xref: /linux/drivers/block/drbd/drbd_main.c (revision f4bd0b4a9b21c609ede28cee2dcd16824c0489a8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13 
14 
15  */
16 
17 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44 
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51 
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57 
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 	      "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66 
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70 
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85 
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92 
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103 
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110 
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;	/* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120 
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125 	 member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 spinlock_t   drbd_pp_lock;
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131 
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133 
134 static const struct block_device_operations drbd_ops = {
135 	.owner		= THIS_MODULE,
136 	.submit_bio	= drbd_submit_bio,
137 	.open		= drbd_open,
138 	.release	= drbd_release,
139 };
140 
141 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
142 {
143 	struct bio *bio;
144 
145 	if (!bioset_initialized(&drbd_md_io_bio_set))
146 		return bio_alloc(gfp_mask, 1);
147 
148 	bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set);
149 	if (!bio)
150 		return NULL;
151 	return bio;
152 }
153 
154 #ifdef __CHECKER__
155 /* When checking with sparse, and this is an inline function, sparse will
156    give tons of false positives. When this is a real functions sparse works.
157  */
158 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
159 {
160 	int io_allowed;
161 
162 	atomic_inc(&device->local_cnt);
163 	io_allowed = (device->state.disk >= mins);
164 	if (!io_allowed) {
165 		if (atomic_dec_and_test(&device->local_cnt))
166 			wake_up(&device->misc_wait);
167 	}
168 	return io_allowed;
169 }
170 
171 #endif
172 
173 /**
174  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
175  * @connection:	DRBD connection.
176  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
177  * @set_size:	Expected number of requests before that barrier.
178  *
179  * In case the passed barrier_nr or set_size does not match the oldest
180  * epoch of not yet barrier-acked requests, this function will cause a
181  * termination of the connection.
182  */
183 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
184 		unsigned int set_size)
185 {
186 	struct drbd_request *r;
187 	struct drbd_request *req = NULL;
188 	int expect_epoch = 0;
189 	int expect_size = 0;
190 
191 	spin_lock_irq(&connection->resource->req_lock);
192 
193 	/* find oldest not yet barrier-acked write request,
194 	 * count writes in its epoch. */
195 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
196 		const unsigned s = r->rq_state;
197 		if (!req) {
198 			if (!(s & RQ_WRITE))
199 				continue;
200 			if (!(s & RQ_NET_MASK))
201 				continue;
202 			if (s & RQ_NET_DONE)
203 				continue;
204 			req = r;
205 			expect_epoch = req->epoch;
206 			expect_size ++;
207 		} else {
208 			if (r->epoch != expect_epoch)
209 				break;
210 			if (!(s & RQ_WRITE))
211 				continue;
212 			/* if (s & RQ_DONE): not expected */
213 			/* if (!(s & RQ_NET_MASK)): not expected */
214 			expect_size++;
215 		}
216 	}
217 
218 	/* first some paranoia code */
219 	if (req == NULL) {
220 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
221 			 barrier_nr);
222 		goto bail;
223 	}
224 	if (expect_epoch != barrier_nr) {
225 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
226 			 barrier_nr, expect_epoch);
227 		goto bail;
228 	}
229 
230 	if (expect_size != set_size) {
231 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
232 			 barrier_nr, set_size, expect_size);
233 		goto bail;
234 	}
235 
236 	/* Clean up list of requests processed during current epoch. */
237 	/* this extra list walk restart is paranoia,
238 	 * to catch requests being barrier-acked "unexpectedly".
239 	 * It usually should find the same req again, or some READ preceding it. */
240 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
241 		if (req->epoch == expect_epoch)
242 			break;
243 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
244 		if (req->epoch != expect_epoch)
245 			break;
246 		_req_mod(req, BARRIER_ACKED);
247 	}
248 	spin_unlock_irq(&connection->resource->req_lock);
249 
250 	return;
251 
252 bail:
253 	spin_unlock_irq(&connection->resource->req_lock);
254 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
255 }
256 
257 
258 /**
259  * _tl_restart() - Walks the transfer log, and applies an action to all requests
260  * @connection:	DRBD connection to operate on.
261  * @what:       The action/event to perform with all request objects
262  *
263  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
264  * RESTART_FROZEN_DISK_IO.
265  */
266 /* must hold resource->req_lock */
267 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
268 {
269 	struct drbd_request *req, *r;
270 
271 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
272 		_req_mod(req, what);
273 }
274 
275 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
276 {
277 	spin_lock_irq(&connection->resource->req_lock);
278 	_tl_restart(connection, what);
279 	spin_unlock_irq(&connection->resource->req_lock);
280 }
281 
282 /**
283  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
284  * @device:	DRBD device.
285  *
286  * This is called after the connection to the peer was lost. The storage covered
287  * by the requests on the transfer gets marked as our of sync. Called from the
288  * receiver thread and the worker thread.
289  */
290 void tl_clear(struct drbd_connection *connection)
291 {
292 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
293 }
294 
295 /**
296  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
297  * @device:	DRBD device.
298  */
299 void tl_abort_disk_io(struct drbd_device *device)
300 {
301 	struct drbd_connection *connection = first_peer_device(device)->connection;
302 	struct drbd_request *req, *r;
303 
304 	spin_lock_irq(&connection->resource->req_lock);
305 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
306 		if (!(req->rq_state & RQ_LOCAL_PENDING))
307 			continue;
308 		if (req->device != device)
309 			continue;
310 		_req_mod(req, ABORT_DISK_IO);
311 	}
312 	spin_unlock_irq(&connection->resource->req_lock);
313 }
314 
315 static int drbd_thread_setup(void *arg)
316 {
317 	struct drbd_thread *thi = (struct drbd_thread *) arg;
318 	struct drbd_resource *resource = thi->resource;
319 	unsigned long flags;
320 	int retval;
321 
322 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
323 		 thi->name[0],
324 		 resource->name);
325 
326 	allow_kernel_signal(DRBD_SIGKILL);
327 	allow_kernel_signal(SIGXCPU);
328 restart:
329 	retval = thi->function(thi);
330 
331 	spin_lock_irqsave(&thi->t_lock, flags);
332 
333 	/* if the receiver has been "EXITING", the last thing it did
334 	 * was set the conn state to "StandAlone",
335 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
336 	 * and receiver thread will be "started".
337 	 * drbd_thread_start needs to set "RESTARTING" in that case.
338 	 * t_state check and assignment needs to be within the same spinlock,
339 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
340 	 * or thread_start see NONE, and can proceed as normal.
341 	 */
342 
343 	if (thi->t_state == RESTARTING) {
344 		drbd_info(resource, "Restarting %s thread\n", thi->name);
345 		thi->t_state = RUNNING;
346 		spin_unlock_irqrestore(&thi->t_lock, flags);
347 		goto restart;
348 	}
349 
350 	thi->task = NULL;
351 	thi->t_state = NONE;
352 	smp_mb();
353 	complete_all(&thi->stop);
354 	spin_unlock_irqrestore(&thi->t_lock, flags);
355 
356 	drbd_info(resource, "Terminating %s\n", current->comm);
357 
358 	/* Release mod reference taken when thread was started */
359 
360 	if (thi->connection)
361 		kref_put(&thi->connection->kref, drbd_destroy_connection);
362 	kref_put(&resource->kref, drbd_destroy_resource);
363 	module_put(THIS_MODULE);
364 	return retval;
365 }
366 
367 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
368 			     int (*func) (struct drbd_thread *), const char *name)
369 {
370 	spin_lock_init(&thi->t_lock);
371 	thi->task    = NULL;
372 	thi->t_state = NONE;
373 	thi->function = func;
374 	thi->resource = resource;
375 	thi->connection = NULL;
376 	thi->name = name;
377 }
378 
379 int drbd_thread_start(struct drbd_thread *thi)
380 {
381 	struct drbd_resource *resource = thi->resource;
382 	struct task_struct *nt;
383 	unsigned long flags;
384 
385 	/* is used from state engine doing drbd_thread_stop_nowait,
386 	 * while holding the req lock irqsave */
387 	spin_lock_irqsave(&thi->t_lock, flags);
388 
389 	switch (thi->t_state) {
390 	case NONE:
391 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
392 			 thi->name, current->comm, current->pid);
393 
394 		/* Get ref on module for thread - this is released when thread exits */
395 		if (!try_module_get(THIS_MODULE)) {
396 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
397 			spin_unlock_irqrestore(&thi->t_lock, flags);
398 			return false;
399 		}
400 
401 		kref_get(&resource->kref);
402 		if (thi->connection)
403 			kref_get(&thi->connection->kref);
404 
405 		init_completion(&thi->stop);
406 		thi->reset_cpu_mask = 1;
407 		thi->t_state = RUNNING;
408 		spin_unlock_irqrestore(&thi->t_lock, flags);
409 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
410 
411 		nt = kthread_create(drbd_thread_setup, (void *) thi,
412 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
413 
414 		if (IS_ERR(nt)) {
415 			drbd_err(resource, "Couldn't start thread\n");
416 
417 			if (thi->connection)
418 				kref_put(&thi->connection->kref, drbd_destroy_connection);
419 			kref_put(&resource->kref, drbd_destroy_resource);
420 			module_put(THIS_MODULE);
421 			return false;
422 		}
423 		spin_lock_irqsave(&thi->t_lock, flags);
424 		thi->task = nt;
425 		thi->t_state = RUNNING;
426 		spin_unlock_irqrestore(&thi->t_lock, flags);
427 		wake_up_process(nt);
428 		break;
429 	case EXITING:
430 		thi->t_state = RESTARTING;
431 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
432 				thi->name, current->comm, current->pid);
433 		fallthrough;
434 	case RUNNING:
435 	case RESTARTING:
436 	default:
437 		spin_unlock_irqrestore(&thi->t_lock, flags);
438 		break;
439 	}
440 
441 	return true;
442 }
443 
444 
445 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
446 {
447 	unsigned long flags;
448 
449 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
450 
451 	/* may be called from state engine, holding the req lock irqsave */
452 	spin_lock_irqsave(&thi->t_lock, flags);
453 
454 	if (thi->t_state == NONE) {
455 		spin_unlock_irqrestore(&thi->t_lock, flags);
456 		if (restart)
457 			drbd_thread_start(thi);
458 		return;
459 	}
460 
461 	if (thi->t_state != ns) {
462 		if (thi->task == NULL) {
463 			spin_unlock_irqrestore(&thi->t_lock, flags);
464 			return;
465 		}
466 
467 		thi->t_state = ns;
468 		smp_mb();
469 		init_completion(&thi->stop);
470 		if (thi->task != current)
471 			send_sig(DRBD_SIGKILL, thi->task, 1);
472 	}
473 
474 	spin_unlock_irqrestore(&thi->t_lock, flags);
475 
476 	if (wait)
477 		wait_for_completion(&thi->stop);
478 }
479 
480 int conn_lowest_minor(struct drbd_connection *connection)
481 {
482 	struct drbd_peer_device *peer_device;
483 	int vnr = 0, minor = -1;
484 
485 	rcu_read_lock();
486 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
487 	if (peer_device)
488 		minor = device_to_minor(peer_device->device);
489 	rcu_read_unlock();
490 
491 	return minor;
492 }
493 
494 #ifdef CONFIG_SMP
495 /**
496  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
497  *
498  * Forces all threads of a resource onto the same CPU. This is beneficial for
499  * DRBD's performance. May be overwritten by user's configuration.
500  */
501 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
502 {
503 	unsigned int *resources_per_cpu, min_index = ~0;
504 
505 	resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
506 				    GFP_KERNEL);
507 	if (resources_per_cpu) {
508 		struct drbd_resource *resource;
509 		unsigned int cpu, min = ~0;
510 
511 		rcu_read_lock();
512 		for_each_resource_rcu(resource, &drbd_resources) {
513 			for_each_cpu(cpu, resource->cpu_mask)
514 				resources_per_cpu[cpu]++;
515 		}
516 		rcu_read_unlock();
517 		for_each_online_cpu(cpu) {
518 			if (resources_per_cpu[cpu] < min) {
519 				min = resources_per_cpu[cpu];
520 				min_index = cpu;
521 			}
522 		}
523 		kfree(resources_per_cpu);
524 	}
525 	if (min_index == ~0) {
526 		cpumask_setall(*cpu_mask);
527 		return;
528 	}
529 	cpumask_set_cpu(min_index, *cpu_mask);
530 }
531 
532 /**
533  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
534  * @device:	DRBD device.
535  * @thi:	drbd_thread object
536  *
537  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
538  * prematurely.
539  */
540 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
541 {
542 	struct drbd_resource *resource = thi->resource;
543 	struct task_struct *p = current;
544 
545 	if (!thi->reset_cpu_mask)
546 		return;
547 	thi->reset_cpu_mask = 0;
548 	set_cpus_allowed_ptr(p, resource->cpu_mask);
549 }
550 #else
551 #define drbd_calc_cpu_mask(A) ({})
552 #endif
553 
554 /**
555  * drbd_header_size  -  size of a packet header
556  *
557  * The header size is a multiple of 8, so any payload following the header is
558  * word aligned on 64-bit architectures.  (The bitmap send and receive code
559  * relies on this.)
