1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd_receiver.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 */ 12 13 14 #include <linux/module.h> 15 16 #include <linux/uaccess.h> 17 #include <net/sock.h> 18 19 #include <linux/drbd.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/in.h> 23 #include <linux/mm.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/slab.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/sched/signal.h> 29 #include <linux/pkt_sched.h> 30 #define __KERNEL_SYSCALLS__ 31 #include <linux/unistd.h> 32 #include <linux/vmalloc.h> 33 #include <linux/random.h> 34 #include <linux/string.h> 35 #include <linux/scatterlist.h> 36 #include <linux/part_stat.h> 37 #include "drbd_int.h" 38 #include "drbd_protocol.h" 39 #include "drbd_req.h" 40 #include "drbd_vli.h" 41 42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES) 43 44 struct packet_info { 45 enum drbd_packet cmd; 46 unsigned int size; 47 unsigned int vnr; 48 void *data; 49 }; 50 51 enum finish_epoch { 52 FE_STILL_LIVE, 53 FE_DESTROYED, 54 FE_RECYCLED, 55 }; 56 57 static int drbd_do_features(struct drbd_connection *connection); 58 static int drbd_do_auth(struct drbd_connection *connection); 59 static int drbd_disconnected(struct drbd_peer_device *); 60 static void conn_wait_active_ee_empty(struct drbd_connection *connection); 61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event); 62 static int e_end_block(struct drbd_work *, int); 63 64 65 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 66 67 /* 68 * some helper functions to deal with single linked page lists, 69 * page->private being our "next" pointer. 70 */ 71 72 /* If at least n pages are linked at head, get n pages off. 73 * Otherwise, don't modify head, and return NULL. 74 * Locking is the responsibility of the caller. 75 */ 76 static struct page *page_chain_del(struct page **head, int n) 77 { 78 struct page *page; 79 struct page *tmp; 80 81 BUG_ON(!n); 82 BUG_ON(!head); 83 84 page = *head; 85 86 if (!page) 87 return NULL; 88 89 while (page) { 90 tmp = page_chain_next(page); 91 if (--n == 0) 92 break; /* found sufficient pages */ 93 if (tmp == NULL) 94 /* insufficient pages, don't use any of them. */ 95 return NULL; 96 page = tmp; 97 } 98 99 /* add end of list marker for the returned list */ 100 set_page_private(page, 0); 101 /* actual return value, and adjustment of head */ 102 page = *head; 103 *head = tmp; 104 return page; 105 } 106 107 /* may be used outside of locks to find the tail of a (usually short) 108 * "private" page chain, before adding it back to a global chain head 109 * with page_chain_add() under a spinlock. */ 110 static struct page *page_chain_tail(struct page *page, int *len) 111 { 112 struct page *tmp; 113 int i = 1; 114 while ((tmp = page_chain_next(page))) 115 ++i, page = tmp; 116 if (len) 117 *len = i; 118 return page; 119 } 120 121 static int page_chain_free(struct page *page) 122 { 123 struct page *tmp; 124 int i = 0; 125 page_chain_for_each_safe(page, tmp) { 126 put_page(page); 127 ++i; 128 } 129 return i; 130 } 131 132 static void page_chain_add(struct page **head, 133 struct page *chain_first, struct page *chain_last) 134 { 135 #if 1 136 struct page *tmp; 137 tmp = page_chain_tail(chain_first, NULL); 138 BUG_ON(tmp != chain_last); 139 #endif 140 141 /* add chain to head */ 142 set_page_private(chain_last, (unsigned long)*head); 143 *head = chain_first; 144 } 145 146 static struct page *__drbd_alloc_pages(struct drbd_device *device, 147 unsigned int number) 148 { 149 struct page *page = NULL; 150 struct page *tmp = NULL; 151 unsigned int i = 0; 152 153 /* Yes, testing drbd_pp_vacant outside the lock is racy. 154 * So what. It saves a spin_lock. */ 155 if (drbd_pp_vacant >= number) { 156 spin_lock(&drbd_pp_lock); 157 page = page_chain_del(&drbd_pp_pool, number); 158 if (page) 159 drbd_pp_vacant -= number; 160 spin_unlock(&drbd_pp_lock); 161 if (page) 162 return page; 163 } 164 165 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 166 * "criss-cross" setup, that might cause write-out on some other DRBD, 167 * which in turn might block on the other node at this very place. */ 168 for (i = 0; i < number; i++) { 169 tmp = alloc_page(GFP_TRY); 170 if (!tmp) 171 break; 172 set_page_private(tmp, (unsigned long)page); 173 page = tmp; 174 } 175 176 if (i == number) 177 return page; 178 179 /* Not enough pages immediately available this time. 180 * No need to jump around here, drbd_alloc_pages will retry this 181 * function "soon". */ 182 if (page) { 183 tmp = page_chain_tail(page, NULL); 184 spin_lock(&drbd_pp_lock); 185 page_chain_add(&drbd_pp_pool, page, tmp); 186 drbd_pp_vacant += i; 187 spin_unlock(&drbd_pp_lock); 188 } 189 return NULL; 190 } 191 192 static void reclaim_finished_net_peer_reqs(struct drbd_device *device, 193 struct list_head *to_be_freed) 194 { 195 struct drbd_peer_request *peer_req, *tmp; 196 197 /* The EEs are always appended to the end of the list. Since 198 they are sent in order over the wire, they have to finish 199 in order. As soon as we see the first not finished we can 200 stop to examine the list... */ 201 202 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) { 203 if (drbd_peer_req_has_active_page(peer_req)) 204 break; 205 list_move(&peer_req->w.list, to_be_freed); 206 } 207 } 208 209 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device) 210 { 211 LIST_HEAD(reclaimed); 212 struct drbd_peer_request *peer_req, *t; 213 214 spin_lock_irq(&device->resource->req_lock); 215 reclaim_finished_net_peer_reqs(device, &reclaimed); 216 spin_unlock_irq(&device->resource->req_lock); 217 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 218 drbd_free_net_peer_req(device, peer_req); 219 } 220 221 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection) 222 { 223 struct drbd_peer_device *peer_device; 224 int vnr; 225 226 rcu_read_lock(); 227 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 228 struct drbd_device *device = peer_device->device; 229 if (!atomic_read(&device->pp_in_use_by_net)) 230 continue; 231 232 kref_get(&device->kref); 233 rcu_read_unlock(); 234 drbd_reclaim_net_peer_reqs(device); 235 kref_put(&device->kref, drbd_destroy_device); 236 rcu_read_lock(); 237 } 238 rcu_read_unlock(); 239 } 240 241 /** 242 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 243 * @device: DRBD device. 244 * @number: number of pages requested 245 * @retry: whether to retry, if not enough pages are available right now 246 * 247 * Tries to allocate number pages, first from our own page pool, then from 248 * the kernel. 249 * Possibly retry until DRBD frees sufficient pages somewhere else. 250 * 251 * If this allocation would exceed the max_buffers setting, we throttle 252 * allocation (schedule_timeout) to give the system some room to breathe. 253 * 254 * We do not use max-buffers as hard limit, because it could lead to 255 * congestion and further to a distributed deadlock during online-verify or 256 * (checksum based) resync, if the max-buffers, socket buffer sizes and 257 * resync-rate settings are mis-configured. 258 * 259 * Returns a page chain linked via page->private. 260 */ 261 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number, 262 bool retry) 263 { 264 struct drbd_device *device = peer_device->device; 265 struct page *page = NULL; 266 struct net_conf *nc; 267 DEFINE_WAIT(wait); 268 unsigned int mxb; 269 270 rcu_read_lock(); 271 nc = rcu_dereference(peer_device->connection->net_conf); 272 mxb = nc ? nc->max_buffers : 1000000; 273 rcu_read_unlock(); 274 275 if (atomic_read(&device->pp_in_use) < mxb) 276 page = __drbd_alloc_pages(device, number); 277 278 /* Try to keep the fast path fast, but occasionally we need 279 * to reclaim the pages we lended to the network stack. */ 280 if (page && atomic_read(&device->pp_in_use_by_net) > 512) 281 drbd_reclaim_net_peer_reqs(device); 282 283 while (page == NULL) { 284 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 285 286 drbd_reclaim_net_peer_reqs(device); 287 288 if (atomic_read(&device->pp_in_use) < mxb) { 289 page = __drbd_alloc_pages(device, number); 290 if (page) 291 break; 292 } 293 294 if (!retry) 295 break; 296 297 if (signal_pending(current)) { 298 drbd_warn(device, "drbd_alloc_pages interrupted!\n"); 299 break; 300 } 301 302 if (schedule_timeout(HZ/10) == 0) 303 mxb = UINT_MAX; 304 } 305 finish_wait(&drbd_pp_wait, &wait); 306 307 if (page) 308 atomic_add(number, &device->pp_in_use); 309 return page; 310 } 311 312 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 313 * Is also used from inside an other spin_lock_irq(&resource->req_lock); 314 * Either links the page chain back to the global pool, 315 * or returns all pages to the system. */ 316 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net) 317 { 318 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use; 319 int i; 320 321 if (page == NULL) 322 return; 323 324 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count) 325 i = page_chain_free(page); 326 else { 327 struct page *tmp; 328 tmp = page_chain_tail(page, &i); 329 spin_lock(&drbd_pp_lock); 330 page_chain_add(&drbd_pp_pool, page, tmp); 331 drbd_pp_vacant += i; 332 spin_unlock(&drbd_pp_lock); 333 } 334 i = atomic_sub_return(i, a); 335 if (i < 0) 336 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n", 337 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 338 wake_up(&drbd_pp_wait); 339 } 340 341 /* 342 You need to hold the req_lock: 343 _drbd_wait_ee_list_empty() 344 345 You must not have the req_lock: 346 drbd_free_peer_req() 347 drbd_alloc_peer_req() 348 drbd_free_peer_reqs() 349 drbd_ee_fix_bhs() 350 drbd_finish_peer_reqs() 351 drbd_clear_done_ee() 352 drbd_wait_ee_list_empty() 353 */ 354 355 /* normal: payload_size == request size (bi_size) 356 * w_same: payload_size == logical_block_size 357 * trim: payload_size == 0 */ 358 struct drbd_peer_request * 359 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 360 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local) 361 { 362 struct drbd_device *device = peer_device->device; 363 struct drbd_peer_request *peer_req; 364 struct page *page = NULL; 365 unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT; 366 367 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE)) 368 return NULL; 369 370 peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 371 if (!peer_req) { 372 if (!(gfp_mask & __GFP_NOWARN)) 373 drbd_err(device, "%s: allocation failed\n", __func__); 374 return NULL; 375 } 376 377 if (nr_pages) { 378 page = drbd_alloc_pages(peer_device, nr_pages, 379 gfpflags_allow_blocking(gfp_mask)); 380 if (!page) 381 goto fail; 382 } 383 384 memset(peer_req, 0, sizeof(*peer_req)); 385 INIT_LIST_HEAD(&peer_req->w.list); 386 drbd_clear_interval(&peer_req->i); 387 peer_req->i.size = request_size; 388 peer_req->i.sector = sector; 389 peer_req->submit_jif = jiffies; 390 peer_req->peer_device = peer_device; 391 peer_req->pages = page; 392 /* 393 * The block_id is opaque to the receiver. It is not endianness 394 * converted, and sent back to the sender unchanged. 395 */ 396 peer_req->block_id = id; 397 398 return peer_req; 399 400 fail: 401 mempool_free(peer_req, &drbd_ee_mempool); 402 return NULL; 403 } 404 405 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req, 406 int is_net) 407 { 408 might_sleep(); 409 if (peer_req->flags & EE_HAS_DIGEST) 410 kfree(peer_req->digest); 411 drbd_free_pages(device, peer_req->pages, is_net); 412 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0); 413 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 414 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) { 415 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 416 drbd_al_complete_io(device, &peer_req->i); 417 } 418 mempool_free(peer_req, &drbd_ee_mempool); 419 } 420 421 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list) 422 { 423 LIST_HEAD(work_list); 424 struct drbd_peer_request *peer_req, *t; 425 int count = 0; 426 int is_net = list == &device->net_ee; 427 428 spin_lock_irq(&device->resource->req_lock); 429 list_splice_init(list, &work_list); 430 spin_unlock_irq(&device->resource->req_lock); 431 432 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 433 __drbd_free_peer_req(device, peer_req, is_net); 434 count++; 435 } 436 return count; 437 } 438 439 /* 440 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 441 */ 442 static int drbd_finish_peer_reqs(struct drbd_device *device) 443 { 444 LIST_HEAD(work_list); 445 LIST_HEAD(reclaimed); 446 struct drbd_peer_request *peer_req, *t; 447 int err = 0; 448 449 spin_lock_irq(&device->resource->req_lock); 450 reclaim_finished_net_peer_reqs(device, &reclaimed); 451 list_splice_init(&device->done_ee, &work_list); 452 spin_unlock_irq(&device->resource->req_lock); 453 454 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 455 drbd_free_net_peer_req(device, peer_req); 456 457 /* possible callbacks here: 458 * e_end_block, and e_end_resync_block, e_send_superseded. 459 * all ignore the last argument. 460 */ 461 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 462 int err2; 463 464 /* list_del not necessary, next/prev members not touched */ 465 err2 = peer_req->w.cb(&peer_req->w, !!err); 466 if (!err) 467 err = err2; 468 drbd_free_peer_req(device, peer_req); 469 } 470 wake_up(&device->ee_wait); 471 472 return err; 473 } 474 475 static void _drbd_wait_ee_list_empty(struct drbd_device *device, 476 struct list_head *head) 477 { 478 DEFINE_WAIT(wait); 479 480 /* avoids spin_lock/unlock 481 * and calling prepare_to_wait in the fast path */ 482 while (!list_empty(head)) { 483 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 484 spin_unlock_irq(&device->resource->req_lock); 485 io_schedule(); 486 finish_wait(&device->ee_wait, &wait); 487 spin_lock_irq(&device->resource->req_lock); 488 } 489 } 490 491 static void drbd_wait_ee_list_empty(struct drbd_device *device, 492 struct list_head *head) 493 { 494 spin_lock_irq(&device->resource->req_lock); 495 _drbd_wait_ee_list_empty(device, head); 496 spin_unlock_irq(&device->resource->req_lock); 497 } 498 499 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 500 { 501 struct kvec iov = { 502 .iov_base = buf, 503 .iov_len = size, 504 }; 505 struct msghdr msg = { 506 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 507 }; 508 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size); 509 return sock_recvmsg(sock, &msg, msg.msg_flags); 510 } 511 512 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size) 513 { 514 int rv; 515 516 rv = drbd_recv_short(connection->data.socket, buf, size, 0); 517 518 if (rv < 0) { 519 if (rv == -ECONNRESET) 520 drbd_info(connection, "sock was reset by peer\n"); 521 else if (rv != -ERESTARTSYS) 522 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 523 } else if (rv == 0) { 524 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 525 long t; 526 rcu_read_lock(); 527 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 528 rcu_read_unlock(); 529 530 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t); 531 532 if (t) 533 goto out; 534 } 535 drbd_info(connection, "sock was shut down by peer\n"); 536 } 537 538 if (rv != size) 539 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 540 541 out: 542 return rv; 543 } 544 545 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size) 546 { 547 int err; 548 549 err = drbd_recv(connection, buf, size); 550 if (err != size) { 551 if (err >= 0) 552 err = -EIO; 553 } else 554 err = 0; 555 return err; 556 } 557 558 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size) 559 { 560 int err; 561 562 err = drbd_recv_all(connection, buf, size); 563 if (err && !signal_pending(current)) 564 drbd_warn(connection, "short read (expected size %d)\n", (int)size); 565 return err; 566 } 567 568 /* quoting tcp(7): 569 * On individual connections, the socket buffer size must be set prior to the 570 * listen(2) or connect(2) calls in order to have it take effect. 571 * This is our wrapper to do so. 572 */ 573 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 574 unsigned int rcv) 575 { 576 /* open coded SO_SNDBUF, SO_RCVBUF */ 577 if (snd) { 578 sock->sk->sk_sndbuf = snd; 579 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 580 } 581 if (rcv) { 582 sock->sk->sk_rcvbuf = rcv; 583 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 584 } 585 } 586 587 static struct socket *drbd_try_connect(struct drbd_connection *connection) 588 { 589 const char *what; 590 struct socket *sock; 591 struct sockaddr_in6 src_in6; 592 struct sockaddr_in6 peer_in6; 593 struct net_conf *nc; 594 int err, peer_addr_len, my_addr_len; 595 int sndbuf_size, rcvbuf_size, connect_int; 596 int disconnect_on_error = 1; 597 598 rcu_read_lock(); 599 nc = rcu_dereference(connection->net_conf); 600 if (!nc) { 601 rcu_read_unlock(); 602 return NULL; 603 } 604 sndbuf_size = nc->sndbuf_size; 605 rcvbuf_size = nc->rcvbuf_size; 606 connect_int = nc->connect_int; 607 rcu_read_unlock(); 608 609 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6)); 610 memcpy(&src_in6, &connection->my_addr, my_addr_len); 611 612 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6) 613 src_in6.sin6_port = 0; 614 else 615 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 616 617 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6)); 618 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len); 619 620 what = "sock_create_kern"; 621 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family, 622 SOCK_STREAM, IPPROTO_TCP, &sock); 623 if (err < 0) { 624 sock = NULL; 625 goto out; 626 } 627 628 sock->sk->sk_rcvtimeo = 629 sock->sk->sk_sndtimeo = connect_int * HZ; 630 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 631 632 /* explicitly bind to the configured IP as source IP 633 * for the outgoing connections. 634 * This is needed for multihomed hosts and to be 635 * able to use lo: interfaces for drbd. 636 * Make sure to use 0 as port number, so linux selects 637 * a free one dynamically. 638 */ 639 what = "bind before connect"; 640 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 641 if (err < 0) 642 goto out; 643 644 /* connect may fail, peer not yet available. 645 * stay C_WF_CONNECTION, don't go Disconnecting! */ 646 disconnect_on_error = 0; 647 what = "connect"; 648 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 649 650 out: 651 if (err < 0) { 652 if (sock) { 653 sock_release(sock); 654 sock = NULL; 655 } 656 switch (-err) { 657 /* timeout, busy, signal pending */ 658 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 659 case EINTR: case ERESTARTSYS: 660 /* peer not (yet) available, network problem */ 661 case ECONNREFUSED: case ENETUNREACH: 662 case EHOSTDOWN: case EHOSTUNREACH: 663 disconnect_on_error = 0; 664 break; 665 default: 666 drbd_err(connection, "%s failed, err = %d\n", what, err); 667 } 668 if (disconnect_on_error) 669 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 670 } 671 672 return sock; 673 } 674 675 struct accept_wait_data { 676 struct drbd_connection *connection; 677 struct socket *s_listen; 678 struct completion door_bell; 679 void (*original_sk_state_change)(struct sock *sk); 680 681 }; 682 683 static void drbd_incoming_connection(struct sock *sk) 684 { 685 struct accept_wait_data *ad = sk->sk_user_data; 686 void (*state_change)(struct sock *sk); 687 688 state_change = ad->original_sk_state_change; 689 if (sk->sk_state == TCP_ESTABLISHED) 690 complete(&ad->door_bell); 691 state_change(sk); 692 } 693 694 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad) 695 { 696 int err, sndbuf_size, rcvbuf_size, my_addr_len; 697 struct sockaddr_in6 my_addr; 698 struct socket *s_listen; 699 struct net_conf *nc; 700 const char *what; 701 702 rcu_read_lock(); 703 nc = rcu_dereference(connection->net_conf); 704 if (!nc) { 705 rcu_read_unlock(); 706 return -EIO; 707 } 708 sndbuf_size = nc->sndbuf_size; 709 rcvbuf_size = nc->rcvbuf_size; 710 rcu_read_unlock(); 711 712 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6)); 713 memcpy(&my_addr, &connection->my_addr, my_addr_len); 714 715 what = "sock_create_kern"; 716 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family, 717 SOCK_STREAM, IPPROTO_TCP, &s_listen); 718 if (err) { 719 s_listen = NULL; 720 goto out; 721 } 722 723 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 724 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 725 726 what = "bind before listen"; 727 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 728 if (err < 0) 729 goto out; 730 731 ad->s_listen = s_listen; 732 write_lock_bh(&s_listen->sk->sk_callback_lock); 733 ad->original_sk_state_change = s_listen->sk->sk_state_change; 734 s_listen->sk->sk_state_change = drbd_incoming_connection; 735 s_listen->sk->sk_user_data = ad; 736 write_unlock_bh(&s_listen->sk->sk_callback_lock); 737 738 what = "listen"; 739 err = s_listen->ops->listen(s_listen, 5); 740 if (err < 0) 741 goto out; 742 743 return 0; 744 out: 745 if (s_listen) 746 sock_release(s_listen); 747 if (err < 0) { 748 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 749 drbd_err(connection, "%s failed, err = %d\n", what, err); 750 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 751 } 752 } 753 754 return -EIO; 755 } 756 757 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 758 { 759 write_lock_bh(&sk->sk_callback_lock); 760 sk->sk_state_change = ad->original_sk_state_change; 761 sk->sk_user_data = NULL; 762 write_unlock_bh(&sk->sk_callback_lock); 763 } 764 765 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad) 766 { 767 int timeo, connect_int, err = 0; 768 struct socket *s_estab = NULL; 769 struct net_conf *nc; 770 771 rcu_read_lock(); 772 nc = rcu_dereference(connection->net_conf); 773 if (!nc) { 774 rcu_read_unlock(); 775 return NULL; 776 } 777 connect_int = nc->connect_int; 778 rcu_read_unlock(); 779 780 timeo = connect_int * HZ; 781 /* 28.5% random jitter */ 782 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7; 783 784 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 785 if (err <= 0) 786 return NULL; 787 788 err = kernel_accept(ad->s_listen, &s_estab, 0); 789 if (err < 0) { 790 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 791 drbd_err(connection, "accept failed, err = %d\n", err); 792 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 793 } 794 } 795 796 if (s_estab) 797 unregister_state_change(s_estab->sk, ad); 798 799 return s_estab; 800 } 801 802 static int decode_header(struct drbd_connection *, void *, struct packet_info *); 803 804 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock, 805 enum drbd_packet cmd) 806 { 807 if (!conn_prepare_command(connection, sock)) 808 return -EIO; 809 return conn_send_command(connection, sock, cmd, 0, NULL, 0); 810 } 811 812 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock) 813 { 814 unsigned int header_size = drbd_header_size(connection); 815 struct packet_info pi; 816 struct net_conf *nc; 817 int err; 818 819 rcu_read_lock(); 820 nc = rcu_dereference(connection->net_conf); 821 if (!nc) { 822 rcu_read_unlock(); 823 return -EIO; 824 } 825 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10; 826 rcu_read_unlock(); 827 828 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0); 829 if (err != header_size) { 830 if (err >= 0) 831 err = -EIO; 832 return err; 833 } 834 err = decode_header(connection, connection->data.rbuf, &pi); 835 if (err) 836 return err; 837 return pi.cmd; 838 } 839 840 /** 841 * drbd_socket_okay() - Free the socket if its connection is not okay 842 * @sock: pointer to the pointer to the socket. 843 */ 844 static bool drbd_socket_okay(struct socket **sock) 845 { 846 int rr; 847 char tb[4]; 848 849 if (!*sock) 850 return false; 851 852 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 853 854 if (rr > 0 || rr == -EAGAIN) { 855 return true; 856 } else { 857 sock_release(*sock); 858 *sock = NULL; 859 return false; 860 } 861 } 862 863 static bool connection_established(struct drbd_connection *connection, 864 struct socket **sock1, 865 struct socket **sock2) 866 { 867 struct net_conf *nc; 868 int timeout; 869 bool ok; 870 871 if (!*sock1 || !