
5593 
5594 	peer_device = conn_peer_device(connection, pi->vnr);
5595 	if (!peer_device)
5596 		return -EIO;
5597 	device = peer_device->device;
5598 
5599 	if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5600 		D_ASSERT(device, connection->agreed_pro_version < 100);
5601 		return got_conn_RqSReply(connection, pi);
5602 	}
5603 
5604 	if (retcode >= SS_SUCCESS) {
5605 		set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5606 	} else {
5607 		set_bit(CL_ST_CHG_FAIL, &device->flags);
5608 		drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5609 			drbd_set_st_err_str(retcode), retcode);
5610 	}
5611 	wake_up(&device->state_wait);
5612 
5613 	return 0;
5614 }
5615 
5616 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5617 {
5618 	return drbd_send_ping_ack(connection);
5619 
5620 }
5621 
5622 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5623 {
5624 	/* restore idle timeout */
5625 	connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5626 	if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5627 		wake_up(&connection->ping_wait);
5628 
5629 	return 0;
5630 }
5631 
5632 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5633 {
5634 	struct drbd_peer_device *peer_device;
5635 	struct drbd_device *device;
5636 	struct p_block_ack *p = pi->data;
5637 	sector_t sector = be64_to_cpu(p->sector);
5638 	int blksize = be32_to_cpu(p->blksize);
5639 
5640 	peer_device = conn_peer_device(connection, pi->vnr);
5641 	if (!peer_device)
5642 		return -EIO;
5643 	device = peer_device->device;
5644 
5645 	D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5646 
5647 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5648 
5649 	if (get_ldev(device)) {
5650 		drbd_rs_complete_io(device, sector);
5651 		drbd_set_in_sync(device, sector, blksize);
5652 		/* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5653 		device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5654 		put_ldev(device);
5655 	}
5656 	dec_rs_pending(device);
5657 	atomic_add(blksize >> 9, &device->rs_sect_in);
5658 
5659 	return 0;
5660 }
5661 
5662 static int
5663 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector,
5664 			      struct rb_root *root, const char *func,
5665 			      enum drbd_req_event what, bool missing_ok)
5666 {
5667 	struct drbd_request *req;
5668 	struct bio_and_error m;
5669 
5670 	spin_lock_irq(&device->resource->req_lock);
5671 	req = find_request(device, root, id, sector, missing_ok, func);
5672 	if (unlikely(!req)) {
5673 		spin_unlock_irq(&device->resource->req_lock);
5674 		return -EIO;
5675 	}
5676 	__req_mod(req, what, &m);
5677 	spin_unlock_irq(&device->resource->req_lock);
5678 
5679 	if (m.bio)
5680 		complete_master_bio(device, &m);
5681 	return 0;
5682 }
5683 
5684 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5685 {
5686 	struct drbd_peer_device *peer_device;
5687 	struct drbd_device *device;
5688 	struct p_block_ack *p = pi->data;
5689 	sector_t sector = be64_to_cpu(p->sector);
5690 	int blksize = be32_to_cpu(p->blksize);
5691 	enum drbd_req_event what;
5692 
5693 	peer_device = conn_peer_device(connection, pi->vnr);
5694 	if (!peer_device)
5695 		return -EIO;
5696 	device = peer_device->device;
5697 
5698 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5699 
5700 	if (p->block_id == ID_SYNCER) {
5701 		drbd_set_in_sync(device, sector, blksize);
5702 		dec_rs_pending(device);
5703 		return 0;
5704 	}
5705 	switch (pi->cmd) {
5706 	case P_RS_WRITE_ACK:
5707 		what = WRITE_ACKED_BY_PEER_AND_SIS;
5708 		break;
5709 	case P_WRITE_ACK:
5710 		what = WRITE_ACKED_BY_PEER;
5711 		break;
5712 	case P_RECV_ACK:
5713 		what = RECV_ACKED_BY_PEER;
5714 		break;
5715 	case P_SUPERSEDED:
5716 		what = CONFLICT_RESOLVED;
5717 		break;
5718 	case P_RETRY_WRITE:
5719 		what = POSTPONE_WRITE;
5720 		break;
5721 	default:
5722 		BUG();
5723 	}
5724 
5725 	return validate_req_change_req_state(device, p->block_id, sector,
5726 					     &device->write_requests, __func__,
5727 					     what, false);
5728 }
5729 
5730 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5731 {
5732 	struct drbd_peer_device *peer_device;
5733 	struct drbd_device *device;