560  */
561 unsigned int drbd_header_size(struct drbd_connection *connection)
562 {
563 	if (connection->agreed_pro_version >= 100) {
564 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
565 		return sizeof(struct p_header100);
566 	} else {
567 		BUILD_BUG_ON(sizeof(struct p_header80) !=
568 			     sizeof(struct p_header95));
569 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
570 		return sizeof(struct p_header80);
571 	}
572 }
573 
574 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
575 {
576 	h->magic   = cpu_to_be32(DRBD_MAGIC);
577 	h->command = cpu_to_be16(cmd);
578 	h->length  = cpu_to_be16(size);
579 	return sizeof(struct p_header80);
580 }
581 
582 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
583 {
584 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
585 	h->command = cpu_to_be16(cmd);
586 	h->length = cpu_to_be32(size);
587 	return sizeof(struct p_header95);
588 }
589 
590 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
591 				      int size, int vnr)
592 {
593 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
594 	h->volume = cpu_to_be16(vnr);
595 	h->command = cpu_to_be16(cmd);
596 	h->length = cpu_to_be32(size);
597 	h->pad = 0;
598 	return sizeof(struct p_header100);
599 }
600 
601 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
602 				   void *buffer, enum drbd_packet cmd, int size)
603 {
604 	if (connection->agreed_pro_version >= 100)
605 		return prepare_header100(buffer, cmd, size, vnr);
606 	else if (connection->agreed_pro_version >= 95 &&
607 		 size > DRBD_MAX_SIZE_H80_PACKET)
608 		return prepare_header95(buffer, cmd, size);
609 	else
610 		return prepare_header80(buffer, cmd, size);
611 }
612 
613 static void *__conn_prepare_command(struct drbd_connection *connection,
614 				    struct drbd_socket *sock)
615 {
616 	if (!sock->socket)
617 		return NULL;
618 	return sock->sbuf + drbd_header_size(connection);
619 }
620 
621 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
622 {
623 	void *p;
624 
625 	mutex_lock(&sock->mutex);
626 	p = __conn_prepare_command(connection, sock);
627 	if (!p)
628 		mutex_unlock(&sock->mutex);
629 
630 	return p;
631 }
632 
633 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
634 {
635 	return conn_prepare_command(peer_device->connection, sock);
636 }
637 
638 static int __send_command(struct drbd_connection *connection, int vnr,
639 			  struct drbd_socket *sock, enum drbd_packet cmd,
640 			  unsigned int header_size, void *data,
641 			  unsigned int size)
642 {
643 	int msg_flags;
644 	int err;
645 
646 	/*
647 	 * Called with @data == NULL and the size of the data blocks in @size
648 	 * for commands that send data blocks.  For those commands, omit the
649 	 * MSG_MORE flag: this will increase the likelihood that data blocks
650 	 * which are page aligned on the sender will end up page aligned on the
651 	 * receiver.
652 	 */
653 	msg_flags = data ? MSG_MORE : 0;
654 
655 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
656 				      header_size + size);
657 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
658 			    msg_flags);
659 	if (data && !err)
660 		err = drbd_send_all(connection, sock->socket, data, size, 0);
661 	/* DRBD protocol "pings" are latency critical.
662 	 * This is supposed to trigger tcp_push_pending_frames() */
663 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
664 		tcp_sock_set_nodelay(sock->socket->sk);
665 
666 	return err;
667 }
668 
669 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
670 			       enum drbd_packet cmd, unsigned int header_size,
671 			       void *data, unsigned int size)
672 {
673 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
674 }
675 
676 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677 		      enum drbd_packet cmd, unsigned int header_size,
678 		      void *data, unsigned int size)
679 {
680 	int err;
681 
682 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
683 	mutex_unlock(&sock->mutex);
684 	return err;
685 }
686 
687 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
688 		      enum drbd_packet cmd, unsigned int header_size,
689 		      void *data, unsigned int size)
690 {
691 	int err;
692 
693 	err = __send_command(peer_device->connection, peer_device->device->vnr,
694 			     sock, cmd, header_size, data, size);
695 	mutex_unlock(&sock->mutex);
696 	return err;
697 }
698 
699 int drbd_send_ping(struct drbd_connection *connection)
700 {
701 	struct drbd_socket *sock;
702 
703 	sock = &connection->meta;
704 	if (!conn_prepare_command(connection, sock))
705 		return -EIO;
706 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
707 }
708 
709 int drbd_send_ping_ack(struct drbd_connection *connection)
710 {
711 	struct drbd_socket *sock;
712 
713 	sock = &connection->meta;
714 	if (!conn_prepare_command(connection, sock))
715 		return -EIO;
716 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
717 }
718 
719 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
720 {
721 	struct drbd_socket *sock;
722 	struct p_rs_param_95 *p;
723 	int size;
724 	const int apv = peer_device->connection->agreed_pro_version;
725 	enum drbd_packet cmd;
726 	struct net_conf *nc;
727 	struct disk_conf *dc;
728 
729 	sock = &peer_device->connection->data;
730 	p = drbd_prepare_command(peer_device, sock);
731 	if (!p)
732 		return -EIO;
733 
734 	rcu_read_lock();
735 	nc = rcu_dereference(peer_device->connection->net_conf);
736 
737 	size = apv <= 87 ? sizeof(struct p_rs_param)
738 		: apv == 88 ? sizeof(struct p_rs_param)
739 			+ strlen(nc->verify_alg) + 1
740 		: apv <= 94 ? sizeof(struct p_rs_param_89)
741 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
742 
743 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
744 
745 	/* initialize verify_alg and csums_alg */
746 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
747 
748 	if (get_ldev(peer_device->device)) {
749 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
750 		p->resync_rate = cpu_to_be32(dc->resync_rate);
751 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
752 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
753 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
754 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
755 		put_ldev(peer_device->device);
756 	} else {
757 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
758 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
759 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
760 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
761 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
762 	}
763 
764 	if (apv >= 88)
765 		strcpy(p->verify_alg, nc->verify_alg);
766 	if (apv >= 89)
767 		strcpy(p->csums_alg, nc->csums_alg);
768 	rcu_read_unlock();
769 
770 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
771 }
772 
773 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
774 {
775 	struct drbd_socket *sock;
776 	struct p_protocol *p;
777 	struct net_conf *nc;
778 	int size, cf;
779 
780 	sock = &connection->data;
781 	p = __conn_prepare_command(connection, sock);
782 	if (!p)
783 		return -EIO;
784 
785 	rcu_read_lock();
786 	nc = rcu_dereference(connection->net_conf);
787 
788 	if (nc->tentative && connection->agreed_pro_version < 92) {
789 		rcu_read_unlock();
790 		drbd_err(connection, "--dry-run is not supported by peer");
791 		return -EOPNOTSUPP;
792 	}
793 
794 	size = sizeof(*p);
795 	if (connection->agreed_pro_version >= 87)
796 		size += strlen(nc->integrity_alg) + 1;
797 
798 	p->protocol      = cpu_to_be32(nc->wire_protocol);
799 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
800 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
801 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
802 	p->two_primaries = cpu_to_be32(nc->two_primaries);
803 	cf = 0;
804 	if (nc->discard_my_data)
805 		cf |= CF_DISCARD_MY_DATA;
806 	if (nc->tentative)
807 		cf |= CF_DRY_RUN;
808 	p->conn_flags    = cpu_to_be32(cf);
809 
810 	if (connection->agreed_pro_version >= 87)
811 		strcpy(p->integrity_alg, nc->integrity_alg);
812 	rcu_read_unlock();
813 
814 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
815 }
816 
817 int drbd_send_protocol(struct drbd_connection *connection)
818 {
819 	int err;
820 
821 	mutex_lock(&connection->data.mutex);
822 	err = __drbd_send_protocol(connection, P_PROTOCOL);
823 	mutex_unlock(&connection->data.mutex);
824 
825 	return err;
826 }
827 
828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
829 {
830 	struct drbd_device *device = peer_device->device;
831 	struct drbd_socket *sock;
832 	struct p_uuids *p;
833 	int i;
834 
835 	if (!get_ldev_if_state(device, D_NEGOTIATING))
836 		return 0;
837 
838 	sock = &peer_device->connection->data;
839 	p = drbd_prepare_command(peer_device, sock);
840 	if (!p) {
841 		put_ldev(device);
842 		return -EIO;
843 	}
844 	spin_lock_irq(&device->ldev->md.uuid_lock);
845 	for (i = UI_CURRENT; i < UI_SIZE; i++)
846 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
847 	spin_unlock_irq(&device->ldev->md.uuid_lock);
848 
849 	device->comm_bm_set = drbd_bm_total_weight(device);
850 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
851 	rcu_read_lock();
852 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
853 	rcu_read_unlock();
854 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
855 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
856 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
857 
858 	put_ldev(device);
859 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
860 }
861 
862 int drbd_send_uuids(struct drbd_peer_device *peer_device)
863 {
864 	return _drbd_send_uuids(peer_device, 0);
865 }
866 
867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
868 {
869 	return _drbd_send_uuids(peer_device, 8);
870 }
871 
872 void drbd_print_uuids(struct drbd_device *device, const char *text)
873 {
874 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
875 		u64 *uuid = device->ldev->md.uuid;
876 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
877 		     text,
878 		     (unsigned long long)uuid[UI_CURRENT],
879 		     (unsigned long long)uuid[UI_BITMAP],
880 		     (unsigned long long)uuid[UI_HISTORY_START],
881 		     (unsigned long long)uuid[UI_HISTORY_END]);
882 		put_ldev(device);
883 	} else {
884 		drbd_info(device, "%s effective data uuid: %016llX\n",
885 				text,
886 				(unsigned long long)device->ed_uuid);
887 	}
888 }
889 
890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
891 {
892 	struct drbd_device *device = peer_device->device;
893 	struct drbd_socket *sock;
894 	struct p_rs_uuid *p;
895 	u64 uuid;
896 
897 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
898 
899 	uuid = device->ldev->md.uuid[UI_BITMAP];
900 	if (uuid && uuid != UUID_JUST_CREATED)
901 		uuid = uuid + UUID_NEW_BM_OFFSET;
902 	else
903 		get_random_bytes(&uuid, sizeof(u64));
904 	drbd_uuid_set(device, UI_BITMAP, uuid);
905 	drbd_print_uuids(device, "updated sync UUID");
906 	drbd_md_sync(device);
907 
908 	sock = &peer_device->connection->data;
909 	p = drbd_prepare_command(peer_device, sock);
910 	if (p) {
911 		p->uuid = cpu_to_be64(uuid);
912 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
913 	}
914 }
915 
916 /* communicated if (agreed_features & DRBD_FF_WSAME) */
917 static void
918 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
919 					struct request_queue *q)
920 {
921 	if (q) {
922 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
923 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
924 		p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
925 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
926 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
927 		p->qlim->discard_enabled = blk_queue_discard(q);
928 		p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
929 	} else {
930 		q = device->rq_queue;
931 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
932 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
933 		p->qlim->alignment_offset = 0;
934 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
935 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
936 		p->qlim->discard_enabled = 0;
937 		p->qlim->write_same_capable = 0;
938 	}
939 }
940 
941 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
942 {
943 	struct drbd_device *device = peer_device->device;
944 	struct drbd_socket *sock;
945 	struct p_sizes *p;
946 	sector_t d_size, u_size;
947 	int q_order_type;
948 	unsigned int max_bio_size;
949 	unsigned int packet_size;
950 
951 	sock = &peer_device->connection->data;
952 	p = drbd_prepare_command(peer_device, sock);
953 	if (!p)
954 		return -EIO;
955 
956 	packet_size = sizeof(*p);
957 	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
958 		packet_size += sizeof(p->qlim[0]);
959 
960 	memset(p, 0, packet_size);
961 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
962 		struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
963 		d_size = drbd_get_max_capacity(device->ldev);
964 		rcu_read_lock();
965 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
966 		rcu_read_unlock();
967 		q_order_type = drbd_queue_order_type(device);
968 		max_bio_size = queue_max_hw_sectors(q) << 9;
969 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
970 		assign_p_sizes_qlim(device, p, q);
971 		put_ldev(device);
972 	} else {
973 		d_size = 0;
974 		u_size = 0;
975 		q_order_type = QUEUE_ORDERED_NONE;
976 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
977 		assign_p_sizes_qlim(device, p, NULL);
978 	}
979 
980 	if (peer_device->connection->agreed_pro_version <= 94)
981 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
982 	else if (peer_device->connection->agreed_pro_version < 100)
983 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
984 
985 	p->d_size = cpu_to_be64(d_size);
986 	p->u_size = cpu_to_be64(u_size);
987 	if (trigger_reply)
988 		p->c_size = 0;
989 	else
990 		p->c_size = cpu_to_be64(get_capacity(device->vdisk));
991 	p->max_bio_size = cpu_to_be32(max_bio_size);
992 	p->queue_order_type = cpu_to_be16(q_order_type);
993 	p->dds_flags = cpu_to_be16(flags);
994 
995 	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
996 }
997 
998 /**
999  * drbd_send_current_state() - Sends the drbd state to the peer
1000  * @peer_device:	DRBD peer device.
1001  */
1002 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1003 {
1004 	struct drbd_socket *sock;
1005 	struct p_state *p;
1006 
1007 	sock = &peer_device->connection->data;
1008 	p = drbd_prepare_command(peer_device, sock);
1009 	if (!p)
1010 		return -EIO;
1011 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1012 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1013 }
1014 
1015 /**
1016  * drbd_send_state() - After a state change, sends the new state to the peer
1017  * @peer_device:      DRBD peer device.
1018  * @state:     the state to send, not necessarily the current state.
1019  *
1020  * Each state change queues an "after_state_ch" work, which will eventually
1021  * send the resulting new state to the peer. If more state changes happen
1022  * between queuing and processing of the after_state_ch work, we still
1023  * want to send each intermediary state in the order it occurred.
1024  */
1025 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1026 {
1027 	struct drbd_socket *sock;
1028 	struct p_state *p;
1029 
1030 	sock = &peer_device->connection->data;
1031 	p = drbd_prepare_command(peer_device, sock);
1032 	if (!p)
1033 		return -EIO;
1034 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1035 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1036 }
1037 
1038 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1039 {
1040 	struct drbd_socket *sock;
1041 	struct p_req_state *p;
1042 
1043 	sock = &peer_device->connection->data;
1044 	p = drbd_prepare_command(peer_device, sock);
1045 	if (!p)
1046 		return -EIO;
1047 	p->mask = cpu_to_be32(mask.i);
1048 	p->val = cpu_to_be32(val.i);
1049 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1050 }
1051 
1052 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1053 {
1054 	enum drbd_packet cmd;
1055 	struct drbd_socket *sock;
1056 	struct p_req_state *p;
1057 
1058 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1059 	sock = &connection->data;
1060 	p = conn_prepare_command(connection, sock);
1061 	if (!p)
1062 		return -EIO;
1063 	p->mask = cpu_to_be32(mask.i);
1064 	p->val = cpu_to_be32(val.i);
1065 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1066 }
1067 
1068 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1069 {
1070 	struct drbd_socket *sock;
1071 	struct p_req_state_reply *p;
1072 
1073 	sock = &peer_device->connection->meta;
1074 	p = drbd_prepare_command(peer_device, sock);
1075 	if (p) {
1076 		p->retcode = cpu_to_be32(retcode);
1077 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1078 	}
1079 }
1080 
1081 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1082 {
1083 	struct drbd_socket *sock;
1084 	struct p_req_state_reply *p;
1085 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1086 
1087 	sock = &connection->meta;
1088 	p = conn_prepare_command(connection, sock);
1089 	if (p) {
1090 		p->retcode = cpu_to_be32(retcode);
1091 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1092 	}
1093 }
1094 
1095 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1096 {
1097 	BUG_ON(code & ~0xf);
1098 	p->encoding = (p->encoding & ~0xf) | code;
1099 }
1100 
1101 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1102 {
1103 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1104 }
1105 
1106 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1107 {
1108 	BUG_ON(n & ~0x7);
1109 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1110 }
1111 
1112 static int fill_bitmap_rle_bits(struct drbd_device *device,
1113 			 struct p_compressed_bm *p,
1114 			 unsigned int size,
1115 			 struct bm_xfer_ctx *c)
1116 {
1117 	struct bitstream bs;
1118 	unsigned long plain_bits;
1119 	unsigned long tmp;
1120 	unsigned long rl;
1121 	unsigned len;
1122 	unsigned toggle;
1123 	int bits, use_rle;
1124 
1125 	/* may we use this feature? */
1126 	rcu_read_lock();
1127 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1128 	rcu_read_unlock();
1129 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1130 		return 0;
1131 
1132 	if (c->bit_offset >= c->bm_bits)
1133 		return 0; /* nothing to do. */
1134 
1135 	/* use at most thus many bytes */
1136 	bitstream_init(&bs, p->code, size, 0);
1137 	memset(p->code, 0, size);
1138 	/* plain bits covered in this code string */
1139 	plain_bits = 0;
1140 
1141 	/* p->encoding & 0x80 stores whether the first run length is set.
