1 /* 2 drbd.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 11 from Logicworks, Inc. for making SDP replication support possible. 12 13 drbd is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2, or (at your option) 16 any later version. 17 18 drbd is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with drbd; see the file COPYING. If not, write to 25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 26 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/module.h> 32 #include <linux/jiffies.h> 33 #include <linux/drbd.h> 34 #include <linux/uaccess.h> 35 #include <asm/types.h> 36 #include <net/sock.h> 37 #include <linux/ctype.h> 38 #include <linux/mutex.h> 39 #include <linux/fs.h> 40 #include <linux/file.h> 41 #include <linux/proc_fs.h> 42 #include <linux/init.h> 43 #include <linux/mm.h> 44 #include <linux/memcontrol.h> 45 #include <linux/mm_inline.h> 46 #include <linux/slab.h> 47 #include <linux/random.h> 48 #include <linux/reboot.h> 49 #include <linux/notifier.h> 50 #include <linux/kthread.h> 51 #include <linux/workqueue.h> 52 #define __KERNEL_SYSCALLS__ 53 #include <linux/unistd.h> 54 #include <linux/vmalloc.h> 55 #include <linux/sched/signal.h> 56 57 #include <linux/drbd_limits.h> 58 #include "drbd_int.h" 59 #include "drbd_protocol.h" 60 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 61 #include "drbd_vli.h" 62 #include "drbd_debugfs.h" 63 64 static DEFINE_MUTEX(drbd_main_mutex); 65 static int drbd_open(struct block_device *bdev, fmode_t mode); 66 static void drbd_release(struct gendisk *gd, fmode_t mode); 67 static void md_sync_timer_fn(struct timer_list *t); 68 static int w_bitmap_io(struct drbd_work *w, int unused); 69 70 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 71 "Lars Ellenberg <lars@linbit.com>"); 72 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 73 MODULE_VERSION(REL_VERSION); 74 MODULE_LICENSE("GPL"); 75 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 76 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 78 79 #include <linux/moduleparam.h> 80 /* thanks to these macros, if compiled into the kernel (not-module), 81 * these become boot parameters (e.g., drbd.minor_count) */ 82 83 #ifdef CONFIG_DRBD_FAULT_INJECTION 84 int drbd_enable_faults; 85 int drbd_fault_rate; 86 static int drbd_fault_count; 87 static int drbd_fault_devs; 88 /* bitmap of enabled faults */ 89 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 90 /* fault rate % value - applies to all enabled faults */ 91 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 92 /* count of faults inserted */ 93 module_param_named(fault_count, drbd_fault_count, int, 0664); 94 /* bitmap of devices to insert faults on */ 95 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 96 #endif 97 98 /* module parameters we can keep static */ 99 static bool drbd_allow_oos; /* allow_open_on_secondary */ 100 static bool drbd_disable_sendpage; 101 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 102 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 103 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 104 105 /* module parameters we share */ 106 int drbd_proc_details; /* Detail level in proc drbd*/ 107 module_param_named(proc_details, drbd_proc_details, int, 0644); 108 /* module parameters shared with defaults */ 109 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 110 /* Module parameter for setting the user mode helper program 111 * to run. Default is /sbin/drbdadm */ 112 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 113 module_param_named(minor_count, drbd_minor_count, uint, 0444); 114 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 115 116 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 117 * as member "struct gendisk *vdisk;" 118 */ 119 struct idr drbd_devices; 120 struct list_head drbd_resources; 121 struct mutex resources_mutex; 122 123 struct kmem_cache *drbd_request_cache; 124 struct kmem_cache *drbd_ee_cache; /* peer requests */ 125 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 126 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 127 mempool_t drbd_request_mempool; 128 mempool_t drbd_ee_mempool; 129 mempool_t drbd_md_io_page_pool; 130 struct bio_set drbd_md_io_bio_set; 131 struct bio_set drbd_io_bio_set; 132 133 /* I do not use a standard mempool, because: 134 1) I want to hand out the pre-allocated objects first. 135 2) I want to be able to interrupt sleeping allocation with a signal. 136 Note: This is a single linked list, the next pointer is the private 137 member of struct page. 138 */ 139 struct page *drbd_pp_pool; 140 spinlock_t drbd_pp_lock; 141 int drbd_pp_vacant; 142 wait_queue_head_t drbd_pp_wait; 143 144 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 145 146 static const struct block_device_operations drbd_ops = { 147 .owner = THIS_MODULE, 148 .open = drbd_open, 149 .release = drbd_release, 150 }; 151 152 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 153 { 154 struct bio *bio; 155 156 if (!bioset_initialized(&drbd_md_io_bio_set)) 157 return bio_alloc(gfp_mask, 1); 158 159 bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set); 160 if (!bio) 161 return NULL; 162 return bio; 163 } 164 165 #ifdef __CHECKER__ 166 /* When checking with sparse, and this is an inline function, sparse will 167 give tons of false positives. When this is a real functions sparse works. 