5734 	struct p_block_ack *p = pi->data;
5735 	sector_t sector = be64_to_cpu(p->sector);
5736 	int size = be32_to_cpu(p->blksize);
5737 	int err;
5738 
5739 	peer_device = conn_peer_device(connection, pi->vnr);
5740 	if (!peer_device)
5741 		return -EIO;
5742 	device = peer_device->device;
5743 
5744 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5745 
5746 	if (p->block_id == ID_SYNCER) {
5747 		dec_rs_pending(device);
5748 		drbd_rs_failed_io(device, sector, size);
5749 		return 0;
5750 	}
5751 
5752 	err = validate_req_change_req_state(device, p->block_id, sector,
5753 					    &device->write_requests, __func__,
5754 					    NEG_ACKED, true);
5755 	if (err) {
5756 		/* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5757 		   The master bio might already be completed, therefore the
5758 		   request is no longer in the collision hash. */
5759 		/* In Protocol B we might already have got a P_RECV_ACK
5760 		   but then get a P_NEG_ACK afterwards. */
5761 		drbd_set_out_of_sync(device, sector, size);
5762 	}
5763 	return 0;
5764 }
5765 
5766 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5767 {
5768 	struct drbd_peer_device *peer_device;
5769 	struct drbd_device *device;
5770 	struct p_block_ack *p = pi->data;
5771 	sector_t sector = be64_to_cpu(p->sector);
5772 
5773 	peer_device = conn_peer_device(connection, pi->vnr);
5774 	if (!peer_device)
5775 		return -EIO;
5776 	device = peer_device->device;
5777 
5778 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5779 
5780 	drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5781 	    (unsigned long long)sector, be32_to_cpu(p->blksize));
5782 
5783 	return validate_req_change_req_state(device, p->block_id, sector,
5784 					     &device->read_requests, __func__,
5785 					     NEG_ACKED, false);
5786 }
5787 
5788 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5789 {
5790 	struct drbd_peer_device *peer_device;
5791 	struct drbd_device *device;
5792 	sector_t sector;
5793 	int size;
5794 	struct p_block_ack *p = pi->data;
5795 
5796 	peer_device = conn_peer_device(connection, pi->vnr);
5797 	if (!peer_device)
5798 		return -EIO;
5799 	device = peer_device->device;
5800 
5801 	sector = be64_to_cpu(p->sector);
5802 	size = be32_to_cpu(p->blksize);
5803 
5804 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5805 
5806 	dec_rs_pending(device);
5807 
5808 	if (get_ldev_if_state(device, D_FAILED)) {
5809 		drbd_rs_complete_io(device, sector);
5810 		switch (pi->cmd) {
5811 		case P_NEG_RS_DREPLY:
5812 			drbd_rs_failed_io(device, sector, size);
5813 			break;
5814 		case P_RS_CANCEL:
5815 			break;
5816 		default:
5817 			BUG();
5818 		}
5819 		put_ldev(device);
5820 	}
5821 
5822 	return 0;
5823 }
5824 
5825 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5826 {
5827 	struct p_barrier_ack *p = pi->data;
5828 	struct drbd_peer_device *peer_device;
5829 	int vnr;
5830 
5831 	tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5832 
5833 	rcu_read_lock();
5834 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5835 		struct drbd_device *device = peer_device->device;
5836 
5837 		if (device->state.conn == C_AHEAD &&
5838 		    atomic_read(&device->ap_in_flight) == 0 &&
5839 		    !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5840 			device->start_resync_timer.expires = jiffies + HZ;
5841 			add_timer(&device->start_resync_timer);
5842 		}
5843 	}
5844 	rcu_read_unlock();
5845 
5846 	return 0;
5847 }
5848 
5849 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5850 {
5851 	struct drbd_peer_device *peer_device;
5852 	struct drbd_device *device;
5853 	struct p_block_ack *p = pi->data;
5854 	struct drbd_device_work *dw;
5855 	sector_t sector;
5856 	int size;
5857 
5858 	peer_device = conn_peer_device(connection, pi->vnr);
5859 	if (!peer_device)
5860 		return -EIO;
5861 	device = peer_device->device;
5862 
5863 	sector = be64_to_cpu(p->sector);
5864 	size = be32_to_cpu(p->blksize);
5865 
5866 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5867 
5868 	if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5869 		drbd_ov_out_of_sync_found(device, sector, size);
5870 	else
5871 		ov_out_of_sync_print(device);
5872 