*sock2) 872 return false; 873 874 rcu_read_lock(); 875 nc = rcu_dereference(connection->net_conf); 876 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10; 877 rcu_read_unlock(); 878 schedule_timeout_interruptible(timeout); 879 880 ok = drbd_socket_okay(sock1); 881 ok = drbd_socket_okay(sock2) && ok; 882 883 return ok; 884 } 885 886 /* Gets called if a connection is established, or if a new minor gets created 887 in a connection */ 888 int drbd_connected(struct drbd_peer_device *peer_device) 889 { 890 struct drbd_device *device = peer_device->device; 891 int err; 892 893 atomic_set(&device->packet_seq, 0); 894 device->peer_seq = 0; 895 896 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ? 897 &peer_device->connection->cstate_mutex : 898 &device->own_state_mutex; 899 900 err = drbd_send_sync_param(peer_device); 901 if (!err) 902 err = drbd_send_sizes(peer_device, 0, 0); 903 if (!err) 904 err = drbd_send_uuids(peer_device); 905 if (!err) 906 err = drbd_send_current_state(peer_device); 907 clear_bit(USE_DEGR_WFC_T, &device->flags); 908 clear_bit(RESIZE_PENDING, &device->flags); 909 atomic_set(&device->ap_in_flight, 0); 910 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */ 911 return err; 912 } 913 914 /* 915 * return values: 916 * 1 yes, we have a valid connection 917 * 0 oops, did not work out, please try again 918 * -1 peer talks different language, 919 * no point in trying again, please go standalone. 920 * -2 We do not have a network config... 921 */ 922 static int conn_connect(struct drbd_connection *connection) 923 { 924 struct drbd_socket sock, msock; 925 struct drbd_peer_device *peer_device; 926 struct net_conf *nc; 927 int vnr, timeout, h; 928 bool discard_my_data, ok; 929 enum drbd_state_rv rv; 930 struct accept_wait_data ad = { 931 .connection = connection, 932 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 933 }; 934 935 clear_bit(DISCONNECT_SENT, &connection->flags); 936 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 937 return -2; 938 939 mutex_init(&sock.mutex); 940 sock.sbuf = connection->data.sbuf; 941 sock.rbuf = connection->data.rbuf; 942 sock.socket = NULL; 943 mutex_init(&msock.mutex); 944 msock.sbuf = connection->meta.sbuf; 945 msock.rbuf = connection->meta.rbuf; 946 msock.socket = NULL; 947 948 /* Assume that the peer only understands protocol 80 until we know better. */ 949 connection->agreed_pro_version = 80; 950 951 if (prepare_listen_socket(connection, &ad)) 952 return 0; 953 954 do { 955 struct socket *s; 956 957 s = drbd_try_connect(connection); 958 if (s) { 959 if (!sock.socket) { 960 sock.socket = s; 961 send_first_packet(connection, &sock, P_INITIAL_DATA); 962 } else if (!msock.socket) { 963 clear_bit(RESOLVE_CONFLICTS, &connection->flags); 964 msock.socket = s; 965 send_first_packet(connection, &msock, P_INITIAL_META); 966 } else { 967 drbd_err(connection, "Logic error in conn_connect()\n"); 968 goto out_release_sockets; 969 } 970 } 971 972 if (connection_established(connection, &sock.socket, &msock.socket)) 973 break; 974 975 retry: 976 s = drbd_wait_for_connect(connection, &ad); 977 if (s) { 978 int fp = receive_first_packet(connection, s); 979 drbd_socket_okay(&sock.socket); 980 drbd_socket_okay(&msock.socket); 981 switch (fp) { 982 case P_INITIAL_DATA: 983 if (sock.socket) { 984 drbd_warn(connection, "initial packet S crossed\n"); 985 sock_release(sock.socket); 986 sock.socket = s; 987 goto randomize; 988 } 989 sock.socket = s; 990 break; 991 case P_INITIAL_META: 992 set_bit(RESOLVE_CONFLICTS, &connection->flags); 993 if (msock.socket) { 994 drbd_warn(connection, "initial packet M crossed\n"); 995 sock_release(msock.socket); 996 msock.socket = s; 997 goto randomize; 998 } 999 msock.socket = s; 1000 break; 1001 default: 1002 drbd_warn(connection, "Error receiving initial packet\n"); 1003 sock_release(s); 1004 randomize: 1005 if (prandom_u32() & 1) 1006 goto retry; 1007 } 1008 } 1009 1010 if (connection->cstate <= C_DISCONNECTING) 1011 goto out_release_sockets; 1012 if (signal_pending(current)) { 1013 flush_signals(current); 1014 smp_rmb(); 1015 if (get_t_state(&connection->receiver) == EXITING) 1016 goto out_release_sockets; 1017 } 1018 1019 ok = connection_established(connection, &sock.socket, &msock.socket); 1020 } while (!ok); 1021 1022 if (ad.s_listen) 1023 sock_release(ad.s_listen); 1024 1025 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1026 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1027 1028 sock.socket->sk->sk_allocation = GFP_NOIO; 1029 msock.socket->sk->sk_allocation = GFP_NOIO; 1030 1031 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 1032 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 1033 1034 /* NOT YET ... 1035 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10; 1036 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1037 * first set it to the P_CONNECTION_FEATURES timeout, 1038 * which we set to 4x the configured ping_timeout. */ 1039 rcu_read_lock(); 1040 nc = rcu_dereference(connection->net_conf); 1041 1042 sock.socket->sk->sk_sndtimeo = 1043 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 1044 1045 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1046 timeout = nc->timeout * HZ / 10; 1047 discard_my_data = nc->discard_my_data; 1048 rcu_read_unlock(); 1049 1050 msock.socket->sk->sk_sndtimeo = timeout; 1051 1052 /* we don't want delays. 1053 * we use TCP_CORK where appropriate, though */ 1054 tcp_sock_set_nodelay(sock.socket->sk); 1055 tcp_sock_set_nodelay(msock.socket->sk); 1056 1057 connection->data.socket = sock.socket; 1058 connection->meta.socket = msock.socket; 1059 connection->last_received = jiffies; 1060 1061 h = drbd_do_features(connection); 1062 if (h <= 0) 1063 return h; 1064 1065 if (connection->cram_hmac_tfm) { 1066 /* drbd_request_state(device, NS(conn, WFAuth)); */ 1067 switch (drbd_do_auth(connection)) { 1068 case -1: 1069 drbd_err(connection, "Authentication of peer failed\n"); 1070 return -1; 1071 case 0: 1072 drbd_err(connection, "Authentication of peer failed, trying again.\n"); 1073 return 0; 1074 } 1075 } 1076 1077 connection->data.socket->sk->sk_sndtimeo = timeout; 1078 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1079 1080 if (drbd_send_protocol(connection) == -EOPNOTSUPP) 1081 return -1; 1082 1083 /* Prevent a race between resync-handshake and 1084 * being promoted to Primary. 1085 * 1086 * Grab and release the state mutex, so we know that any current 1087 * drbd_set_role() is finished, and any incoming drbd_set_role 1088 * will see the STATE_SENT flag, and wait for it to be cleared. 1089 */ 1090 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1091 mutex_lock(peer_device->device->state_mutex); 1092 1093 /* avoid a race with conn_request_state( C_DISCONNECTING ) */ 1094 spin_lock_irq(&connection->resource->req_lock); 1095 set_bit(STATE_SENT, &connection->flags); 1096 spin_unlock_irq(&connection->resource->req_lock); 1097 1098 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1099 mutex_unlock(peer_device->device->state_mutex); 1100 1101 rcu_read_lock(); 1102 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1103 struct drbd_device *device = peer_device->device; 1104 kref_get(&device->kref); 1105 rcu_read_unlock(); 1106 1107 if (discard_my_data) 1108 set_bit(DISCARD_MY_DATA, &device->flags); 1109 else 1110 clear_bit(DISCARD_MY_DATA, &device->flags); 1111 1112 drbd_connected(peer_device); 1113 kref_put(&device->kref, drbd_destroy_device); 1114 rcu_read_lock(); 1115 } 1116 rcu_read_unlock(); 1117 1118 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1119 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) { 1120 clear_bit(STATE_SENT, &connection->flags); 1121 return 0; 1122 } 1123 1124 drbd_thread_start(&connection->ack_receiver); 1125 /* opencoded create_singlethread_workqueue(), 1126 * to be able to use format string arguments */ 1127 connection->ack_sender = 1128 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name); 1129 if (!connection->ack_sender) { 1130 drbd_err(connection, "Failed to create workqueue ack_sender\n"); 1131 return 0; 1132 } 1133 1134 mutex_lock(&connection->resource->conf_update); 1135 /* The discard_my_data flag is a single-shot modifier to the next 1136 * connection attempt, the handshake of which is now well underway. 1137 * No need for rcu style copying of the whole struct 1138 * just to clear a single value. */ 1139 connection->net_conf->discard_my_data = 0; 1140 mutex_unlock(&connection->resource->conf_update); 1141 1142 return h; 1143 1144 out_release_sockets: 1145 if (ad.s_listen) 1146 sock_release(ad.s_listen); 1147 if (sock.socket) 1148 sock_release(sock.socket); 1149 if (msock.socket) 1150 sock_release(msock.socket); 1151 return -1; 1152 } 1153 1154 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi) 1155 { 1156 unsigned int header_size = drbd_header_size(connection); 1157 1158 if (header_size == sizeof(struct p_header100) && 1159 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1160 struct p_header100 *h = header; 1161 if (h->pad != 0) { 1162 drbd_err(connection, "Header padding is not zero\n"); 1163 return -EINVAL; 1164 } 1165 pi->vnr = be16_to_cpu(h->volume); 1166 pi->cmd = be16_to_cpu(h->command); 1167 pi->size = be32_to_cpu(h->length); 1168 } else if (header_size == sizeof(struct p_header95) && 1169 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1170 struct p_header95 *h = header; 1171 pi->cmd = be16_to_cpu(h->command); 1172 pi->size = be32_to_cpu(h->length); 1173 pi->vnr = 0; 1174 } else if (header_size == sizeof(struct p_header80) && 1175 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1176 struct p_header80 *h = header; 1177 pi->cmd = be16_to_cpu(h->command); 1178 pi->size = be16_to_cpu(h->length); 1179 pi->vnr = 0; 1180 } else { 1181 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n", 1182 be32_to_cpu(*(__be32 *)header), 1183 connection->agreed_pro_version); 1184 return -EINVAL; 1185 } 1186 pi->data = header + header_size; 1187 return 0; 1188 } 1189 1190 static void drbd_unplug_all_devices(struct drbd_connection *connection) 1191 { 1192 if (current->plug == &connection->receiver_plug) { 1193 blk_finish_plug(&connection->receiver_plug); 1194 blk_start_plug(&connection->receiver_plug); 1195 } /* else: maybe just schedule() ?? */ 1196 } 1197 1198 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi) 1199 { 1200 void *buffer = connection->data.rbuf; 1201 int err; 1202 1203 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection)); 1204 if (err) 1205 return err; 1206 1207 err = decode_header(connection, buffer, pi); 1208 connection->last_received = jiffies; 1209 1210 return err; 1211 } 1212 1213 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi) 1214 { 1215 void *buffer = connection->data.rbuf; 1216 unsigned int size = drbd_header_size(connection); 1217 int err; 1218 1219 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT); 1220 if (err != size) { 1221 /* If we have nothing in the receive buffer now, to reduce 1222 * application latency, try to drain the backend queues as 1223 * quickly as possible, and let remote TCP know what we have 1224 * received so far. */ 1225 if (err == -EAGAIN) { 1226 tcp_sock_set_quickack(connection->data.socket->sk, 2); 1227 drbd_unplug_all_devices(connection); 1228 } 1229 if (err > 0) { 1230 buffer += err; 1231 size -= err; 1232 } 1233 err = drbd_recv_all_warn(connection, buffer, size); 1234 if (err) 1235 return err; 1236 } 1237 1238 err = decode_header(connection, connection->data.rbuf, pi); 1239 connection->last_received = jiffies; 1240 1241 return err; 1242 } 1243 /* This is blkdev_issue_flush, but asynchronous. 1244 * We want to submit to all component volumes in parallel, 1245 * then wait for all completions. 1246 */ 1247 struct issue_flush_context { 1248 atomic_t pending; 1249 int error; 1250 struct completion done; 1251 }; 1252 struct one_flush_context { 1253 struct drbd_device *device; 1254 struct issue_flush_context *ctx; 1255 }; 1256 1257 static void one_flush_endio(struct bio *bio) 1258 { 1259 struct one_flush_context *octx = bio->bi_private; 1260 struct drbd_device *device = octx->device; 1261 struct issue_flush_context *ctx = octx->ctx; 1262 1263 if (bio->bi_status) { 1264 ctx->error = blk_status_to_errno(bio->bi_status); 1265 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status); 1266 } 1267 kfree(octx); 1268 bio_put(bio); 1269 1270 clear_bit(FLUSH_PENDING, &device->flags); 1271 put_ldev(device); 1272 kref_put(&device->kref, drbd_destroy_device); 1273 1274 if (atomic_dec_and_test(&ctx->pending)) 1275 complete(&ctx->done); 1276 } 1277 1278 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx) 1279 { 1280 struct bio *bio = bio_alloc(GFP_NOIO, 0); 1281 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO); 1282 if (!bio || !octx) { 1283 drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n"); 1284 /* FIXME: what else can I do now? disconnecting or detaching 1285 * really does not help to improve the state of the world, either. 1286 */ 1287 kfree(octx); 1288 if (bio) 1289 bio_put(bio); 1290 1291 ctx->error = -ENOMEM; 1292 put_ldev(device); 1293 kref_put(&device->kref, drbd_destroy_device); 1294 return; 1295 } 1296 1297 octx->device = device; 1298 octx->ctx = ctx; 1299 bio_set_dev(bio, device->ldev->backing_bdev); 1300 bio->bi_private = octx; 1301 bio->bi_end_io = one_flush_endio; 1302 bio->bi_opf = REQ_OP_FLUSH | REQ_PREFLUSH; 1303 1304 device->flush_jif = jiffies; 1305 set_bit(FLUSH_PENDING, &device->flags); 1306 atomic_inc(&ctx->pending); 1307 submit_bio(bio); 1308 } 1309 1310 static void drbd_flush(struct drbd_connection *connection) 1311 { 1312 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) { 1313 struct drbd_peer_device *peer_device; 1314 struct issue_flush_context ctx; 1315 int vnr; 1316 1317 atomic_set(&ctx.pending, 1); 1318 ctx.error = 0; 1319 init_completion(&ctx.done); 1320 1321 rcu_read_lock(); 1322 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1323 struct drbd_device *device = peer_device->device; 1324 1325 if (!get_ldev(device)) 1326 continue; 1327 kref_get(&device->kref); 1328 rcu_read_unlock(); 1329 1330 submit_one_flush(device, &ctx); 1331 1332 rcu_read_lock(); 1333 } 1334 rcu_read_unlock(); 1335 1336 /* Do we want to add a timeout, 1337 * if disk-timeout is set? */ 1338 if (!atomic_dec_and_test(&ctx.pending)) 1339 wait_for_completion(&ctx.done); 1340 1341 if (ctx.error) { 1342 /* would rather check on EOPNOTSUPP, but that is not reliable. 1343 * don't try again for ANY return value != 0 1344 * if (rv == -EOPNOTSUPP) */ 1345 /* Any error is already reported by bio_endio callback. */ 1346 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO); 1347 } 1348 } 1349 } 1350 1351 /** 1352 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1353 * @device: DRBD device. 1354 * @epoch: Epoch object. 1355 * @ev: Epoch event. 1356 */ 1357 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection, 1358 struct drbd_epoch *epoch, 1359 enum epoch_event ev) 1360 { 1361 int epoch_size; 1362 struct drbd_epoch *next_epoch; 1363 enum finish_epoch rv = FE_STILL_LIVE; 1364 1365 spin_lock(&connection->epoch_lock); 1366 do { 1367 next_epoch = NULL; 1368 1369 epoch_size = atomic_read(&epoch->epoch_size); 1370 1371 switch (ev & ~EV_CLEANUP) { 1372 case EV_PUT: 1373 atomic_dec(&epoch->active); 1374 break; 1375 case EV_GOT_BARRIER_NR: 1376 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1377 break; 1378 case EV_BECAME_LAST: 1379 /* nothing to do*/ 1380 break; 1381 } 1382 1383 if (epoch_size != 0 && 1384 atomic_read(&epoch->active) == 0 && 1385 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1386 if (!(ev & EV_CLEANUP)) { 1387 spin_unlock(&connection->epoch_lock); 1388 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size); 1389 spin_lock(&connection->epoch_lock); 1390 } 1391 #if 0 1392 /* FIXME: dec unacked on connection, once we have 1393 * something to count pending connection packets in. */ 1394 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1395 dec_unacked(epoch->connection); 1396 #endif 1397 1398 if (connection->current_epoch != epoch) { 1399 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1400 list_del(&epoch->list); 1401 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1402 connection->epochs--; 1403 kfree(epoch); 1404 1405 if (rv == FE_STILL_LIVE) 1406 rv = FE_DESTROYED; 1407 } else { 1408 epoch->flags = 0; 1409 atomic_set(&epoch->epoch_size, 0); 1410 /* atomic_set(&epoch->active, 0); is already zero */ 1411 if (rv == FE_STILL_LIVE) 1412 rv = FE_RECYCLED; 1413 } 1414 } 1415 1416 if (!next_epoch) 1417 break; 1418 1419 epoch = next_epoch; 1420 } while (1); 1421 1422 spin_unlock(&connection->epoch_lock); 1423 1424 return rv; 1425 } 1426 1427 static enum write_ordering_e 1428 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo) 1429 { 1430 struct disk_conf *dc; 1431 1432 dc = rcu_dereference(bdev->disk_conf); 1433 1434 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes) 1435 wo = WO_DRAIN_IO; 1436 if (wo == WO_DRAIN_IO && !dc->disk_drain) 1437 wo = WO_NONE; 1438 1439 return wo; 1440 } 1441 1442 /** 1443 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1444 * @connection: DRBD connection. 1445 * @wo: Write ordering method to try. 1446 */ 1447 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev, 1448 enum write_ordering_e wo) 1449 { 1450 struct drbd_device *device; 1451 enum write_ordering_e pwo; 1452 int vnr; 1453 static char *write_ordering_str[] = { 1454 [WO_NONE] = "none", 1455 [WO_DRAIN_IO] = "drain", 1456 [WO_BDEV_FLUSH] = "flush", 1457 }; 1458 1459 pwo = resource->write_ordering; 1460 if (wo != WO_BDEV_FLUSH) 1461 wo = min(pwo, wo); 1462 rcu_read_lock(); 1463 idr_for_each_entry(&resource->devices, device, vnr) { 1464 if (get_ldev(device)) { 1465 wo = max_allowed_wo(device->ldev, wo); 1466 if (device->ldev == bdev) 1467 bdev = NULL; 1468 put_ldev(device); 1469 } 1470 } 1471 1472 if (bdev) 1473 wo = max_allowed_wo(bdev, wo); 1474 1475 rcu_read_unlock(); 1476 1477 resource->write_ordering = wo; 1478 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH) 1479 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]); 1480 } 1481 1482 /* 1483 * Mapping "discard" to ZEROOUT with UNMAP does not work for us: 1484 * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it 1485 * will directly go to fallback mode, submitting normal writes, and 1486 * never even try to UNMAP. 1487 * 1488 * And dm-thin does not do this (yet), mostly because in general it has 1489 * to assume that "skip_block_zeroing" is set. See also: 1490 * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html 1491 * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html 1492 * 1493 * We *may* ignore the discard-zeroes-data setting, if so configured. 1494 * 1495 * Assumption is that this "discard_zeroes_data=0" is only because the backend 1496 * may ignore partial unaligned discards. 1497 * 1498 * LVM/DM thin as of at least 1499 * LVM version: 2.02.115(2)-RHEL7 (2015-01-28) 1500 * Library version: 1.02.93-RHEL7 (2015-01-28) 1501 * Driver version: 4.29.0 1502 * still behaves this way. 1503 * 1504 * For unaligned (wrt. alignment and granularity) or too small discards, 1505 * we zero-out the initial (and/or) trailing unaligned partial chunks, 1506 * but discard all the aligned full chunks. 1507 * 1508 * At least for LVM/DM thin, with skip_block_zeroing=false, 1509 * the result is effectively "discard_zeroes_data=1". 1510 */ 1511 /* flags: EE_TRIM|EE_ZEROOUT */ 1512 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags) 1513 { 1514 struct block_device *bdev = device->ldev->backing_bdev; 1515 struct request_queue *q = bdev_get_queue(bdev); 1516 sector_t tmp, nr; 1517 unsigned int max_discard_sectors, granularity; 1518 int alignment; 1519 int err = 0; 1520 1521 if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM)) 1522 goto zero_out; 1523 1524 /* Zero-sector (unknown) and one-sector granularities are the same. */ 1525 granularity = max(q->limits.discard_granularity >> 9, 1U); 1526 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity; 1527 1528 max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22)); 1529 max_discard_sectors -= max_discard_sectors % granularity; 1530 if (unlikely(!max_discard_sectors)) 1531 goto zero_out; 1532 1533 if (nr_sectors < granularity) 1534 goto zero_out; 1535 1536 tmp = start; 1537 if (sector_div(tmp, granularity) != alignment) { 1538 if (nr_sectors < 2*granularity) 1539 goto zero_out; 1540 /* start + gran - (start + gran - align) % gran */ 1541 tmp = start + granularity - alignment; 1542 tmp = start + granularity - sector_div(tmp, granularity); 1543 1544 nr = tmp - start; 1545 /* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many 1546 * layers are below us, some may have smaller granularity */ 1547 err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0); 1548 nr_sectors -= nr; 1549 start = tmp; 1550 } 1551 while (nr_sectors >= max_discard_sectors) { 1552 err |= blkdev_issue_discard(bdev, start, max_discard_sectors, GFP_NOIO, 0); 1553 nr_sectors -= max_discard_sectors; 1554 start += max_discard_sectors; 1555 } 1556 if (nr_sectors) { 1557 /* max_discard_sectors is unsigned int (and a multiple of 1558 * granularity, we made sure of that above already); 1559 * nr is < max_discard_sectors; 1560 * I don't need sector_div here, even though nr is sector_t */ 1561 nr = nr_sectors; 1562 nr -= (unsigned int)nr % granularity; 1563 if (nr) { 1564 err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0); 1565 nr_sectors -= nr; 1566 start += nr; 1567 } 1568 } 1569 zero_out: 1570 if (nr_sectors) { 1571 err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO, 1572 (flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP); 1573 } 1574 return err != 0; 1575 } 1576 1577 static bool can_do_reliable_discards(struct drbd_device *device) 1578 { 1579 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 1580 struct disk_conf *dc; 1581 bool can_do; 1582 1583 if (!blk_queue_discard(q)) 1584 return false; 1585 1586 rcu_read_lock(); 1587 dc = rcu_dereference(device->ldev->disk_conf); 1588 can_do = dc->discard_zeroes_if_aligned; 1589 rcu_read_unlock(); 1590 return can_do; 1591 } 1592 1593 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req) 1594 { 1595 /* If the backend cannot discard, or does not guarantee 1596 * read-back zeroes in discarded ranges, we fall back to 1597 * zero-out. Unless configuration specifically requested 1598 * otherwise. */ 1599 if (!can_do_reliable_discards(device)) 1600 peer_req->flags |= EE_ZEROOUT; 1601 1602 if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector, 1603 peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM))) 1604 peer_req->flags |= EE_WAS_ERROR; 1605 drbd_endio_write_sec_final(peer_req); 1606 } 1607 1608 static void drbd_issue_peer_wsame(struct drbd_device *device, 1609 struct drbd_peer_request *peer_req) 1610 { 1611 struct block_device *bdev = device->ldev->backing_bdev; 1612 sector_t s = peer_req->i.sector; 1613 sector_t nr = peer_req->i.size >> 9; 1614 if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages)) 1615 peer_req->flags |= EE_WAS_ERROR; 1616 drbd_endio_write_sec_final(peer_req); 1617 } 1618 1619 1620 /** 1621 * drbd_submit_peer_request() 1622 * @device: DRBD device. 1623 * @peer_req: peer request 1624 * @rw: flag field, see bio->bi_opf 1625 * 1626 * May spread the pages to multiple bios, 1627 * depending on bio_add_page restrictions. 1628 * 1629 * Returns 0 if all bios have been submitted, 1630 * -ENOMEM if we could not allocate enough bios, 1631 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1632 * single page to an empty bio (which should never happen and likely indicates 1633 * that the lower level IO stack is in some way broken). This has been observed 1634 * on certain Xen deployments. 1635 */ 1636 /* TODO allocate from our own bio_set. */ 1637 int drbd_submit_peer_request(struct drbd_device *device, 1638 struct drbd_peer_request *peer_req, 1639 const unsigned op, const unsigned op_flags, 1640 const int fault_type) 1641 { 1642 struct bio *bios = NULL; 1643 struct bio *bio; 1644 struct page *page = peer_req->pages; 1645 sector_t sector = peer_req->i.sector; 1646 unsigned data_size = peer_req->i.size; 1647 unsigned n_bios = 0; 1648 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT; 1649 int err = -ENOMEM; 1650 1651 /* TRIM/DISCARD: for now, always use the helper function 1652 * blkdev_issue_zeroout(..., discard=true). 