168 */ 169 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 170 { 171 int io_allowed; 172 173 atomic_inc(&device->local_cnt); 174 io_allowed = (device->state.disk >= mins); 175 if (!io_allowed) { 176 if (atomic_dec_and_test(&device->local_cnt)) 177 wake_up(&device->misc_wait); 178 } 179 return io_allowed; 180 } 181 182 #endif 183 184 /** 185 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 186 * @connection: DRBD connection. 187 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 188 * @set_size: Expected number of requests before that barrier. 189 * 190 * In case the passed barrier_nr or set_size does not match the oldest 191 * epoch of not yet barrier-acked requests, this function will cause a 192 * termination of the connection. 193 */ 194 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 195 unsigned int set_size) 196 { 197 struct drbd_request *r; 198 struct drbd_request *req = NULL; 199 int expect_epoch = 0; 200 int expect_size = 0; 201 202 spin_lock_irq(&connection->resource->req_lock); 203 204 /* find oldest not yet barrier-acked write request, 205 * count writes in its epoch. */ 206 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 207 const unsigned s = r->rq_state; 208 if (!req) { 209 if (!(s & RQ_WRITE)) 210 continue; 211 if (!(s & RQ_NET_MASK)) 212 continue; 213 if (s & RQ_NET_DONE) 214 continue; 215 req = r; 216 expect_epoch = req->epoch; 217 expect_size ++; 218 } else { 219 if (r->epoch != expect_epoch) 220 break; 221 if (!(s & RQ_WRITE)) 222 continue; 223 /* if (s & RQ_DONE): not expected */ 224 /* if (!(s & RQ_NET_MASK)): not expected */ 225 expect_size++; 226 } 227 } 228 229 /* first some paranoia code */ 230 if (req == NULL) { 231 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 232 barrier_nr); 233 goto bail; 234 } 235 if (expect_epoch != barrier_nr) { 236 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 237 barrier_nr, expect_epoch); 238 goto bail; 239 } 240 241 if (expect_size != set_size) { 242 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 243 barrier_nr, set_size, expect_size); 244 goto bail; 245 } 246 247 /* Clean up list of requests processed during current epoch. */ 248 /* this extra list walk restart is paranoia, 249 * to catch requests being barrier-acked "unexpectedly". 250 * It usually should find the same req again, or some READ preceding it. */ 251 list_for_each_entry(req, &connection->transfer_log, tl_requests) 252 if (req->epoch == expect_epoch) 253 break; 254 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 255 if (req->epoch != expect_epoch) 256 break; 257 _req_mod(req, BARRIER_ACKED); 258 } 259 spin_unlock_irq(&connection->resource->req_lock); 260 261 return; 262 263 bail: 264 spin_unlock_irq(&connection->resource->req_lock); 265 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 266 } 267 268 269 /** 270 * _tl_restart() - Walks the transfer log, and applies an action to all requests 271 * @connection: DRBD connection to operate on. 272 * @what: The action/event to perform with all request objects 273 * 274 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 275 * RESTART_FROZEN_DISK_IO. 276 */ 277 /* must hold resource->req_lock */ 278 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 279 { 280 struct drbd_request *req, *r; 281 282 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 283 _req_mod(req, what); 284 } 285 286 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 287 { 288 spin_lock_irq(&connection->resource->req_lock); 289 _tl_restart(connection, what); 290 spin_unlock_irq(&connection->resource->req_lock); 291 } 292 293 /** 294 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 295 * @device: DRBD device. 296 * 297 * This is called after the connection to the peer was lost. The storage covered 298 * by the requests on the transfer gets marked as our of sync. Called from the 299 * receiver thread and the worker thread. 300 */ 301 void tl_clear(struct drbd_connection *connection) 302 { 303 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 304 } 305 306 /** 307 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 308 * @device: DRBD device. 309 */ 310 void tl_abort_disk_io(struct drbd_device *device) 311 { 312 struct drbd_connection *connection = first_peer_device(device)->connection; 313 struct drbd_request *req, *r; 314 315 spin_lock_irq(&connection->resource->req_lock); 316 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 317 if (!(req->rq_state & RQ_LOCAL_PENDING)) 318 continue; 319 if (req->device != device) 320 continue; 321 _req_mod(req, ABORT_DISK_IO); 322 } 323 spin_unlock_irq(&connection->resource->req_lock); 324 } 325 326 static int drbd_thread_setup(void *arg) 327 { 328 struct drbd_thread *thi = (struct drbd_thread *) arg; 329 struct drbd_resource *resource = thi->resource; 330 unsigned long flags; 331 int retval; 332 333 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 334 thi->name[0], 335 resource->name); 336 337 restart: 338 retval = thi->function(thi); 339 340 spin_lock_irqsave(&thi->t_lock, flags); 341 342 /* if the receiver has been "EXITING", the last thing it did 343 * was set the conn state to "StandAlone", 344 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 345 * and receiver thread will be "started". 346 * drbd_thread_start needs to set "RESTARTING" in that case. 347 * t_state check and assignment needs to be within the same spinlock, 348 * so either thread_start sees EXITING, and can remap to RESTARTING, 349 * or thread_start see NONE, and can proceed as normal. 