1142 	 * bit offset is implicit.
1143 	 * start with toggle == 2 to be able to tell the first iteration */
1144 	toggle = 2;
1145 
1146 	/* see how much plain bits we can stuff into one packet
1147 	 * using RLE and VLI. */
1148 	do {
1149 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1150 				    : _drbd_bm_find_next(device, c->bit_offset);
1151 		if (tmp == -1UL)
1152 			tmp = c->bm_bits;
1153 		rl = tmp - c->bit_offset;
1154 
1155 		if (toggle == 2) { /* first iteration */
1156 			if (rl == 0) {
1157 				/* the first checked bit was set,
1158 				 * store start value, */
1159 				dcbp_set_start(p, 1);
1160 				/* but skip encoding of zero run length */
1161 				toggle = !toggle;
1162 				continue;
1163 			}
1164 			dcbp_set_start(p, 0);
1165 		}
1166 
1167 		/* paranoia: catch zero runlength.
1168 		 * can only happen if bitmap is modified while we scan it. */
1169 		if (rl == 0) {
1170 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1171 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1172 			return -1;
1173 		}
1174 
1175 		bits = vli_encode_bits(&bs, rl);
1176 		if (bits == -ENOBUFS) /* buffer full */
1177 			break;
1178 		if (bits <= 0) {
1179 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1180 			return 0;
1181 		}
1182 
1183 		toggle = !toggle;
1184 		plain_bits += rl;
1185 		c->bit_offset = tmp;
1186 	} while (c->bit_offset < c->bm_bits);
1187 
1188 	len = bs.cur.b - p->code + !!bs.cur.bit;
1189 
1190 	if (plain_bits < (len << 3)) {
1191 		/* incompressible with this method.
1192 		 * we need to rewind both word and bit position. */
1193 		c->bit_offset -= plain_bits;
1194 		bm_xfer_ctx_bit_to_word_offset(c);
1195 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1196 		return 0;
1197 	}
1198 
1199 	/* RLE + VLI was able to compress it just fine.
1200 	 * update c->word_offset. */
1201 	bm_xfer_ctx_bit_to_word_offset(c);
1202 
1203 	/* store pad_bits */
1204 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1205 
1206 	return len;
1207 }
1208 
1209 /**
1210  * send_bitmap_rle_or_plain
1211  *
1212  * Return 0 when done, 1 when another iteration is needed, and a negative error
1213  * code upon failure.
1214  */
1215 static int
1216 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1217 {
1218 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1219 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1220 	struct p_compressed_bm *p = sock->sbuf + header_size;
1221 	int len, err;
1222 
1223 	len = fill_bitmap_rle_bits(device, p,
1224 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1225 	if (len < 0)
1226 		return -EIO;
1227 
1228 	if (len) {
1229 		dcbp_set_code(p, RLE_VLI_Bits);
1230 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1231 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1232 				     NULL, 0);
1233 		c->packets[0]++;
1234 		c->bytes[0] += header_size + sizeof(*p) + len;
1235 
1236 		if (c->bit_offset >= c->bm_bits)
1237 			len = 0; /* DONE */
1238 	} else {
1239 		/* was not compressible.
1240 		 * send a buffer full of plain text bits instead. */
1241 		unsigned int data_size;
1242 		unsigned long num_words;
1243 		unsigned long *p = sock->sbuf + header_size;
1244 
1245 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1246 		num_words = min_t(size_t, data_size / sizeof(*p),
1247 				  c->bm_words - c->word_offset);
1248 		len = num_words * sizeof(*p);
1249 		if (len)
1250 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1251 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1252 		c->word_offset += num_words;
1253 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1254 
1255 		c->packets[1]++;
1256 		c->bytes[1] += header_size + len;
1257 
1258 		if (c->bit_offset > c->bm_bits)
1259 			c->bit_offset = c->bm_bits;
1260 	}
1261 	if (!err) {
1262 		if (len == 0) {
1263 			INFO_bm_xfer_stats(device, "send", c);
1264 			return 0;
1265 		} else
1266 			return 1;
1267 	}
1268 	return -EIO;
1269 }
1270 
1271 /* See the comment at receive_bitmap() */
1272 static int _drbd_send_bitmap(struct drbd_device *device)
1273 {
1274 	struct bm_xfer_ctx c;
1275 	int err;
1276 
1277 	if (!expect(device->bitmap))
1278 		return false;
1279 
1280 	if (get_ldev(device)) {
1281 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1282 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1283 			drbd_bm_set_all(device);
1284 			if (drbd_bm_write(device)) {
1285 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1286 				 * but otherwise process as per normal - need to tell other
1287 				 * side that a full resync is required! */
1288 				drbd_err(device, "Failed to write bitmap to disk!\n");
1289 			} else {
1290 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1291 				drbd_md_sync(device);
1292 			}
1293 		}
1294 		put_ldev(device);
1295 	}
1296 
1297 	c = (struct bm_xfer_ctx) {
1298 		.bm_bits = drbd_bm_bits(device),
1299 		.bm_words = drbd_bm_words(device),
1300 	};
1301 
1302 	do {
1303 		err = send_bitmap_rle_or_plain(device, &c);
1304 	} while (err > 0);
1305 
1306 	return err == 0;
1307 }
1308 
1309 int drbd_send_bitmap(struct drbd_device *device)
1310 {
1311 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1312 	int err = -1;
1313 
1314 	mutex_lock(&sock->mutex);
1315 	if (sock->socket)
1316 		err = !_drbd_send_bitmap(device);
1317 	mutex_unlock(&sock->mutex);
1318 	return err;
1319 }
1320 
1321 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1322 {
1323 	struct drbd_socket *sock;
1324 	struct p_barrier_ack *p;
1325 
1326 	if (connection->cstate < C_WF_REPORT_PARAMS)
1327 		return;
1328 
1329 	sock = &connection->meta;
1330 	p = conn_prepare_command(connection, sock);
1331 	if (!p)
1332 		return;
1333 	p->barrier = barrier_nr;
1334 	p->set_size = cpu_to_be32(set_size);
1335 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1336 }
1337 
1338 /**
1339  * _drbd_send_ack() - Sends an ack packet
1340  * @device:	DRBD device.
1341  * @cmd:	Packet command code.
1342  * @sector:	sector, needs to be in big endian byte order
1343  * @blksize:	size in byte, needs to be in big endian byte order
1344  * @block_id:	Id, big endian byte order
1345  */
1346 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1347 			  u64 sector, u32 blksize, u64 block_id)
1348 {
1349 	struct drbd_socket *sock;
1350 	struct p_block_ack *p;
1351 
1352 	if (peer_device->device->state.conn < C_CONNECTED)
1353 		return -EIO;
1354 
1355 	sock = &peer_device->connection->meta;
1356 	p = drbd_prepare_command(peer_device, sock);
1357 	if (!p)
1358 		return -EIO;
1359 	p->sector = sector;
1360 	p->block_id = block_id;
1361 	p->blksize = blksize;
1362 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1363 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1364 }
1365 
1366 /* dp->sector and dp->block_id already/still in network byte order,
1367  * data_size is payload size according to dp->head,
1368  * and may need to be corrected for digest size. */
1369 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1370 		      struct p_data *dp, int data_size)
1371 {
1372 	if (peer_device->connection->peer_integrity_tfm)
1373 		data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1374 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1375 		       dp->block_id);
1376 }
1377 
1378 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1379 		      struct p_block_req *rp)
1380 {
1381 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1382 }
1383 
1384 /**
1385  * drbd_send_ack() - Sends an ack packet
1386  * @device:	DRBD device
1387  * @cmd:	packet command code
1388  * @peer_req:	peer request
1389  */
1390 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1391 		  struct drbd_peer_request *peer_req)
1392 {
1393 	return _drbd_send_ack(peer_device, cmd,
1394 			      cpu_to_be64(peer_req->i.sector),
1395 			      cpu_to_be32(peer_req->i.size),
1396 			      peer_req->block_id);
1397 }
1398 
1399 /* This function misuses the block_id field to signal if the blocks
1400  * are is sync or not. */
1401 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1402 		     sector_t sector, int blksize, u64 block_id)
1403 {
1404 	return _drbd_send_ack(peer_device, cmd,
1405 			      cpu_to_be64(sector),
1406 			      cpu_to_be32(blksize),
1407 			      cpu_to_be64(block_id));
1408 }
1409 
1410 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1411 			     struct drbd_peer_request *peer_req)
1412 {
1413 	struct drbd_socket *sock;
1414 	struct p_block_desc *p;
1415 
1416 	sock = &peer_device->connection->data;
1417 	p = drbd_prepare_command(peer_device, sock);
1418 	if (!p)
1419 		return -EIO;
1420 	p->sector = cpu_to_be64(peer_req->i.sector);
1421 	p->blksize = cpu_to_be32(peer_req->i.size);
1422 	p->pad = 0;
1423 	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1424 }
1425 
1426 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1427 		       sector_t sector, int size, u64 block_id)
1428 {
1429 	struct drbd_socket *sock;
1430 	struct p_block_req *p;
1431 
1432 	sock = &peer_device->connection->data;
1433 	p = drbd_prepare_command(peer_device, sock);
1434 	if (!p)
1435 		return -EIO;
1436 	p->sector = cpu_to_be64(sector);
1437 	p->block_id = block_id;
1438 	p->blksize = cpu_to_be32(size);
1439 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1440 }
1441 
1442 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1443 			    void *digest, int digest_size, enum drbd_packet cmd)
1444 {
1445 	struct drbd_socket *sock;
1446 	struct p_block_req *p;
1447 
1448 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1449 
1450 	sock = &peer_device->connection->data;
1451 	p = drbd_prepare_command(peer_device, sock);
1452 	if (!p)
1453 		return -EIO;
1454 	p->sector = cpu_to_be64(sector);
1455 	p->block_id = ID_SYNCER /* unused */;
1456 	p->blksize = cpu_to_be32(size);
1457 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1458 }
1459 
1460 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1461 {
1462 	struct drbd_socket *sock;
1463 	struct p_block_req *p;
1464 
1465 	sock = &peer_device->connection->data;
1466 	p = drbd_prepare_command(peer_device, sock);
1467 	if (!p)
1468 		return -EIO;
1469 	p->sector = cpu_to_be64(sector);
1470 	p->block_id = ID_SYNCER /* unused */;
1471 	p->blksize = cpu_to_be32(size);
1472 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1473 }
1474 
1475 /* called on sndtimeo
1476  * returns false if we should retry,
1477  * true if we think connection is dead
1478  */
1479 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1480 {
1481 	int drop_it;
1482 	/* long elapsed = (long)(jiffies - device->last_received); */
1483 
1484 	drop_it =   connection->meta.socket == sock
1485 		|| !connection->ack_receiver.task
1486 		|| get_t_state(&connection->ack_receiver) != RUNNING
1487 		|| connection->cstate < C_WF_REPORT_PARAMS;
1488 
1489 	if (drop_it)
1490 		return true;
1491 
1492 	drop_it = !--connection->ko_count;
1493 	if (!drop_it) {
1494 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1495 			 current->comm, current->pid, connection->ko_count);
1496 		request_ping(connection);
1497 	}
1498 
1499 	return drop_it; /* && (device->state == R_PRIMARY) */;
1500 }
1501 
1502 static void drbd_update_congested(struct drbd_connection *connection)
1503 {
1504 	struct sock *sk = connection->data.socket->sk;
1505 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1506 		set_bit(NET_CONGESTED, &connection->flags);
1507 }
1508 
1509 /* The idea of sendpage seems to be to put some kind of reference
1510  * to the page into the skb, and to hand it over to the NIC. In
1511  * this process get_page() gets called.
1512  *
1513  * As soon as the page was really sent over the network put_page()
1514  * gets called by some part of the network layer. [ NIC driver? ]
1515  *
1516  * [ get_page() / put_page() increment/decrement the count. If count
1517  *   reaches 0 the page will be freed. ]
1518  *
1519  * This works nicely with pages from FSs.
1520  * But this means that in protocol A we might signal IO completion too early!
1521  *
1522  * In order not to corrupt data during a resync we must make sure
1523  * that we do not reuse our own buffer pages (EEs) to early, therefore
1524  * we have the net_ee list.
1525  *
1526  * XFS seems to have problems, still, it submits pages with page_count == 0!
1527  * As a workaround, we disable sendpage on pages
1528  * with page_count == 0 or PageSlab.
1529  */
1530 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1531 			      int offset, size_t size, unsigned msg_flags)
1532 {
1533 	struct socket *socket;
1534 	void *addr;
1535 	int err;
1536 
1537 	socket = peer_device->connection->data.socket;
1538 	addr = kmap(page) + offset;
1539 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1540 	kunmap(page);
1541 	if (!err)
1542 		peer_device->device->send_cnt += size >> 9;
1543 	return err;
1544 }
1545 
1546 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1547 		    int offset, size_t size, unsigned msg_flags)
1548 {
1549 	struct socket *socket = peer_device->connection->data.socket;
1550 	int len = size;
1551 	int err = -EIO;
1552 
1553 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1554 	 * page_count of 0 and/or have PageSlab() set.