1653 * It's synchronous, but it does the right thing wrt. bio splitting. 1654 * Correctness first, performance later. Next step is to code an 1655 * asynchronous variant of the same. 1656 */ 1657 if (peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) { 1658 /* wait for all pending IO completions, before we start 1659 * zeroing things out. */ 1660 conn_wait_active_ee_empty(peer_req->peer_device->connection); 1661 /* add it to the active list now, 1662 * so we can find it to present it in debugfs */ 1663 peer_req->submit_jif = jiffies; 1664 peer_req->flags |= EE_SUBMITTED; 1665 1666 /* If this was a resync request from receive_rs_deallocated(), 1667 * it is already on the sync_ee list */ 1668 if (list_empty(&peer_req->w.list)) { 1669 spin_lock_irq(&device->resource->req_lock); 1670 list_add_tail(&peer_req->w.list, &device->active_ee); 1671 spin_unlock_irq(&device->resource->req_lock); 1672 } 1673 1674 if (peer_req->flags & (EE_TRIM|EE_ZEROOUT)) 1675 drbd_issue_peer_discard_or_zero_out(device, peer_req); 1676 else /* EE_WRITE_SAME */ 1677 drbd_issue_peer_wsame(device, peer_req); 1678 return 0; 1679 } 1680 1681 /* In most cases, we will only need one bio. But in case the lower 1682 * level restrictions happen to be different at this offset on this 1683 * side than those of the sending peer, we may need to submit the 1684 * request in more than one bio. 1685 * 1686 * Plain bio_alloc is good enough here, this is no DRBD internally 1687 * generated bio, but a bio allocated on behalf of the peer. 1688 */ 1689 next_bio: 1690 bio = bio_alloc(GFP_NOIO, nr_pages); 1691 if (!bio) { 1692 drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages); 1693 goto fail; 1694 } 1695 /* > peer_req->i.sector, unless this is the first bio */ 1696 bio->bi_iter.bi_sector = sector; 1697 bio_set_dev(bio, device->ldev->backing_bdev); 1698 bio_set_op_attrs(bio, op, op_flags); 1699 bio->bi_private = peer_req; 1700 bio->bi_end_io = drbd_peer_request_endio; 1701 1702 bio->bi_next = bios; 1703 bios = bio; 1704 ++n_bios; 1705 1706 page_chain_for_each(page) { 1707 unsigned len = min_t(unsigned, data_size, PAGE_SIZE); 1708 if (!bio_add_page(bio, page, len, 0)) 1709 goto next_bio; 1710 data_size -= len; 1711 sector += len >> 9; 1712 --nr_pages; 1713 } 1714 D_ASSERT(device, data_size == 0); 1715 D_ASSERT(device, page == NULL); 1716 1717 atomic_set(&peer_req->pending_bios, n_bios); 1718 /* for debugfs: update timestamp, mark as submitted */ 1719 peer_req->submit_jif = jiffies; 1720 peer_req->flags |= EE_SUBMITTED; 1721 do { 1722 bio = bios; 1723 bios = bios->bi_next; 1724 bio->bi_next = NULL; 1725 1726 drbd_generic_make_request(device, fault_type, bio); 1727 } while (bios); 1728 return 0; 1729 1730 fail: 1731 while (bios) { 1732 bio = bios; 1733 bios = bios->bi_next; 1734 bio_put(bio); 1735 } 1736 return err; 1737 } 1738 1739 static void drbd_remove_epoch_entry_interval(struct drbd_device *device, 1740 struct drbd_peer_request *peer_req) 1741 { 1742 struct drbd_interval *i = &peer_req->i; 1743 1744 drbd_remove_interval(&device->write_requests, i); 1745 drbd_clear_interval(i); 1746 1747 /* Wake up any processes waiting for this peer request to complete. */ 1748 if (i->waiting) 1749 wake_up(&device->misc_wait); 1750 } 1751 1752 static void conn_wait_active_ee_empty(struct drbd_connection *connection) 1753 { 1754 struct drbd_peer_device *peer_device; 1755 int vnr; 1756 1757 rcu_read_lock(); 1758 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1759 struct drbd_device *device = peer_device->device; 1760 1761 kref_get(&device->kref); 1762 rcu_read_unlock(); 1763 drbd_wait_ee_list_empty(device, &device->active_ee); 1764 kref_put(&device->kref, drbd_destroy_device); 1765 rcu_read_lock(); 1766 } 1767 rcu_read_unlock(); 1768 } 1769 1770 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi) 1771 { 1772 int rv; 1773 struct p_barrier *p = pi->data; 1774 struct drbd_epoch *epoch; 1775 1776 /* FIXME these are unacked on connection, 1777 * not a specific (peer)device. 1778 */ 1779 connection->current_epoch->barrier_nr = p->barrier; 1780 connection->current_epoch->connection = connection; 1781 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR); 1782 1783 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1784 * the activity log, which means it would not be resynced in case the 1785 * R_PRIMARY crashes now. 1786 * Therefore we must send the barrier_ack after the barrier request was 1787 * completed. */ 1788 switch (connection->resource->write_ordering) { 1789 case WO_NONE: 1790 if (rv == FE_RECYCLED) 1791 return 0; 1792 1793 /* receiver context, in the writeout path of the other node. 1794 * avoid potential distributed deadlock */ 1795 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1796 if (epoch) 1797 break; 1798 else 1799 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n"); 1800 /* Fall through */ 1801 1802 case WO_BDEV_FLUSH: 1803 case WO_DRAIN_IO: 1804 conn_wait_active_ee_empty(connection); 1805 drbd_flush(connection); 1806 1807 if (atomic_read(&connection->current_epoch->epoch_size)) { 1808 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1809 if (epoch) 1810 break; 1811 } 1812 1813 return 0; 1814 default: 1815 drbd_err(connection, "Strangeness in connection->write_ordering %d\n", 1816 connection->resource->write_ordering); 1817 return -EIO; 1818 } 1819 1820 epoch->flags = 0; 1821 atomic_set(&epoch->epoch_size, 0); 1822 atomic_set(&epoch->active, 0); 1823 1824 spin_lock(&connection->epoch_lock); 1825 if (atomic_read(&connection->current_epoch->epoch_size)) { 1826 list_add(&epoch->list, &connection->current_epoch->list); 1827 connection->current_epoch = epoch; 1828 connection->epochs++; 1829 } else { 1830 /* The current_epoch got recycled while we allocated this one... */ 1831 kfree(epoch); 1832 } 1833 spin_unlock(&connection->epoch_lock); 1834 1835 return 0; 1836 } 1837 1838 /* quick wrapper in case payload size != request_size (write same) */ 1839 static void drbd_csum_ee_size(struct crypto_shash *h, 1840 struct drbd_peer_request *r, void *d, 1841 unsigned int payload_size) 1842 { 1843 unsigned int tmp = r->i.size; 1844 r->i.size = payload_size; 1845 drbd_csum_ee(h, r, d); 1846 r->i.size = tmp; 1847 } 1848 1849 /* used from receive_RSDataReply (recv_resync_read) 1850 * and from receive_Data. 1851 * data_size: actual payload ("data in") 1852 * for normal writes that is bi_size. 1853 * for discards, that is zero. 1854 * for write same, it is logical_block_size. 1855 * both trim and write same have the bi_size ("data len to be affected") 1856 * as extra argument in the packet header. 1857 */ 1858 static struct drbd_peer_request * 1859 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 1860 struct packet_info *pi) __must_hold(local) 1861 { 1862 struct drbd_device *device = peer_device->device; 1863 const sector_t capacity = drbd_get_capacity(device->this_bdev); 1864 struct drbd_peer_request *peer_req; 1865 struct page *page; 1866 int digest_size, err; 1867 unsigned int data_size = pi->size, ds; 1868 void *dig_in = peer_device->connection->int_dig_in; 1869 void *dig_vv = peer_device->connection->int_dig_vv; 1870 unsigned long *data; 1871 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL; 1872 struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL; 1873 struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL; 1874 1875 digest_size = 0; 1876 if (!trim && peer_device->connection->peer_integrity_tfm) { 1877 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1878 /* 1879 * FIXME: Receive the incoming digest into the receive buffer 1880 * here, together with its struct p_data? 1881 */ 1882 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1883 if (err) 1884 return NULL; 1885 data_size -= digest_size; 1886 } 1887 1888 /* assume request_size == data_size, but special case trim and wsame. */ 1889 ds = data_size; 1890 if (trim) { 1891 if (!expect(data_size == 0)) 1892 return NULL; 1893 ds = be32_to_cpu(trim->size); 1894 } else if (zeroes) { 1895 if (!expect(data_size == 0)) 1896 return NULL; 1897 ds = be32_to_cpu(zeroes->size); 1898 } else if (wsame) { 1899 if (data_size != queue_logical_block_size(device->rq_queue)) { 1900 drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n", 1901 data_size, queue_logical_block_size(device->rq_queue)); 1902 return NULL; 1903 } 1904 if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) { 1905 drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n", 1906 data_size, bdev_logical_block_size(device->ldev->backing_bdev)); 1907 return NULL; 1908 } 1909 ds = be32_to_cpu(wsame->size); 1910 } 1911 1912 if (!expect(IS_ALIGNED(ds, 512))) 1913 return NULL; 1914 if (trim || wsame || zeroes) { 1915 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9))) 1916 return NULL; 1917 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE)) 1918 return NULL; 1919 1920 /* even though we trust out peer, 1921 * we sometimes have to double check. */ 1922 if (sector + (ds>>9) > capacity) { 1923 drbd_err(device, "request from peer beyond end of local disk: " 1924 "capacity: %llus < sector: %llus + size: %u\n", 1925 (unsigned long long)capacity, 1926 (unsigned long long)sector, ds); 1927 return NULL; 1928 } 1929 1930 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1931 * "criss-cross" setup, that might cause write-out on some other DRBD, 1932 * which in turn might block on the other node at this very place. */ 1933 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO); 1934 if (!peer_req) 1935 return NULL; 1936 1937 peer_req->flags |= EE_WRITE; 1938 if (trim) { 1939 peer_req->flags |= EE_TRIM; 1940 return peer_req; 1941 } 1942 if (zeroes) { 1943 peer_req->flags |= EE_ZEROOUT; 1944 return peer_req; 1945 } 1946 if (wsame) 1947 peer_req->flags |= EE_WRITE_SAME; 1948 1949 /* receive payload size bytes into page chain */ 1950 ds = data_size; 1951 page = peer_req->pages; 1952 page_chain_for_each(page) { 1953 unsigned len = min_t(int, ds, PAGE_SIZE); 1954 data = kmap(page); 1955 err = drbd_recv_all_warn(peer_device->connection, data, len); 1956 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) { 1957 drbd_err(device, "Fault injection: Corrupting data on receive\n"); 1958 data[0] = data[0] ^ (unsigned long)-1; 1959 } 1960 kunmap(page); 1961 if (err) { 1962 drbd_free_peer_req(device, peer_req); 1963 return NULL; 1964 } 1965 ds -= len; 1966 } 1967 1968 if (digest_size) { 1969 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size); 1970 if (memcmp(dig_in, dig_vv, digest_size)) { 1971 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n", 1972 (unsigned long long)sector, data_size); 1973 drbd_free_peer_req(device, peer_req); 1974 return NULL; 1975 } 1976 } 1977 device->recv_cnt += data_size >> 9; 1978 return peer_req; 1979 } 1980 1981 /* drbd_drain_block() just takes a data block 1982 * out of the socket input buffer, and discards it. 1983 */ 1984 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size) 1985 { 1986 struct page *page; 1987 int err = 0; 1988 void *data; 1989 1990 if (!data_size) 1991 return 0; 1992 1993 page = drbd_alloc_pages(peer_device, 1, 1); 1994 1995 data = kmap(page); 1996 while (data_size) { 1997 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1998 1999 err = drbd_recv_all_warn(peer_device->connection, data, len); 2000 if (err) 2001 break; 2002 data_size -= len; 2003 } 2004 kunmap(page); 2005 drbd_free_pages(peer_device->device, page, 0); 2006 return err; 2007 } 2008 2009 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req, 2010 sector_t sector, int data_size) 2011 { 2012 struct bio_vec bvec; 2013 struct bvec_iter iter; 2014 struct bio *bio; 2015 int digest_size, err, expect; 2016 void *dig_in = peer_device->connection->int_dig_in; 2017 void *dig_vv = peer_device->connection->int_dig_vv; 2018 2019 digest_size = 0; 2020 if (peer_device->connection->peer_integrity_tfm) { 2021 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 2022 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 2023 if (err) 2024 return err; 2025 data_size -= digest_size; 2026 } 2027 2028 /* optimistically update recv_cnt. if receiving fails below, 2029 * we disconnect anyways, and counters will be reset. */ 2030 peer_device->device->recv_cnt += data_size>>9; 2031 2032 bio = req->master_bio; 2033 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector); 2034 2035 bio_for_each_segment(bvec, bio, iter) { 2036 void *mapped = kmap(bvec.bv_page) + bvec.bv_offset; 2037 expect = min_t(int, data_size, bvec.bv_len); 2038 err = drbd_recv_all_warn(peer_device->connection, mapped, expect); 2039 kunmap(bvec.bv_page); 2040 if (err) 2041 return err; 2042 data_size -= expect; 2043 } 2044 2045 if (digest_size) { 2046 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv); 2047 if (memcmp(dig_in, dig_vv, digest_size)) { 2048 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n"); 2049 return -EINVAL; 2050 } 2051 } 2052 2053 D_ASSERT(peer_device->device, data_size == 0); 2054 return 0; 2055 } 2056 2057 /* 2058 * e_end_resync_block() is called in ack_sender context via 2059 * drbd_finish_peer_reqs(). 2060 */ 2061 static int e_end_resync_block(struct drbd_work *w, int unused) 2062 { 2063 struct drbd_peer_request *peer_req = 2064 container_of(w, struct drbd_peer_request, w); 2065 struct drbd_peer_device *peer_device = peer_req->peer_device; 2066 struct drbd_device *device = peer_device->device; 2067 sector_t sector = peer_req->i.sector; 2068 int err; 2069 2070 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2071 2072 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2073 drbd_set_in_sync(device, sector, peer_req->i.size); 2074 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req); 2075 } else { 2076 /* Record failure to sync */ 2077 drbd_rs_failed_io(device, sector, peer_req->i.size); 2078 2079 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2080 } 2081 dec_unacked(device); 2082 2083 return err; 2084 } 2085 2086 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector, 2087 struct packet_info *pi) __releases(local) 2088 { 2089 struct drbd_device *device = peer_device->device; 2090 struct drbd_peer_request *peer_req; 2091 2092 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi); 2093 if (!peer_req) 2094 goto fail; 2095 2096 dec_rs_pending(device); 2097 2098 inc_unacked(device); 2099 /* corresponding dec_unacked() in e_end_resync_block() 2100 * respective _drbd_clear_done_ee */ 2101 2102 peer_req->w.cb = e_end_resync_block; 2103 peer_req->submit_jif = jiffies; 2104 2105 spin_lock_irq(&device->resource->req_lock); 2106 list_add_tail(&peer_req->w.list, &device->sync_ee); 2107 spin_unlock_irq(&device->resource->req_lock); 2108 2109 atomic_add(pi->size >> 9, &device->rs_sect_ev); 2110 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0, 2111 DRBD_FAULT_RS_WR) == 0) 2112 return 0; 2113 2114 /* don't care for the reason here */ 2115 drbd_err(device, "submit failed, triggering re-connect\n"); 2116 spin_lock_irq(&device->resource->req_lock); 2117 list_del(&peer_req->w.list); 2118 spin_unlock_irq(&device->resource->req_lock); 2119 2120 drbd_free_peer_req(device, peer_req); 2121 fail: 2122 put_ldev(device); 2123 return -EIO; 2124 } 2125 2126 static struct drbd_request * 2127 find_request(struct drbd_device *device, struct rb_root *root, u64 id, 2128 sector_t sector, bool missing_ok, const char *func) 2129 { 2130 struct drbd_request *req; 2131 2132 /* Request object according to our peer */ 2133 req = (struct drbd_request *)(unsigned long)id; 2134 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 2135 return req; 2136 if (!missing_ok) { 2137 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func, 2138 (unsigned long)id, (unsigned long long)sector); 2139 } 2140 return NULL; 2141 } 2142 2143 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi) 2144 { 2145 struct drbd_peer_device *peer_device; 2146 struct drbd_device *device; 2147 struct drbd_request *req; 2148 sector_t sector; 2149 int err; 2150 struct p_data *p = pi->data; 2151 2152 peer_device = conn_peer_device(connection, pi->vnr); 2153 if (!peer_device) 2154 return -EIO; 2155 device = peer_device->device; 2156 2157 sector = be64_to_cpu(p->sector); 2158 2159 spin_lock_irq(&device->resource->req_lock); 2160 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__); 2161 spin_unlock_irq(&device->resource->req_lock); 2162 if (unlikely(!req)) 2163 return -EIO; 2164 2165 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid 2166 * special casing it there for the various failure cases. 2167 * still no race with drbd_fail_pending_reads */ 2168 err = recv_dless_read(peer_device, req, sector, pi->size); 2169 if (!err) 2170 req_mod(req, DATA_RECEIVED); 2171 /* else: nothing. handled from drbd_disconnect... 2172 * I don't think we may complete this just yet 2173 * in case we are "on-disconnect: freeze" */ 2174 2175 return err; 2176 } 2177 2178 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi) 2179 { 2180 struct drbd_peer_device *peer_device; 2181 struct drbd_device *device; 2182 sector_t sector; 2183 int err; 2184 struct p_data *p = pi->data; 2185 2186 peer_device = conn_peer_device(connection, pi->vnr); 2187 if (!peer_device) 2188 return -EIO; 2189 device = peer_device->device; 2190 2191 sector = be64_to_cpu(p->sector); 2192 D_ASSERT(device, p->block_id == ID_SYNCER); 2193 2194 if (get_ldev(device)) { 2195 /* data is submitted to disk within recv_resync_read. 2196 * corresponding put_ldev done below on error, 2197 * or in drbd_peer_request_endio. */ 2198 err = recv_resync_read(peer_device, sector, pi); 2199 } else { 2200 if (__ratelimit(&drbd_ratelimit_state)) 2201 drbd_err(device, "Can not write resync data to local disk.\n"); 2202 2203 err = drbd_drain_block(peer_device, pi->size); 2204 2205 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2206 } 2207 2208 atomic_add(pi->size >> 9, &device->rs_sect_in); 2209 2210 return err; 2211 } 2212 2213 static void restart_conflicting_writes(struct drbd_device *device, 2214 sector_t sector, int size) 2215 { 2216 struct drbd_interval *i; 2217 struct drbd_request *req; 2218 2219 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2220 if (!i->local) 2221 continue; 2222 req = container_of(i, struct drbd_request, i); 2223 if (req->rq_state & RQ_LOCAL_PENDING || 2224 !(req->rq_state & RQ_POSTPONED)) 2225 continue; 2226 /* as it is RQ_POSTPONED, this will cause it to 2227 * be queued on the retry workqueue. */ 2228 __req_mod(req, CONFLICT_RESOLVED, NULL); 2229 } 2230 } 2231 2232 /* 2233 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs(). 2234 */ 2235 static int e_end_block(struct drbd_work *w, int cancel) 2236 { 2237 struct drbd_peer_request *peer_req = 2238 container_of(w, struct drbd_peer_request, w); 2239 struct drbd_peer_device *peer_device = peer_req->peer_device; 2240 struct drbd_device *device = peer_device->device; 2241 sector_t sector = peer_req->i.sector; 2242 int err = 0, pcmd; 2243 2244 if (peer_req->flags & EE_SEND_WRITE_ACK) { 2245 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2246 pcmd = (device->state.conn >= C_SYNC_SOURCE && 2247 device->state.conn <= C_PAUSED_SYNC_T && 2248 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 2249 P_RS_WRITE_ACK : P_WRITE_ACK; 2250 err = drbd_send_ack(peer_device, pcmd, peer_req); 2251 if (pcmd == P_RS_WRITE_ACK) 2252 drbd_set_in_sync(device, sector, peer_req->i.size); 2253 } else { 2254 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2255 /* we expect it to be marked out of sync anyways... 2256 * maybe assert this? */ 2257 } 2258 dec_unacked(device); 2259 } 2260 2261 /* we delete from the conflict detection hash _after_ we sent out the 2262 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 2263 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 2264 spin_lock_irq(&device->resource->req_lock); 2265 D_ASSERT(device, !drbd_interval_empty(&peer_req->i)); 2266 drbd_remove_epoch_entry_interval(device, peer_req); 2267 if (peer_req->flags & EE_RESTART_REQUESTS) 2268 restart_conflicting_writes(device, sector, peer_req->i.size); 2269 spin_unlock_irq(&device->resource->req_lock); 2270 } else 2271 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2272 2273 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 2274 2275 return err; 2276 } 2277 2278 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 2279 { 2280 struct drbd_peer_request *peer_req = 2281 container_of(w, struct drbd_peer_request, w); 2282 struct drbd_peer_device *peer_device = peer_req->peer_device; 2283 int err; 2284 2285 err = drbd_send_ack(peer_device, ack, peer_req); 2286 dec_unacked(peer_device->device); 2287 2288 return err; 2289 } 2290 2291 static int e_send_superseded(struct drbd_work *w, int unused) 2292 { 2293 return e_send_ack(w, P_SUPERSEDED); 2294 } 2295 2296 static int e_send_retry_write(struct drbd_work *w, int unused) 2297 { 2298 struct drbd_peer_request *peer_req = 2299 container_of(w, struct drbd_peer_request, w); 2300 struct drbd_connection *connection = peer_req->peer_device->connection; 2301 2302 return e_send_ack(w, connection->agreed_pro_version >= 100 ? 2303 P_RETRY_WRITE : P_SUPERSEDED); 2304 } 2305 2306 static bool seq_greater(u32 a, u32 b) 2307 { 2308 /* 2309 * We assume 32-bit wrap-around here. 2310 * For 24-bit wrap-around, we would have to shift: 2311 * a <<= 8; b <<= 8; 2312 */ 2313 return (s32)a - (s32)b > 0; 2314 } 2315 2316 static u32 seq_max(u32 a, u32 b) 2317 { 2318 return seq_greater(a, b) ? a : b; 2319 } 2320 2321 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq) 2322 { 2323 struct drbd_device *device = peer_device->device; 2324 unsigned int newest_peer_seq; 2325 2326 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) { 2327 spin_lock(&device->peer_seq_lock); 2328 newest_peer_seq = seq_max(device->peer_seq, peer_seq); 2329 device->peer_seq = newest_peer_seq; 2330 spin_unlock(&device->peer_seq_lock); 2331 /* wake up only if we actually changed device->peer_seq */ 2332 if (peer_seq == newest_peer_seq) 2333 wake_up(&device->seq_wait); 2334 } 2335 } 2336 2337 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 2338 { 2339 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 2340 } 2341 2342 /* maybe change sync_ee into interval trees as well? */ 2343 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req) 2344 { 2345 struct drbd_peer_request *rs_req; 2346 bool rv = false; 2347 2348 spin_lock_irq(&device->resource->req_lock); 2349 list_for_each_entry(rs_req, &device->sync_ee, w.list) { 2350 if (overlaps(peer_req->i.sector, peer_req->i.size, 2351 rs_req->i.sector, rs_req->i.size)) { 2352 rv = true; 2353 break; 2354 } 2355 } 2356 spin_unlock_irq(&device->resource->req_lock); 2357 2358 return rv; 2359 } 2360 2361 /* Called from receive_Data. 2362 * Synchronize packets on sock with packets on msock. 2363 * 2364 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 2365 * packet traveling on msock, they are still processed in the order they have 2366 * been sent. 2367 * 2368 * Note: we don't care for Ack packets overtaking P_DATA packets. 2369 * 2370 * In case packet_seq is larger than device->peer_seq number, there are 2371 * outstanding packets on the msock. We wait for them to arrive. 2372 * In case we are the logically next packet, we update device->peer_seq 2373 * ourselves. Correctly handles 32bit wrap around. 