350 */ 351 352 if (thi->t_state == RESTARTING) { 353 drbd_info(resource, "Restarting %s thread\n", thi->name); 354 thi->t_state = RUNNING; 355 spin_unlock_irqrestore(&thi->t_lock, flags); 356 goto restart; 357 } 358 359 thi->task = NULL; 360 thi->t_state = NONE; 361 smp_mb(); 362 complete_all(&thi->stop); 363 spin_unlock_irqrestore(&thi->t_lock, flags); 364 365 drbd_info(resource, "Terminating %s\n", current->comm); 366 367 /* Release mod reference taken when thread was started */ 368 369 if (thi->connection) 370 kref_put(&thi->connection->kref, drbd_destroy_connection); 371 kref_put(&resource->kref, drbd_destroy_resource); 372 module_put(THIS_MODULE); 373 return retval; 374 } 375 376 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 377 int (*func) (struct drbd_thread *), const char *name) 378 { 379 spin_lock_init(&thi->t_lock); 380 thi->task = NULL; 381 thi->t_state = NONE; 382 thi->function = func; 383 thi->resource = resource; 384 thi->connection = NULL; 385 thi->name = name; 386 } 387 388 int drbd_thread_start(struct drbd_thread *thi) 389 { 390 struct drbd_resource *resource = thi->resource; 391 struct task_struct *nt; 392 unsigned long flags; 393 394 /* is used from state engine doing drbd_thread_stop_nowait, 395 * while holding the req lock irqsave */ 396 spin_lock_irqsave(&thi->t_lock, flags); 397 398 switch (thi->t_state) { 399 case NONE: 400 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 401 thi->name, current->comm, current->pid); 402 403 /* Get ref on module for thread - this is released when thread exits */ 404 if (!try_module_get(THIS_MODULE)) { 405 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 406 spin_unlock_irqrestore(&thi->t_lock, flags); 407 return false; 408 } 409 410 kref_get(&resource->kref); 411 if (thi->connection) 412 kref_get(&thi->connection->kref); 413 414 init_completion(&thi->stop); 415 thi->reset_cpu_mask = 1; 416 thi->t_state = RUNNING; 417 spin_unlock_irqrestore(&thi->t_lock, flags); 418 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 419 420 nt = kthread_create(drbd_thread_setup, (void *) thi, 421 "drbd_%c_%s", thi->name[0], thi->resource->name); 422 423 if (IS_ERR(nt)) { 424 drbd_err(resource, "Couldn't start thread\n"); 425 426 if (thi->connection) 427 kref_put(&thi->connection->kref, drbd_destroy_connection); 428 kref_put(&resource->kref, drbd_destroy_resource); 429 module_put(THIS_MODULE); 430 return false; 431 } 432 spin_lock_irqsave(&thi->t_lock, flags); 433 thi->task = nt; 434 thi->t_state = RUNNING; 435 spin_unlock_irqrestore(&thi->t_lock, flags); 436 wake_up_process(nt); 437 break; 438 case EXITING: 439 thi->t_state = RESTARTING; 440 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 441 thi->name, current->comm, current->pid); 442 /* fall through */ 443 case RUNNING: 444 case RESTARTING: 445 default: 446 spin_unlock_irqrestore(&thi->t_lock, flags); 447 break; 448 } 449 450 return true; 451 } 452 453 454 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 455 { 456 unsigned long flags; 457 458 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 459 460 /* may be called from state engine, holding the req lock irqsave */ 461 spin_lock_irqsave(&thi->t_lock, flags); 462 463 if (thi->t_state == NONE) { 464 spin_unlock_irqrestore(&thi->t_lock, flags); 465 if (restart) 466 drbd_thread_start(thi); 467 return; 468 } 469 470 if (thi->t_state != ns) { 471 if (thi->task == NULL) { 472 spin_unlock_irqrestore(&thi->t_lock, flags); 473 return; 474 } 475 476 thi->t_state = ns; 477 smp_mb(); 478 init_completion(&thi->stop); 479 if (thi->task != current) 480 force_sig(DRBD_SIGKILL, thi->task); 481 } 482 483 spin_unlock_irqrestore(&thi->t_lock, flags); 484 485 if (wait) 486 wait_for_completion(&thi->stop); 487 } 488 489 int conn_lowest_minor(struct drbd_connection *connection) 490 { 491 struct drbd_peer_device *peer_device; 492 int vnr = 0, minor = -1; 493 494 rcu_read_lock(); 495 peer_device = idr_get_next(&connection->peer_devices, &vnr); 496 if (peer_device) 497 minor = device_to_minor(peer_device->device); 498 rcu_read_unlock(); 499 500 return minor; 501 } 502 503 #ifdef CONFIG_SMP 504 /** 505 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 506 * 507 * Forces all threads of a resource onto the same CPU. This is beneficial for 508 * DRBD's performance. May be overwritten by user's configuration. 509 */ 510 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 511 { 512 unsigned int *resources_per_cpu, min_index = ~0; 513 514 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 515 GFP_KERNEL); 516 if (resources_per_cpu) { 517 struct drbd_resource *resource; 518 unsigned int cpu, min = ~0; 519 520 rcu_read_lock(); 521 for_each_resource_rcu(resource, &drbd_resources) { 522 for_each_cpu(cpu, resource->cpu_mask) 523 resources_per_cpu[cpu]++; 524 } 525 rcu_read_unlock(); 526 for_each_online_cpu(cpu) { 527 if (resources_per_cpu[cpu] < min) { 528 min = resources_per_cpu[cpu]; 529 min_index = cpu; 530 } 531 } 532 kfree(resources_per_cpu); 533 } 534 if (min_index == ~0) { 535 cpumask_setall(*cpu_mask); 536 return; 537 } 538 cpumask_set_cpu(min_index, *cpu_mask); 539 } 540 541 /** 542 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 543 * @device: DRBD device. 