1555 	 * we cannot use send_page for those, as that does get_page();
1556 	 * put_page(); and would cause either a VM_BUG directly, or
1557 	 * __page_cache_release a page that would actually still be referenced
1558 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1559 	if (drbd_disable_sendpage || !sendpage_ok(page))
1560 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1561 
1562 	msg_flags |= MSG_NOSIGNAL;
1563 	drbd_update_congested(peer_device->connection);
1564 	do {
1565 		int sent;
1566 
1567 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1568 		if (sent <= 0) {
1569 			if (sent == -EAGAIN) {
1570 				if (we_should_drop_the_connection(peer_device->connection, socket))
1571 					break;
1572 				continue;
1573 			}
1574 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1575 			     __func__, (int)size, len, sent);
1576 			if (sent < 0)
1577 				err = sent;
1578 			break;
1579 		}
1580 		len    -= sent;
1581 		offset += sent;
1582 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1583 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1584 
1585 	if (len == 0) {
1586 		err = 0;
1587 		peer_device->device->send_cnt += size >> 9;
1588 	}
1589 	return err;
1590 }
1591 
1592 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1593 {
1594 	struct bio_vec bvec;
1595 	struct bvec_iter iter;
1596 
1597 	/* hint all but last page with MSG_MORE */
1598 	bio_for_each_segment(bvec, bio, iter) {
1599 		int err;
1600 
1601 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1602 					 bvec.bv_offset, bvec.bv_len,
1603 					 bio_iter_last(bvec, iter)
1604 					 ? 0 : MSG_MORE);
1605 		if (err)
1606 			return err;
1607 		/* REQ_OP_WRITE_SAME has only one segment */
1608 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1609 			break;
1610 	}
1611 	return 0;
1612 }
1613 
1614 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1615 {
1616 	struct bio_vec bvec;
1617 	struct bvec_iter iter;
1618 
1619 	/* hint all but last page with MSG_MORE */
1620 	bio_for_each_segment(bvec, bio, iter) {
1621 		int err;
1622 
1623 		err = _drbd_send_page(peer_device, bvec.bv_page,
1624 				      bvec.bv_offset, bvec.bv_len,
1625 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1626 		if (err)
1627 			return err;
1628 		/* REQ_OP_WRITE_SAME has only one segment */
1629 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1630 			break;
1631 	}
1632 	return 0;
1633 }
1634 
1635 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1636 			    struct drbd_peer_request *peer_req)
1637 {
1638 	struct page *page = peer_req->pages;
1639 	unsigned len = peer_req->i.size;
1640 	int err;
1641 
1642 	/* hint all but last page with MSG_MORE */
1643 	page_chain_for_each(page) {
1644 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1645 
1646 		err = _drbd_send_page(peer_device, page, 0, l,
1647 				      page_chain_next(page) ? MSG_MORE : 0);
1648 		if (err)
1649 			return err;
1650 		len -= l;
1651 	}
1652 	return 0;
1653 }
1654 
1655 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1656 			     struct bio *bio)
1657 {
1658 	if (connection->agreed_pro_version >= 95)
1659 		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1660 			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1661 			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1662 			(bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1663 			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1664 			(bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1665 			  ((connection->agreed_features & DRBD_FF_WZEROES) ?
1666 			   (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1667 			   : DP_DISCARD)
1668 			: 0);
1669 	else
1670 		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1671 }
1672 
1673 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1674  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1675  */
1676 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1677 {
1678 	struct drbd_device *device = peer_device->device;
1679 	struct drbd_socket *sock;
1680 	struct p_data *p;
1681 	struct p_wsame *wsame = NULL;
1682 	void *digest_out;
1683 	unsigned int dp_flags = 0;
1684 	int digest_size;
1685 	int err;
1686 
1687 	sock = &peer_device->connection->data;
1688 	p = drbd_prepare_command(peer_device, sock);
1689 	digest_size = peer_device->connection->integrity_tfm ?
1690 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1691 
1692 	if (!p)
1693 		return -EIO;
1694 	p->sector = cpu_to_be64(req->i.sector);
1695 	p->block_id = (unsigned long)req;
1696 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1697 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1698 	if (device->state.conn >= C_SYNC_SOURCE &&
1699 	    device->state.conn <= C_PAUSED_SYNC_T)
1700 		dp_flags |= DP_MAY_SET_IN_SYNC;
1701 	if (peer_device->connection->agreed_pro_version >= 100) {
1702 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1703 			dp_flags |= DP_SEND_RECEIVE_ACK;
1704 		/* During resync, request an explicit write ack,
1705 		 * even in protocol != C */
1706 		if (req->rq_state & RQ_EXP_WRITE_ACK
1707 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1708 			dp_flags |= DP_SEND_WRITE_ACK;
1709 	}
1710 	p->dp_flags = cpu_to_be32(dp_flags);
1711 
1712 	if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1713 		enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1714 		struct p_trim *t = (struct p_trim*)p;
1715 		t->size = cpu_to_be32(req->i.size);
1716 		err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1717 		goto out;
1718 	}
1719 	if (dp_flags & DP_WSAME) {
1720 		/* this will only work if DRBD_FF_WSAME is set AND the
1721 		 * handshake agreed that all nodes and backend devices are
1722 		 * WRITE_SAME capable and agree on logical_block_size */
1723 		wsame = (struct p_wsame*)p;
1724 		digest_out = wsame + 1;
1725 		wsame->size = cpu_to_be32(req->i.size);
1726 	} else
1727 		digest_out = p + 1;
1728 
1729 	/* our digest is still only over the payload.
1730 	 * TRIM does not carry any payload. */
1731 	if (digest_size)
1732 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1733 	if (wsame) {
1734 		err =
1735 		    __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1736 				   sizeof(*wsame) + digest_size, NULL,
1737 				   bio_iovec(req->master_bio).bv_len);
1738 	} else
1739 		err =
1740 		    __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1741 				   sizeof(*p) + digest_size, NULL, req->i.size);
1742 	if (!err) {
1743 		/* For protocol A, we have to memcpy the payload into
1744 		 * socket buffers, as we may complete right away
1745 		 * as soon as we handed it over to tcp, at which point the data
1746 		 * pages may become invalid.
1747 		 *
1748 		 * For data-integrity enabled, we copy it as well, so we can be
1749 		 * sure that even if the bio pages may still be modified, it
1750 		 * won't change the data on the wire, thus if the digest checks
1751 		 * out ok after sending on this side, but does not fit on the
1752 		 * receiving side, we sure have detected corruption elsewhere.
1753 		 */
1754 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1755 			err = _drbd_send_bio(peer_device, req->master_bio);
1756 		else
1757 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1758 
1759 		/* double check digest, sometimes buffers have been modified in flight. */
1760 		if (digest_size > 0 && digest_size <= 64) {
1761 			/* 64 byte, 512 bit, is the largest digest size
1762 			 * currently supported in kernel crypto. */
1763 			unsigned char digest[64];
1764 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1765 			if (memcmp(p + 1, digest, digest_size)) {
1766 				drbd_warn(device,
1767 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1768 					(unsigned long long)req->i.sector, req->i.size);
1769 			}
1770 		} /* else if (digest_size > 64) {
1771 		     ... Be noisy about digest too large ...
1772 		} */
1773 	}
1774 out:
1775 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1776 
1777 	return err;
1778 }
1779 
1780 /* answer packet, used to send data back for read requests:
1781  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1782  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1783  */
1784 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1785 		    struct drbd_peer_request *peer_req)
1786 {
1787 	struct drbd_device *device = peer_device->device;
1788 	struct drbd_socket *sock;
1789 	struct p_data *p;
1790 	int err;
1791 	int digest_size;
1792 
1793 	sock = &peer_device->connection->data;
1794 	p = drbd_prepare_command(peer_device, sock);
1795 
1796 	digest_size = peer_device->connection->integrity_tfm ?
1797 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1798 
1799 	if (!p)
1800 		return -EIO;
1801 	p->sector = cpu_to_be64(peer_req->i.sector);
1802 	p->block_id = peer_req->block_id;
1803 	p->seq_num = 0;  /* unused */
1804 	p->dp_flags = 0;
1805 	if (digest_size)
1806 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1807 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1808 	if (!err)
1809 		err = _drbd_send_zc_ee(peer_device, peer_req);
1810 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1811 
1812 	return err;
1813 }
1814 
1815 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1816 {
1817 	struct drbd_socket *sock;
1818 	struct p_block_desc *p;
1819 
1820 	sock = &peer_device->connection->data;
1821 	p = drbd_prepare_command(peer_device, sock);
1822 	if (!p)
1823 		return -EIO;
1824 	p->sector = cpu_to_be64(req->i.sector);
1825 	p->blksize = cpu_to_be32(req->i.size);
1826 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1827 }
1828 
1829 /*
1830   drbd_send distinguishes two cases:
1831 
1832   Packets sent via the data socket "sock"
1833   and packets sent via the meta data socket "msock"
1834 
1835 		    sock                      msock
1836   -----------------+-------------------------+------------------------------
1837   timeout           conf.timeout / 2          conf.timeout / 2
1838   timeout action    send a ping via msock     Abort communication
1839 					      and close all sockets
1840 */
1841 
1842 /*
1843  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1844  */
1845 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1846 	      void *buf, size_t size, unsigned msg_flags)
1847 {
1848 	struct kvec iov = {.iov_base = buf, .iov_len = size};
1849 	struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1850 	int rv, sent = 0;
1851 
1852 	if (!sock)
1853 		return -EBADR;
1854 
1855 	/* THINK  if (signal_pending) return ... ? */
1856 
1857 	iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1858 
1859 	if (sock == connection->data.socket) {
1860 		rcu_read_lock();
1861 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1862 		rcu_read_unlock();
1863 		drbd_update_congested(connection);
1864 	}
1865 	do {
1866 		rv = sock_sendmsg(sock, &msg);
1867 		if (rv == -EAGAIN) {
1868 			if (we_should_drop_the_connection(connection, sock))
1869 				break;
1870 			else
1871 				continue;
1872 		}
1873 		if (rv == -EINTR) {
1874 			flush_signals(current);
1875 			rv = 0;
1876 		}
1877 		if (rv < 0)
1878 			break;
1879 		sent += rv;
1880 	} while (sent < size);
1881 
1882 	if (sock == connection->data.socket)
1883 		clear_bit(NET_CONGESTED, &connection->flags);
1884 
1885 	if (rv <= 0) {
1886 		if (rv != -EAGAIN) {
1887 			drbd_err(connection, "%s_sendmsg returned %d\n",
1888 				 sock == connection->meta.socket ? "msock" : "sock",
1889 				 rv);
1890 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1891 		} else
1892 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1893 	}
1894 
1895 	return sent;
1896 }
1897 
1898 /**
1899  * drbd_send_all  -  Send an entire buffer
1900  *
1901  * Returns 0 upon success and a negative error value otherwise.
1902  */
1903 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1904 		  size_t size, unsigned msg_flags)
1905 {
1906 	int err;
1907 
1908 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1909 	if (err < 0)
1910 		return err;
1911 	if (err != size)
1912 		return -EIO;
1913 	return 0;
1914 }
1915 
1916 static int drbd_open(struct block_device *bdev, fmode_t mode)
1917 {
1918 	struct drbd_device *device = bdev->bd_disk->private_data;
1919 	unsigned long flags;
1920 	int rv = 0;
1921 
1922 	mutex_lock(&drbd_main_mutex);
1923 	spin_lock_irqsave(&device->resource->req_lock, flags);
1924 	/* to have a stable device->state.role
1925 	 * and no race with updating open_cnt */
1926 
1927 	if (device->state.role != R_PRIMARY) {
1928 		if (mode & FMODE_WRITE)
1929 			rv = -EROFS;
1930 		else if (!drbd_allow_oos)
1931 			rv = -EMEDIUMTYPE;
1932 	}
1933 
1934 	if (!rv)
1935 		device->open_cnt++;
1936 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1937 	mutex_unlock(&drbd_main_mutex);
1938 
1939 	return rv;
1940 }
1941 
1942 static void drbd_release(struct gendisk *gd, fmode_t mode)
1943 {
1944 	struct drbd_device *device = gd->private_data;
1945 	mutex_lock(&drbd_main_mutex);
1946 	device->open_cnt--;
1947 	mutex_unlock(&drbd_main_mutex);
1948 }
1949 
1950 /* need to hold resource->req_lock */
1951 void drbd_queue_unplug(struct drbd_device *device)
1952 {
1953 	if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1954 		D_ASSERT(device, device->state.role == R_PRIMARY);
1955 		if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1956 			drbd_queue_work_if_unqueued(
1957 				&first_peer_device(device)->connection->sender_work,
1958 				&device->unplug_work);
1959 		}
1960 	}
1961 }
1962 
1963 static void drbd_set_defaults(struct drbd_device *device)
1964 {
1965 	/* Beware! The actual layout differs
1966 	 * between big endian and little endian */
1967 	device->state = (union drbd_dev_state) {
1968 		{ .role = R_SECONDARY,
1969 		  .peer = R_UNKNOWN,
1970 		  .conn = C_STANDALONE,
1971 		  .disk = D_DISKLESS,
1972 		  .pdsk = D_UNKNOWN,
1973 		} };
1974 }
1975 
1976 void drbd_init_set_defaults(struct drbd_device *device)
1977 {
1978 	/* the memset(,0,) did most of this.