2374 * 2375 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 2376 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 2377 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 2378 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 2379 * 2380 * returns 0 if we may process the packet, 2381 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 2382 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq) 2383 { 2384 struct drbd_device *device = peer_device->device; 2385 DEFINE_WAIT(wait); 2386 long timeout; 2387 int ret = 0, tp; 2388 2389 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) 2390 return 0; 2391 2392 spin_lock(&device->peer_seq_lock); 2393 for (;;) { 2394 if (!seq_greater(peer_seq - 1, device->peer_seq)) { 2395 device->peer_seq = seq_max(device->peer_seq, peer_seq); 2396 break; 2397 } 2398 2399 if (signal_pending(current)) { 2400 ret = -ERESTARTSYS; 2401 break; 2402 } 2403 2404 rcu_read_lock(); 2405 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries; 2406 rcu_read_unlock(); 2407 2408 if (!tp) 2409 break; 2410 2411 /* Only need to wait if two_primaries is enabled */ 2412 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE); 2413 spin_unlock(&device->peer_seq_lock); 2414 rcu_read_lock(); 2415 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10; 2416 rcu_read_unlock(); 2417 timeout = schedule_timeout(timeout); 2418 spin_lock(&device->peer_seq_lock); 2419 if (!timeout) { 2420 ret = -ETIMEDOUT; 2421 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n"); 2422 break; 2423 } 2424 } 2425 spin_unlock(&device->peer_seq_lock); 2426 finish_wait(&device->seq_wait, &wait); 2427 return ret; 2428 } 2429 2430 /* see also bio_flags_to_wire() 2431 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2432 * flags and back. We may replicate to other kernel versions. */ 2433 static unsigned long wire_flags_to_bio_flags(u32 dpf) 2434 { 2435 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2436 (dpf & DP_FUA ? REQ_FUA : 0) | 2437 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0); 2438 } 2439 2440 static unsigned long wire_flags_to_bio_op(u32 dpf) 2441 { 2442 if (dpf & DP_ZEROES) 2443 return REQ_OP_WRITE_ZEROES; 2444 if (dpf & DP_DISCARD) 2445 return REQ_OP_DISCARD; 2446 if (dpf & DP_WSAME) 2447 return REQ_OP_WRITE_SAME; 2448 else 2449 return REQ_OP_WRITE; 2450 } 2451 2452 static void fail_postponed_requests(struct drbd_device *device, sector_t sector, 2453 unsigned int size) 2454 { 2455 struct drbd_interval *i; 2456 2457 repeat: 2458 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2459 struct drbd_request *req; 2460 struct bio_and_error m; 2461 2462 if (!i->local) 2463 continue; 2464 req = container_of(i, struct drbd_request, i); 2465 if (!(req->rq_state & RQ_POSTPONED)) 2466 continue; 2467 req->rq_state &= ~RQ_POSTPONED; 2468 __req_mod(req, NEG_ACKED, &m); 2469 spin_unlock_irq(&device->resource->req_lock); 2470 if (m.bio) 2471 complete_master_bio(device, &m); 2472 spin_lock_irq(&device->resource->req_lock); 2473 goto repeat; 2474 } 2475 } 2476 2477 static int handle_write_conflicts(struct drbd_device *device, 2478 struct drbd_peer_request *peer_req) 2479 { 2480 struct drbd_connection *connection = peer_req->peer_device->connection; 2481 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags); 2482 sector_t sector = peer_req->i.sector; 2483 const unsigned int size = peer_req->i.size; 2484 struct drbd_interval *i; 2485 bool equal; 2486 int err; 2487 2488 /* 2489 * Inserting the peer request into the write_requests tree will prevent 2490 * new conflicting local requests from being added. 2491 */ 2492 drbd_insert_interval(&device->write_requests, &peer_req->i); 2493 2494 repeat: 2495 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2496 if (i == &peer_req->i) 2497 continue; 2498 if (i->completed) 2499 continue; 2500 2501 if (!i->local) { 2502 /* 2503 * Our peer has sent a conflicting remote request; this 2504 * should not happen in a two-node setup. Wait for the 2505 * earlier peer request to complete. 2506 */ 2507 err = drbd_wait_misc(device, i); 2508 if (err) 2509 goto out; 2510 goto repeat; 2511 } 2512 2513 equal = i->sector == sector && i->size == size; 2514 if (resolve_conflicts) { 2515 /* 2516 * If the peer request is fully contained within the 2517 * overlapping request, it can be considered overwritten 2518 * and thus superseded; otherwise, it will be retried 2519 * once all overlapping requests have completed. 2520 */ 2521 bool superseded = i->sector <= sector && i->sector + 2522 (i->size >> 9) >= sector + (size >> 9); 2523 2524 if (!equal) 2525 drbd_alert(device, "Concurrent writes detected: " 2526 "local=%llus +%u, remote=%llus +%u, " 2527 "assuming %s came first\n", 2528 (unsigned long long)i->sector, i->size, 2529 (unsigned long long)sector, size, 2530 superseded ? "local" : "remote"); 2531 2532 peer_req->w.cb = superseded ? e_send_superseded : 2533 e_send_retry_write; 2534 list_add_tail(&peer_req->w.list, &device->done_ee); 2535 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work); 2536 2537 err = -ENOENT; 2538 goto out; 2539 } else { 2540 struct drbd_request *req = 2541 container_of(i, struct drbd_request, i); 2542 2543 if (!equal) 2544 drbd_alert(device, "Concurrent writes detected: " 2545 "local=%llus +%u, remote=%llus +%u\n", 2546 (unsigned long long)i->sector, i->size, 2547 (unsigned long long)sector, size); 2548 2549 if (req->rq_state & RQ_LOCAL_PENDING || 2550 !(req->rq_state & RQ_POSTPONED)) { 2551 /* 2552 * Wait for the node with the discard flag to 2553 * decide if this request has been superseded 2554 * or needs to be retried. 2555 * Requests that have been superseded will 2556 * disappear from the write_requests tree. 2557 * 2558 * In addition, wait for the conflicting 2559 * request to finish locally before submitting 2560 * the conflicting peer request. 2561 */ 2562 err = drbd_wait_misc(device, &req->i); 2563 if (err) { 2564 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 2565 fail_postponed_requests(device, sector, size); 2566 goto out; 2567 } 2568 goto repeat; 2569 } 2570 /* 2571 * Remember to restart the conflicting requests after 2572 * the new peer request has completed. 2573 */ 2574 peer_req->flags |= EE_RESTART_REQUESTS; 2575 } 2576 } 2577 err = 0; 2578 2579 out: 2580 if (err) 2581 drbd_remove_epoch_entry_interval(device, peer_req); 2582 return err; 2583 } 2584 2585 /* mirrored write */ 2586 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi) 2587 { 2588 struct drbd_peer_device *peer_device; 2589 struct drbd_device *device; 2590 struct net_conf *nc; 2591 sector_t sector; 2592 struct drbd_peer_request *peer_req; 2593 struct p_data *p = pi->data; 2594 u32 peer_seq = be32_to_cpu(p->seq_num); 2595 int op, op_flags; 2596 u32 dp_flags; 2597 int err, tp; 2598 2599 peer_device = conn_peer_device(connection, pi->vnr); 2600 if (!peer_device) 2601 return -EIO; 2602 device = peer_device->device; 2603 2604 if (!get_ldev(device)) { 2605 int err2; 2606 2607 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2608 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2609 atomic_inc(&connection->current_epoch->epoch_size); 2610 err2 = drbd_drain_block(peer_device, pi->size); 2611 if (!err) 2612 err = err2; 2613 return err; 2614 } 2615 2616 /* 2617 * Corresponding put_ldev done either below (on various errors), or in 2618 * drbd_peer_request_endio, if we successfully submit the data at the 2619 * end of this function. 2620 */ 2621 2622 sector = be64_to_cpu(p->sector); 2623 peer_req = read_in_block(peer_device, p->block_id, sector, pi); 2624 if (!peer_req) { 2625 put_ldev(device); 2626 return -EIO; 2627 } 2628 2629 peer_req->w.cb = e_end_block; 2630 peer_req->submit_jif = jiffies; 2631 peer_req->flags |= EE_APPLICATION; 2632 2633 dp_flags = be32_to_cpu(p->dp_flags); 2634 op = wire_flags_to_bio_op(dp_flags); 2635 op_flags = wire_flags_to_bio_flags(dp_flags); 2636 if (pi->cmd == P_TRIM) { 2637 D_ASSERT(peer_device, peer_req->i.size > 0); 2638 D_ASSERT(peer_device, op == REQ_OP_DISCARD); 2639 D_ASSERT(peer_device, peer_req->pages == NULL); 2640 /* need to play safe: an older DRBD sender 2641 * may mean zero-out while sending P_TRIM. */ 2642 if (0 == (connection->agreed_features & DRBD_FF_WZEROES)) 2643 peer_req->flags |= EE_ZEROOUT; 2644 } else if (pi->cmd == P_ZEROES) { 2645 D_ASSERT(peer_device, peer_req->i.size > 0); 2646 D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES); 2647 D_ASSERT(peer_device, peer_req->pages == NULL); 2648 /* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */ 2649 if (dp_flags & DP_DISCARD) 2650 peer_req->flags |= EE_TRIM; 2651 } else if (peer_req->pages == NULL) { 2652 D_ASSERT(device, peer_req->i.size == 0); 2653 D_ASSERT(device, dp_flags & DP_FLUSH); 2654 } 2655 2656 if (dp_flags & DP_MAY_SET_IN_SYNC) 2657 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2658 2659 spin_lock(&connection->epoch_lock); 2660 peer_req->epoch = connection->current_epoch; 2661 atomic_inc(&peer_req->epoch->epoch_size); 2662 atomic_inc(&peer_req->epoch->active); 2663 spin_unlock(&connection->epoch_lock); 2664 2665 rcu_read_lock(); 2666 nc = rcu_dereference(peer_device->connection->net_conf); 2667 tp = nc->two_primaries; 2668 if (peer_device->connection->agreed_pro_version < 100) { 2669 switch (nc->wire_protocol) { 2670 case DRBD_PROT_C: 2671 dp_flags |= DP_SEND_WRITE_ACK; 2672 break; 2673 case DRBD_PROT_B: 2674 dp_flags |= DP_SEND_RECEIVE_ACK; 2675 break; 2676 } 2677 } 2678 rcu_read_unlock(); 2679 2680 if (dp_flags & DP_SEND_WRITE_ACK) { 2681 peer_req->flags |= EE_SEND_WRITE_ACK; 2682 inc_unacked(device); 2683 /* corresponding dec_unacked() in e_end_block() 2684 * respective _drbd_clear_done_ee */ 2685 } 2686 2687 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2688 /* I really don't like it that the receiver thread 2689 * sends on the msock, but anyways */ 2690 drbd_send_ack(peer_device, P_RECV_ACK, peer_req); 2691 } 2692 2693 if (tp) { 2694 /* two primaries implies protocol C */ 2695 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK); 2696 peer_req->flags |= EE_IN_INTERVAL_TREE; 2697 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2698 if (err) 2699 goto out_interrupted; 2700 spin_lock_irq(&device->resource->req_lock); 2701 err = handle_write_conflicts(device, peer_req); 2702 if (err) { 2703 spin_unlock_irq(&device->resource->req_lock); 2704 if (err == -ENOENT) { 2705 put_ldev(device); 2706 return 0; 2707 } 2708 goto out_interrupted; 2709 } 2710 } else { 2711 update_peer_seq(peer_device, peer_seq); 2712 spin_lock_irq(&device->resource->req_lock); 2713 } 2714 /* TRIM and WRITE_SAME are processed synchronously, 2715 * we wait for all pending requests, respectively wait for 2716 * active_ee to become empty in drbd_submit_peer_request(); 2717 * better not add ourselves here. */ 2718 if ((peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) == 0) 2719 list_add_tail(&peer_req->w.list, &device->active_ee); 2720 spin_unlock_irq(&device->resource->req_lock); 2721 2722 if (device->state.conn == C_SYNC_TARGET) 2723 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req)); 2724 2725 if (device->state.pdsk < D_INCONSISTENT) { 2726 /* In case we have the only disk of the cluster, */ 2727 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 2728 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2729 drbd_al_begin_io(device, &peer_req->i); 2730 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2731 } 2732 2733 err = drbd_submit_peer_request(device, peer_req, op, op_flags, 2734 DRBD_FAULT_DT_WR); 2735 if (!err) 2736 return 0; 2737 2738 /* don't care for the reason here */ 2739 drbd_err(device, "submit failed, triggering re-connect\n"); 2740 spin_lock_irq(&device->resource->req_lock); 2741 list_del(&peer_req->w.list); 2742 drbd_remove_epoch_entry_interval(device, peer_req); 2743 spin_unlock_irq(&device->resource->req_lock); 2744 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) { 2745 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 2746 drbd_al_complete_io(device, &peer_req->i); 2747 } 2748 2749 out_interrupted: 2750 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP); 2751 put_ldev(device); 2752 drbd_free_peer_req(device, peer_req); 2753 return err; 2754 } 2755 2756 /* We may throttle resync, if the lower device seems to be busy, 2757 * and current sync rate is above c_min_rate. 2758 * 2759 * To decide whether or not the lower device is busy, we use a scheme similar 2760 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2761 * (more than 64 sectors) of activity we cannot account for with our own resync 2762 * activity, it obviously is "busy". 2763 * 2764 * The current sync rate used here uses only the most recent two step marks, 2765 * to have a short time average so we can react faster. 2766 */ 2767 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector, 2768 bool throttle_if_app_is_waiting) 2769 { 2770 struct lc_element *tmp; 2771 bool throttle = drbd_rs_c_min_rate_throttle(device); 2772 2773 if (!throttle || throttle_if_app_is_waiting) 2774 return throttle; 2775 2776 spin_lock_irq(&device->al_lock); 2777 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector)); 2778 if (tmp) { 2779 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2780 if (test_bit(BME_PRIORITY, &bm_ext->flags)) 2781 throttle = false; 2782 /* Do not slow down if app IO is already waiting for this extent, 2783 * and our progress is necessary for application IO to complete. */ 2784 } 2785 spin_unlock_irq(&device->al_lock); 2786 2787 return throttle; 2788 } 2789 2790 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device) 2791 { 2792 struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk; 2793 unsigned long db, dt, dbdt; 2794 unsigned int c_min_rate; 2795 int curr_events; 2796 2797 rcu_read_lock(); 2798 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate; 2799 rcu_read_unlock(); 2800 2801 /* feature disabled? */ 2802 if (c_min_rate == 0) 2803 return false; 2804 2805 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 2806 atomic_read(&device->rs_sect_ev); 2807 2808 if (atomic_read(&device->ap_actlog_cnt) 2809 || curr_events - device->rs_last_events > 64) { 2810 unsigned long rs_left; 2811 int i; 2812 2813 device->rs_last_events = curr_events; 2814 2815 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2816 * approx. */ 2817 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2818 2819 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 2820 rs_left = device->ov_left; 2821 else 2822 rs_left = drbd_bm_total_weight(device) - device->rs_failed; 2823 2824 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ; 2825 if (!dt) 2826 dt++; 2827 db = device->rs_mark_left[i] - rs_left; 2828 dbdt = Bit2KB(db/dt); 2829 2830 if (dbdt > c_min_rate) 2831 return true; 2832 } 2833 return false; 2834 } 2835 2836 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi) 2837 { 2838 struct drbd_peer_device *peer_device; 2839 struct drbd_device *device; 2840 sector_t sector; 2841 sector_t capacity; 2842 struct drbd_peer_request *peer_req; 2843 struct digest_info *di = NULL; 2844 int size, verb; 2845 unsigned int fault_type; 2846 struct p_block_req *p = pi->data; 2847 2848 peer_device = conn_peer_device(connection, pi->vnr); 2849 if (!peer_device) 2850 return -EIO; 2851 device = peer_device->device; 2852 capacity = drbd_get_capacity(device->this_bdev); 2853 2854 sector = be64_to_cpu(p->sector); 2855 size = be32_to_cpu(p->blksize); 2856 2857 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2858 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2859 (unsigned long long)sector, size); 2860 return -EINVAL; 2861 } 2862 if (sector + (size>>9) > capacity) { 2863 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2864 (unsigned long long)sector, size); 2865 return -EINVAL; 2866 } 2867 2868 if (!get_ldev_if_state(device, D_UP_TO_DATE)) { 2869 verb = 1; 2870 switch (pi->cmd) { 2871 case P_DATA_REQUEST: 2872 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p); 2873 break; 2874 case P_RS_THIN_REQ: 2875 case P_RS_DATA_REQUEST: 2876 case P_CSUM_RS_REQUEST: 2877 case P_OV_REQUEST: 2878 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p); 2879 break; 2880 case P_OV_REPLY: 2881 verb = 0; 2882 dec_rs_pending(device); 2883 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC); 2884 break; 2885 default: 2886 BUG(); 2887 } 2888 if (verb && __ratelimit(&drbd_ratelimit_state)) 2889 drbd_err(device, "Can not satisfy peer's read request, " 2890 "no local data.\n"); 2891 2892 /* drain possibly payload */ 2893 return drbd_drain_block(peer_device, pi->size); 2894 } 2895 2896 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2897 * "criss-cross" setup, that might cause write-out on some other DRBD, 2898 * which in turn might block on the other node at this very place. */ 2899 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size, 2900 size, GFP_NOIO); 2901 if (!peer_req) { 2902 put_ldev(device); 2903 return -ENOMEM; 2904 } 2905 2906 switch (pi->cmd) { 2907 case P_DATA_REQUEST: 2908 peer_req->w.cb = w_e_end_data_req; 2909 fault_type = DRBD_FAULT_DT_RD; 2910 /* application IO, don't drbd_rs_begin_io */ 2911 peer_req->flags |= EE_APPLICATION; 2912 goto submit; 2913 2914 case P_RS_THIN_REQ: 2915 /* If at some point in the future we have a smart way to 2916 find out if this data block is completely deallocated, 2917 then we would do something smarter here than reading 2918 the block... */ 2919 peer_req->flags |= EE_RS_THIN_REQ; 2920 /* fall through */ 2921 case P_RS_DATA_REQUEST: 2922 peer_req->w.cb = w_e_end_rsdata_req; 2923 fault_type = DRBD_FAULT_RS_RD; 2924 /* used in the sector offset progress display */ 2925 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2926 break; 2927 2928 case P_OV_REPLY: 2929 case P_CSUM_RS_REQUEST: 2930 fault_type = DRBD_FAULT_RS_RD; 2931 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2932 if (!di) 2933 goto out_free_e; 2934 2935 di->digest_size = pi->size; 2936 di->digest = (((char *)di)+sizeof(struct digest_info)); 2937 2938 peer_req->digest = di; 2939 peer_req->flags |= EE_HAS_DIGEST; 2940 2941 if (drbd_recv_all(peer_device->connection, di->digest, pi->size)) 2942 goto out_free_e; 2943 2944 if (pi->cmd == P_CSUM_RS_REQUEST) { 2945 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 2946 peer_req->w.cb = w_e_end_csum_rs_req; 2947 /* used in the sector offset progress display */ 2948 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2949 /* remember to report stats in drbd_resync_finished */ 2950 device->use_csums = true; 2951 } else if (pi->cmd == P_OV_REPLY) { 2952 /* track progress, we may need to throttle */ 2953 atomic_add(size >> 9, &device->rs_sect_in); 2954 peer_req->w.cb = w_e_end_ov_reply; 2955 dec_rs_pending(device); 2956 /* drbd_rs_begin_io done when we sent this request, 2957 * but accounting still needs to be done. */ 2958 goto submit_for_resync; 2959 } 2960 break; 2961 2962 case P_OV_REQUEST: 2963 if (device->ov_start_sector == ~(sector_t)0 && 2964 peer_device->connection->agreed_pro_version >= 90) { 2965 unsigned long now = jiffies; 2966 int i; 2967 device->ov_start_sector = sector; 2968 device->ov_position = sector; 2969 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector); 2970 device->rs_total = device->ov_left; 2971 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2972 device->rs_mark_left[i] = device->ov_left; 2973 device->rs_mark_time[i] = now; 2974 } 2975 drbd_info(device, "Online Verify start sector: %llu\n", 2976 (unsigned long long)sector); 2977 } 2978 peer_req->w.cb = w_e_end_ov_req; 2979 fault_type = DRBD_FAULT_RS_RD; 2980 break; 2981 2982 default: 2983 BUG(); 2984 } 2985 2986 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2987 * wrt the receiver, but it is not as straightforward as it may seem. 2988 * Various places in the resync start and stop logic assume resync 2989 * requests are processed in order, requeuing this on the worker thread 2990 * introduces a bunch of new code for synchronization between threads. 2991 * 2992 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2993 * "forever", throttling after drbd_rs_begin_io will lock that extent 2994 * for application writes for the same time. For now, just throttle 2995 * here, where the rest of the code expects the receiver to sleep for 2996 * a while, anyways. 2997 */ 2998 2999 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 3000 * this defers syncer requests for some time, before letting at least 3001 * on request through. The resync controller on the receiving side 3002 * will adapt to the incoming rate accordingly. 3003 * 3004 * We cannot throttle here if remote is Primary/SyncTarget: 3005 * we would also throttle its application reads. 3006 * In that case, throttling is done on the SyncTarget only. 3007 */ 3008 3009 /* Even though this may be a resync request, we do add to "read_ee"; 3010 * "sync_ee" is only used for resync WRITEs. 3011 * Add to list early, so debugfs can find this request 3012 * even if we have to sleep below. */ 3013 spin_lock_irq(&device->resource->req_lock); 3014 list_add_tail(&peer_req->w.list, &device->read_ee); 3015 spin_unlock_irq(&device->resource->req_lock); 3016 3017 update_receiver_timing_details(connection, drbd_rs_should_slow_down); 3018 if (device->state.peer != R_PRIMARY 3019 && drbd_rs_should_slow_down(device, sector, false)) 3020 schedule_timeout_uninterruptible(HZ/10); 3021 update_receiver_timing_details(connection, drbd_rs_begin_io); 3022 if (drbd_rs_begin_io(device, sector)) 3023 goto out_free_e; 3024 3025 submit_for_resync: 3026 atomic_add(size >> 9, &device->rs_sect_ev); 3027 3028 submit: 3029 update_receiver_timing_details(connection, drbd_submit_peer_request); 3030 inc_unacked(device); 3031 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, 3032 fault_type) == 0) 3033 return 0; 3034 3035 /* don't care for the reason here */ 3036 drbd_err(device, "submit failed, triggering re-connect\n"); 3037 3038 out_free_e: 3039 spin_lock_irq(&device->resource->req_lock); 3040 list_del(&peer_req->w.list); 3041 spin_unlock_irq(&device->resource->req_lock); 3042 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 3043 3044 put_ldev(device); 3045 drbd_free_peer_req(device, peer_req); 3046 return -EIO; 3047 } 3048 3049 /** 3050 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries 3051 */ 3052 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local) 3053 { 3054 struct drbd_device *device = peer_device->device; 3055 int self, peer, rv = -100; 3056 unsigned long ch_self, ch_peer; 3057 enum drbd_after_sb_p after_sb_0p; 3058 3059 self = device->ldev->md.uuid[UI_BITMAP] & 1; 3060 peer = device->p_uuid[UI_BITMAP] & 1; 3061 3062 ch_peer = device->p_uuid[UI_SIZE]; 3063 ch_self = device->comm_bm_set; 3064 3065 rcu_read_lock(); 3066 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p; 3067 rcu_read_unlock(); 3068 switch (after_sb_0p) { 3069 case ASB_CONSENSUS: 3070 case ASB_DISCARD_SECONDARY: 3071 case ASB_CALL_HELPER: 3072 case ASB_VIOLENTLY: 3073 drbd_err(device, "Configuration error.\n"); 3074 break; 3075 case ASB_DISCONNECT: 3076 break; 3077 case ASB_DISCARD_YOUNGER_PRI: 3078 if (self == 0 && peer == 1) { 3079 rv = -1; 3080 break; 3081 } 3082 if (self == 1 && peer == 0) { 3083 rv = 1; 3084 break; 3085 } 3086 /* Else fall through - to one of the other strategies... */ 3087 case ASB_DISCARD_OLDER_PRI: 3088 if (self == 0 && peer == 1) { 3089 rv = 1; 3090 break; 3091 } 3092 if (self == 1 && peer == 0) { 3093 rv = -1; 3094 break; 3095 } 3096 /* Else fall through to one of the other strategies... */ 3097 drbd_warn(device, "Discard younger/older primary did not find a decision\n" 3098 "Using discard-least-changes instead\n"); 3099 /* fall through */ 3100 case ASB_DISCARD_ZERO_CHG: 3101 if (ch_peer == 0 && ch_self == 0) { 3102 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3103 ? -1 : 1; 3104 break; 3105 } else { 3106 if (ch_peer == 0) { rv = 1; break; } 3107 if (ch_self == 0) { rv = -1; break; } 3108 } 3109 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 3110 break; 3111 /* else, fall through */ 3112 case ASB_DISCARD_LEAST_CHG: 3113 if (ch_self < ch_peer) 3114 rv = -1; 3115 else if (ch_self > ch_peer) 3116 rv = 1; 3117 else /* ( ch_self == ch_peer ) */ 3118 /* Well, then use something else. */ 3119 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3120 ? -1 : 1; 3121 break; 3122 case ASB_DISCARD_LOCAL: 3123 rv = -1; 3124 break; 3125 case ASB_DISCARD_REMOTE: 3126 rv = 1; 3127 } 3128 3129 return rv; 3130 } 3131 3132 /** 3133 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary 3134 */ 3135 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local) 3136 { 3137 struct drbd_device *device = peer_device->device; 3138 int hg, rv = -100; 3139 enum drbd_after_sb_p after_sb_1p; 3140 3141 rcu_read_lock(); 3142 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p; 3143 rcu_read_unlock(); 3144 switch (after_sb_1p) { 3145 case ASB_DISCARD_YOUNGER_PRI: 3146 case ASB_DISCARD_OLDER_PRI: 3147 case ASB_DISCARD_LEAST_CHG: 3148 case ASB_DISCARD_LOCAL: 3149 case ASB_DISCARD_REMOTE: 3150 case ASB_DISCARD_ZERO_CHG: 3151 drbd_err(device, "Configuration error.