544 * @thi: drbd_thread object 545 * 546 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 547 * prematurely. 548 */ 549 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 550 { 551 struct drbd_resource *resource = thi->resource; 552 struct task_struct *p = current; 553 554 if (!thi->reset_cpu_mask) 555 return; 556 thi->reset_cpu_mask = 0; 557 set_cpus_allowed_ptr(p, resource->cpu_mask); 558 } 559 #else 560 #define drbd_calc_cpu_mask(A) ({}) 561 #endif 562 563 /** 564 * drbd_header_size - size of a packet header 565 * 566 * The header size is a multiple of 8, so any payload following the header is 567 * word aligned on 64-bit architectures. (The bitmap send and receive code 568 * relies on this.) 569 */ 570 unsigned int drbd_header_size(struct drbd_connection *connection) 571 { 572 if (connection->agreed_pro_version >= 100) { 573 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 574 return sizeof(struct p_header100); 575 } else { 576 BUILD_BUG_ON(sizeof(struct p_header80) != 577 sizeof(struct p_header95)); 578 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 579 return sizeof(struct p_header80); 580 } 581 } 582 583 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 584 { 585 h->magic = cpu_to_be32(DRBD_MAGIC); 586 h->command = cpu_to_be16(cmd); 587 h->length = cpu_to_be16(size); 588 return sizeof(struct p_header80); 589 } 590 591 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 592 { 593 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 594 h->command = cpu_to_be16(cmd); 595 h->length = cpu_to_be32(size); 596 return sizeof(struct p_header95); 597 } 598 599 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 600 int size, int vnr) 601 { 602 h->magic = cpu_to_be32(DRBD_MAGIC_100); 603 h->volume = cpu_to_be16(vnr); 604 h->command = cpu_to_be16(cmd); 605 h->length = cpu_to_be32(size); 606 h->pad = 0; 607 return sizeof(struct p_header100); 608 } 609 610 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 611 void *buffer, enum drbd_packet cmd, int size) 612 { 613 if (connection->agreed_pro_version >= 100) 614 return prepare_header100(buffer, cmd, size, vnr); 615 else if (connection->agreed_pro_version >= 95 && 616 size > DRBD_MAX_SIZE_H80_PACKET) 617 return prepare_header95(buffer, cmd, size); 618 else 619 return prepare_header80(buffer, cmd, size); 620 } 621 622 static void *__conn_prepare_command(struct drbd_connection *connection, 623 struct drbd_socket *sock) 624 { 625 if (!sock->socket) 626 return NULL; 627 return sock->sbuf + drbd_header_size(connection); 628 } 629 630 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 631 { 632 void *p; 633 634 mutex_lock(&sock->mutex); 635 p = __conn_prepare_command(connection, sock); 636 if (!p) 637 mutex_unlock(&sock->mutex); 638 639 return p; 640 } 641 642 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 643 { 644 return conn_prepare_command(peer_device->connection, sock); 645 } 646 647 static int __send_command(struct drbd_connection *connection, int vnr, 648 struct drbd_socket *sock, enum drbd_packet cmd, 649 unsigned int header_size, void *data, 650 unsigned int size) 651 { 652 int msg_flags; 653 int err; 654 655 /* 656 * Called with @data == NULL and the size of the data blocks in @size 657 * for commands that send data blocks. For those commands, omit the 658 * MSG_MORE flag: this will increase the likelihood that data blocks 659 * which are page aligned on the sender will end up page aligned on the 660 * receiver. 661 */ 662 msg_flags = data ? MSG_MORE : 0; 663 664 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 665 header_size + size); 666 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 667 msg_flags); 668 if (data && !err) 669 err = drbd_send_all(connection, sock->socket, data, size, 0); 670 /* DRBD protocol "pings" are latency critical. 671 * This is supposed to trigger tcp_push_pending_frames() */ 672 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 673 drbd_tcp_nodelay(sock->socket); 674 675 return err; 676 } 677 678 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 679 enum drbd_packet cmd, unsigned int header_size, 680 void *data, unsigned int size) 681 { 682 return __send_command(connection, 0, sock, cmd, header_size, data, size); 683 } 684 685 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 686 enum drbd_packet cmd, unsigned int header_size, 687 void *data, unsigned int size) 688 { 689 int err; 690 691 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 692 mutex_unlock(&sock->mutex); 693 return err; 694 } 695 696 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 697 enum drbd_packet cmd, unsigned int header_size, 698 void *data, unsigned int size) 699 { 700 int err; 701 702 err = __send_command(peer_device->connection, peer_device->device->vnr, 703 sock, cmd, header_size, data, size); 704 mutex_unlock(&sock->mutex); 705 return err; 706 } 707 708 int drbd_send_ping(struct drbd_connection *connection) 709 { 710 struct drbd_socket *sock; 711 712 sock = &connection->meta; 713 if (!conn_prepare_command(connection, sock)) 714 return -EIO; 715 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 716 } 717 718 int drbd_send_ping_ack(struct drbd_connection *connection) 719 { 720 struct drbd_socket *sock; 721 722 sock = &connection->meta; 723 if (!conn_prepare_command(connection, sock)) 724 return -EIO; 725 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 