1979 	 * note: only assignments, no allocation in here */
1980 
1981 	drbd_set_defaults(device);
1982 
1983 	atomic_set(&device->ap_bio_cnt, 0);
1984 	atomic_set(&device->ap_actlog_cnt, 0);
1985 	atomic_set(&device->ap_pending_cnt, 0);
1986 	atomic_set(&device->rs_pending_cnt, 0);
1987 	atomic_set(&device->unacked_cnt, 0);
1988 	atomic_set(&device->local_cnt, 0);
1989 	atomic_set(&device->pp_in_use_by_net, 0);
1990 	atomic_set(&device->rs_sect_in, 0);
1991 	atomic_set(&device->rs_sect_ev, 0);
1992 	atomic_set(&device->ap_in_flight, 0);
1993 	atomic_set(&device->md_io.in_use, 0);
1994 
1995 	mutex_init(&device->own_state_mutex);
1996 	device->state_mutex = &device->own_state_mutex;
1997 
1998 	spin_lock_init(&device->al_lock);
1999 	spin_lock_init(&device->peer_seq_lock);
2000 
2001 	INIT_LIST_HEAD(&device->active_ee);
2002 	INIT_LIST_HEAD(&device->sync_ee);
2003 	INIT_LIST_HEAD(&device->done_ee);
2004 	INIT_LIST_HEAD(&device->read_ee);
2005 	INIT_LIST_HEAD(&device->net_ee);
2006 	INIT_LIST_HEAD(&device->resync_reads);
2007 	INIT_LIST_HEAD(&device->resync_work.list);
2008 	INIT_LIST_HEAD(&device->unplug_work.list);
2009 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
2010 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
2011 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
2012 	INIT_LIST_HEAD(&device->pending_completion[0]);
2013 	INIT_LIST_HEAD(&device->pending_completion[1]);
2014 
2015 	device->resync_work.cb  = w_resync_timer;
2016 	device->unplug_work.cb  = w_send_write_hint;
2017 	device->bm_io_work.w.cb = w_bitmap_io;
2018 
2019 	timer_setup(&device->resync_timer, resync_timer_fn, 0);
2020 	timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2021 	timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2022 	timer_setup(&device->request_timer, request_timer_fn, 0);
2023 
2024 	init_waitqueue_head(&device->misc_wait);
2025 	init_waitqueue_head(&device->state_wait);
2026 	init_waitqueue_head(&device->ee_wait);
2027 	init_waitqueue_head(&device->al_wait);
2028 	init_waitqueue_head(&device->seq_wait);
2029 
2030 	device->resync_wenr = LC_FREE;
2031 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2032 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2033 }
2034 
2035 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2036 {
2037 	char ppb[10];
2038 
2039 	set_capacity(device->vdisk, size);
2040 	revalidate_disk_size(device->vdisk, false);
2041 
2042 	drbd_info(device, "size = %s (%llu KB)\n",
2043 		ppsize(ppb, size>>1), (unsigned long long)size>>1);
2044 }
2045 
2046 void drbd_device_cleanup(struct drbd_device *device)
2047 {
2048 	int i;
2049 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2050 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2051 				first_peer_device(device)->connection->receiver.t_state);
2052 
2053 	device->al_writ_cnt  =
2054 	device->bm_writ_cnt  =
2055 	device->read_cnt     =
2056 	device->recv_cnt     =
2057 	device->send_cnt     =
2058 	device->writ_cnt     =
2059 	device->p_size       =
2060 	device->rs_start     =
2061 	device->rs_total     =
2062 	device->rs_failed    = 0;
2063 	device->rs_last_events = 0;
2064 	device->rs_last_sect_ev = 0;
2065 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2066 		device->rs_mark_left[i] = 0;
2067 		device->rs_mark_time[i] = 0;
2068 	}
2069 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2070 
2071 	set_capacity(device->vdisk, 0);
2072 	revalidate_disk_size(device->vdisk, false);
2073 	if (device->bitmap) {
2074 		/* maybe never allocated. */
2075 		drbd_bm_resize(device, 0, 1);
2076 		drbd_bm_cleanup(device);
2077 	}
2078 
2079 	drbd_backing_dev_free(device, device->ldev);
2080 	device->ldev = NULL;
2081 
2082 	clear_bit(AL_SUSPENDED, &device->flags);
2083 
2084 	D_ASSERT(device, list_empty(&device->active_ee));
2085 	D_ASSERT(device, list_empty(&device->sync_ee));
2086 	D_ASSERT(device, list_empty(&device->done_ee));
2087 	D_ASSERT(device, list_empty(&device->read_ee));
2088 	D_ASSERT(device, list_empty(&device->net_ee));
2089 	D_ASSERT(device, list_empty(&device->resync_reads));
2090 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2091 	D_ASSERT(device, list_empty(&device->resync_work.list));
2092 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2093 
2094 	drbd_set_defaults(device);
2095 }
2096 
2097 
2098 static void drbd_destroy_mempools(void)
2099 {
2100 	struct page *page;
2101 
2102 	while (drbd_pp_pool) {
2103 		page = drbd_pp_pool;
2104 		drbd_pp_pool = (struct page *)page_private(page);
2105 		__free_page(page);
2106 		drbd_pp_vacant--;
2107 	}
2108 
2109 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2110 
2111 	bioset_exit(&drbd_io_bio_set);
2112 	bioset_exit(&drbd_md_io_bio_set);
2113 	mempool_exit(&drbd_md_io_page_pool);
2114 	mempool_exit(&drbd_ee_mempool);
2115 	mempool_exit(&drbd_request_mempool);
2116 	kmem_cache_destroy(drbd_ee_cache);
2117 	kmem_cache_destroy(drbd_request_cache);
2118 	kmem_cache_destroy(drbd_bm_ext_cache);
2119 	kmem_cache_destroy(drbd_al_ext_cache);
2120 
2121 	drbd_ee_cache        = NULL;
2122 	drbd_request_cache   = NULL;
2123 	drbd_bm_ext_cache    = NULL;
2124 	drbd_al_ext_cache    = NULL;
2125 
2126 	return;
2127 }
2128 
2129 static int drbd_create_mempools(void)
2130 {
2131 	struct page *page;
2132 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2133 	int i, ret;
2134 
2135 	/* caches */
2136 	drbd_request_cache = kmem_cache_create(
2137 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2138 	if (drbd_request_cache == NULL)
2139 		goto Enomem;
2140 
2141 	drbd_ee_cache = kmem_cache_create(
2142 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2143 	if (drbd_ee_cache == NULL)
2144 		goto Enomem;
2145 
2146 	drbd_bm_ext_cache = kmem_cache_create(
2147 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2148 	if (drbd_bm_ext_cache == NULL)
2149 		goto Enomem;
2150 
2151 	drbd_al_ext_cache = kmem_cache_create(
2152 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2153 	if (drbd_al_ext_cache == NULL)
2154 		goto Enomem;
2155 
2156 	/* mempools */
2157 	ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2158 	if (ret)
2159 		goto Enomem;
2160 
2161 	ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2162 			  BIOSET_NEED_BVECS);
2163 	if (ret)
2164 		goto Enomem;
2165 
2166 	ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2167 	if (ret)
2168 		goto Enomem;
2169 
2170 	ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2171 				     drbd_request_cache);
2172 	if (ret)
2173 		goto Enomem;
2174 
2175 	ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2176 	if (ret)
2177 		goto Enomem;
2178 
2179 	/* drbd's page pool */
2180 	spin_lock_init(&drbd_pp_lock);
2181 
2182 	for (i = 0; i < number; i++) {
2183 		page = alloc_page(GFP_HIGHUSER);
2184 		if (!page)
2185 			goto Enomem;
2186 		set_page_private(page, (unsigned long)drbd_pp_pool);
2187 		drbd_pp_pool = page;
2188 	}
2189 	drbd_pp_vacant = number;
2190 
2191 	return 0;
2192 
2193 Enomem:
2194 	drbd_destroy_mempools(); /* in case we allocated some */
2195 	return -ENOMEM;
2196 }
2197 
2198 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2199 {
2200 	int rr;
2201 
2202 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2203 	if (rr)
2204 		drbd_err(device, "%d EEs in active list found!\n", rr);
2205 
2206 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2207 	if (rr)
2208 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2209 
2210 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2211 	if (rr)
2212 		drbd_err(device, "%d EEs in read list found!\n", rr);
2213 
2214 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2215 	if (rr)
2216 		drbd_err(device, "%d EEs in done list found!\n", rr);
2217 
2218 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2219 	if (rr)
2220 		drbd_err(device, "%d EEs in net list found!\n", rr);
2221 }
2222 
2223 /* caution. no locking. */
2224 void drbd_destroy_device(struct kref *kref)
2225 {
2226 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2227 	struct drbd_resource *resource = device->resource;
2228 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2229 
2230 	del_timer_sync(&device->request_timer);
2231 
2232 	/* paranoia asserts */
2233 	D_ASSERT(device, device->open_cnt == 0);
2234 	/* end paranoia asserts */
2235 
2236 	/* cleanup stuff that may have been allocated during
2237 	 * device (re-)configuration or state changes */
2238 
2239 	drbd_backing_dev_free(device, device->ldev);
2240 	device->ldev = NULL;
2241 
2242 	drbd_release_all_peer_reqs(device);
2243 
2244 	lc_destroy(device->act_log);
2245 	lc_destroy(device->resync);
2246 
2247 	kfree(device->p_uuid);
2248 	/* device->p_uuid = NULL; */
2249 
2250 	if (device->bitmap) /* should no longer be there. */
2251 		drbd_bm_cleanup(device);
2252 	__free_page(device->md_io.page);
2253 	put_disk(device->vdisk);
2254 	blk_cleanup_queue(device->rq_queue);
2255 	kfree(device->rs_plan_s);
2256 
2257 	/* not for_each_connection(connection, resource):
2258 	 * those may have been cleaned up and disassociated already.
2259 	 */
2260 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2261 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2262 		kfree(peer_device);
2263 	}
2264 	memset(device, 0xfd, sizeof(*device));
2265 	kfree(device);
2266 	kref_put(&resource->kref, drbd_destroy_resource);
2267 }
2268 
2269 /* One global retry thread, if we need to push back some bio and have it
2270  * reinserted through our make request function.
2271  */
2272 static struct retry_worker {
2273 	struct workqueue_struct *wq;
2274 	struct work_struct worker;
2275 
2276 	spinlock_t lock;
2277 	struct list_head writes;
2278 } retry;
2279 
2280 static void do_retry(struct work_struct *ws)
2281 {
2282 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2283 	LIST_HEAD(writes);
2284 	struct drbd_request *req, *tmp;
2285 
2286 	spin_lock_irq(&retry->lock);
2287 	list_splice_init(&retry->writes, &writes);
2288 	spin_unlock_irq(&retry->lock);
2289 
2290 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2291 		struct drbd_device *device = req->device;
2292 		struct bio *bio = req->master_bio;
2293 		unsigned long start_jif = req->start_jif;
2294 		bool expected;
2295 
2296 		expected =
2297 			expect(atomic_read(&req->completion_ref) == 0) &&
2298 			expect(req->rq_state & RQ_POSTPONED) &&
2299 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2300 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2301 
2302 		if (!expected)
2303 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2304 				req, atomic_read(&req->completion_ref),
2305 				req->rq_state);
2306 
2307 		/* We still need to put one kref associated with the
2308 		 * "completion_ref" going zero in the code path that queued it
2309 		 * here.  The request object may still be referenced by a
2310 		 * frozen local req->private_bio, in case we force-detached.
2311 		 */
2312 		kref_put(&req->kref, drbd_req_destroy);
2313 
2314 		/* A single suspended or otherwise blocking device may stall
2315 		 * all others as well.  Fortunately, this code path is to
2316 		 * recover from a situation that "should not happen":
2317 		 * concurrent writes in multi-primary setup.
2318 		 * In a "normal" lifecycle, this workqueue is supposed to be
2319 		 * destroyed without ever doing anything.
2320 		 * If it turns out to be an issue anyways, we can do per
2321 		 * resource (replication group) or per device (minor) retry
2322 		 * workqueues instead.
2323 		 */
2324 
2325 		/* We are not just doing submit_bio_noacct(),
2326 		 * as we want to keep the start_time information. */
2327 		inc_ap_bio(device);
2328 		__drbd_make_request(device, bio, start_jif);
2329 	}
2330 }
2331 
2332 /* called via drbd_req_put_completion_ref(),
2333  * holds resource->req_lock */
2334 void drbd_restart_request(struct drbd_request *req)
2335 {
2336 	unsigned long flags;
2337 	spin_lock_irqsave(&retry.lock, flags);
2338 	list_move_tail(&req->tl_requests, &retry.writes);
2339 	spin_unlock_irqrestore(&retry.lock, flags);
2340 
2341 	/* Drop the extra reference that would otherwise
2342 	 * have been dropped by complete_master_bio.
2343 	 * do_retry() needs to grab a new one. */
2344 	dec_ap_bio(req->device);
2345 
2346 	queue_work(retry.wq, &retry.worker);
2347 }
2348 
2349 void drbd_destroy_resource(struct kref *kref)
2350 {
2351 	struct drbd_resource *resource =
2352 		container_of(kref, struct drbd_resource, kref);
2353 
2354 	idr_destroy(&resource->devices);
2355 	free_cpumask_var(resource->cpu_mask);
2356 	kfree(resource->name);
2357 	memset(resource, 0xf2, sizeof(*resource));
2358 	kfree(resource);
2359 }
2360 
2361 void drbd_free_resource(struct drbd_resource *resource)
2362 {
2363 	struct drbd_connection *connection, *tmp;
2364 
2365 	for_each_connection_safe(connection, tmp, resource) {
2366 		list_del(&connection->connections);
2367 		drbd_debugfs_connection_cleanup(connection);
2368 		kref_put(&connection->kref, drbd_destroy_connection);
2369 	}
2370 	drbd_debugfs_resource_cleanup(resource);
2371 	kref_put(&resource->kref, drbd_destroy_resource);
2372 }
2373 
2374 static void drbd_cleanup(void)
2375 {
2376 	unsigned int i;
2377 	struct drbd_device *device;
2378 	struct drbd_resource *resource, *tmp;
2379 
2380 	/* first remove proc,
2381 	 * drbdsetup uses it's presence to detect
2382 	 * whether DRBD is loaded.
2383 	 * If we would get stuck in proc removal,
2384 	 * but have netlink already deregistered,
2385 	 * some drbdsetup commands may wait forever
2386 	 * for an answer.