\n"); 3152 break; 3153 case ASB_DISCONNECT: 3154 break; 3155 case ASB_CONSENSUS: 3156 hg = drbd_asb_recover_0p(peer_device); 3157 if (hg == -1 && device->state.role == R_SECONDARY) 3158 rv = hg; 3159 if (hg == 1 && device->state.role == R_PRIMARY) 3160 rv = hg; 3161 break; 3162 case ASB_VIOLENTLY: 3163 rv = drbd_asb_recover_0p(peer_device); 3164 break; 3165 case ASB_DISCARD_SECONDARY: 3166 return device->state.role == R_PRIMARY ? 1 : -1; 3167 case ASB_CALL_HELPER: 3168 hg = drbd_asb_recover_0p(peer_device); 3169 if (hg == -1 && device->state.role == R_PRIMARY) { 3170 enum drbd_state_rv rv2; 3171 3172 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3173 * we might be here in C_WF_REPORT_PARAMS which is transient. 3174 * we do not need to wait for the after state change work either. */ 3175 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3176 if (rv2 != SS_SUCCESS) { 3177 drbd_khelper(device, "pri-lost-after-sb"); 3178 } else { 3179 drbd_warn(device, "Successfully gave up primary role.\n"); 3180 rv = hg; 3181 } 3182 } else 3183 rv = hg; 3184 } 3185 3186 return rv; 3187 } 3188 3189 /** 3190 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries 3191 */ 3192 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local) 3193 { 3194 struct drbd_device *device = peer_device->device; 3195 int hg, rv = -100; 3196 enum drbd_after_sb_p after_sb_2p; 3197 3198 rcu_read_lock(); 3199 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p; 3200 rcu_read_unlock(); 3201 switch (after_sb_2p) { 3202 case ASB_DISCARD_YOUNGER_PRI: 3203 case ASB_DISCARD_OLDER_PRI: 3204 case ASB_DISCARD_LEAST_CHG: 3205 case ASB_DISCARD_LOCAL: 3206 case ASB_DISCARD_REMOTE: 3207 case ASB_CONSENSUS: 3208 case ASB_DISCARD_SECONDARY: 3209 case ASB_DISCARD_ZERO_CHG: 3210 drbd_err(device, "Configuration error.\n"); 3211 break; 3212 case ASB_VIOLENTLY: 3213 rv = drbd_asb_recover_0p(peer_device); 3214 break; 3215 case ASB_DISCONNECT: 3216 break; 3217 case ASB_CALL_HELPER: 3218 hg = drbd_asb_recover_0p(peer_device); 3219 if (hg == -1) { 3220 enum drbd_state_rv rv2; 3221 3222 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3223 * we might be here in C_WF_REPORT_PARAMS which is transient. 3224 * we do not need to wait for the after state change work either. */ 3225 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3226 if (rv2 != SS_SUCCESS) { 3227 drbd_khelper(device, "pri-lost-after-sb"); 3228 } else { 3229 drbd_warn(device, "Successfully gave up primary role.\n"); 3230 rv = hg; 3231 } 3232 } else 3233 rv = hg; 3234 } 3235 3236 return rv; 3237 } 3238 3239 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid, 3240 u64 bits, u64 flags) 3241 { 3242 if (!uuid) { 3243 drbd_info(device, "%s uuid info vanished while I was looking!\n", text); 3244 return; 3245 } 3246 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 3247 text, 3248 (unsigned long long)uuid[UI_CURRENT], 3249 (unsigned long long)uuid[UI_BITMAP], 3250 (unsigned long long)uuid[UI_HISTORY_START], 3251 (unsigned long long)uuid[UI_HISTORY_END], 3252 (unsigned long long)bits, 3253 (unsigned long long)flags); 3254 } 3255 3256 /* 3257 100 after split brain try auto recover 3258 2 C_SYNC_SOURCE set BitMap 3259 1 C_SYNC_SOURCE use BitMap 3260 0 no Sync 3261 -1 C_SYNC_TARGET use BitMap 3262 -2 C_SYNC_TARGET set BitMap 3263 -100 after split brain, disconnect 3264 -1000 unrelated data 3265 -1091 requires proto 91 3266 -1096 requires proto 96 3267 */ 3268 3269 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local) 3270 { 3271 struct drbd_peer_device *const peer_device = first_peer_device(device); 3272 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 3273 u64 self, peer; 3274 int i, j; 3275 3276 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3277 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3278 3279 *rule_nr = 10; 3280 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 3281 return 0; 3282 3283 *rule_nr = 20; 3284 if ((self == UUID_JUST_CREATED || self == (u64)0) && 3285 peer != UUID_JUST_CREATED) 3286 return -2; 3287 3288 *rule_nr = 30; 3289 if (self != UUID_JUST_CREATED && 3290 (peer == UUID_JUST_CREATED || peer == (u64)0)) 3291 return 2; 3292 3293 if (self == peer) { 3294 int rct, dc; /* roles at crash time */ 3295 3296 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) { 3297 3298 if (connection->agreed_pro_version < 91) 3299 return -1091; 3300 3301 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 3302 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 3303 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n"); 3304 drbd_uuid_move_history(device); 3305 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3306 device->ldev->md.uuid[UI_BITMAP] = 0; 3307 3308 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3309 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3310 *rule_nr = 34; 3311 } else { 3312 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n"); 3313 *rule_nr = 36; 3314 } 3315 3316 return 1; 3317 } 3318 3319 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) { 3320 3321 if (connection->agreed_pro_version < 91) 3322 return -1091; 3323 3324 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) && 3325 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 3326 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 3327 3328 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START]; 3329 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP]; 3330 device->p_uuid[UI_BITMAP] = 0UL; 3331 3332 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3333 *rule_nr = 35; 3334 } else { 3335 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n"); 3336 *rule_nr = 37; 3337 } 3338 3339 return -1; 3340 } 3341 3342 /* Common power [off|failure] */ 3343 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) + 3344 (device->p_uuid[UI_FLAGS] & 2); 3345 /* lowest bit is set when we were primary, 3346 * next bit (weight 2) is set when peer was primary */ 3347 *rule_nr = 40; 3348 3349 /* Neither has the "crashed primary" flag set, 3350 * only a replication link hickup. */ 3351 if (rct == 0) 3352 return 0; 3353 3354 /* Current UUID equal and no bitmap uuid; does not necessarily 3355 * mean this was a "simultaneous hard crash", maybe IO was 3356 * frozen, so no UUID-bump happened. 3357 * This is a protocol change, overload DRBD_FF_WSAME as flag 3358 * for "new-enough" peer DRBD version. */ 3359 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) { 3360 *rule_nr = 41; 3361 if (!(connection->agreed_features & DRBD_FF_WSAME)) { 3362 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n"); 3363 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8)); 3364 } 3365 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) { 3366 /* At least one has the "crashed primary" bit set, 3367 * both are primary now, but neither has rotated its UUIDs? 3368 * "Can not happen." */ 3369 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n"); 3370 return -100; 3371 } 3372 if (device->state.role == R_PRIMARY) 3373 return 1; 3374 return -1; 3375 } 3376 3377 /* Both are secondary. 3378 * Really looks like recovery from simultaneous hard crash. 3379 * Check which had been primary before, and arbitrate. */ 3380 switch (rct) { 3381 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */ 3382 case 1: /* self_pri && !peer_pri */ return 1; 3383 case 2: /* !self_pri && peer_pri */ return -1; 3384 case 3: /* self_pri && peer_pri */ 3385 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags); 3386 return dc ? -1 : 1; 3387 } 3388 } 3389 3390 *rule_nr = 50; 3391 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3392 if (self == peer) 3393 return -1; 3394 3395 *rule_nr = 51; 3396 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1); 3397 if (self == peer) { 3398 if (connection->agreed_pro_version < 96 ? 3399 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 3400 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 3401 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) { 3402 /* The last P_SYNC_UUID did not get though. Undo the last start of 3403 resync as sync source modifications of the peer's UUIDs. */ 3404 3405 if (connection->agreed_pro_version < 91) 3406 return -1091; 3407 3408 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START]; 3409 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1]; 3410 3411 drbd_info(device, "Lost last syncUUID packet, corrected:\n"); 3412 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3413 3414 return -1; 3415 } 3416 } 3417 3418 *rule_nr = 60; 3419 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3420 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3421 peer = device->p_uuid[i] & ~((u64)1); 3422 if (self == peer) 3423 return -2; 3424 } 3425 3426 *rule_nr = 70; 3427 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3428 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3429 if (self == peer) 3430 return 1; 3431 3432 *rule_nr = 71; 3433 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 3434 if (self == peer) { 3435 if (connection->agreed_pro_version < 96 ? 3436 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 3437 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 3438 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 3439 /* The last P_SYNC_UUID did not get though. Undo the last start of 3440 resync as sync source modifications of our UUIDs. */ 3441 3442 if (connection->agreed_pro_version < 91) 3443 return -1091; 3444 3445 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]); 3446 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]); 3447 3448 drbd_info(device, "Last syncUUID did not get through, corrected:\n"); 3449 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3450 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3451 3452 return 1; 3453 } 3454 } 3455 3456 3457 *rule_nr = 80; 3458 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3459 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3460 self = device->ldev->md.uuid[i] & ~((u64)1); 3461 if (self == peer) 3462 return 2; 3463 } 3464 3465 *rule_nr = 90; 3466 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3467 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3468 if (self == peer && self != ((u64)0)) 3469 return 100; 3470 3471 *rule_nr = 100; 3472 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3473 self = device->ldev->md.uuid[i] & ~((u64)1); 3474 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 3475 peer = device->p_uuid[j] & ~((u64)1); 3476 if (self == peer) 3477 return -100; 3478 } 3479 } 3480 3481 return -1000; 3482 } 3483 3484 /* drbd_sync_handshake() returns the new conn state on success, or 3485 CONN_MASK (-1) on failure. 3486 */ 3487 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device, 3488 enum drbd_role peer_role, 3489 enum drbd_disk_state peer_disk) __must_hold(local) 3490 { 3491 struct drbd_device *device = peer_device->device; 3492 enum drbd_conns rv = C_MASK; 3493 enum drbd_disk_state mydisk; 3494 struct net_conf *nc; 3495 int hg, rule_nr, rr_conflict, tentative, always_asbp; 3496 3497 mydisk = device->state.disk; 3498 if (mydisk == D_NEGOTIATING) 3499 mydisk = device->new_state_tmp.disk; 3500 3501 drbd_info(device, "drbd_sync_handshake:\n"); 3502 3503 spin_lock_irq(&device->ldev->md.uuid_lock); 3504 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0); 3505 drbd_uuid_dump(device, "peer", device->p_uuid, 3506 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3507 3508 hg = drbd_uuid_compare(device, peer_role, &rule_nr); 3509 spin_unlock_irq(&device->ldev->md.uuid_lock); 3510 3511 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 3512 3513 if (hg == -1000) { 3514 drbd_alert(device, "Unrelated data, aborting!\n"); 3515 return C_MASK; 3516 } 3517 if (hg < -0x10000) { 3518 int proto, fflags; 3519 hg = -hg; 3520 proto = hg & 0xff; 3521 fflags = (hg >> 8) & 0xff; 3522 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n", 3523 proto, fflags); 3524 return C_MASK; 3525 } 3526 if (hg < -1000) { 3527 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 3528 return C_MASK; 3529 } 3530 3531 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 3532 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 3533 int f = (hg == -100) || abs(hg) == 2; 3534 hg = mydisk > D_INCONSISTENT ? 1 : -1; 3535 if (f) 3536 hg = hg*2; 3537 drbd_info(device, "Becoming sync %s due to disk states.\n", 3538 hg > 0 ? "source" : "target"); 3539 } 3540 3541 if (abs(hg) == 100) 3542 drbd_khelper(device, "initial-split-brain"); 3543 3544 rcu_read_lock(); 3545 nc = rcu_dereference(peer_device->connection->net_conf); 3546 always_asbp = nc->always_asbp; 3547 rr_conflict = nc->rr_conflict; 3548 tentative = nc->tentative; 3549 rcu_read_unlock(); 3550 3551 if (hg == 100 || (hg == -100 && always_asbp)) { 3552 int pcount = (device->state.role == R_PRIMARY) 3553 + (peer_role == R_PRIMARY); 3554 int forced = (hg == -100); 3555 3556 switch (pcount) { 3557 case 0: 3558 hg = drbd_asb_recover_0p(peer_device); 3559 break; 3560 case 1: 3561 hg = drbd_asb_recover_1p(peer_device); 3562 break; 3563 case 2: 3564 hg = drbd_asb_recover_2p(peer_device); 3565 break; 3566 } 3567 if (abs(hg) < 100) { 3568 drbd_warn(device, "Split-Brain detected, %d primaries, " 3569 "automatically solved. Sync from %s node\n", 3570 pcount, (hg < 0) ? "peer" : "this"); 3571 if (forced) { 3572 drbd_warn(device, "Doing a full sync, since" 3573 " UUIDs where ambiguous.\n"); 3574 hg = hg*2; 3575 } 3576 } 3577 } 3578 3579 if (hg == -100) { 3580 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1)) 3581 hg = -1; 3582 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1)) 3583 hg = 1; 3584 3585 if (abs(hg) < 100) 3586 drbd_warn(device, "Split-Brain detected, manually solved. " 3587 "Sync from %s node\n", 3588 (hg < 0) ? "peer" : "this"); 3589 } 3590 3591 if (hg == -100) { 3592 /* FIXME this log message is not correct if we end up here 3593 * after an attempted attach on a diskless node. 3594 * We just refuse to attach -- well, we drop the "connection" 3595 * to that disk, in a way... */ 3596 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n"); 3597 drbd_khelper(device, "split-brain"); 3598 return C_MASK; 3599 } 3600 3601 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3602 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n"); 3603 return C_MASK; 3604 } 3605 3606 if (hg < 0 && /* by intention we do not use mydisk here. */ 3607 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) { 3608 switch (rr_conflict) { 3609 case ASB_CALL_HELPER: 3610 drbd_khelper(device, "pri-lost"); 3611 /* fall through */ 3612 case ASB_DISCONNECT: 3613 drbd_err(device, "I shall become SyncTarget, but I am primary!\n"); 3614 return C_MASK; 3615 case ASB_VIOLENTLY: 3616 drbd_warn(device, "Becoming SyncTarget, violating the stable-data" 3617 "assumption\n"); 3618 } 3619 } 3620 3621 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) { 3622 if (hg == 0) 3623 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n"); 3624 else 3625 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.", 3626 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3627 abs(hg) >= 2 ? "full" : "bit-map based"); 3628 return C_MASK; 3629 } 3630 3631 if (abs(hg) >= 2) { 3632 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3633 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3634 BM_LOCKED_SET_ALLOWED)) 3635 return C_MASK; 3636 } 3637 3638 if (hg > 0) { /* become sync source. */ 3639 rv = C_WF_BITMAP_S; 3640 } else if (hg < 0) { /* become sync target */ 3641 rv = C_WF_BITMAP_T; 3642 } else { 3643 rv = C_CONNECTED; 3644 if (drbd_bm_total_weight(device)) { 3645 drbd_info(device, "No resync, but %lu bits in bitmap!\n", 3646 drbd_bm_total_weight(device)); 3647 } 3648 } 3649 3650 return rv; 3651 } 3652 3653 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3654 { 3655 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3656 if (peer == ASB_DISCARD_REMOTE) 3657 return ASB_DISCARD_LOCAL; 3658 3659 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3660 if (peer == ASB_DISCARD_LOCAL) 3661 return ASB_DISCARD_REMOTE; 3662 3663 /* everything else is valid if they are equal on both sides. */ 3664 return peer; 3665 } 3666 3667 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi) 3668 { 3669 struct p_protocol *p = pi->data; 3670 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3671 int p_proto, p_discard_my_data, p_two_primaries, cf; 3672 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3673 char integrity_alg[SHARED_SECRET_MAX] = ""; 3674 struct crypto_shash *peer_integrity_tfm = NULL; 3675 void *int_dig_in = NULL, *int_dig_vv = NULL; 3676 3677 p_proto = be32_to_cpu(p->protocol); 3678 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3679 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3680 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3681 p_two_primaries = be32_to_cpu(p->two_primaries); 3682 cf = be32_to_cpu(p->conn_flags); 3683 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3684 3685 if (connection->agreed_pro_version >= 87) { 3686 int err; 3687 3688 if (pi->size > sizeof(integrity_alg)) 3689 return -EIO; 3690 err = drbd_recv_all(connection, integrity_alg, pi->size); 3691 if (err) 3692 return err; 3693 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3694 } 3695 3696 if (pi->cmd != P_PROTOCOL_UPDATE) { 3697 clear_bit(CONN_DRY_RUN, &connection->flags); 3698 3699 if (cf & CF_DRY_RUN) 3700 set_bit(CONN_DRY_RUN, &connection->flags); 3701 3702 rcu_read_lock(); 3703 nc = rcu_dereference(connection->net_conf); 3704 3705 if (p_proto != nc->wire_protocol) { 3706 drbd_err(connection, "incompatible %s settings\n", "protocol"); 3707 goto disconnect_rcu_unlock; 3708 } 3709 3710 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3711 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri"); 3712 goto disconnect_rcu_unlock; 3713 } 3714 3715 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3716 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri"); 3717 goto disconnect_rcu_unlock; 3718 } 3719 3720 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3721 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri"); 3722 goto disconnect_rcu_unlock; 3723 } 3724 3725 if (p_discard_my_data && nc->discard_my_data) { 3726 drbd_err(connection, "incompatible %s settings\n", "discard-my-data"); 3727 goto disconnect_rcu_unlock; 3728 } 3729 3730 if (p_two_primaries != nc->two_primaries) { 3731 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries"); 3732 goto disconnect_rcu_unlock; 3733 } 3734 3735 if (strcmp(integrity_alg, nc->integrity_alg)) { 3736 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg"); 3737 goto disconnect_rcu_unlock; 3738 } 3739 3740 rcu_read_unlock(); 3741 } 3742 3743 if (integrity_alg[0]) { 3744 int hash_size; 3745 3746 /* 3747 * We can only change the peer data integrity algorithm 3748 * here. Changing our own data integrity algorithm 3749 * requires that we send a P_PROTOCOL_UPDATE packet at 3750 * the same time; otherwise, the peer has no way to 3751 * tell between which packets the algorithm should 3752 * change. 3753 */ 3754 3755 peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0); 3756 if (IS_ERR(peer_integrity_tfm)) { 3757 peer_integrity_tfm = NULL; 3758 drbd_err(connection, "peer data-integrity-alg %s not supported\n", 3759 integrity_alg); 3760 goto disconnect; 3761 } 3762 3763 hash_size = crypto_shash_digestsize(peer_integrity_tfm); 3764 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3765 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3766 if (!(int_dig_in && int_dig_vv)) { 3767 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n"); 3768 goto disconnect; 3769 } 3770 } 3771 3772 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3773 if (!new_net_conf) { 3774 drbd_err(connection, "Allocation of new net_conf failed\n"); 3775 goto disconnect; 3776 } 3777 3778 mutex_lock(&connection->data.mutex); 3779 mutex_lock(&connection->resource->conf_update); 3780 old_net_conf = connection->net_conf; 3781 *new_net_conf = *old_net_conf; 3782 3783 new_net_conf->wire_protocol = p_proto; 3784 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3785 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3786 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3787 new_net_conf->two_primaries = p_two_primaries; 3788 3789 rcu_assign_pointer(connection->net_conf, new_net_conf); 3790 mutex_unlock(&connection->resource->conf_update); 3791 mutex_unlock(&connection->data.mutex); 3792 3793 crypto_free_shash(connection->peer_integrity_tfm); 3794 kfree(connection->int_dig_in); 3795 kfree(connection->int_dig_vv); 3796 connection->peer_integrity_tfm = peer_integrity_tfm; 3797 connection->int_dig_in = int_dig_in; 3798 connection->int_dig_vv = int_dig_vv; 3799 3800 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3801 drbd_info(connection, "peer data-integrity-alg: %s\n", 3802 integrity_alg[0] ? integrity_alg : "(none)"); 3803 3804 synchronize_rcu(); 3805 kfree(old_net_conf); 3806 return 0; 3807 3808 disconnect_rcu_unlock: 3809 rcu_read_unlock(); 3810 disconnect: 3811 crypto_free_shash(peer_integrity_tfm); 3812 kfree(int_dig_in); 3813 kfree(int_dig_vv); 3814 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 3815 return -EIO; 3816 } 3817 3818 /* helper function 3819 * input: alg name, feature name 3820 * return: NULL (alg name was "") 3821 * ERR_PTR(error) if something goes wrong 3822 * or the crypto hash ptr, if it worked out ok. */ 3823 static struct crypto_shash *drbd_crypto_alloc_digest_safe( 3824 const struct drbd_device *device, 3825 const char *alg, const char *name) 3826 { 3827 struct crypto_shash *tfm; 3828 3829 if (!alg[0]) 3830 return NULL; 3831 3832 tfm = crypto_alloc_shash(alg, 0, 0); 3833 if (IS_ERR(tfm)) { 3834 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3835 alg, name, PTR_ERR(tfm)); 3836 return tfm; 3837 } 3838 return tfm; 3839 } 3840 3841 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi) 3842 { 3843 void *buffer = connection->data.rbuf; 3844 int size = pi->size; 3845 3846 while (size) { 3847 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3848 s = drbd_recv(connection, buffer, s); 3849 if (s <= 0) { 3850 if (s < 0) 3851 return s; 3852 break; 3853 } 3854 size -= s; 3855 } 3856 if (size) 3857 return -EIO; 3858 return 0; 3859 } 3860 3861 /* 3862 * config_unknown_volume - device configuration command for unknown volume 3863 * 3864 * When a device is added to an existing connection, the node on which the 3865 * device is added first will send configuration commands to its peer but the 3866 * peer will not know about the device yet. It will warn and ignore these 3867 * commands. Once the device is added on the second node, the second node will 3868 * send the same device configuration commands, but in the other direction. 3869 * 3870 * (We can also end up here if drbd is misconfigured.) 