726 } 727 728 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 729 { 730 struct drbd_socket *sock; 731 struct p_rs_param_95 *p; 732 int size; 733 const int apv = peer_device->connection->agreed_pro_version; 734 enum drbd_packet cmd; 735 struct net_conf *nc; 736 struct disk_conf *dc; 737 738 sock = &peer_device->connection->data; 739 p = drbd_prepare_command(peer_device, sock); 740 if (!p) 741 return -EIO; 742 743 rcu_read_lock(); 744 nc = rcu_dereference(peer_device->connection->net_conf); 745 746 size = apv <= 87 ? sizeof(struct p_rs_param) 747 : apv == 88 ? sizeof(struct p_rs_param) 748 + strlen(nc->verify_alg) + 1 749 : apv <= 94 ? sizeof(struct p_rs_param_89) 750 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 751 752 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 753 754 /* initialize verify_alg and csums_alg */ 755 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 756 757 if (get_ldev(peer_device->device)) { 758 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 759 p->resync_rate = cpu_to_be32(dc->resync_rate); 760 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 761 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 762 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 763 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 764 put_ldev(peer_device->device); 765 } else { 766 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 767 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 768 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 769 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 770 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 771 } 772 773 if (apv >= 88) 774 strcpy(p->verify_alg, nc->verify_alg); 775 if (apv >= 89) 776 strcpy(p->csums_alg, nc->csums_alg); 777 rcu_read_unlock(); 778 779 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 780 } 781 782 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 783 { 784 struct drbd_socket *sock; 785 struct p_protocol *p; 786 struct net_conf *nc; 787 int size, cf; 788 789 sock = &connection->data; 790 p = __conn_prepare_command(connection, sock); 791 if (!p) 792 return -EIO; 793 794 rcu_read_lock(); 795 nc = rcu_dereference(connection->net_conf); 796 797 if (nc->tentative && connection->agreed_pro_version < 92) { 798 rcu_read_unlock(); 799 mutex_unlock(&sock->mutex); 800 drbd_err(connection, "--dry-run is not supported by peer"); 801 return -EOPNOTSUPP; 802 } 803 804 size = sizeof(*p); 805 if (connection->agreed_pro_version >= 87) 806 size += strlen(nc->integrity_alg) + 1; 807 808 p->protocol = cpu_to_be32(nc->wire_protocol); 809 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 810 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 811 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 812 p->two_primaries = cpu_to_be32(nc->two_primaries); 813 cf = 0; 814 if (nc->discard_my_data) 815 cf |= CF_DISCARD_MY_DATA; 816 if (nc->tentative) 817 cf |= CF_DRY_RUN; 818 p->conn_flags = cpu_to_be32(cf); 819 820 if (connection->agreed_pro_version >= 87) 821 strcpy(p->integrity_alg, nc->integrity_alg); 822 rcu_read_unlock(); 823 824 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 825 } 826 827 int drbd_send_protocol(struct drbd_connection *connection) 828 { 829 int err; 830 831 mutex_lock(&connection->data.mutex); 832 err = __drbd_send_protocol(connection, P_PROTOCOL); 833 mutex_unlock(&connection->data.mutex); 834 835 return err; 836 } 837 838 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 839 { 840 struct drbd_device *device = peer_device->device; 841 struct drbd_socket *sock; 842 struct p_uuids *p; 843 int i; 844 845 if (!get_ldev_if_state(device, D_NEGOTIATING)) 846 return 0; 847 848 sock = &peer_device->connection->data; 849 p = drbd_prepare_command(peer_device, sock); 850 if (!p) { 851 put_ldev(device); 852 return -EIO; 853 } 854 spin_lock_irq(&device->ldev->md.uuid_lock); 855 for (i = UI_CURRENT; i < UI_SIZE; i++) 856 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 857 spin_unlock_irq(&device->ldev->md.uuid_lock); 858 859 device->comm_bm_set = drbd_bm_total_weight(device); 860 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 861 rcu_read_lock(); 862 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 863 rcu_read_unlock(); 864 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 865 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 866 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 867 868 put_ldev(device); 869 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 870 } 871 872 int drbd_send_uuids(struct drbd_peer_device *peer_device) 873 { 874 return _drbd_send_uuids(peer_device, 0); 875 } 876 877 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 878 { 879 return _drbd_send_uuids(peer_device, 8); 880 } 881 882 void drbd_print_uuids(struct drbd_device *device, const char *text) 883 { 884 if (get_ldev_if_state(device, D_NEGOTIATING)) { 885 u64 *uuid = device->ldev->md.uuid; 886 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 887 text, 888 (unsigned long long)uuid[UI_CURRENT], 889 (unsigned long long)uuid[UI_BITMAP], 890 (unsigned long long)uuid[UI_HISTORY_START], 891 (unsigned long long)uuid[UI_HISTORY_END]); 892 put_ldev(device); 893 } else { 894 drbd_info(device, "%s effective data uuid: %016llX\n", 895 text, 896 (unsigned long long)device->ed_uuid); 897 } 898 } 899 900 