2387 	 */
2388 	if (drbd_proc)
2389 		remove_proc_entry("drbd", NULL);
2390 
2391 	if (retry.wq)
2392 		destroy_workqueue(retry.wq);
2393 
2394 	drbd_genl_unregister();
2395 
2396 	idr_for_each_entry(&drbd_devices, device, i)
2397 		drbd_delete_device(device);
2398 
2399 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2400 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2401 		list_del(&resource->resources);
2402 		drbd_free_resource(resource);
2403 	}
2404 
2405 	drbd_debugfs_cleanup();
2406 
2407 	drbd_destroy_mempools();
2408 	unregister_blkdev(DRBD_MAJOR, "drbd");
2409 
2410 	idr_destroy(&drbd_devices);
2411 
2412 	pr_info("module cleanup done.\n");
2413 }
2414 
2415 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2416 {
2417 	spin_lock_init(&wq->q_lock);
2418 	INIT_LIST_HEAD(&wq->q);
2419 	init_waitqueue_head(&wq->q_wait);
2420 }
2421 
2422 struct completion_work {
2423 	struct drbd_work w;
2424 	struct completion done;
2425 };
2426 
2427 static int w_complete(struct drbd_work *w, int cancel)
2428 {
2429 	struct completion_work *completion_work =
2430 		container_of(w, struct completion_work, w);
2431 
2432 	complete(&completion_work->done);
2433 	return 0;
2434 }
2435 
2436 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2437 {
2438 	struct completion_work completion_work;
2439 
2440 	completion_work.w.cb = w_complete;
2441 	init_completion(&completion_work.done);
2442 	drbd_queue_work(work_queue, &completion_work.w);
2443 	wait_for_completion(&completion_work.done);
2444 }
2445 
2446 struct drbd_resource *drbd_find_resource(const char *name)
2447 {
2448 	struct drbd_resource *resource;
2449 
2450 	if (!name || !name[0])
2451 		return NULL;
2452 
2453 	rcu_read_lock();
2454 	for_each_resource_rcu(resource, &drbd_resources) {
2455 		if (!strcmp(resource->name, name)) {
2456 			kref_get(&resource->kref);
2457 			goto found;
2458 		}
2459 	}
2460 	resource = NULL;
2461 found:
2462 	rcu_read_unlock();
2463 	return resource;
2464 }
2465 
2466 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2467 				     void *peer_addr, int peer_addr_len)
2468 {
2469 	struct drbd_resource *resource;
2470 	struct drbd_connection *connection;
2471 
2472 	rcu_read_lock();
2473 	for_each_resource_rcu(resource, &drbd_resources) {
2474 		for_each_connection_rcu(connection, resource) {
2475 			if (connection->my_addr_len == my_addr_len &&
2476 			    connection->peer_addr_len == peer_addr_len &&
2477 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2478 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2479 				kref_get(&connection->kref);
2480 				goto found;
2481 			}
2482 		}
2483 	}
2484 	connection = NULL;
2485 found:
2486 	rcu_read_unlock();
2487 	return connection;
2488 }
2489 
2490 static int drbd_alloc_socket(struct drbd_socket *socket)
2491 {
2492 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2493 	if (!socket->rbuf)
2494 		return -ENOMEM;
2495 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2496 	if (!socket->sbuf)
2497 		return -ENOMEM;
2498 	return 0;
2499 }
2500 
2501 static void drbd_free_socket(struct drbd_socket *socket)
2502 {
2503 	free_page((unsigned long) socket->sbuf);
2504 	free_page((unsigned long) socket->rbuf);
2505 }
2506 
2507 void conn_free_crypto(struct drbd_connection *connection)
2508 {
2509 	drbd_free_sock(connection);
2510 
2511 	crypto_free_shash(connection->csums_tfm);
2512 	crypto_free_shash(connection->verify_tfm);
2513 	crypto_free_shash(connection->cram_hmac_tfm);
2514 	crypto_free_shash(connection->integrity_tfm);
2515 	crypto_free_shash(connection->peer_integrity_tfm);
2516 	kfree(connection->int_dig_in);
2517 	kfree(connection->int_dig_vv);
2518 
2519 	connection->csums_tfm = NULL;
2520 	connection->verify_tfm = NULL;
2521 	connection->cram_hmac_tfm = NULL;
2522 	connection->integrity_tfm = NULL;
2523 	connection->peer_integrity_tfm = NULL;
2524 	connection->int_dig_in = NULL;
2525 	connection->int_dig_vv = NULL;
2526 }
2527 
2528 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2529 {
2530 	struct drbd_connection *connection;
2531 	cpumask_var_t new_cpu_mask;
2532 	int err;
2533 
2534 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2535 		return -ENOMEM;
2536 
2537 	/* silently ignore cpu mask on UP kernel */
2538 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2539 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2540 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2541 		if (err == -EOVERFLOW) {
2542 			/* So what. mask it out. */
2543 			cpumask_var_t tmp_cpu_mask;
2544 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2545 				cpumask_setall(tmp_cpu_mask);
2546 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2547 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2548 					res_opts->cpu_mask,
2549 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2550 					nr_cpu_ids);
2551 				free_cpumask_var(tmp_cpu_mask);
2552 				err = 0;
2553 			}
2554 		}
2555 		if (err) {
2556 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2557 			/* retcode = ERR_CPU_MASK_PARSE; */
2558 			goto fail;
2559 		}
2560 	}
2561 	resource->res_opts = *res_opts;
2562 	if (cpumask_empty(new_cpu_mask))
2563 		drbd_calc_cpu_mask(&new_cpu_mask);
2564 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2565 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2566 		for_each_connection_rcu(connection, resource) {
2567 			connection->receiver.reset_cpu_mask = 1;
2568 			connection->ack_receiver.reset_cpu_mask = 1;
2569 			connection->worker.reset_cpu_mask = 1;
2570 		}
2571 	}
2572 	err = 0;
2573 
2574 fail:
2575 	free_cpumask_var(new_cpu_mask);
2576 	return err;
2577 
2578 }
2579 
2580 struct drbd_resource *drbd_create_resource(const char *name)
2581 {
2582 	struct drbd_resource *resource;
2583 
2584 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2585 	if (!resource)
2586 		goto fail;
2587 	resource->name = kstrdup(name, GFP_KERNEL);
2588 	if (!resource->name)
2589 		goto fail_free_resource;
2590 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2591 		goto fail_free_name;
2592 	kref_init(&resource->kref);
2593 	idr_init(&resource->devices);
2594 	INIT_LIST_HEAD(&resource->connections);
2595 	resource->write_ordering = WO_BDEV_FLUSH;
2596 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2597 	mutex_init(&resource->conf_update);
2598 	mutex_init(&resource->adm_mutex);
2599 	spin_lock_init(&resource->req_lock);
2600 	drbd_debugfs_resource_add(resource);
2601 	return resource;
2602 
2603 fail_free_name:
2604 	kfree(resource->name);
2605 fail_free_resource:
2606 	kfree(resource);
2607 fail:
2608 	return NULL;
2609 }
2610 
2611 /* caller must be under adm_mutex */
2612 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2613 {
2614 	struct drbd_resource *resource;
2615 	struct drbd_connection *connection;
2616 
2617 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2618 	if (!connection)
2619 		return NULL;
2620 
2621 	if (drbd_alloc_socket(&connection->data))
2622 		goto fail;
2623 	if (drbd_alloc_socket(&connection->meta))
2624 		goto fail;
2625 
2626 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2627 	if (!connection->current_epoch)
2628 		goto fail;
2629 
2630 	INIT_LIST_HEAD(&connection->transfer_log);
2631 
2632 	INIT_LIST_HEAD(&connection->current_epoch->list);
2633 	connection->epochs = 1;
2634 	spin_lock_init(&connection->epoch_lock);
2635 
2636 	connection->send.seen_any_write_yet = false;
2637 	connection->send.current_epoch_nr = 0;
2638 	connection->send.current_epoch_writes = 0;
2639 
2640 	resource = drbd_create_resource(name);
2641 	if (!resource)
2642 		goto fail;
2643 
2644 	connection->cstate = C_STANDALONE;
2645 	mutex_init(&connection->cstate_mutex);
2646 	init_waitqueue_head(&connection->ping_wait);
2647 	idr_init(&connection->peer_devices);
2648 
2649 	drbd_init_workqueue(&connection->sender_work);
2650 	mutex_init(&connection->data.mutex);
2651 	mutex_init(&connection->meta.mutex);
2652 
2653 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2654 	connection->receiver.connection = connection;
2655 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2656 	connection->worker.connection = connection;
2657 	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2658 	connection->ack_receiver.connection = connection;
2659 
2660 	kref_init(&connection->kref);
2661 
2662 	connection->resource = resource;
2663 
2664 	if (set_resource_options(resource, res_opts))
2665 		goto fail_resource;
2666 
2667 	kref_get(&resource->kref);
2668 	list_add_tail_rcu(&connection->connections, &resource->connections);
2669 	drbd_debugfs_connection_add(connection);
2670 	return connection;
2671 
2672 fail_resource:
2673 	list_del(&resource->resources);
2674 	drbd_free_resource(resource);
2675 fail:
2676 	kfree(connection->current_epoch);
2677 	drbd_free_socket(&connection->meta);
2678 	drbd_free_socket(&connection->data);
2679 	kfree(connection);
2680 	return NULL;
2681 }
2682 
2683 void drbd_destroy_connection(struct kref *kref)
2684 {
2685 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2686 	struct drbd_resource *resource = connection->resource;
2687 
2688 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2689 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2690 	kfree(connection->current_epoch);
2691 
2692 	idr_destroy(&connection->peer_devices);
2693 
2694 	drbd_free_socket(&connection->meta);
2695 	drbd_free_socket(&connection->data);
2696 	kfree(connection->int_dig_in);
2697 	kfree(connection->int_dig_vv);
2698 	memset(connection, 0xfc, sizeof(*connection));
2699 	kfree(connection);
2700 	kref_put(&resource->kref, drbd_destroy_resource);
2701 }
2702 
2703 static int init_submitter(struct drbd_device *device)
2704 {
2705 	/* opencoded create_singlethread_workqueue(),
2706 	 * to be able to say "drbd%d", ..., minor */
2707 	device->submit.wq =
2708 		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2709 	if (!device->submit.wq)
2710 		return -ENOMEM;
2711 
2712 	INIT_WORK(&device->submit.worker, do_submit);
2713 	INIT_LIST_HEAD(&device->submit.writes);
2714 	return 0;
2715 }
2716 
2717 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2718 {
2719 	struct drbd_resource *resource = adm_ctx->resource;
2720 	struct drbd_connection *connection;
2721 	struct drbd_device *device;
2722 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2723 	struct gendisk *disk;
2724 	struct request_queue *q;
2725 	int id;
2726 	int vnr = adm_ctx->volume;
2727 	enum drbd_ret_code err = ERR_NOMEM;
2728 
2729 	device = minor_to_device(minor);
2730 	if (device)
2731 		return ERR_MINOR_OR_VOLUME_EXISTS;
2732 
2733 	/* GFP_KERNEL, we are outside of all write-out paths */
2734 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2735 	if (!device)
2736 		return ERR_NOMEM;
2737 	kref_init(&device->kref);
2738 
2739 	kref_get(&resource->kref);
2740 	device->resource = resource;
2741 	device->minor = minor;
2742 	device->vnr = vnr;
2743 
2744 	drbd_init_set_defaults(device);
2745 
2746 	q = blk_alloc_queue(NUMA_NO_NODE);
2747 	if (!q)
2748 		goto out_no_q;
2749 	device->rq_queue = q;
2750 
2751 	disk = alloc_disk(1);
2752 	if (!disk)
2753 		goto out_no_disk;
2754 	device->vdisk = disk;
2755 
2756 	set_disk_ro(disk, true);
2757 
2758 	disk->queue = q;
2759 	disk->major = DRBD_MAJOR;
2760 	disk->first_minor = minor;
2761 	disk->fops = &drbd_ops;
2762 	sprintf(disk->disk_name, "drbd%d", minor);
2763 	disk->private_data = device;
2764 
2765 	blk_queue_write_cache(q, true, true);
2766 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2767 	   This triggers a max_bio_size message upon first attach or connect */
2768 	blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2769 
2770 	device->md_io.page = alloc_page(GFP_KERNEL);
2771 	if (!device->md_io.page)
2772 		goto out_no_io_page;
2773 
2774 	if (drbd_bm_init(device))
2775 		goto out_no_bitmap;
2776 	device->read_requests = RB_ROOT;
2777 	device->write_requests = RB_ROOT;
2778 
2779 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2780 	if (id < 0) {
2781 		if (id == -ENOSPC)
2782 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2783 		goto out_no_minor_idr;
2784 	}
2785 	kref_get(&device->kref);
2786 
2787 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2788 	if (id < 0) {
2789 		if (id == -ENOSPC)
2790 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2791 		goto out_idr_remove_minor;
2792 	}
2793 	kref_get(&device->kref);
2794 
2795 	INIT_LIST_HEAD(&device->peer_devices);
2796 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2797 	for_each_connection(connection, resource) {
2798 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2799 		if (!peer_device)
2800 			goto out_idr_remove_from_resource;
2801 		peer_device->connection = connection;
2802 		peer_device->device = device;
2803 
2804 		list_add(&peer_device->peer_devices, &device->peer_devices);
2805 		kref_get(&device->kref);
2806 
2807 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2808 		if (id < 0) {
2809 			if (id == -ENOSPC)
2810 				err = ERR_INVALID_REQUEST;
2811 			goto out_idr_remove_from_resource;
2812 		}
2813 		kref_get(&connection->kref);
2814 		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2815 	}
2816 
2817 	if (init_submitter(device)) {
2818 		err = ERR_NOMEM;
2819 		goto out_idr_remove_vol;
2820 	}
2821 
2822 	add_disk(disk);
2823 
2824 	/* inherit the connection state */
2825 	device->state.conn = first_connection(resource)->cstate;
2826 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2827 		for_each_peer_device(peer_device, device)
2828 			drbd_connected(peer_device);
2829 	}
2830 	/* move to create_peer_device() */
2831 	for_each_peer_device(peer_device, device)
2832 		drbd_debugfs_peer_device_add(peer_device);
2833 	drbd_debugfs_device_add(device);
2834 	return NO_ERROR;
2835 
2836 out_idr_remove_vol:
2837 	idr_remove(&connection->peer_devices, vnr);
2838 out_idr_remove_from_resource:
2839 	for_each_connection(connection, resource) {
2840 		peer_device = idr_remove(&connection->peer_devices, vnr);
2841 		if (peer_device)
2842 			kref_put(&connection->kref, drbd_destroy_connection);
2843 	}
2844 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2845 		list_del(&peer_device->peer_devices);
2846 		kfree(peer_device);
2847 	}
2848 	idr_remove(&resource->devices, vnr);
2849 out_idr_remove_minor:
2850 	idr_remove(&drbd_devices, minor);
2851 	synchronize_rcu();
2852 out_no_minor_idr:
2853 	drbd_bm_cleanup(device);
2854 out_no_bitmap:
2855 	__free_page(device->md_io.page);
2856 out_no_io_page:
2857 	put_disk(disk);
2858 out_no_disk:
2859 	blk_cleanup_queue(q);
2860 out_no_q:
2861 	kref_put(&resource->kref, drbd_destroy_resource);
2862 	kfree(device);
2863 	return err;
2864 }
2865 
2866 void drbd_delete_device(struct drbd_device *device)
2867 {
2868 	struct drbd_resource *resource = device->resource;
2869 	struct drbd_connection *connection;
2870 	struct drbd_peer_device *peer_device;
2871 
2872 	/* move to free_peer_device() */
2873 	for_each_peer_device(peer_device, device)
2874 		drbd_debugfs_peer_device_cleanup(peer_device);
2875 	drbd_debugfs_device_cleanup(device);
2876 	for_each_connection(connection, resource) {
2877 		idr_remove(&connection->peer_devices, device->vnr);
2878 		kref_put(&device->kref, drbd_destroy_device);
2879 	}
2880 	idr_remove(&resource->devices, device->vnr);
2881 	kref_put(&device->kref, drbd_destroy_device);
2882 	idr_remove(&drbd_devices, device_to_minor(device));
2883 	kref_put(&device->kref, drbd_destroy_device);
2884 	del_gendisk(device->vdisk);
2885 	synchronize_rcu();
2886 	kref_put(&device->kref, drbd_destroy_device);
2887 }
2888 
2889 static int __init drbd_init(void)
2890 {
2891 	int err;
2892 
2893 	if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2894 		pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2895 #ifdef MODULE
2896 		return -EINVAL;
2897 #else
2898 		drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2899 #endif
2900 	}
2901 
2902 	err = register_blkdev(DRBD_MAJOR, "drbd");
2903 	if (err) {
2904 		pr_err("unable to register block device major %d\n",
2905 		       DRBD_MAJOR);
2906 		return err;
2907 	}
2908 