3871 */ 3872 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi) 3873 { 3874 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n", 3875 cmdname(pi->cmd), pi->vnr); 3876 return ignore_remaining_packet(connection, pi); 3877 } 3878 3879 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi) 3880 { 3881 struct drbd_peer_device *peer_device; 3882 struct drbd_device *device; 3883 struct p_rs_param_95 *p; 3884 unsigned int header_size, data_size, exp_max_sz; 3885 struct crypto_shash *verify_tfm = NULL; 3886 struct crypto_shash *csums_tfm = NULL; 3887 struct net_conf *old_net_conf, *new_net_conf = NULL; 3888 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3889 const int apv = connection->agreed_pro_version; 3890 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3891 unsigned int fifo_size = 0; 3892 int err; 3893 3894 peer_device = conn_peer_device(connection, pi->vnr); 3895 if (!peer_device) 3896 return config_unknown_volume(connection, pi); 3897 device = peer_device->device; 3898 3899 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3900 : apv == 88 ? sizeof(struct p_rs_param) 3901 + SHARED_SECRET_MAX 3902 : apv <= 94 ? sizeof(struct p_rs_param_89) 3903 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3904 3905 if (pi->size > exp_max_sz) { 3906 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3907 pi->size, exp_max_sz); 3908 return -EIO; 3909 } 3910 3911 if (apv <= 88) { 3912 header_size = sizeof(struct p_rs_param); 3913 data_size = pi->size - header_size; 3914 } else if (apv <= 94) { 3915 header_size = sizeof(struct p_rs_param_89); 3916 data_size = pi->size - header_size; 3917 D_ASSERT(device, data_size == 0); 3918 } else { 3919 header_size = sizeof(struct p_rs_param_95); 3920 data_size = pi->size - header_size; 3921 D_ASSERT(device, data_size == 0); 3922 } 3923 3924 /* initialize verify_alg and csums_alg */ 3925 p = pi->data; 3926 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 3927 3928 err = drbd_recv_all(peer_device->connection, p, header_size); 3929 if (err) 3930 return err; 3931 3932 mutex_lock(&connection->resource->conf_update); 3933 old_net_conf = peer_device->connection->net_conf; 3934 if (get_ldev(device)) { 3935 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3936 if (!new_disk_conf) { 3937 put_ldev(device); 3938 mutex_unlock(&connection->resource->conf_update); 3939 drbd_err(device, "Allocation of new disk_conf failed\n"); 3940 return -ENOMEM; 3941 } 3942 3943 old_disk_conf = device->ldev->disk_conf; 3944 *new_disk_conf = *old_disk_conf; 3945 3946 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3947 } 3948 3949 if (apv >= 88) { 3950 if (apv == 88) { 3951 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3952 drbd_err(device, "verify-alg of wrong size, " 3953 "peer wants %u, accepting only up to %u byte\n", 3954 data_size, SHARED_SECRET_MAX); 3955 err = -EIO; 3956 goto reconnect; 3957 } 3958 3959 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size); 3960 if (err) 3961 goto reconnect; 3962 /* we expect NUL terminated string */ 3963 /* but just in case someone tries to be evil */ 3964 D_ASSERT(device, p->verify_alg[data_size-1] == 0); 3965 p->verify_alg[data_size-1] = 0; 3966 3967 } else /* apv >= 89 */ { 3968 /* we still expect NUL terminated strings */ 3969 /* but just in case someone tries to be evil */ 3970 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3971 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3972 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3973 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3974 } 3975 3976 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3977 if (device->state.conn == C_WF_REPORT_PARAMS) { 3978 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3979 old_net_conf->verify_alg, p->verify_alg); 3980 goto disconnect; 3981 } 3982 verify_tfm = drbd_crypto_alloc_digest_safe(device, 3983 p->verify_alg, "verify-alg"); 3984 if (IS_ERR(verify_tfm)) { 3985 verify_tfm = NULL; 3986 goto disconnect; 3987 } 3988 } 3989 3990 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3991 if (device->state.conn == C_WF_REPORT_PARAMS) { 3992 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3993 old_net_conf->csums_alg, p->csums_alg); 3994 goto disconnect; 3995 } 3996 csums_tfm = drbd_crypto_alloc_digest_safe(device, 3997 p->csums_alg, "csums-alg"); 3998 if (IS_ERR(csums_tfm)) { 3999 csums_tfm = NULL; 4000 goto disconnect; 4001 } 4002 } 4003 4004 if (apv > 94 && new_disk_conf) { 4005 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 4006 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 4007 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 4008 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 4009 4010 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 4011 if (fifo_size != device->rs_plan_s->size) { 4012 new_plan = fifo_alloc(fifo_size); 4013 if (!new_plan) { 4014 drbd_err(device, "kmalloc of fifo_buffer failed"); 4015 put_ldev(device); 4016 goto disconnect; 4017 } 4018 } 4019 } 4020 4021 if (verify_tfm || csums_tfm) { 4022 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 4023 if (!new_net_conf) { 4024 drbd_err(device, "Allocation of new net_conf failed\n"); 4025 goto disconnect; 4026 } 4027 4028 *new_net_conf = *old_net_conf; 4029 4030 if (verify_tfm) { 4031 strcpy(new_net_conf->verify_alg, p->verify_alg); 4032 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 4033 crypto_free_shash(peer_device->connection->verify_tfm); 4034 peer_device->connection->verify_tfm = verify_tfm; 4035 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg); 4036 } 4037 if (csums_tfm) { 4038 strcpy(new_net_conf->csums_alg, p->csums_alg); 4039 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 4040 crypto_free_shash(peer_device->connection->csums_tfm); 4041 peer_device->connection->csums_tfm = csums_tfm; 4042 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg); 4043 } 4044 rcu_assign_pointer(connection->net_conf, new_net_conf); 4045 } 4046 } 4047 4048 if (new_disk_conf) { 4049 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4050 put_ldev(device); 4051 } 4052 4053 if (new_plan) { 4054 old_plan = device->rs_plan_s; 4055 rcu_assign_pointer(device->rs_plan_s, new_plan); 4056 } 4057 4058 mutex_unlock(&connection->resource->conf_update); 4059 synchronize_rcu(); 4060 if (new_net_conf) 4061 kfree(old_net_conf); 4062 kfree(old_disk_conf); 4063 kfree(old_plan); 4064 4065 return 0; 4066 4067 reconnect: 4068 if (new_disk_conf) { 4069 put_ldev(device); 4070 kfree(new_disk_conf); 4071 } 4072 mutex_unlock(&connection->resource->conf_update); 4073 return -EIO; 4074 4075 disconnect: 4076 kfree(new_plan); 4077 if (new_disk_conf) { 4078 put_ldev(device); 4079 kfree(new_disk_conf); 4080 } 4081 mutex_unlock(&connection->resource->conf_update); 4082 /* just for completeness: actually not needed, 4083 * as this is not reached if csums_tfm was ok. */ 4084 crypto_free_shash(csums_tfm); 4085 /* but free the verify_tfm again, if csums_tfm did not work out */ 4086 crypto_free_shash(verify_tfm); 4087 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4088 return -EIO; 4089 } 4090 4091 /* warn if the arguments differ by more than 12.5% */ 4092 static void warn_if_differ_considerably(struct drbd_device *device, 4093 const char *s, sector_t a, sector_t b) 4094 { 4095 sector_t d; 4096 if (a == 0 || b == 0) 4097 return; 4098 d = (a > b) ? (a - b) : (b - a); 4099 if (d > (a>>3) || d > (b>>3)) 4100 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s, 4101 (unsigned long long)a, (unsigned long long)b); 4102 } 4103 4104 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi) 4105 { 4106 struct drbd_peer_device *peer_device; 4107 struct drbd_device *device; 4108 struct p_sizes *p = pi->data; 4109 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL; 4110 enum determine_dev_size dd = DS_UNCHANGED; 4111 sector_t p_size, p_usize, p_csize, my_usize; 4112 sector_t new_size, cur_size; 4113 int ldsc = 0; /* local disk size changed */ 4114 enum dds_flags ddsf; 4115 4116 peer_device = conn_peer_device(connection, pi->vnr); 4117 if (!peer_device) 4118 return config_unknown_volume(connection, pi); 4119 device = peer_device->device; 4120 cur_size = drbd_get_capacity(device->this_bdev); 4121 4122 p_size = be64_to_cpu(p->d_size); 4123 p_usize = be64_to_cpu(p->u_size); 4124 p_csize = be64_to_cpu(p->c_size); 4125 4126 /* just store the peer's disk size for now. 4127 * we still need to figure out whether we accept that. */ 4128 device->p_size = p_size; 4129 4130 if (get_ldev(device)) { 4131 rcu_read_lock(); 4132 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size; 4133 rcu_read_unlock(); 4134 4135 warn_if_differ_considerably(device, "lower level device sizes", 4136 p_size, drbd_get_max_capacity(device->ldev)); 4137 warn_if_differ_considerably(device, "user requested size", 4138 p_usize, my_usize); 4139 4140 /* if this is the first connect, or an otherwise expected 4141 * param exchange, choose the minimum */ 4142 if (device->state.conn == C_WF_REPORT_PARAMS) 4143 p_usize = min_not_zero(my_usize, p_usize); 4144 4145 /* Never shrink a device with usable data during connect, 4146 * or "attach" on the peer. 4147 * But allow online shrinking if we are connected. */ 4148 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0); 4149 if (new_size < cur_size && 4150 device->state.disk >= D_OUTDATED && 4151 (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) { 4152 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n", 4153 (unsigned long long)new_size, (unsigned long long)cur_size); 4154 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4155 put_ldev(device); 4156 return -EIO; 4157 } 4158 4159 if (my_usize != p_usize) { 4160 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 4161 4162 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 4163 if (!new_disk_conf) { 4164 drbd_err(device, "Allocation of new disk_conf failed\n"); 4165 put_ldev(device); 4166 return -ENOMEM; 4167 } 4168 4169 mutex_lock(&connection->resource->conf_update); 4170 old_disk_conf = device->ldev->disk_conf; 4171 *new_disk_conf = *old_disk_conf; 4172 new_disk_conf->disk_size = p_usize; 4173 4174 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4175 mutex_unlock(&connection->resource->conf_update); 4176 synchronize_rcu(); 4177 kfree(old_disk_conf); 4178 4179 drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n", 4180 (unsigned long)p_usize, (unsigned long)my_usize); 4181 } 4182 4183 put_ldev(device); 4184 } 4185 4186 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 4187 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size(). 4188 In case we cleared the QUEUE_FLAG_DISCARD from our queue in 4189 drbd_reconsider_queue_parameters(), we can be sure that after 4190 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */ 4191 4192 ddsf = be16_to_cpu(p->dds_flags); 4193 if (get_ldev(device)) { 4194 drbd_reconsider_queue_parameters(device, device->ldev, o); 4195 dd = drbd_determine_dev_size(device, ddsf, NULL); 4196 put_ldev(device); 4197 if (dd == DS_ERROR) 4198 return -EIO; 4199 drbd_md_sync(device); 4200 } else { 4201 /* 4202 * I am diskless, need to accept the peer's *current* size. 4203 * I must NOT accept the peers backing disk size, 4204 * it may have been larger than mine all along... 4205 * 4206 * At this point, the peer knows more about my disk, or at 4207 * least about what we last agreed upon, than myself. 4208 * So if his c_size is less than his d_size, the most likely 4209 * reason is that *my* d_size was smaller last time we checked. 4210 * 4211 * However, if he sends a zero current size, 4212 * take his (user-capped or) backing disk size anyways. 4213 * 4214 * Unless of course he does not have a disk himself. 4215 * In which case we ignore this completely. 4216 */ 4217 sector_t new_size = p_csize ?: p_usize ?: p_size; 4218 drbd_reconsider_queue_parameters(device, NULL, o); 4219 if (new_size == 0) { 4220 /* Ignore, peer does not know nothing. */ 4221 } else if (new_size == cur_size) { 4222 /* nothing to do */ 4223 } else if (cur_size != 0 && p_size == 0) { 4224 drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n", 4225 (unsigned long long)new_size, (unsigned long long)cur_size); 4226 } else if (new_size < cur_size && device->state.role == R_PRIMARY) { 4227 drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n", 4228 (unsigned long long)new_size, (unsigned long long)cur_size); 4229 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4230 return -EIO; 4231 } else { 4232 /* I believe the peer, if 4233 * - I don't have a current size myself 4234 * - we agree on the size anyways 4235 * - I do have a current size, am Secondary, 4236 * and he has the only disk 4237 * - I do have a current size, am Primary, 4238 * and he has the only disk, 4239 * which is larger than my current size 4240 */ 4241 drbd_set_my_capacity(device, new_size); 4242 } 4243 } 4244 4245 if (get_ldev(device)) { 4246 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) { 4247 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); 4248 ldsc = 1; 4249 } 4250 4251 put_ldev(device); 4252 } 4253 4254 if (device->state.conn > C_WF_REPORT_PARAMS) { 4255 if (be64_to_cpu(p->c_size) != 4256 drbd_get_capacity(device->this_bdev) || ldsc) { 4257 /* we have different sizes, probably peer 4258 * needs to know my new size... */ 4259 drbd_send_sizes(peer_device, 0, ddsf); 4260 } 4261 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) || 4262 (dd == DS_GREW && device->state.conn == C_CONNECTED)) { 4263 if (device->state.pdsk >= D_INCONSISTENT && 4264 device->state.disk >= D_INCONSISTENT) { 4265 if (ddsf & DDSF_NO_RESYNC) 4266 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n"); 4267 else 4268 resync_after_online_grow(device); 4269 } else 4270 set_bit(RESYNC_AFTER_NEG, &device->flags); 4271 } 4272 } 4273 4274 return 0; 4275 } 4276 4277 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi) 4278 { 4279 struct drbd_peer_device *peer_device; 4280 struct drbd_device *device; 4281 struct p_uuids *p = pi->data; 4282 u64 *p_uuid; 4283 int i, updated_uuids = 0; 4284 4285 peer_device = conn_peer_device(connection, pi->vnr); 4286 if (!peer_device) 4287 return config_unknown_volume(connection, pi); 4288 device = peer_device->device; 4289 4290 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO); 4291 if (!p_uuid) { 4292 drbd_err(device, "kmalloc of p_uuid failed\n"); 4293 return false; 4294 } 4295 4296 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 4297 p_uuid[i] = be64_to_cpu(p->uuid[i]); 4298 4299 kfree(device->p_uuid); 4300 device->p_uuid = p_uuid; 4301 4302 if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) && 4303 device->state.disk < D_INCONSISTENT && 4304 device->state.role == R_PRIMARY && 4305 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 4306 drbd_err(device, "Can only connect to data with current UUID=%016llX\n", 4307 (unsigned long long)device->ed_uuid); 4308 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4309 return -EIO; 4310 } 4311 4312 if (get_ldev(device)) { 4313 int skip_initial_sync = 4314 device->state.conn == C_CONNECTED && 4315 peer_device->connection->agreed_pro_version >= 90 && 4316 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 4317 (p_uuid[UI_FLAGS] & 8); 4318 if (skip_initial_sync) { 4319 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n"); 4320 drbd_bitmap_io(device, &drbd_bmio_clear_n_write, 4321 "clear_n_write from receive_uuids", 4322 BM_LOCKED_TEST_ALLOWED); 4323 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]); 4324 _drbd_uuid_set(device, UI_BITMAP, 0); 4325 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 4326 CS_VERBOSE, NULL); 4327 drbd_md_sync(device); 4328 updated_uuids = 1; 4329 } 4330 put_ldev(device); 4331 } else if (device->state.disk < D_INCONSISTENT && 4332 device->state.role == R_PRIMARY) { 4333 /* I am a diskless primary, the peer just created a new current UUID 4334 for me. */ 4335 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4336 } 4337 4338 /* Before we test for the disk state, we should wait until an eventually 4339 ongoing cluster wide state change is finished. That is important if 4340 we are primary and are detaching from our disk. We need to see the 4341 new disk state... */ 4342 mutex_lock(device->state_mutex); 4343 mutex_unlock(device->state_mutex); 4344 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT) 4345 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4346 4347 if (updated_uuids) 4348 drbd_print_uuids(device, "receiver updated UUIDs to"); 4349 4350 return 0; 4351 } 4352 4353 /** 4354 * convert_state() - Converts the peer's view of the cluster state to our point of view 4355 * @ps: The state as seen by the peer. 4356 */ 4357 static union drbd_state convert_state(union drbd_state ps) 4358 { 4359 union drbd_state ms; 4360 4361 static enum drbd_conns c_tab[] = { 4362 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 4363 [C_CONNECTED] = C_CONNECTED, 4364 4365 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 4366 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 4367 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 4368 [C_VERIFY_S] = C_VERIFY_T, 4369 [C_MASK] = C_MASK, 4370 }; 4371 4372 ms.i = ps.i; 4373 4374 ms.conn = c_tab[ps.conn]; 4375 ms.peer = ps.role; 4376 ms.role = ps.peer; 4377 ms.pdsk = ps.disk; 4378 ms.disk = ps.pdsk; 4379 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 4380 4381 return ms; 4382 } 4383 4384 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi) 4385 { 4386 struct drbd_peer_device *peer_device; 4387 struct drbd_device *device; 4388 struct p_req_state *p = pi->data; 4389 union drbd_state mask, val; 4390 enum drbd_state_rv rv; 4391 4392 peer_device = conn_peer_device(connection, pi->vnr); 4393 if (!peer_device) 4394 return -EIO; 4395 device = peer_device->device; 4396 4397 mask.i = be32_to_cpu(p->mask); 4398 val.i = be32_to_cpu(p->val); 4399 4400 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) && 4401 mutex_is_locked(device->state_mutex)) { 4402 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG); 4403 return 0; 4404 } 4405 4406 mask = convert_state(mask); 4407 val = convert_state(val); 4408 4409 rv = drbd_change_state(device, CS_VERBOSE, mask, val); 4410 drbd_send_sr_reply(peer_device, rv); 4411 4412 drbd_md_sync(device); 4413 4414 return 0; 4415 } 4416 4417 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi) 4418 { 4419 struct p_req_state *p = pi->data; 4420 union drbd_state mask, val; 4421 enum drbd_state_rv rv; 4422 4423 mask.i = be32_to_cpu(p->mask); 4424 val.i = be32_to_cpu(p->val); 4425 4426 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) && 4427 mutex_is_locked(&connection->cstate_mutex)) { 4428 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG); 4429 return 0; 4430 } 4431 4432 mask = convert_state(mask); 4433 val = convert_state(val); 4434 4435 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 4436 conn_send_sr_reply(connection, rv); 4437 4438 return 0; 4439 } 4440 4441 static int receive_state(struct drbd_connection *connection, struct packet_info *pi) 4442 { 4443 struct drbd_peer_device *peer_device; 4444 struct drbd_device *device; 4445 struct p_state *p = pi->data; 4446 union drbd_state os, ns, peer_state; 4447 enum drbd_disk_state real_peer_disk; 4448 enum chg_state_flags cs_flags; 4449 int rv; 4450 4451 peer_device = conn_peer_device(connection, pi->vnr); 4452 if (!peer_device) 4453 return config_unknown_volume(connection, pi); 4454 device = peer_device->device; 4455 4456 peer_state.i = be32_to_cpu(p->state); 4457 4458 real_peer_disk = peer_state.disk; 4459 if (peer_state.disk == D_NEGOTIATING) { 4460 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 4461 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 4462 } 4463 4464 spin_lock_irq(&device->resource->req_lock); 4465 retry: 4466 os = ns = drbd_read_state(device); 4467 spin_unlock_irq(&device->resource->req_lock); 4468 4469 /* If some other part of the code (ack_receiver thread, timeout) 4470 * already decided to close the connection again, 4471 * we must not "re-establish" it here. */ 4472 if (os.conn <= C_TEAR_DOWN) 4473 return -ECONNRESET; 4474 4475 /* If this is the "end of sync" confirmation, usually the peer disk 4476 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 4477 * set) resync started in PausedSyncT, or if the timing of pause-/ 4478 * unpause-sync events has been "just right", the peer disk may 4479 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 4480 */ 4481 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 4482 real_peer_disk == D_UP_TO_DATE && 4483 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 4484 /* If we are (becoming) SyncSource, but peer is still in sync 4485 * preparation, ignore its uptodate-ness to avoid flapping, it 4486 * will change to inconsistent once the peer reaches active 4487 * syncing states. 4488 * It may have changed syncer-paused flags, however, so we 4489 * cannot ignore this completely. */ 4490 if (peer_state.conn > C_CONNECTED && 4491 peer_state.conn < C_SYNC_SOURCE) 4492 real_peer_disk = D_INCONSISTENT; 4493 4494 /* if peer_state changes to connected at the same time, 4495 * it explicitly notifies us that it finished resync. 4496 * Maybe we should finish it up, too? */ 4497 else if (os.conn >= C_SYNC_SOURCE && 4498 peer_state.conn == C_CONNECTED) { 4499 if (drbd_bm_total_weight(device) <= device->rs_failed) 4500 drbd_resync_finished(device); 4501 return 0; 4502 } 4503 } 4504 4505 /* explicit verify finished notification, stop sector reached. */ 4506 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 4507 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 4508 ov_out_of_sync_print(device); 4509 drbd_resync_finished(device); 4510 return 0; 4511 } 4512 4513 /* peer says his disk is inconsistent, while we think it is uptodate, 4514 * and this happens while the peer still thinks we have a sync going on, 4515 * but we think we are already done with the sync. 4516 * We ignore this to avoid flapping pdsk. 4517 * This should not happen, if the peer is a recent version of drbd. */ 4518 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 4519 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 4520 real_peer_disk = D_UP_TO_DATE; 4521 4522 if (ns.conn == C_WF_REPORT_PARAMS) 4523 ns.conn = C_CONNECTED; 4524 4525 if (peer_state.conn == C_AHEAD) 4526 ns.conn = C_BEHIND; 4527 4528 /* TODO: 4529 * if (primary and diskless and peer uuid != effective uuid) 4530 * abort attach on peer; 4531 * 4532 * If this node does not have good data, was already connected, but 4533 * the peer did a late attach only now, trying to "negotiate" with me, 4534 * AND I am currently Primary, possibly frozen, with some specific 4535 * "effective" uuid, this should never be reached, really, because 4536 * we first send the uuids, then the current state. 4537 * 4538 * In this scenario, we already dropped the connection hard 4539 * when we received the unsuitable uuids (receive_uuids(). 4540 * 4541 * Should we want to change this, that is: not drop the connection in 4542 * receive_uuids() already, then we would need to add a branch here 4543 * that aborts the attach of "unsuitable uuids" on the peer in case 4544 * this node is currently Diskless Primary. 4545 */ 4546 4547 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING && 4548 get_ldev_if_state(device, D_NEGOTIATING)) { 4549 int cr; /* consider resync */ 4550 4551 /* if we established a new connection */ 4552 cr = (os.conn < C_CONNECTED); 4553 /* if we had an established connection 4554 * and one of the nodes newly attaches a disk */ 4555 cr |= (os.conn == C_CONNECTED && 4556 (peer_state.disk == D_NEGOTIATING || 4557 os.disk == D_NEGOTIATING)); 4558 /* if we have both been inconsistent, and the peer has been 4559 * forced to be UpToDate with --force */ 4560 cr |= test_bit(CONSIDER_RESYNC, &device->flags); 4561 /* if we had been plain connected, and the admin requested to 4562 * start a sync by "invalidate" or "invalidate-remote" */ 4563 cr |= (os.conn == C_CONNECTED && 4564 (peer_state.conn >= C_STARTING_SYNC_S && 4565 peer_state.conn <= C_WF_BITMAP_T)); 4566 4567 if (cr) 4568 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk); 4569 4570 put_ldev(device); 4571 if (ns.conn == C_MASK) { 4572 ns.conn = C_CONNECTED; 4573 if (device->state.disk == D_NEGOTIATING) { 4574 drbd_force_state(device, NS(disk, D_FAILED)); 4575 } else if (peer_state.disk == D_NEGOTIATING) { 4576 drbd_err(device, "Disk attach process on the peer node was aborted.