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 901 { 902 struct drbd_device *device = peer_device->device; 903 struct drbd_socket *sock; 904 struct p_rs_uuid *p; 905 u64 uuid; 906 907 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 908 909 uuid = device->ldev->md.uuid[UI_BITMAP]; 910 if (uuid && uuid != UUID_JUST_CREATED) 911 uuid = uuid + UUID_NEW_BM_OFFSET; 912 else 913 get_random_bytes(&uuid, sizeof(u64)); 914 drbd_uuid_set(device, UI_BITMAP, uuid); 915 drbd_print_uuids(device, "updated sync UUID"); 916 drbd_md_sync(device); 917 918 sock = &peer_device->connection->data; 919 p = drbd_prepare_command(peer_device, sock); 920 if (p) { 921 p->uuid = cpu_to_be64(uuid); 922 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 923 } 924 } 925 926 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 927 static void 928 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, 929 struct request_queue *q) 930 { 931 if (q) { 932 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 933 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 934 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 935 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 936 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 937 p->qlim->discard_enabled = blk_queue_discard(q); 938 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors; 939 } else { 940 q = device->rq_queue; 941 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 942 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 943 p->qlim->alignment_offset = 0; 944 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 945 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 946 p->qlim->discard_enabled = 0; 947 p->qlim->write_same_capable = 0; 948 } 949 } 950 951 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 952 { 953 struct drbd_device *device = peer_device->device; 954 struct drbd_socket *sock; 955 struct p_sizes *p; 956 sector_t d_size, u_size; 957 int q_order_type; 958 unsigned int max_bio_size; 959 unsigned int packet_size; 960 961 sock = &peer_device->connection->data; 962 p = drbd_prepare_command(peer_device, sock); 963 if (!p) 964 return -EIO; 965 966 packet_size = sizeof(*p); 967 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 968 packet_size += sizeof(p->qlim[0]); 969 970 memset(p, 0, packet_size); 971 if (get_ldev_if_state(device, D_NEGOTIATING)) { 972 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 973 d_size = drbd_get_max_capacity(device->ldev); 974 rcu_read_lock(); 975 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 976 rcu_read_unlock(); 977 q_order_type = drbd_queue_order_type(device); 978 max_bio_size = queue_max_hw_sectors(q) << 9; 979 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 980 assign_p_sizes_qlim(device, p, q); 981 put_ldev(device); 982 } else { 983 d_size = 0; 984 u_size = 0; 985 q_order_type = QUEUE_ORDERED_NONE; 986 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 987 assign_p_sizes_qlim(device, p, NULL); 988 } 989 990 if (peer_device->connection->agreed_pro_version <= 94) 991 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 992 else if (peer_device->connection->agreed_pro_version < 100) 993 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 994 995 p->d_size = cpu_to_be64(d_size); 996 p->u_size = cpu_to_be64(u_size); 997 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 998 p->max_bio_size = cpu_to_be32(max_bio_size); 999 p->queue_order_type = cpu_to_be16(q_order_type); 1000 p->dds_flags = cpu_to_be16(flags); 1001 1002 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 1003 } 1004 1005 /** 1006 * drbd_send_current_state() - Sends the drbd state to the peer 1007 * @peer_device: DRBD peer device. 1008 */ 1009 int drbd_send_current_state(struct drbd_peer_device *peer_device) 1010 { 1011 struct drbd_socket *sock; 1012 struct p_state *p; 1013 1014 sock = &peer_device->connection->data; 1015 p = drbd_prepare_command(peer_device, sock); 1016 if (!p) 1017 return -EIO; 1018 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1019 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1020 } 1021 1022 /** 1023 * drbd_send_state() - After a state change, sends the new state to the peer 1024 * @peer_device: DRBD peer device. 1025 * @state: the state to send, not necessarily the current state. 1026 * 1027 * Each state change queues an "after_state_ch" work, which will eventually 1028 * send the resulting new state to the peer. If more state changes happen 1029 * between queuing and processing of the after_state_ch work, we still 1030 * want to send each intermediary state in the order it occurred. 