2909 	/*
2910 	 * allocate all necessary structs
2911 	 */
2912 	init_waitqueue_head(&drbd_pp_wait);
2913 
2914 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2915 	idr_init(&drbd_devices);
2916 
2917 	mutex_init(&resources_mutex);
2918 	INIT_LIST_HEAD(&drbd_resources);
2919 
2920 	err = drbd_genl_register();
2921 	if (err) {
2922 		pr_err("unable to register generic netlink family\n");
2923 		goto fail;
2924 	}
2925 
2926 	err = drbd_create_mempools();
2927 	if (err)
2928 		goto fail;
2929 
2930 	err = -ENOMEM;
2931 	drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2932 	if (!drbd_proc)	{
2933 		pr_err("unable to register proc file\n");
2934 		goto fail;
2935 	}
2936 
2937 	retry.wq = create_singlethread_workqueue("drbd-reissue");
2938 	if (!retry.wq) {
2939 		pr_err("unable to create retry workqueue\n");
2940 		goto fail;
2941 	}
2942 	INIT_WORK(&retry.worker, do_retry);
2943 	spin_lock_init(&retry.lock);
2944 	INIT_LIST_HEAD(&retry.writes);
2945 
2946 	drbd_debugfs_init();
2947 
2948 	pr_info("initialized. "
2949 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2950 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2951 	pr_info("%s\n", drbd_buildtag());
2952 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
2953 	return 0; /* Success! */
2954 
2955 fail:
2956 	drbd_cleanup();
2957 	if (err == -ENOMEM)
2958 		pr_err("ran out of memory\n");
2959 	else
2960 		pr_err("initialization failure\n");
2961 	return err;
2962 }
2963 
2964 static void drbd_free_one_sock(struct drbd_socket *ds)
2965 {
2966 	struct socket *s;
2967 	mutex_lock(&ds->mutex);
2968 	s = ds->socket;
2969 	ds->socket = NULL;
2970 	mutex_unlock(&ds->mutex);
2971 	if (s) {
2972 		/* so debugfs does not need to mutex_lock() */
2973 		synchronize_rcu();
2974 		kernel_sock_shutdown(s, SHUT_RDWR);
2975 		sock_release(s);
2976 	}
2977 }
2978 
2979 void drbd_free_sock(struct drbd_connection *connection)
2980 {
2981 	if (connection->data.socket)
2982 		drbd_free_one_sock(&connection->data);
2983 	if (connection->meta.socket)
2984 		drbd_free_one_sock(&connection->meta);
2985 }
2986 
2987 /* meta data management */
2988 
2989 void conn_md_sync(struct drbd_connection *connection)
2990 {
2991 	struct drbd_peer_device *peer_device;
2992 	int vnr;
2993 
2994 	rcu_read_lock();
2995 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2996 		struct drbd_device *device = peer_device->device;
2997 
2998 		kref_get(&device->kref);
2999 		rcu_read_unlock();
3000 		drbd_md_sync(device);
3001 		kref_put(&device->kref, drbd_destroy_device);
3002 		rcu_read_lock();
3003 	}
3004 	rcu_read_unlock();
3005 }
3006 
3007 /* aligned 4kByte */
3008 struct meta_data_on_disk {
3009 	u64 la_size_sect;      /* last agreed size. */
3010 	u64 uuid[UI_SIZE];   /* UUIDs. */
3011 	u64 device_uuid;
3012 	u64 reserved_u64_1;
3013 	u32 flags;             /* MDF */
3014 	u32 magic;
3015 	u32 md_size_sect;
3016 	u32 al_offset;         /* offset to this block */
3017 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3018 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3019 	u32 bm_offset;         /* offset to the bitmap, from here */
3020 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3021 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3022 
3023 	/* see al_tr_number_to_on_disk_sector() */
3024 	u32 al_stripes;
3025 	u32 al_stripe_size_4k;
3026 
3027 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3028 } __packed;
3029 
3030 
3031 
3032 void drbd_md_write(struct drbd_device *device, void *b)
3033 {
3034 	struct meta_data_on_disk *buffer = b;
3035 	sector_t sector;
3036 	int i;
3037 
3038 	memset(buffer, 0, sizeof(*buffer));
3039 
3040 	buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3041 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3042 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3043 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3044 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3045 
3046 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3047 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3048 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3049 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3050 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3051 
3052 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3053 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3054 
3055 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3056 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3057 
3058 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3059 	sector = device->ldev->md.md_offset;
3060 
3061 	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3062 		/* this was a try anyways ... */
3063 		drbd_err(device, "meta data update failed!\n");
3064 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3065 	}
3066 }
3067 
3068 /**
3069  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3070  * @device:	DRBD device.
3071  */
3072 void drbd_md_sync(struct drbd_device *device)
3073 {
3074 	struct meta_data_on_disk *buffer;
3075 
3076 	/* Don't accidentally change the DRBD meta data layout. */
3077 	BUILD_BUG_ON(UI_SIZE != 4);
3078 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3079 
3080 	del_timer(&device->md_sync_timer);
3081 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3082 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3083 		return;
3084 
3085 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3086 	 * metadata even if we detach due to a disk failure! */
3087 	if (!get_ldev_if_state(device, D_FAILED))
3088 		return;
3089 
3090 	buffer = drbd_md_get_buffer(device, __func__);
3091 	if (!buffer)
3092 		goto out;
3093 
3094 	drbd_md_write(device, buffer);
3095 
3096 	/* Update device->ldev->md.la_size_sect,
3097 	 * since we updated it on metadata. */
3098 	device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3099 
3100 	drbd_md_put_buffer(device);
3101 out:
3102 	put_ldev(device);
3103 }
3104 
3105 static int check_activity_log_stripe_size(struct drbd_device *device,
3106 		struct meta_data_on_disk *on_disk,
3107 		struct drbd_md *in_core)
3108 {
3109 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3110 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3111 	u64 al_size_4k;
3112 
3113 	/* both not set: default to old fixed size activity log */
3114 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3115 		al_stripes = 1;
3116 		al_stripe_size_4k = MD_32kB_SECT/8;
3117 	}
3118 
3119 	/* some paranoia plausibility checks */
3120 
3121 	/* we need both values to be set */
3122 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3123 		goto err;
3124 
3125 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3126 
3127 	/* Upper limit of activity log area, to avoid potential overflow
3128 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3129 	 * than 72 * 4k blocks total only increases the amount of history,
3130 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3131 	if (al_size_4k > (16 * 1024 * 1024/4))
3132 		goto err;
3133 
3134 	/* Lower limit: we need at least 8 transaction slots (32kB)
3135 	 * to not break existing setups */
3136 	if (al_size_4k < MD_32kB_SECT/8)
3137 		goto err;
3138 
3139 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3140 	in_core->al_stripes = al_stripes;
3141 	in_core->al_size_4k = al_size_4k;
3142 
3143 	return 0;
3144 err:
3145 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3146 			al_stripes, al_stripe_size_4k);
3147 	return -EINVAL;
3148 }
3149 
3150 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3151 {
3152 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3153 	struct drbd_md *in_core = &bdev->md;
3154 	s32 on_disk_al_sect;
3155 	s32 on_disk_bm_sect;
3156 
3157 	/* The on-disk size of the activity log, calculated from offsets, and
3158 	 * the size of the activity log calculated from the stripe settings,
3159 	 * should match.
3160 	 * Though we could relax this a bit: it is ok, if the striped activity log
3161 	 * fits in the available on-disk activity log size.
3162 	 * Right now, that would break how resize is implemented.
3163 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3164 	 * of possible unused padding space in the on disk layout. */
3165 	if (in_core->al_offset < 0) {
3166 		if (in_core->bm_offset > in_core->al_offset)
3167 			goto err;
3168 		on_disk_al_sect = -in_core->al_offset;
3169 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3170 	} else {
3171 		if (in_core->al_offset != MD_4kB_SECT)
3172 			goto err;
3173 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3174 			goto err;
3175 
3176 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3177 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3178 	}
3179 
3180 	/* old fixed size meta data is exactly that: fixed. */
3181 	if (in_core->meta_dev_idx >= 0) {
3182 		if (in_core->md_size_sect != MD_128MB_SECT
3183 		||  in_core->al_offset != MD_4kB_SECT
3184 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3185 		||  in_core->al_stripes != 1
3186 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3187 			goto err;
3188 	}
3189 
3190 	if (capacity < in_core->md_size_sect)
3191 		goto err;
3192 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3193 		goto err;
3194 
3195 	/* should be aligned, and at least 32k */
3196 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3197 		goto err;
3198 
3199 	/* should fit (for now: exactly) into the available on-disk space;
3200 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3201 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3202 		goto err;
3203 
3204 	/* again, should be aligned */
3205 	if (in_core->bm_offset & 7)
3206 		goto err;
3207 
3208 	/* FIXME check for device grow with flex external meta data? */
3209 
3210 	/* can the available bitmap space cover the last agreed device size? */
3211 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3212 		goto err;
3213 
3214 	return 0;
3215 
3216 err:
3217 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3218 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3219 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3220 			in_core->meta_dev_idx,
3221 			in_core->al_stripes, in_core->al_stripe_size_4k,
3222 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3223 			(unsigned long long)in_core->la_size_sect,
3224 			(unsigned long long)capacity);
3225 
3226 	return -EINVAL;
3227 }
3228 
3229 
3230 /**
3231  * drbd_md_read() - Reads in the meta data super block
3232  * @device:	DRBD device.
3233  * @bdev:	Device from which the meta data should be read in.
3234  *
3235  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3236  * something goes wrong.
3237  *
3238  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3239  * even before @bdev is assigned to @device->ldev.
3240  */
3241 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3242 {
3243 	struct meta_data_on_disk *buffer;
3244 	u32 magic, flags;
3245 	int i, rv = NO_ERROR;
3246 
3247 	if (device->state.disk != D_DISKLESS)
3248 		return ERR_DISK_CONFIGURED;
3249 
3250 	buffer = drbd_md_get_buffer(device, __func__);
3251 	if (!buffer)
3252 		return ERR_NOMEM;
3253 
3254 	/* First, figure out where our meta data superblock is located,
3255 	 * and read it. */
3256 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3257 	bdev->md.md_offset = drbd_md_ss(bdev);
3258 	/* Even for (flexible or indexed) external meta data,
3259 	 * initially restrict us to the 4k superblock for now.
3260 	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3261 	bdev->md.md_size_sect = 8;
3262 
3263 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3264 				 REQ_OP_READ)) {
3265 		/* NOTE: can't do normal error processing here as this is
3266 		   called BEFORE disk is attached */
3267 		drbd_err(device, "Error while reading metadata.\n");
3268 		rv = ERR_IO_MD_DISK;
3269 		goto err;
3270 	}
3271 
3272 	magic = be32_to_cpu(buffer->magic);
3273 	flags = be32_to_cpu(buffer->flags);
3274 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3275 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3276 			/* btw: that's Activity Log clean, not "all" clean. */
3277 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3278 		rv = ERR_MD_UNCLEAN;
3279 		goto err;
3280 	}
3281 
3282 	rv = ERR_MD_INVALID;
3283 	if (magic != DRBD_MD_MAGIC_08) {
3284 		if (magic == DRBD_MD_MAGIC_07)
3285 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3286 		else
3287 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3288 		goto err;
3289 	}
3290 
3291 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3292 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3293 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3294 		goto err;
3295 	}
3296 
3297 
3298 	/* convert to in_core endian */
3299 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3300 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3301 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3302 	bdev->md.flags = be32_to_cpu(buffer->flags);
3303 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3304 
3305 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3306 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3307 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3308 
3309 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3310 		goto err;
3311 	if (check_offsets_and_sizes(device, bdev))
3312 		goto err;
3313 
3314 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3315 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3316 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3317 		goto err;
3318 	}
3319 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3320 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3321 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3322 		goto err;
3323 	}
3324 
3325 	rv = NO_ERROR;
3326 
3327 	spin_lock_irq(&device->resource->req_lock);
3328 	if (device->state.conn < C_CONNECTED) {
3329 		unsigned int peer;
3330 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3331 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3332 		device->peer_max_bio_size = peer;
3333 	}
3334 	spin_unlock_irq(&device->resource->req_lock);
3335 
3336  err:
3337 	drbd_md_put_buffer(device);
3338 
3339 	return rv;
3340 }
3341 
3342 /**
3343  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3344  * @device:	DRBD device.
3345  *
3346  * Call this function if you change anything that should be written to
3347  * the meta-data super block. This function sets MD_DIRTY, and starts a
3348  * timer that ensures that within five seconds you have to call drbd_md_sync().
3349  */
3350 void drbd_md_mark_dirty(struct drbd_device *device)
3351 {
3352 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3353 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3354 }
3355 
3356 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3357 {
3358 	int i;
3359 
3360 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3361 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3362 }
3363 
3364 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3365 {
3366 	if (idx == UI_CURRENT) {
3367 		if (device->state.role == R_PRIMARY)
3368 			val |= 1;
3369 		else
3370 			val &= ~((u64)1);
3371 
3372 		drbd_set_ed_uuid(device, val);
3373 	}
3374 
3375 	device->ldev->md.uuid[idx] = val;
3376 	drbd_md_mark_dirty(device);
3377 }
3378 
3379 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3380 {
3381 	unsigned long flags;
3382 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3383 	__drbd_uuid_set(device, idx, val);
3384 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3385 }
3386 
3387 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3388 {
3389 	unsigned long flags;
3390 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3391 	if (device->ldev->md.uuid[idx]) {
3392 		drbd_uuid_move_history(device);
3393 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3394 	}
3395 	__drbd_uuid_set(device, idx, val);
3396 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3397 }
3398 
3399 /**
3400  * drbd_uuid_new_current() - Creates a new current UUID
3401  * @device:	DRBD device.