5873 	if (!get_ldev(device))
5874 		return 0;
5875 
5876 	drbd_rs_complete_io(device, sector);
5877 	dec_rs_pending(device);
5878 
5879 	--device->ov_left;
5880 
5881 	/* let's advance progress step marks only for every other megabyte */
5882 	if ((device->ov_left & 0x200) == 0x200)
5883 		drbd_advance_rs_marks(device, device->ov_left);
5884 
5885 	if (device->ov_left == 0) {
5886 		dw = kmalloc(sizeof(*dw), GFP_NOIO);
5887 		if (dw) {
5888 			dw->w.cb = w_ov_finished;
5889 			dw->device = device;
5890 			drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5891 		} else {
5892 			drbd_err(device, "kmalloc(dw) failed.");
5893 			ov_out_of_sync_print(device);
5894 			drbd_resync_finished(device);
5895 		}
5896 	}
5897 	put_ldev(device);
5898 	return 0;
5899 }
5900 
5901 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5902 {
5903 	return 0;
5904 }
5905 
5906 struct meta_sock_cmd {
5907 	size_t pkt_size;
5908 	int (*fn)(struct drbd_connection *connection, struct packet_info *);
5909 };
5910 
5911 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5912 {
5913 	long t;
5914 	struct net_conf *nc;
5915 
5916 	rcu_read_lock();
5917 	nc = rcu_dereference(connection->net_conf);
5918 	t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5919 	rcu_read_unlock();
5920 
5921 	t *= HZ;
5922 	if (ping_timeout)
5923 		t /= 10;
5924 
5925 	connection->meta.socket->sk->sk_rcvtimeo = t;
5926 }
5927 
5928 static void set_ping_timeout(struct drbd_connection *connection)
5929 {
5930 	set_rcvtimeo(connection, 1);
5931 }
5932 
5933 static void set_idle_timeout(struct drbd_connection *connection)
5934 {
5935 	set_rcvtimeo(connection, 0);
5936 }
5937 
5938 static struct meta_sock_cmd ack_receiver_tbl[] = {
5939 	[P_PING]	    = { 0, got_Ping },
5940 	[P_PING_ACK]	    = { 0, got_PingAck },
5941 	[P_RECV_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5942 	[P_WRITE_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5943 	[P_RS_WRITE_ACK]    = { sizeof(struct p_block_ack), got_BlockAck },
5944 	[P_SUPERSEDED]   = { sizeof(struct p_block_ack), got_BlockAck },
5945 	[P_NEG_ACK]	    = { sizeof(struct p_block_ack), got_NegAck },
5946 	[P_NEG_DREPLY]	    = { sizeof(struct p_block_ack), got_NegDReply },
5947 	[P_NEG_RS_DREPLY]   = { sizeof(struct p_block_ack), got_NegRSDReply },
5948 	[P_OV_RESULT]	    = { sizeof(struct p_block_ack), got_OVResult },
5949 	[P_BARRIER_ACK]	    = { sizeof(struct p_barrier_ack), got_BarrierAck },
5950 	[P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5951 	[P_RS_IS_IN_SYNC]   = { sizeof(struct p_block_ack), got_IsInSync },
5952 	[P_DELAY_PROBE]     = { sizeof(struct p_delay_probe93), got_skip },
5953 	[P_RS_CANCEL]       = { sizeof(struct p_block_ack), got_NegRSDReply },
5954 	[P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5955 	[P_RETRY_WRITE]	    = { sizeof(struct p_block_ack), got_BlockAck },
5956 };
5957 
5958 int drbd_ack_receiver(struct drbd_thread *thi)
5959 {
5960 	struct drbd_connection *connection = thi->connection;
5961 	struct meta_sock_cmd *cmd = NULL;
5962 	struct packet_info pi;
5963 	unsigned long pre_recv_jif;
5964 	int rv;
5965 	void *buf    = connection->meta.rbuf;
5966 	int received = 0;
5967 	unsigned int header_size = drbd_header_size(connection);
5968 	int expect   = header_size;
5969 	bool ping_timeout_active = false;
5970 
5971 	sched_set_fifo_low(current);
5972 
5973 	while (get_t_state(thi) == RUNNING) {
5974 		drbd_thread_current_set_cpu(thi);
5975 
5976 		conn_reclaim_net_peer_reqs(connection);
5977 
5978 		if (test_and_clear_bit(SEND_PING, &connection->flags)) {
5979 			if (drbd_send_ping(connection)) {
5980 				drbd_err(connection, "drbd_send_ping has failed\n");
5981 				goto reconnect;
5982 			}
5983 			set_ping_timeout(connection);
5984 			ping_timeout_active = true;
5985 		}
5986 
5987 		pre_recv_jif = jiffies;
5988 		rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
5989 
5990 		/* Note:
5991 		 * -EINTR	 (on meta) we got a signal
5992 		 * -EAGAIN	 (on meta) rcvtimeo expired
5993 		 * -ECONNRESET	 other side closed the connection
5994 		 * -ERESTARTSYS  (on data) we got a signal
5995 		 * rv <  0	 other than above: unexpected error!