1031 */ 1032 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1033 { 1034 struct drbd_socket *sock; 1035 struct p_state *p; 1036 1037 sock = &peer_device->connection->data; 1038 p = drbd_prepare_command(peer_device, sock); 1039 if (!p) 1040 return -EIO; 1041 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1042 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1043 } 1044 1045 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1046 { 1047 struct drbd_socket *sock; 1048 struct p_req_state *p; 1049 1050 sock = &peer_device->connection->data; 1051 p = drbd_prepare_command(peer_device, sock); 1052 if (!p) 1053 return -EIO; 1054 p->mask = cpu_to_be32(mask.i); 1055 p->val = cpu_to_be32(val.i); 1056 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1057 } 1058 1059 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1060 { 1061 enum drbd_packet cmd; 1062 struct drbd_socket *sock; 1063 struct p_req_state *p; 1064 1065 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1066 sock = &connection->data; 1067 p = conn_prepare_command(connection, sock); 1068 if (!p) 1069 return -EIO; 1070 p->mask = cpu_to_be32(mask.i); 1071 p->val = cpu_to_be32(val.i); 1072 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1073 } 1074 1075 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1076 { 1077 struct drbd_socket *sock; 1078 struct p_req_state_reply *p; 1079 1080 sock = &peer_device->connection->meta; 1081 p = drbd_prepare_command(peer_device, sock); 1082 if (p) { 1083 p->retcode = cpu_to_be32(retcode); 1084 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1085 } 1086 } 1087 1088 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1089 { 1090 struct drbd_socket *sock; 1091 struct p_req_state_reply *p; 1092 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1093 1094 sock = &connection->meta; 1095 p = conn_prepare_command(connection, sock); 1096 if (p) { 1097 p->retcode = cpu_to_be32(retcode); 1098 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1099 } 1100 } 1101 1102 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1103 { 1104 BUG_ON(code & ~0xf); 1105 p->encoding = (p->encoding & ~0xf) | code; 1106 } 1107 1108 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1109 { 1110 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1111 } 1112 1113 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1114 { 1115 BUG_ON(n & ~0x7); 1116 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1117 } 1118 1119 static int fill_bitmap_rle_bits(struct drbd_device *device, 1120 struct p_compressed_bm *p, 1121 unsigned int size, 1122 struct bm_xfer_ctx *c) 1123 { 1124 struct bitstream bs; 1125 unsigned long plain_bits; 1126 unsigned long tmp; 1127 unsigned long rl; 1128 unsigned len; 1129 unsigned toggle; 1130 int bits, use_rle; 1131 1132 /* may we use this feature? */ 1133 rcu_read_lock(); 1134 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1135 rcu_read_unlock(); 1136 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1137 return 0; 1138 1139 if (c->bit_offset >= c->bm_bits) 1140 return 0; /* nothing to do. */ 1141 1142 /* use at most thus many bytes */ 1143 bitstream_init(&bs, p->code, size, 0); 1144 memset(p->code, 0, size); 1145 /* plain bits covered in this code string */ 1146 plain_bits = 0; 1147 1148 /* p->encoding & 0x80 stores whether the first run length is set. 1149 * bit offset is implicit. 1150 * start with toggle == 2 to be able to tell the first iteration */ 1151 toggle = 2; 1152 1153 /* see how much plain bits we can stuff into one packet 1154 * using RLE and VLI. */ 1155 do { 1156 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1157 : _drbd_bm_find_next(device, c->bit_offset); 1158 if (tmp == -1UL) 1159 tmp = c->bm_bits; 1160 rl = tmp - c->bit_offset; 1161 1162 if (toggle == 2) { /* first iteration */ 1163 if (rl == 0) { 1164 /* the first checked bit was set, 1165 * store start value, */ 1166 dcbp_set_start(p, 1); 1167 /* but skip encoding of zero run length */ 1168 toggle = !toggle; 1169 continue; 1170 } 1171 dcbp_set_start(p, 0); 1172 } 1173 1174 /* paranoia: catch zero runlength. 1175 * can only happen if bitmap is modified while we scan it. */ 1176 if (rl == 0) { 1177 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1178 "t:%u bo:%lu\n", toggle, c->bit_offset); 1179 return -1; 1180 } 1181 1182 bits = vli_encode_bits(&bs, rl); 1183 if (bits == -ENOBUFS) /* buffer full */ 1184 break; 1185 if (bits <= 0) { 1186 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1187 return 0; 1188 } 1189 1190 toggle = !toggle; 1191 plain_bits += rl; 1192 c->bit_offset = tmp; 1193 } while (c->bit_offset < c->bm_bits); 1194 1195 len = bs.cur.b - p->code + !!bs.cur.bit; 1196 1197 if (plain_bits < (len << 3)) { 1198 /* incompressible with this method. 1199 * we need to rewind both word and bit position. */ 1200 c->bit_offset -= plain_bits; 1201 bm_xfer_ctx_bit_to_word_offset(c); 1202 c->bit_offset = c->word_offset * BITS_PER_LONG; 1203 return 0; 1204 } 1205 1206 /* RLE + VLI was able to compress it just fine. 1207 * update c->word_offset. */ 1208 bm_xfer_ctx_bit_to_word_offset(c); 1209 1210 /* store pad_bits */ 1211 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1212 1213 return len; 1214 } 1215 1216 /** 1217 * send_bitmap_rle_or_plain 1218 * 1219 * Return 0 when done, 1 when another iteration is needed, and a negative error 1220 * code upon failure. 1221 */ 1222 static int 1223 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1224 { 1225 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1226 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1227 struct p_compressed_bm *p = sock->sbuf + header_size; 1228 int len, err; 1229 1230 len = fill_bitmap_rle_bits(device, p, 1231 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1232 if (len < 0) 1233 return -EIO; 1234 1235 if (len) { 1236 dcbp_set_code(p, RLE_VLI_Bits); 1237 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1238 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1239 NULL, 0); 1240 c->packets[0]++; 1241 c->bytes[0] += header_size + sizeof(*p) + len; 1242 1243 if (c->bit_offset >= c->bm_bits) 1244 len = 0; /* DONE */ 1245 } else { 1246 /* was not compressible. 