\n"); 4577 peer_state.disk = D_DISKLESS; 4578 real_peer_disk = D_DISKLESS; 4579 } else { 4580 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags)) 4581 return -EIO; 4582 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS); 4583 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4584 return -EIO; 4585 } 4586 } 4587 } 4588 4589 spin_lock_irq(&device->resource->req_lock); 4590 if (os.i != drbd_read_state(device).i) 4591 goto retry; 4592 clear_bit(CONSIDER_RESYNC, &device->flags); 4593 ns.peer = peer_state.role; 4594 ns.pdsk = real_peer_disk; 4595 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 4596 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 4597 ns.disk = device->new_state_tmp.disk; 4598 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 4599 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 4600 test_bit(NEW_CUR_UUID, &device->flags)) { 4601 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 4602 for temporal network outages! */ 4603 spin_unlock_irq(&device->resource->req_lock); 4604 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 4605 tl_clear(peer_device->connection); 4606 drbd_uuid_new_current(device); 4607 clear_bit(NEW_CUR_UUID, &device->flags); 4608 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 4609 return -EIO; 4610 } 4611 rv = _drbd_set_state(device, ns, cs_flags, NULL); 4612 ns = drbd_read_state(device); 4613 spin_unlock_irq(&device->resource->req_lock); 4614 4615 if (rv < SS_SUCCESS) { 4616 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4617 return -EIO; 4618 } 4619 4620 if (os.conn > C_WF_REPORT_PARAMS) { 4621 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 4622 peer_state.disk != D_NEGOTIATING ) { 4623 /* we want resync, peer has not yet decided to sync... */ 4624 /* Nowadays only used when forcing a node into primary role and 4625 setting its disk to UpToDate with that */ 4626 drbd_send_uuids(peer_device); 4627 drbd_send_current_state(peer_device); 4628 } 4629 } 4630 4631 clear_bit(DISCARD_MY_DATA, &device->flags); 4632 4633 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */ 4634 4635 return 0; 4636 } 4637 4638 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi) 4639 { 4640 struct drbd_peer_device *peer_device; 4641 struct drbd_device *device; 4642 struct p_rs_uuid *p = pi->data; 4643 4644 peer_device = conn_peer_device(connection, pi->vnr); 4645 if (!peer_device) 4646 return -EIO; 4647 device = peer_device->device; 4648 4649 wait_event(device->misc_wait, 4650 device->state.conn == C_WF_SYNC_UUID || 4651 device->state.conn == C_BEHIND || 4652 device->state.conn < C_CONNECTED || 4653 device->state.disk < D_NEGOTIATING); 4654 4655 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */ 4656 4657 /* Here the _drbd_uuid_ functions are right, current should 4658 _not_ be rotated into the history */ 4659 if (get_ldev_if_state(device, D_NEGOTIATING)) { 4660 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid)); 4661 _drbd_uuid_set(device, UI_BITMAP, 0UL); 4662 4663 drbd_print_uuids(device, "updated sync uuid"); 4664 drbd_start_resync(device, C_SYNC_TARGET); 4665 4666 put_ldev(device); 4667 } else 4668 drbd_err(device, "Ignoring SyncUUID packet!\n"); 4669 4670 return 0; 4671 } 4672 4673 /** 4674 * receive_bitmap_plain 4675 * 4676 * Return 0 when done, 1 when another iteration is needed, and a negative error 4677 * code upon failure. 4678 */ 4679 static int 4680 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size, 4681 unsigned long *p, struct bm_xfer_ctx *c) 4682 { 4683 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4684 drbd_header_size(peer_device->connection); 4685 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4686 c->bm_words - c->word_offset); 4687 unsigned int want = num_words * sizeof(*p); 4688 int err; 4689 4690 if (want != size) { 4691 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size); 4692 return -EIO; 4693 } 4694 if (want == 0) 4695 return 0; 4696 err = drbd_recv_all(peer_device->connection, p, want); 4697 if (err) 4698 return err; 4699 4700 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p); 4701 4702 c->word_offset += num_words; 4703 c->bit_offset = c->word_offset * BITS_PER_LONG; 4704 if (c->bit_offset > c->bm_bits) 4705 c->bit_offset = c->bm_bits; 4706 4707 return 1; 4708 } 4709 4710 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4711 { 4712 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4713 } 4714 4715 static int dcbp_get_start(struct p_compressed_bm *p) 4716 { 4717 return (p->encoding & 0x80) != 0; 4718 } 4719 4720 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4721 { 4722 return (p->encoding >> 4) & 0x7; 4723 } 4724 4725 /** 4726 * recv_bm_rle_bits 4727 * 4728 * Return 0 when done, 1 when another iteration is needed, and a negative error 4729 * code upon failure. 4730 */ 4731 static int 4732 recv_bm_rle_bits(struct drbd_peer_device *peer_device, 4733 struct p_compressed_bm *p, 4734 struct bm_xfer_ctx *c, 4735 unsigned int len) 4736 { 4737 struct bitstream bs; 4738 u64 look_ahead; 4739 u64 rl; 4740 u64 tmp; 4741 unsigned long s = c->bit_offset; 4742 unsigned long e; 4743 int toggle = dcbp_get_start(p); 4744 int have; 4745 int bits; 4746 4747 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4748 4749 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4750 if (bits < 0) 4751 return -EIO; 4752 4753 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4754 bits = vli_decode_bits(&rl, look_ahead); 4755 if (bits <= 0) 4756 return -EIO; 4757 4758 if (toggle) { 4759 e = s + rl -1; 4760 if (e >= c->bm_bits) { 4761 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4762 return -EIO; 4763 } 4764 _drbd_bm_set_bits(peer_device->device, s, e); 4765 } 4766 4767 if (have < bits) { 4768 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4769 have, bits, look_ahead, 4770 (unsigned int)(bs.cur.b - p->code), 4771 (unsigned int)bs.buf_len); 4772 return -EIO; 4773 } 4774 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */ 4775 if (likely(bits < 64)) 4776 look_ahead >>= bits; 4777 else 4778 look_ahead = 0; 4779 have -= bits; 4780 4781 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4782 if (bits < 0) 4783 return -EIO; 4784 look_ahead |= tmp << have; 4785 have += bits; 4786 } 4787 4788 c->bit_offset = s; 4789 bm_xfer_ctx_bit_to_word_offset(c); 4790 4791 return (s != c->bm_bits); 4792 } 4793 4794 /** 4795 * decode_bitmap_c 4796 * 4797 * Return 0 when done, 1 when another iteration is needed, and a negative error 4798 * code upon failure. 4799 */ 4800 static int 4801 decode_bitmap_c(struct drbd_peer_device *peer_device, 4802 struct p_compressed_bm *p, 4803 struct bm_xfer_ctx *c, 4804 unsigned int len) 4805 { 4806 if (dcbp_get_code(p) == RLE_VLI_Bits) 4807 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p)); 4808 4809 /* other variants had been implemented for evaluation, 4810 * but have been dropped as this one turned out to be "best" 4811 * during all our tests. */ 4812 4813 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4814 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4815 return -EIO; 4816 } 4817 4818 void INFO_bm_xfer_stats(struct drbd_device *device, 4819 const char *direction, struct bm_xfer_ctx *c) 4820 { 4821 /* what would it take to transfer it "plaintext" */ 4822 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 4823 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4824 unsigned int plain = 4825 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4826 c->bm_words * sizeof(unsigned long); 4827 unsigned int total = c->bytes[0] + c->bytes[1]; 4828 unsigned int r; 4829 4830 /* total can not be zero. but just in case: */ 4831 if (total == 0) 4832 return; 4833 4834 /* don't report if not compressed */ 4835 if (total >= plain) 4836 return; 4837 4838 /* total < plain. check for overflow, still */ 4839 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4840 : (1000 * total / plain); 4841 4842 if (r > 1000) 4843 r = 1000; 4844 4845 r = 1000 - r; 4846 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4847 "total %u; compression: %u.%u%%\n", 4848 direction, 4849 c->bytes[1], c->packets[1], 4850 c->bytes[0], c->packets[0], 4851 total, r/10, r % 10); 4852 } 4853 4854 /* Since we are processing the bitfield from lower addresses to higher, 4855 it does not matter if the process it in 32 bit chunks or 64 bit 4856 chunks as long as it is little endian. (Understand it as byte stream, 4857 beginning with the lowest byte...) If we would use big endian 4858 we would need to process it from the highest address to the lowest, 4859 in order to be agnostic to the 32 vs 64 bits issue. 4860 4861 returns 0 on failure, 1 if we successfully received it. */ 4862 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi) 4863 { 4864 struct drbd_peer_device *peer_device; 4865 struct drbd_device *device; 4866 struct bm_xfer_ctx c; 4867 int err; 4868 4869 peer_device = conn_peer_device(connection, pi->vnr); 4870 if (!peer_device) 4871 return -EIO; 4872 device = peer_device->device; 4873 4874 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4875 /* you are supposed to send additional out-of-sync information 4876 * if you actually set bits during this phase */ 4877 4878 c = (struct bm_xfer_ctx) { 4879 .bm_bits = drbd_bm_bits(device), 4880 .bm_words = drbd_bm_words(device), 4881 }; 4882 4883 for(;;) { 4884 if (pi->cmd == P_BITMAP) 4885 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c); 4886 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4887 /* MAYBE: sanity check that we speak proto >= 90, 4888 * and the feature is enabled! */ 4889 struct p_compressed_bm *p = pi->data; 4890 4891 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) { 4892 drbd_err(device, "ReportCBitmap packet too large\n"); 4893 err = -EIO; 4894 goto out; 4895 } 4896 if (pi->size <= sizeof(*p)) { 4897 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4898 err = -EIO; 4899 goto out; 4900 } 4901 err = drbd_recv_all(peer_device->connection, p, pi->size); 4902 if (err) 4903 goto out; 4904 err = decode_bitmap_c(peer_device, p, &c, pi->size); 4905 } else { 4906 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4907 err = -EIO; 4908 goto out; 4909 } 4910 4911 c.packets[pi->cmd == P_BITMAP]++; 4912 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size; 4913 4914 if (err <= 0) { 4915 if (err < 0) 4916 goto out; 4917 break; 4918 } 4919 err = drbd_recv_header(peer_device->connection, pi); 4920 if (err) 4921 goto out; 4922 } 4923 4924 INFO_bm_xfer_stats(device, "receive", &c); 4925 4926 if (device->state.conn == C_WF_BITMAP_T) { 4927 enum drbd_state_rv rv; 4928 4929 err = drbd_send_bitmap(device); 4930 if (err) 4931 goto out; 4932 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4933 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4934 D_ASSERT(device, rv == SS_SUCCESS); 4935 } else if (device->state.conn != C_WF_BITMAP_S) { 4936 /* admin may have requested C_DISCONNECTING, 4937 * other threads may have noticed network errors */ 4938 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n", 4939 drbd_conn_str(device->state.conn)); 4940 } 4941 err = 0; 4942 4943 out: 4944 drbd_bm_unlock(device); 4945 if (!err && device->state.conn == C_WF_BITMAP_S) 4946 drbd_start_resync(device, C_SYNC_SOURCE); 4947 return err; 4948 } 4949 4950 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi) 4951 { 4952 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n", 4953 pi->cmd, pi->size); 4954 4955 return ignore_remaining_packet(connection, pi); 4956 } 4957 4958 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi) 4959 { 4960 /* Make sure we've acked all the TCP data associated 4961 * with the data requests being unplugged */ 4962 tcp_sock_set_quickack(connection->data.socket->sk, 2); 4963 return 0; 4964 } 4965 4966 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi) 4967 { 4968 struct drbd_peer_device *peer_device; 4969 struct drbd_device *device; 4970 struct p_block_desc *p = pi->data; 4971 4972 peer_device = conn_peer_device(connection, pi->vnr); 4973 if (!peer_device) 4974 return -EIO; 4975 device = peer_device->device; 4976 4977 switch (device->state.conn) { 4978 case C_WF_SYNC_UUID: 4979 case C_WF_BITMAP_T: 4980 case C_BEHIND: 4981 break; 4982 default: 4983 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4984 drbd_conn_str(device->state.conn)); 4985 } 4986 4987 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4988 4989 return 0; 4990 } 4991 4992 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi) 4993 { 4994 struct drbd_peer_device *peer_device; 4995 struct p_block_desc *p = pi->data; 4996 struct drbd_device *device; 4997 sector_t sector; 4998 int size, err = 0; 4999 5000 peer_device = conn_peer_device(connection, pi->vnr); 5001 if (!peer_device) 5002 return -EIO; 5003 device = peer_device->device; 5004 5005 sector = be64_to_cpu(p->sector); 5006 size = be32_to_cpu(p->blksize); 5007 5008 dec_rs_pending(device); 5009 5010 if (get_ldev(device)) { 5011 struct drbd_peer_request *peer_req; 5012 const int op = REQ_OP_WRITE_ZEROES; 5013 5014 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector, 5015 size, 0, GFP_NOIO); 5016 if (!peer_req) { 5017 put_ldev(device); 5018 return -ENOMEM; 5019 } 5020 5021 peer_req->w.cb = e_end_resync_block; 5022 peer_req->submit_jif = jiffies; 5023 peer_req->flags |= EE_TRIM; 5024 5025 spin_lock_irq(&device->resource->req_lock); 5026 list_add_tail(&peer_req->w.list, &device->sync_ee); 5027 spin_unlock_irq(&device->resource->req_lock); 5028 5029 atomic_add(pi->size >> 9, &device->rs_sect_ev); 5030 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR); 5031 5032 if (err) { 5033 spin_lock_irq(&device->resource->req_lock); 5034 list_del(&peer_req->w.list); 5035 spin_unlock_irq(&device->resource->req_lock); 5036 5037 drbd_free_peer_req(device, peer_req); 5038 put_ldev(device); 5039 err = 0; 5040 goto fail; 5041 } 5042 5043 inc_unacked(device); 5044 5045 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(), 5046 as well as drbd_rs_complete_io() */ 5047 } else { 5048 fail: 5049 drbd_rs_complete_io(device, sector); 5050 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER); 5051 } 5052 5053 atomic_add(size >> 9, &device->rs_sect_in); 5054 5055 return err; 5056 } 5057 5058 struct data_cmd { 5059 int expect_payload; 5060 unsigned int pkt_size; 5061 int (*fn)(struct drbd_connection *, struct packet_info *); 5062 }; 5063 5064 static struct data_cmd drbd_cmd_handler[] = { 5065 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 5066 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 5067 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 5068 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 5069 [P_BITMAP] = { 1, 0, receive_bitmap } , 5070 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 5071 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 5072 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5073 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5074 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 5075 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 5076 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 5077 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 5078 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 5079 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 5080 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 5081 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 5082 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5083 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5084 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5085 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5086 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 5087 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 5088 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 5089 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 5090 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data }, 5091 [P_ZEROES] = { 0, sizeof(struct p_trim), receive_Data }, 5092 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated }, 5093 [P_WSAME] = { 1, sizeof(struct p_wsame), receive_Data }, 5094 }; 5095 5096 static void drbdd(struct drbd_connection *connection) 5097 { 5098 struct packet_info pi; 5099 size_t shs; /* sub header size */ 5100 int err; 5101 5102 while (get_t_state(&connection->receiver) == RUNNING) { 5103 struct data_cmd const *cmd; 5104 5105 drbd_thread_current_set_cpu(&connection->receiver); 5106 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug); 5107 if (drbd_recv_header_maybe_unplug(connection, &pi)) 5108 goto err_out; 5109 5110 cmd = &drbd_cmd_handler[pi.cmd]; 5111 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 5112 drbd_err(connection, "Unexpected data packet %s (0x%04x)", 5113 cmdname(pi.cmd), pi.cmd); 5114 goto err_out; 5115 } 5116 5117 shs = cmd->pkt_size; 5118 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME) 5119 shs += sizeof(struct o_qlim); 5120 if (pi.size > shs && !cmd->expect_payload) { 5121 drbd_err(connection, "No payload expected %s l:%d\n", 5122 cmdname(pi.cmd), pi.size); 5123 goto err_out; 5124 } 5125 if (pi.size < shs) { 5126 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n", 5127 cmdname(pi.cmd), (int)shs, pi.size); 5128 goto err_out; 5129 } 5130 5131 if (shs) { 5132 update_receiver_timing_details(connection, drbd_recv_all_warn); 5133 err = drbd_recv_all_warn(connection, pi.data, shs); 5134 if (err) 5135 goto err_out; 5136 pi.size -= shs; 5137 } 5138 5139 update_receiver_timing_details(connection, cmd->fn); 5140 err = cmd->fn(connection, &pi); 5141 if (err) { 5142 drbd_err(connection, "error receiving %s, e: %d l: %d!\n", 5143 cmdname(pi.cmd), err, pi.size); 5144 goto err_out; 5145 } 5146 } 5147 return; 5148 5149 err_out: 5150 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 5151 } 5152 5153 static void conn_disconnect(struct drbd_connection *connection) 5154 { 5155 struct drbd_peer_device *peer_device; 5156 enum drbd_conns oc; 5157 int vnr; 5158 5159 if (connection->cstate == C_STANDALONE) 5160 return; 5161 5162 /* We are about to start the cleanup after connection loss. 5163 * Make sure drbd_make_request knows about that. 5164 * Usually we should be in some network failure state already, 5165 * but just in case we are not, we fix it up here. 5166 */ 5167 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5168 5169 /* ack_receiver does not clean up anything. it must not interfere, either */ 5170 drbd_thread_stop(&connection->ack_receiver); 5171 if (connection->ack_sender) { 5172 destroy_workqueue(connection->ack_sender); 5173 connection->ack_sender = NULL; 5174 } 5175 drbd_free_sock(connection); 5176 5177 rcu_read_lock(); 5178 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5179 struct drbd_device *device = peer_device->device; 5180 kref_get(&device->kref); 5181 rcu_read_unlock(); 5182 drbd_disconnected(peer_device); 5183 kref_put(&device->kref, drbd_destroy_device); 5184 rcu_read_lock(); 5185 } 5186 rcu_read_unlock(); 5187 5188 if (!list_empty(&connection->current_epoch->list)) 5189 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n"); 5190 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 5191 atomic_set(&connection->current_epoch->epoch_size, 0); 5192 connection->send.seen_any_write_yet = false; 5193 5194 drbd_info(connection, "Connection closed\n"); 5195 5196 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN) 5197 conn_try_outdate_peer_async(connection); 5198 5199 spin_lock_irq(&connection->resource->req_lock); 5200 oc = connection->cstate; 5201 if (oc >= C_UNCONNECTED) 5202 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); 5203 5204 spin_unlock_irq(&connection->resource->req_lock); 5205 5206 if (oc == C_DISCONNECTING) 5207 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 5208 } 5209 5210 static int drbd_disconnected(struct drbd_peer_device *peer_device) 5211 { 5212 struct drbd_device *device = peer_device->device; 5213 unsigned int i; 5214 5215 /* wait for current activity to cease. */ 5216 spin_lock_irq(&device->resource->req_lock); 5217 _drbd_wait_ee_list_empty(device, &device->active_ee); 5218 _drbd_wait_ee_list_empty(device, &device->sync_ee); 5219 _drbd_wait_ee_list_empty(device, &device->read_ee); 5220 spin_unlock_irq(&device->resource->req_lock); 5221 5222 /* We do not have data structures that would allow us to 5223 * get the rs_pending_cnt down to 0 again. 5224 * * On C_SYNC_TARGET we do not have any data structures describing 5225 * the pending RSDataRequest's we have sent. 5226 * * On C_SYNC_SOURCE there is no data structure that tracks 5227 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 5228 * And no, it is not the sum of the reference counts in the 5229 * resync_LRU. The resync_LRU tracks the whole operation including 5230 * the disk-IO, while the rs_pending_cnt only tracks the blocks 5231 * on the fly. */ 5232 drbd_rs_cancel_all(device); 5233 device->rs_total = 0; 5234 device->rs_failed = 0; 5235 atomic_set(&device->rs_pending_cnt, 0); 5236 wake_up(&device->misc_wait); 5237 5238 del_timer_sync(&device->resync_timer); 5239 resync_timer_fn(&device->resync_timer); 5240 5241 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 5242 * w_make_resync_request etc. which may still be on the worker queue 5243 * to be "canceled" */ 5244 drbd_flush_workqueue(&peer_device->connection->sender_work); 5245 5246 drbd_finish_peer_reqs(device); 5247 5248 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 5249 might have issued a work again. The one before drbd_finish_peer_reqs() is 5250 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 5251 drbd_flush_workqueue(&peer_device->connection->sender_work); 5252 5253 /* need to do it again, drbd_finish_peer_reqs() may have populated it 5254 * again via drbd_try_clear_on_disk_bm(). */ 5255 drbd_rs_cancel_all(device); 5256 5257 kfree(device->p_uuid); 5258 device->p_uuid = NULL; 5259 5260 if (!drbd_suspended(device)) 5261 tl_clear(peer_device->connection); 5262 5263 drbd_md_sync(device); 5264 5265 if (get_ldev(device)) { 5266 drbd_bitmap_io(device, &drbd_bm_write_copy_pages, 5267 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED); 5268 put_ldev(device); 5269 } 5270 5271 /* tcp_close and release of sendpage pages can be deferred. I don't 5272 * want to use SO_LINGER, because apparently it can be deferred for 5273 * more than 20 seconds (longest time I checked). 5274 * 5275 * Actually we don't care for exactly when the network stack does its 5276 * put_page(), but release our reference on these pages right here. 5277 */ 5278 i = drbd_free_peer_reqs(device, &device->net_ee); 5279 if (i) 5280 drbd_info(device, "net_ee not empty, killed %u entries\n", i); 5281 i = atomic_read(&device->pp_in_use_by_net); 5282 if (i) 5283 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i); 5284 i = atomic_read(&device->pp_in_use); 5285 if (i) 5286 drbd_info(device, "pp_in_use = %d, expected 0\n", i); 5287 5288 D_ASSERT(device, list_empty(&device->read_ee)); 5289 D_ASSERT(device, list_empty(&device->active_ee)); 5290 D_ASSERT(device, list_empty(&device->sync_ee)); 5291 D_ASSERT(device, list_empty(&device->done_ee)); 5292 5293 return 0; 5294 } 5295 5296 /* 5297 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 5298 * we can agree on is stored in agreed_pro_version. 5299 * 5300 * feature flags and the reserved array should be enough room for future 5301 * enhancements of the handshake protocol, and possible plugins... 5302 * 5303 * for now, they are expected to be zero, but ignored. 5304 */ 5305 static int drbd_send_features(struct drbd_connection *connection) 5306 { 5307 struct drbd_socket *sock; 5308 struct p_connection_features *p; 5309 5310 sock = &connection->data; 5311 p = conn_prepare_command(connection, sock); 5312 if (!p) 5313 return -EIO; 5314 memset(p, 0, sizeof(*p)); 5315 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 5316 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 5317 p->feature_flags = cpu_to_be32(PRO_FEATURES); 5318 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 5319 } 5320 5321 /* 5322 * return values: 5323 * 1 yes, we have a valid connection 5324 * 0 oops, did not work out, please try again 5325 * -1 peer talks different language, 5326 * no point in trying again, please go standalone. 