5996 		 * rv == expected: full header or command
5997 		 * rv <  expected: "woken" by signal during receive
5998 		 * rv == 0	 : "connection shut down by peer"
5999 		 */
6000 		if (likely(rv > 0)) {
6001 			received += rv;
6002 			buf	 += rv;
6003 		} else if (rv == 0) {
6004 			if (test_bit(DISCONNECT_SENT, &connection->flags)) {
6005 				long t;
6006 				rcu_read_lock();
6007 				t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
6008 				rcu_read_unlock();
6009 
6010 				t = wait_event_timeout(connection->ping_wait,
6011 						       connection->cstate < C_WF_REPORT_PARAMS,
6012 						       t);
6013 				if (t)
6014 					break;
6015 			}
6016 			drbd_err(connection, "meta connection shut down by peer.\n");
6017 			goto reconnect;
6018 		} else if (rv == -EAGAIN) {
6019 			/* If the data socket received something meanwhile,
6020 			 * that is good enough: peer is still alive. */
6021 			if (time_after(connection->last_received, pre_recv_jif))
6022 				continue;
6023 			if (ping_timeout_active) {
6024 				drbd_err(connection, "PingAck did not arrive in time.\n");
6025 				goto reconnect;
6026 			}
6027 			set_bit(SEND_PING, &connection->flags);
6028 			continue;
6029 		} else if (rv == -EINTR) {
6030 			/* maybe drbd_thread_stop(): the while condition will notice.
6031 			 * maybe woken for send_ping: we'll send a ping above,
6032 			 * and change the rcvtimeo */
6033 			flush_signals(current);
6034 			continue;
6035 		} else {
6036 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
6037 			goto reconnect;
6038 		}
6039 
6040 		if (received == expect && cmd == NULL) {
6041 			if (decode_header(connection, connection->meta.rbuf, &pi))
6042 				goto reconnect;
6043 			cmd = &ack_receiver_tbl[pi.cmd];
6044 			if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
6045 				drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
6046 					 cmdname(pi.cmd), pi.cmd);
6047 				goto disconnect;
6048 			}
6049 			expect = header_size + cmd->pkt_size;
6050 			if (pi.size != expect - header_size) {
6051 				drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
6052 					pi.cmd, pi.size);
6053 				goto reconnect;
6054 			}
6055 		}
6056 		if (received == expect) {
6057 			bool err;
6058 
6059 			err = cmd->fn(connection, &pi);
6060 			if (err) {
6061 				drbd_err(connection, "%ps failed\n", cmd->fn);
6062 				goto reconnect;
6063 			}
6064 
6065 			connection->last_received = jiffies;
6066 
6067 			if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
6068 				set_idle_timeout(connection);
6069 				ping_timeout_active = false;
6070 			}
6071 
6072 			buf	 = connection->meta.rbuf;
6073 			received = 0;
6074 			expect	 = header_size;
6075 			cmd	 = NULL;
6076 		}
6077 	}
6078 
6079 	if (0) {
6080 reconnect:
6081 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6082 		conn_md_sync(connection);
6083 	}
6084 	if (0) {
6085 disconnect:
6086 		conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
6087 	}
6088 
6089 	drbd_info(connection, "ack_receiver terminated\n");
6090 
6091 	return 0;
6092 }
6093 
6094 void drbd_send_acks_wf(struct work_struct *ws)
6095 {
6096 	struct drbd_peer_device *peer_device =
6097 		container_of(ws, struct drbd_peer_device, send_acks_work);
6098 	struct drbd_connection *connection = peer_device->connection;
6099 	struct drbd_device *device = peer_device->device;
6100 	struct net_conf *nc;
6101 	int tcp_cork, err;
6102 
6103 	rcu_read_lock();
6104 	nc = rcu_dereference(connection->net_conf);
6105 	tcp_cork = nc->tcp_cork;
6106 	rcu_read_unlock();
6107 
6108 	if (tcp_cork)
6109 		tcp_sock_set_cork(connection->meta.socket->sk, true);
6110 
6111 	err = drbd_finish_peer_reqs(device);
6112 	kref_put(&device->kref, drbd_destroy_device);
6113 	/* get is in drbd_endio_write_sec_final(). That is necessary to keep the
6114 	   struct work_struct send_acks_work alive, which is in the peer_device object */
6115 
6116 	if (err) {
6117 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6118 		return;
6119 	}
6120 
6121 	if (tcp_cork)
6122 		tcp_sock_set_cork(connection->meta.socket->sk, false);
6123 
6124 	return;
6125 }
6126