3402  *
3403  * Creates a new current UUID, and rotates the old current UUID into
3404  * the bitmap slot. Causes an incremental resync upon next connect.
3405  */
3406 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3407 {
3408 	u64 val;
3409 	unsigned long long bm_uuid;
3410 
3411 	get_random_bytes(&val, sizeof(u64));
3412 
3413 	spin_lock_irq(&device->ldev->md.uuid_lock);
3414 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3415 
3416 	if (bm_uuid)
3417 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3418 
3419 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3420 	__drbd_uuid_set(device, UI_CURRENT, val);
3421 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3422 
3423 	drbd_print_uuids(device, "new current UUID");
3424 	/* get it to stable storage _now_ */
3425 	drbd_md_sync(device);
3426 }
3427 
3428 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3429 {
3430 	unsigned long flags;
3431 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3432 		return;
3433 
3434 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3435 	if (val == 0) {
3436 		drbd_uuid_move_history(device);
3437 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3438 		device->ldev->md.uuid[UI_BITMAP] = 0;
3439 	} else {
3440 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3441 		if (bm_uuid)
3442 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3443 
3444 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3445 	}
3446 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3447 
3448 	drbd_md_mark_dirty(device);
3449 }
3450 
3451 /**
3452  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3453  * @device:	DRBD device.
3454  *
3455  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3456  */
3457 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3458 {
3459 	int rv = -EIO;
3460 
3461 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3462 	drbd_md_sync(device);
3463 	drbd_bm_set_all(device);
3464 
3465 	rv = drbd_bm_write(device);
3466 
3467 	if (!rv) {
3468 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3469 		drbd_md_sync(device);
3470 	}
3471 
3472 	return rv;
3473 }
3474 
3475 /**
3476  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3477  * @device:	DRBD device.
3478  *
3479  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3480  */
3481 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3482 {
3483 	drbd_resume_al(device);
3484 	drbd_bm_clear_all(device);
3485 	return drbd_bm_write(device);
3486 }
3487 
3488 static int w_bitmap_io(struct drbd_work *w, int unused)
3489 {
3490 	struct drbd_device *device =
3491 		container_of(w, struct drbd_device, bm_io_work.w);
3492 	struct bm_io_work *work = &device->bm_io_work;
3493 	int rv = -EIO;
3494 
3495 	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3496 		int cnt = atomic_read(&device->ap_bio_cnt);
3497 		if (cnt)
3498 			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3499 					cnt, work->why);
3500 	}
3501 
3502 	if (get_ldev(device)) {
3503 		drbd_bm_lock(device, work->why, work->flags);
3504 		rv = work->io_fn(device);
3505 		drbd_bm_unlock(device);
3506 		put_ldev(device);
3507 	}
3508 
3509 	clear_bit_unlock(BITMAP_IO, &device->flags);
3510 	wake_up(&device->misc_wait);
3511 
3512 	if (work->done)
3513 		work->done(device, rv);
3514 
3515 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3516 	work->why = NULL;
3517 	work->flags = 0;
3518 
3519 	return 0;
3520 }
3521 
3522 /**
3523  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3524  * @device:	DRBD device.
3525  * @io_fn:	IO callback to be called when bitmap IO is possible
3526  * @done:	callback to be called after the bitmap IO was performed
3527  * @why:	Descriptive text of the reason for doing the IO
3528  *
3529  * While IO on the bitmap happens we freeze application IO thus we ensure
3530  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3531  * called from worker context. It MUST NOT be used while a previous such
3532  * work is still pending!
3533  *
3534  * Its worker function encloses the call of io_fn() by get_ldev() and
3535  * put_ldev().
3536  */
3537 void drbd_queue_bitmap_io(struct drbd_device *device,
3538 			  int (*io_fn)(struct drbd_device *),
3539 			  void (*done)(struct drbd_device *, int),
3540 			  char *why, enum bm_flag flags)
3541 {
3542 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3543 
3544 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3545 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3546 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3547 	if (device->bm_io_work.why)
3548 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3549 			why, device->bm_io_work.why);
3550 
3551 	device->bm_io_work.io_fn = io_fn;
3552 	device->bm_io_work.done = done;
3553 	device->bm_io_work.why = why;
3554 	device->bm_io_work.flags = flags;
3555 
3556 	spin_lock_irq(&device->resource->req_lock);
3557 	set_bit(BITMAP_IO, &device->flags);
3558 	/* don't wait for pending application IO if the caller indicates that
3559 	 * application IO does not conflict anyways. */
3560 	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3561 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3562 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3563 					&device->bm_io_work.w);
3564 	}
3565 	spin_unlock_irq(&device->resource->req_lock);
3566 }
3567 
3568 /**
3569  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3570  * @device:	DRBD device.
3571  * @io_fn:	IO callback to be called when bitmap IO is possible
3572  * @why:	Descriptive text of the reason for doing the IO
3573  *
3574  * freezes application IO while that the actual IO operations runs. This
3575  * functions MAY NOT be called from worker context.
3576  */
3577 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3578 		char *why, enum bm_flag flags)
3579 {
3580 	/* Only suspend io, if some operation is supposed to be locked out */
3581 	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3582 	int rv;
3583 
3584 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3585 
3586 	if (do_suspend_io)
3587 		drbd_suspend_io(device);
3588 
3589 	drbd_bm_lock(device, why, flags);
3590 	rv = io_fn(device);
3591 	drbd_bm_unlock(device);
3592 
3593 	if (do_suspend_io)
3594 		drbd_resume_io(device);
3595 
3596 	return rv;
3597 }
3598 
3599 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3600 {
3601 	if ((device->ldev->md.flags & flag) != flag) {
3602 		drbd_md_mark_dirty(device);
3603 		device->ldev->md.flags |= flag;
3604 	}
3605 }
3606 
3607 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3608 {
3609 	if ((device->ldev->md.flags & flag) != 0) {
3610 		drbd_md_mark_dirty(device);
3611 		device->ldev->md.flags &= ~flag;
3612 	}
3613 }
3614 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3615 {
3616 	return (bdev->md.flags & flag) != 0;
3617 }
3618 
3619 static void md_sync_timer_fn(struct timer_list *t)
3620 {
3621 	struct drbd_device *device = from_timer(device, t, md_sync_timer);
3622 	drbd_device_post_work(device, MD_SYNC);
3623 }
3624 
3625 const char *cmdname(enum drbd_packet cmd)
3626 {
3627 	/* THINK may need to become several global tables
3628 	 * when we want to support more than
3629 	 * one PRO_VERSION */
3630 	static const char *cmdnames[] = {
3631 		[P_DATA]	        = "Data",
3632 		[P_WSAME]	        = "WriteSame",
3633 		[P_TRIM]	        = "Trim",
3634 		[P_DATA_REPLY]	        = "DataReply",
3635 		[P_RS_DATA_REPLY]	= "RSDataReply",
3636 		[P_BARRIER]	        = "Barrier",
3637 		[P_BITMAP]	        = "ReportBitMap",
3638 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3639 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3640 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3641 		[P_DATA_REQUEST]	= "DataRequest",
3642 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3643 		[P_SYNC_PARAM]	        = "SyncParam",
3644 		[P_SYNC_PARAM89]	= "SyncParam89",
3645 		[P_PROTOCOL]            = "ReportProtocol",
3646 		[P_UUIDS]	        = "ReportUUIDs",
3647 		[P_SIZES]	        = "ReportSizes",
3648 		[P_STATE]	        = "ReportState",
3649 		[P_SYNC_UUID]           = "ReportSyncUUID",
3650 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3651 		[P_AUTH_RESPONSE]	= "AuthResponse",
3652 		[P_PING]		= "Ping",
3653 		[P_PING_ACK]	        = "PingAck",
3654 		[P_RECV_ACK]	        = "RecvAck",
3655 		[P_WRITE_ACK]	        = "WriteAck",
3656 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3657 		[P_SUPERSEDED]          = "Superseded",
3658 		[P_NEG_ACK]	        = "NegAck",
3659 		[P_NEG_DREPLY]	        = "NegDReply",
3660 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3661 		[P_BARRIER_ACK]	        = "BarrierAck",
3662 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3663 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3664 		[P_OV_REQUEST]          = "OVRequest",
3665 		[P_OV_REPLY]            = "OVReply",
3666 		[P_OV_RESULT]           = "OVResult",
3667 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3668 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3669 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3670 		[P_DELAY_PROBE]         = "DelayProbe",
3671 		[P_OUT_OF_SYNC]		= "OutOfSync",
3672 		[P_RETRY_WRITE]		= "RetryWrite",
3673 		[P_RS_CANCEL]		= "RSCancel",
3674 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3675 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3676 		[P_RETRY_WRITE]		= "retry_write",
3677 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3678 		[P_RS_THIN_REQ]         = "rs_thin_req",
3679 		[P_RS_DEALLOCATED]      = "rs_deallocated",
3680 
3681 		/* enum drbd_packet, but not commands - obsoleted flags:
3682 		 *	P_MAY_IGNORE
3683 		 *	P_MAX_OPT_CMD
3684 		 */
3685 	};
3686 
3687 	/* too big for the array: 0xfffX */
3688 	if (cmd == P_INITIAL_META)
3689 		return "InitialMeta";
3690 	if (cmd == P_INITIAL_DATA)
3691 		return "InitialData";
3692 	if (cmd == P_CONNECTION_FEATURES)
3693 		return "ConnectionFeatures";
3694 	if (cmd >= ARRAY_SIZE(cmdnames))
3695 		return "Unknown";
3696 	return cmdnames[cmd];
3697 }
3698 
3699 /**
3700  * drbd_wait_misc  -  wait for a request to make progress
3701  * @device:	device associated with the request
3702  * @i:		the struct drbd_interval embedded in struct drbd_request or
3703  *		struct drbd_peer_request
3704  */
3705 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3706 {
3707 	struct net_conf *nc;
3708 	DEFINE_WAIT(wait);
3709 	long timeout;
3710 
3711 	rcu_read_lock();
3712 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3713 	if (!nc) {
3714 		rcu_read_unlock();
3715 		return -ETIMEDOUT;
3716 	}
3717 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3718 	rcu_read_unlock();
3719 
3720 	/* Indicate to wake up device->misc_wait on progress.  */
3721 	i->waiting = true;
3722 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3723 	spin_unlock_irq(&device->resource->req_lock);
3724 	timeout = schedule_timeout(timeout);
3725 	finish_wait(&device->misc_wait, &wait);
3726 	spin_lock_irq(&device->resource->req_lock);
3727 	if (!timeout || device->state.conn < C_CONNECTED)
3728 		return -ETIMEDOUT;
3729 	if (signal_pending(current))
3730 		return -ERESTARTSYS;
3731 	return 0;
3732 }
3733 
3734 void lock_all_resources(void)
3735 {
3736 	struct drbd_resource *resource;
3737 	int __maybe_unused i = 0;
3738 
3739 	mutex_lock(&resources_mutex);
3740 	local_irq_disable();
3741 	for_each_resource(resource, &drbd_resources)
3742 		spin_lock_nested(&resource->req_lock, i++);
3743 }
3744 
3745 void unlock_all_resources(void)
3746 {
3747 	struct drbd_resource *resource;
3748 
3749 	for_each_resource(resource, &drbd_resources)
3750 		spin_unlock(&resource->req_lock);
3751 	local_irq_enable();
3752 	mutex_unlock(&resources_mutex);
3753 }
3754 
3755 #ifdef CONFIG_DRBD_FAULT_INJECTION
3756 /* Fault insertion support including random number generator shamelessly
3757  * stolen from kernel/rcutorture.c */
3758 struct fault_random_state {
3759 	unsigned long state;
3760 	unsigned long count;
3761 };
3762 
3763 #define FAULT_RANDOM_MULT 39916801  /* prime */
3764 #define FAULT_RANDOM_ADD	479001701 /* prime */
3765 #define FAULT_RANDOM_REFRESH 10000
3766 
3767 /*
3768  * Crude but fast random-number generator.  Uses a linear congruential
3769  * generator, with occasional help from get_random_bytes().
3770  */
3771 static unsigned long
3772 _drbd_fault_random(struct fault_random_state *rsp)
3773 {
3774 	long refresh;
3775 
3776 	if (!rsp->count--) {
3777 		get_random_bytes(&refresh, sizeof(refresh));
3778 		rsp->state += refresh;
3779 		rsp->count = FAULT_RANDOM_REFRESH;
3780 	}
3781 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3782 	return swahw32(rsp->state);
3783 }
3784 
3785 static char *
3786 _drbd_fault_str(unsigned int type) {
3787 	static char *_faults[] = {
3788 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3789 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3790 		[DRBD_FAULT_RS_WR] = "Resync write",
3791 		[DRBD_FAULT_RS_RD] = "Resync read",
3792 		[DRBD_FAULT_DT_WR] = "Data write",
3793 		[DRBD_FAULT_DT_RD] = "Data read",
3794 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3795 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3796 		[DRBD_FAULT_AL_EE] = "EE allocation",
3797 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3798 	};
3799 
3800 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3801 }
3802 
3803 unsigned int
3804 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3805 {
3806 	static struct fault_random_state rrs = {0, 0};
3807 
3808 	unsigned int ret = (
3809 		(drbd_fault_devs == 0 ||
3810 			((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3811 		(((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3812 
3813 	if (ret) {
3814 		drbd_fault_count++;
3815 
3816 		if (__ratelimit(&drbd_ratelimit_state))
3817 			drbd_warn(device, "***Simulating %s failure\n",
3818 				_drbd_fault_str(type));
3819 	}
3820 
3821 	return ret;
3822 }
3823 #endif
3824 
3825 const char *drbd_buildtag(void)
3826 {
3827 	/* DRBD built from external sources has here a reference to the
3828 	   git hash of the source code. */
3829 
3830 	static char buildtag[38] = "\0uilt-in";
3831 
3832 	if (buildtag[0] == 0) {
3833 #ifdef MODULE
3834 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3835 #else
3836 		buildtag[0] = 'b';
3837 #endif
3838 	}
3839 
3840 	return buildtag;
3841 }
3842 
3843 module_init(drbd_init)
3844 module_exit(drbd_cleanup)
3845 
3846 EXPORT_SYMBOL(drbd_conn_str);
3847 EXPORT_SYMBOL(drbd_role_str);
3848 EXPORT_SYMBOL(drbd_disk_str);
3849 EXPORT_SYMBOL(drbd_set_st_err_str);
3850