5327 */ 5328 static int drbd_do_features(struct drbd_connection *connection) 5329 { 5330 /* ASSERT current == connection->receiver ... */ 5331 struct p_connection_features *p; 5332 const int expect = sizeof(struct p_connection_features); 5333 struct packet_info pi; 5334 int err; 5335 5336 err = drbd_send_features(connection); 5337 if (err) 5338 return 0; 5339 5340 err = drbd_recv_header(connection, &pi); 5341 if (err) 5342 return 0; 5343 5344 if (pi.cmd != P_CONNECTION_FEATURES) { 5345 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 5346 cmdname(pi.cmd), pi.cmd); 5347 return -1; 5348 } 5349 5350 if (pi.size != expect) { 5351 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n", 5352 expect, pi.size); 5353 return -1; 5354 } 5355 5356 p = pi.data; 5357 err = drbd_recv_all_warn(connection, p, expect); 5358 if (err) 5359 return 0; 5360 5361 p->protocol_min = be32_to_cpu(p->protocol_min); 5362 p->protocol_max = be32_to_cpu(p->protocol_max); 5363 if (p->protocol_max == 0) 5364 p->protocol_max = p->protocol_min; 5365 5366 if (PRO_VERSION_MAX < p->protocol_min || 5367 PRO_VERSION_MIN > p->protocol_max) 5368 goto incompat; 5369 5370 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 5371 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags); 5372 5373 drbd_info(connection, "Handshake successful: " 5374 "Agreed network protocol version %d\n", connection->agreed_pro_version); 5375 5376 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n", 5377 connection->agreed_features, 5378 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "", 5379 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "", 5380 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "", 5381 connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" : 5382 connection->agreed_features ? "" : " none"); 5383 5384 return 1; 5385 5386 incompat: 5387 drbd_err(connection, "incompatible DRBD dialects: " 5388 "I support %d-%d, peer supports %d-%d\n", 5389 PRO_VERSION_MIN, PRO_VERSION_MAX, 5390 p->protocol_min, p->protocol_max); 5391 return -1; 5392 } 5393 5394 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 5395 static int drbd_do_auth(struct drbd_connection *connection) 5396 { 5397 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 5398 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 5399 return -1; 5400 } 5401 #else 5402 #define CHALLENGE_LEN 64 5403 5404 /* Return value: 5405 1 - auth succeeded, 5406 0 - failed, try again (network error), 5407 -1 - auth failed, don't try again. 5408 */ 5409 5410 static int drbd_do_auth(struct drbd_connection *connection) 5411 { 5412 struct drbd_socket *sock; 5413 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 5414 char *response = NULL; 5415 char *right_response = NULL; 5416 char *peers_ch = NULL; 5417 unsigned int key_len; 5418 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 5419 unsigned int resp_size; 5420 struct shash_desc *desc; 5421 struct packet_info pi; 5422 struct net_conf *nc; 5423 int err, rv; 5424 5425 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 5426 5427 rcu_read_lock(); 5428 nc = rcu_dereference(connection->net_conf); 5429 key_len = strlen(nc->shared_secret); 5430 memcpy(secret, nc->shared_secret, key_len); 5431 rcu_read_unlock(); 5432 5433 desc = kmalloc(sizeof(struct shash_desc) + 5434 crypto_shash_descsize(connection->cram_hmac_tfm), 5435 GFP_KERNEL); 5436 if (!desc) { 5437 rv = -1; 5438 goto fail; 5439 } 5440 desc->tfm = connection->cram_hmac_tfm; 5441 5442 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len); 5443 if (rv) { 5444 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv); 5445 rv = -1; 5446 goto fail; 5447 } 5448 5449 get_random_bytes(my_challenge, CHALLENGE_LEN); 5450 5451 sock = &connection->data; 5452 if (!conn_prepare_command(connection, sock)) { 5453 rv = 0; 5454 goto fail; 5455 } 5456 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0, 5457 my_challenge, CHALLENGE_LEN); 5458 if (!rv) 5459 goto fail; 5460 5461 err = drbd_recv_header(connection, &pi); 5462 if (err) { 5463 rv = 0; 5464 goto fail; 5465 } 5466 5467 if (pi.cmd != P_AUTH_CHALLENGE) { 5468 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n", 5469 cmdname(pi.cmd), pi.cmd); 5470 rv = -1; 5471 goto fail; 5472 } 5473 5474 if (pi.size > CHALLENGE_LEN * 2) { 5475 drbd_err(connection, "expected AuthChallenge payload too big.\n"); 5476 rv = -1; 5477 goto fail; 5478 } 5479 5480 if (pi.size < CHALLENGE_LEN) { 5481 drbd_err(connection, "AuthChallenge payload too small.\n"); 5482 rv = -1; 5483 goto fail; 5484 } 5485 5486 peers_ch = kmalloc(pi.size, GFP_NOIO); 5487 if (peers_ch == NULL) { 5488 drbd_err(connection, "kmalloc of peers_ch failed\n"); 5489 rv = -1; 5490 goto fail; 5491 } 5492 5493 err = drbd_recv_all_warn(connection, peers_ch, pi.size); 5494 if (err) { 5495 rv = 0; 5496 goto fail; 5497 } 5498 5499 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) { 5500 drbd_err(connection, "Peer presented the same challenge!\n"); 5501 rv = -1; 5502 goto fail; 5503 } 5504 5505 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm); 5506 response = kmalloc(resp_size, GFP_NOIO); 5507 if (response == NULL) { 5508 drbd_err(connection, "kmalloc of response failed\n"); 5509 rv = -1; 5510 goto fail; 5511 } 5512 5513 rv = crypto_shash_digest(desc, peers_ch, pi.size, response); 5514 if (rv) { 5515 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5516 rv = -1; 5517 goto fail; 5518 } 5519 5520 if (!conn_prepare_command(connection, sock)) { 5521 rv = 0; 5522 goto fail; 5523 } 5524 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0, 5525 response, resp_size); 5526 if (!rv) 5527 goto fail; 5528 5529 err = drbd_recv_header(connection, &pi); 5530 if (err) { 5531 rv = 0; 5532 goto fail; 5533 } 5534 5535 if (pi.cmd != P_AUTH_RESPONSE) { 5536 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n", 5537 cmdname(pi.cmd), pi.cmd); 5538 rv = 0; 5539 goto fail; 5540 } 5541 5542 if (pi.size != resp_size) { 5543 drbd_err(connection, "expected AuthResponse payload of wrong size\n"); 5544 rv = 0; 5545 goto fail; 5546 } 5547 5548 err = drbd_recv_all_warn(connection, response , resp_size); 5549 if (err) { 5550 rv = 0; 5551 goto fail; 5552 } 5553 5554 right_response = kmalloc(resp_size, GFP_NOIO); 5555 if (right_response == NULL) { 5556 drbd_err(connection, "kmalloc of right_response failed\n"); 5557 rv = -1; 5558 goto fail; 5559 } 5560 5561 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN, 5562 right_response); 5563 if (rv) { 5564 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5565 rv = -1; 5566 goto fail; 5567 } 5568 5569 rv = !memcmp(response, right_response, resp_size); 5570 5571 if (rv) 5572 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n", 5573 resp_size); 5574 else 5575 rv = -1; 5576 5577 fail: 5578 kfree(peers_ch); 5579 kfree(response); 5580 kfree(right_response); 5581 if (desc) { 5582 shash_desc_zero(desc); 5583 kfree(desc); 5584 } 5585 5586 return rv; 5587 } 5588 #endif 5589 5590 int drbd_receiver(struct drbd_thread *thi) 5591 { 5592 struct drbd_connection *connection = thi->connection; 5593 int h; 5594 5595 drbd_info(connection, "receiver (re)started\n"); 5596 5597 do { 5598 h = conn_connect(connection); 5599 if (h == 0) { 5600 conn_disconnect(connection); 5601 schedule_timeout_interruptible(HZ); 5602 } 5603 if (h == -1) { 5604 drbd_warn(connection, "Discarding network configuration.\n"); 5605 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5606 } 5607 } while (h == 0); 5608 5609 if (h > 0) { 5610 blk_start_plug(&connection->receiver_plug); 5611 drbdd(connection); 5612 blk_finish_plug(&connection->receiver_plug); 5613 } 5614 5615 conn_disconnect(connection); 5616 5617 drbd_info(connection, "receiver terminated\n"); 5618 return 0; 5619 } 5620 5621 /* ********* acknowledge sender ******** */ 5622 5623 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5624 { 5625 struct p_req_state_reply *p = pi->data; 5626 int retcode = be32_to_cpu(p->retcode); 5627 5628 if (retcode >= SS_SUCCESS) { 5629 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags); 5630 } else { 5631 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags); 5632 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n", 5633 drbd_set_st_err_str(retcode), retcode); 5634 } 5635 wake_up(&connection->ping_wait); 5636 5637 return 0; 5638 } 5639 5640 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5641 { 5642 struct drbd_peer_device *peer_device; 5643 struct drbd_device *device; 5644 struct p_req_state_reply *p = pi->data; 5645 int retcode = be32_to_cpu(p->retcode); 5646 5647 peer_device = conn_peer_device(connection, pi->vnr); 5648 if (!peer_device) 5649 return -EIO; 5650 device = peer_device->device; 5651 5652 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) { 5653 D_ASSERT(device, connection->agreed_pro_version < 100); 5654 return got_conn_RqSReply(connection, pi); 5655 } 5656 5657 if (retcode >= SS_SUCCESS) { 5658 set_bit(CL_ST_CHG_SUCCESS, &device->flags); 5659 } else { 5660 set_bit(CL_ST_CHG_FAIL, &device->flags); 5661 drbd_err(device, "Requested state change failed by peer: %s (%d)\n", 5662 drbd_set_st_err_str(retcode), retcode); 5663 } 5664 wake_up(&device->state_wait); 5665 5666 return 0; 5667 } 5668 5669 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi) 5670 { 5671 return drbd_send_ping_ack(connection); 5672 5673 } 5674 5675 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi) 5676 { 5677 /* restore idle timeout */ 5678 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ; 5679 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags)) 5680 wake_up(&connection->ping_wait); 5681 5682 return 0; 5683 } 5684 5685 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi) 5686 { 5687 struct drbd_peer_device *peer_device; 5688 struct drbd_device *device; 5689 struct p_block_ack *p = pi->data; 5690 sector_t sector = be64_to_cpu(p->sector); 5691 int blksize = be32_to_cpu(p->blksize); 5692 5693 peer_device = conn_peer_device(connection, pi->vnr); 5694 if (!peer_device) 5695 return -EIO; 5696 device = peer_device->device; 5697 5698 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 5699 5700 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5701 5702 if (get_ldev(device)) { 5703 drbd_rs_complete_io(device, sector); 5704 drbd_set_in_sync(device, sector, blksize); 5705 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 5706 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 5707 put_ldev(device); 5708 } 5709 dec_rs_pending(device); 5710 atomic_add(blksize >> 9, &device->rs_sect_in); 5711 5712 return 0; 5713 } 5714 5715 static int 5716 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector, 5717 struct rb_root *root, const char *func, 5718 enum drbd_req_event what, bool missing_ok) 5719 { 5720 struct drbd_request *req; 5721 struct bio_and_error m; 5722 5723 spin_lock_irq(&device->resource->req_lock); 5724 req = find_request(device, root, id, sector, missing_ok, func); 5725 if (unlikely(!req)) { 5726 spin_unlock_irq(&device->resource->req_lock); 5727 return -EIO; 5728 } 5729 __req_mod(req, what, &m); 5730 spin_unlock_irq(&device->resource->req_lock); 5731 5732 if (m.bio) 5733 complete_master_bio(device, &m); 5734 return 0; 5735 } 5736 5737 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi) 5738 { 5739 struct drbd_peer_device *peer_device; 5740 struct drbd_device *device; 5741 struct p_block_ack *p = pi->data; 5742 sector_t sector = be64_to_cpu(p->sector); 5743 int blksize = be32_to_cpu(p->blksize); 5744 enum drbd_req_event what; 5745 5746 peer_device = conn_peer_device(connection, pi->vnr); 5747 if (!peer_device) 5748 return -EIO; 5749 device = peer_device->device; 5750 5751 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5752 5753 if (p->block_id == ID_SYNCER) { 5754 drbd_set_in_sync(device, sector, blksize); 5755 dec_rs_pending(device); 5756 return 0; 5757 } 5758 switch (pi->cmd) { 5759 case P_RS_WRITE_ACK: 5760 what = WRITE_ACKED_BY_PEER_AND_SIS; 5761 break; 5762 case P_WRITE_ACK: 5763 what = WRITE_ACKED_BY_PEER; 5764 break; 5765 case P_RECV_ACK: 5766 what = RECV_ACKED_BY_PEER; 5767 break; 5768 case P_SUPERSEDED: 5769 what = CONFLICT_RESOLVED; 5770 break; 5771 case P_RETRY_WRITE: 5772 what = POSTPONE_WRITE; 5773 break; 5774 default: 5775 BUG(); 5776 } 5777 5778 return validate_req_change_req_state(device, p->block_id, sector, 5779 &device->write_requests, __func__, 5780 what, false); 5781 } 5782 5783 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi) 5784 { 5785 struct drbd_peer_device *peer_device; 5786 struct drbd_device *device; 5787 struct p_block_ack *p = pi->data; 5788 sector_t sector = be64_to_cpu(p->sector); 5789 int size = be32_to_cpu(p->blksize); 5790 int err; 5791 5792 peer_device = conn_peer_device(connection, pi->vnr); 5793 if (!peer_device) 5794 return -EIO; 5795 device = peer_device->device; 5796 5797 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5798 5799 if (p->block_id == ID_SYNCER) { 5800 dec_rs_pending(device); 5801 drbd_rs_failed_io(device, sector, size); 5802 return 0; 5803 } 5804 5805 err = validate_req_change_req_state(device, p->block_id, sector, 5806 &device->write_requests, __func__, 5807 NEG_ACKED, true); 5808 if (err) { 5809 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5810 The master bio might already be completed, therefore the 5811 request is no longer in the collision hash. */ 5812 /* In Protocol B we might already have got a P_RECV_ACK 5813 but then get a P_NEG_ACK afterwards. */ 5814 drbd_set_out_of_sync(device, sector, size); 5815 } 5816 return 0; 5817 } 5818 5819 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi) 5820 { 5821 struct drbd_peer_device *peer_device; 5822 struct drbd_device *device; 5823 struct p_block_ack *p = pi->data; 5824 sector_t sector = be64_to_cpu(p->sector); 5825 5826 peer_device = conn_peer_device(connection, pi->vnr); 5827 if (!peer_device) 5828 return -EIO; 5829 device = peer_device->device; 5830 5831 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5832 5833 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n", 5834 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5835 5836 return validate_req_change_req_state(device, p->block_id, sector, 5837 &device->read_requests, __func__, 5838 NEG_ACKED, false); 5839 } 5840 5841 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi) 5842 { 5843 struct drbd_peer_device *peer_device; 5844 struct drbd_device *device; 5845 sector_t sector; 5846 int size; 5847 struct p_block_ack *p = pi->data; 5848 5849 peer_device = conn_peer_device(connection, pi->vnr); 5850 if (!peer_device) 5851 return -EIO; 5852 device = peer_device->device; 5853 5854 sector = be64_to_cpu(p->sector); 5855 size = be32_to_cpu(p->blksize); 5856 5857 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5858 5859 dec_rs_pending(device); 5860 5861 if (get_ldev_if_state(device, D_FAILED)) { 5862 drbd_rs_complete_io(device, sector); 5863 switch (pi->cmd) { 5864 case P_NEG_RS_DREPLY: 5865 drbd_rs_failed_io(device, sector, size); 5866 case P_RS_CANCEL: 5867 break; 5868 default: 5869 BUG(); 5870 } 5871 put_ldev(device); 5872 } 5873 5874 return 0; 5875 } 5876 5877 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi) 5878 { 5879 struct p_barrier_ack *p = pi->data; 5880 struct drbd_peer_device *peer_device; 5881 int vnr; 5882 5883 tl_release(connection, p->barrier, be32_to_cpu(p->set_size)); 5884 5885 rcu_read_lock(); 5886 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5887 struct drbd_device *device = peer_device->device; 5888 5889 if (device->state.conn == C_AHEAD && 5890 atomic_read(&device->ap_in_flight) == 0 && 5891 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) { 5892 device->start_resync_timer.expires = jiffies + HZ; 5893 add_timer(&device->start_resync_timer); 5894 } 5895 } 5896 rcu_read_unlock(); 5897 5898 return 0; 5899 } 5900 5901 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi) 5902 { 5903 struct drbd_peer_device *peer_device; 5904 struct drbd_device *device; 5905 struct p_block_ack *p = pi->data; 5906 struct drbd_device_work *dw; 5907 sector_t sector; 5908 int size; 5909 5910 peer_device = conn_peer_device(connection, pi->vnr); 5911 if (!peer_device) 5912 return -EIO; 5913 device = peer_device->device; 5914 5915 sector = be64_to_cpu(p->sector); 5916 size = be32_to_cpu(p->blksize); 5917 5918 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5919 5920 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5921 drbd_ov_out_of_sync_found(device, sector, size); 5922 else 5923 ov_out_of_sync_print(device); 5924 5925 if (!get_ldev(device)) 5926 return 0; 5927 5928 drbd_rs_complete_io(device, sector); 5929 dec_rs_pending(device); 5930 5931 --device->ov_left; 5932 5933 /* let's advance progress step marks only for every other megabyte */ 5934 if ((device->ov_left & 0x200) == 0x200) 5935 drbd_advance_rs_marks(device, device->ov_left); 5936 5937 if (device->ov_left == 0) { 5938 dw = kmalloc(sizeof(*dw), GFP_NOIO); 5939 if (dw) { 5940 dw->w.cb = w_ov_finished; 5941 dw->device = device; 5942 drbd_queue_work(&peer_device->connection->sender_work, &dw->w); 5943 } else { 5944 drbd_err(device, "kmalloc(dw) failed."); 5945 ov_out_of_sync_print(device); 5946 drbd_resync_finished(device); 5947 } 5948 } 5949 put_ldev(device); 5950 return 0; 5951 } 5952 5953 static int got_skip(struct drbd_connection *connection, struct packet_info *pi) 5954 { 5955 return 0; 5956 } 5957 5958 struct meta_sock_cmd { 5959 size_t pkt_size; 5960 int (*fn)(struct drbd_connection *connection, struct packet_info *); 5961 }; 5962 5963 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout) 5964 { 5965 long t; 5966 struct net_conf *nc; 5967 5968 rcu_read_lock(); 5969 nc = rcu_dereference(connection->net_conf); 5970 t = ping_timeout ? nc->ping_timeo : nc->ping_int; 5971 rcu_read_unlock(); 5972 5973 t *= HZ; 5974 if (ping_timeout) 5975 t /= 10; 5976 5977 connection->meta.socket->sk->sk_rcvtimeo = t; 5978 } 5979 5980 static void set_ping_timeout(struct drbd_connection *connection) 5981 { 5982 set_rcvtimeo(connection, 1); 5983 } 5984 5985 static void set_idle_timeout(struct drbd_connection *connection) 5986 { 5987 set_rcvtimeo(connection, 0); 5988 } 5989 5990 static struct meta_sock_cmd ack_receiver_tbl[] = { 5991 [P_PING] = { 0, got_Ping }, 5992 [P_PING_ACK] = { 0, got_PingAck }, 5993 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5994 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5995 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5996 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5997 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5998 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5999 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 6000 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 6001 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 6002 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 6003 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 6004 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 6005 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 6006 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 6007 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 6008 }; 6009 6010 int drbd_ack_receiver(struct drbd_thread *thi) 6011 { 6012 struct drbd_connection *connection = thi->connection; 6013 struct meta_sock_cmd *cmd = NULL; 6014 struct packet_info pi; 6015 unsigned long pre_recv_jif; 6016 int rv; 6017 void *buf = connection->meta.rbuf; 6018 int received = 0; 6019 unsigned int header_size = drbd_header_size(connection); 6020 int expect = header_size; 6021 bool ping_timeout_active = false; 6022 struct sched_param param = { .sched_priority = 2 }; 6023 6024 rv = sched_setscheduler(current, SCHED_RR, ¶m); 6025 if (rv < 0) 6026 drbd_err(connection, "drbd_ack_receiver: ERROR set priority, ret=%d\n", rv); 6027 6028 while (get_t_state(thi) == RUNNING) { 6029 drbd_thread_current_set_cpu(thi); 6030 6031 conn_reclaim_net_peer_reqs(connection); 6032 6033 if (test_and_clear_bit(SEND_PING, &connection->flags)) { 6034 if (drbd_send_ping(connection)) { 6035 drbd_err(connection, "drbd_send_ping has failed\n"); 6036 goto reconnect; 6037 } 6038 set_ping_timeout(connection); 6039 ping_timeout_active = true; 6040 } 6041 6042 pre_recv_jif = jiffies; 6043 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0); 6044 6045 /* Note: 6046 * -EINTR (on meta) we got a signal 6047 * -EAGAIN (on meta) rcvtimeo expired 6048 * -ECONNRESET other side closed the connection 6049 * -ERESTARTSYS (on data) we got a signal 6050 * rv < 0 other than above: unexpected error! 6051 * rv == expected: full header or command 6052 * rv < expected: "woken" by signal during receive 6053 * rv == 0 : "connection shut down by peer" 6054 */ 6055 if (likely(rv > 0)) { 6056 received += rv; 6057 buf += rv; 6058 } else if (rv == 0) { 6059 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 6060 long t; 6061 rcu_read_lock(); 6062 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 6063 rcu_read_unlock(); 6064 6065 t = wait_event_timeout(connection->ping_wait, 6066 connection->cstate < C_WF_REPORT_PARAMS, 6067 t); 6068 if (t) 6069 break; 6070 } 6071 drbd_err(connection, "meta connection shut down by peer.\n"); 6072 goto reconnect; 6073 } else if (rv == -EAGAIN) { 6074 /* If the data socket received something meanwhile, 6075 * that is good enough: peer is still alive. */ 6076 if (time_after(connection->last_received, pre_recv_jif)) 6077 continue; 6078 if (ping_timeout_active) { 6079 drbd_err(connection, "PingAck did not arrive in time.\n"); 6080 goto reconnect; 6081 } 6082 set_bit(SEND_PING, &connection->flags); 6083 continue; 6084 } else if (rv == -EINTR) { 6085 /* maybe drbd_thread_stop(): the while condition will notice. 6086 * maybe woken for send_ping: we'll send a ping above, 6087 * and change the rcvtimeo */ 6088 flush_signals(current); 6089 continue; 6090 } else { 6091 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 6092 goto reconnect; 6093 } 6094 6095 if (received == expect && cmd == NULL) { 6096 if (decode_header(connection, connection->meta.rbuf, &pi)) 6097 goto reconnect; 6098 cmd = &ack_receiver_tbl[pi.cmd]; 6099 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) { 6100 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n", 6101 cmdname(pi.cmd), pi.cmd); 6102 goto disconnect; 6103 } 6104 expect = header_size + cmd->pkt_size; 6105 if (pi.size != expect - header_size) { 6106 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n", 6107 pi.cmd, pi.size); 6108 goto reconnect; 6109 } 6110 } 6111 if (received == expect) { 6112 bool err; 6113 6114 err = cmd->fn(connection, &pi); 6115 if (err) { 6116 drbd_err(connection, "%ps failed\n", cmd->fn); 6117 goto reconnect; 6118 } 6119 6120 connection->last_received = jiffies; 6121 6122 if (cmd == &ack_receiver_tbl[P_PING_ACK]) { 6123 set_idle_timeout(connection); 6124 ping_timeout_active = false; 6125 } 6126 6127 buf = connection->meta.rbuf; 6128 received = 0; 6129 expect = header_size; 6130 cmd = NULL; 6131 } 6132 } 6133 6134 if (0) { 6135 reconnect: 6136 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6137 conn_md_sync(connection); 6138 } 6139 if (0) { 6140 disconnect: 6141 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 6142 } 6143 6144 drbd_info(connection, "ack_receiver terminated\n"); 6145 6146 return 0; 6147 } 6148 6149 void drbd_send_acks_wf(struct work_struct *ws) 6150 { 6151 struct drbd_peer_device *peer_device = 6152 container_of(ws, struct drbd_peer_device, send_acks_work); 6153 struct drbd_connection *connection = peer_device->connection; 6154 struct drbd_device *device = peer_device->device; 6155 struct net_conf *nc; 6156 int tcp_cork, err; 6157 6158 rcu_read_lock(); 6159 nc = rcu_dereference(connection->net_conf); 6160 tcp_cork = nc->tcp_cork; 6161 rcu_read_unlock(); 6162 6163 if (tcp_cork) 6164 tcp_sock_set_cork(connection->meta.socket->sk, true); 6165 6166 err = drbd_finish_peer_reqs(device); 6167 kref_put(&device->kref, drbd_destroy_device); 6168 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the 6169 struct work_struct send_acks_work alive, which is in the peer_device object */ 6170 6171 if (err) { 6172 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6173 return; 6174 } 6175 6176 if (tcp_cork) 6177 tcp_sock_set_cork(connection->meta.socket->sk, false); 6178 6179 return; 6180 } 6181