1247 * send a buffer full of plain text bits instead. */ 1248 unsigned int data_size; 1249 unsigned long num_words; 1250 unsigned long *p = sock->sbuf + header_size; 1251 1252 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1253 num_words = min_t(size_t, data_size / sizeof(*p), 1254 c->bm_words - c->word_offset); 1255 len = num_words * sizeof(*p); 1256 if (len) 1257 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1258 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1259 c->word_offset += num_words; 1260 c->bit_offset = c->word_offset * BITS_PER_LONG; 1261 1262 c->packets[1]++; 1263 c->bytes[1] += header_size + len; 1264 1265 if (c->bit_offset > c->bm_bits) 1266 c->bit_offset = c->bm_bits; 1267 } 1268 if (!err) { 1269 if (len == 0) { 1270 INFO_bm_xfer_stats(device, "send", c); 1271 return 0; 1272 } else 1273 return 1; 1274 } 1275 return -EIO; 1276 } 1277 1278 /* See the comment at receive_bitmap() */ 1279 static int _drbd_send_bitmap(struct drbd_device *device) 1280 { 1281 struct bm_xfer_ctx c; 1282 int err; 1283 1284 if (!expect(device->bitmap)) 1285 return false; 1286 1287 if (get_ldev(device)) { 1288 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1289 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1290 drbd_bm_set_all(device); 1291 if (drbd_bm_write(device)) { 1292 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1293 * but otherwise process as per normal - need to tell other 1294 * side that a full resync is required! */ 1295 drbd_err(device, "Failed to write bitmap to disk!\n"); 1296 } else { 1297 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1298 drbd_md_sync(device); 1299 } 1300 } 1301 put_ldev(device); 1302 } 1303 1304 c = (struct bm_xfer_ctx) { 1305 .bm_bits = drbd_bm_bits(device), 1306 .bm_words = drbd_bm_words(device), 1307 }; 1308 1309 do { 1310 err = send_bitmap_rle_or_plain(device, &c); 1311 } while (err > 0); 1312 1313 return err == 0; 1314 } 1315 1316 int drbd_send_bitmap(struct drbd_device *device) 1317 { 1318 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1319 int err = -1; 1320 1321 mutex_lock(&sock->mutex); 1322 if (sock->socket) 1323 err = !_drbd_send_bitmap(device); 1324 mutex_unlock(&sock->mutex); 1325 return err; 1326 } 1327 1328 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1329 { 1330 struct drbd_socket *sock; 1331 struct p_barrier_ack *p; 1332 1333 if (connection->cstate < C_WF_REPORT_PARAMS) 1334 return; 1335 1336 sock = &connection->meta; 1337 p = conn_prepare_command(connection, sock); 1338 if (!p) 1339 return; 1340 p->barrier = barrier_nr; 1341 p->set_size = cpu_to_be32(set_size); 1342 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1343 } 1344 1345 /** 1346 * _drbd_send_ack() - Sends an ack packet 1347 * @device: DRBD device. 1348 * @cmd: Packet command code. 1349 * @sector: sector, needs to be in big endian byte order 1350 * @blksize: size in byte, needs to be in big endian byte order 1351 * @block_id: Id, big endian byte order 1352 */ 1353 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1354 u64 sector, u32 blksize, u64 block_id) 1355 { 1356 struct drbd_socket *sock; 1357 struct p_block_ack *p; 1358 1359 if (peer_device->device->state.conn < C_CONNECTED) 1360 return -EIO; 1361 1362 sock = &peer_device->connection->meta; 1363 p = drbd_prepare_command(peer_device, sock); 1364 if (!p) 1365 return -EIO; 1366 p->sector = sector; 1367 p->block_id = block_id; 1368 p->blksize = blksize; 1369 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1370 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1371 } 1372 1373 /* dp->sector and dp->block_id already/still in network byte order, 1374 * data_size is payload size according to dp->head, 1375 * and may need to be corrected for digest size. */ 1376 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1377 struct p_data *dp, int data_size) 1378 { 1379 if (peer_device->connection->peer_integrity_tfm) 1380 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1381 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1382 dp->block_id); 1383 } 1384 1385 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1386 struct p_block_req *rp) 1387 { 1388 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1389 } 1390 1391 /** 1392 * drbd_send_ack() - Sends an ack packet 1393 * @device: DRBD device 1394 * @cmd: packet command code 1395 * @peer_req: peer request 1396 */ 1397 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1398 struct drbd_peer_request *peer_req) 1399 { 1400 return _drbd_send_ack(peer_device, cmd, 1401 cpu_to_be64(peer_req->i.sector), 1402 cpu_to_be32(peer_req->i.size), 1403 peer_req->block_id); 1404 } 1405 1406 /* This function misuses the block_id field to signal if the blocks 1407 * are is sync or not. */ 1408 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1409 sector_t sector, int blksize, u64 block_id) 1410 { 1411 return _drbd_send_ack(peer_device, cmd, 1412 cpu_to_be64(sector), 1413 cpu_to_be32(blksize), 1414 cpu_to_be64(block_id)); 1415 } 1416 1417 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1418 struct drbd_peer_request *peer_req) 1419 { 1420 struct drbd_socket *sock; 1421 struct p_block_desc *p; 1422 1423 sock = &peer_device->connection->data; 1424 p = drbd_prepare_command(peer_device, sock); 1425 if (!p) 1426 return -EIO; 1427 p->sector = cpu_to_be64(peer_req->i.sector); 1428 p->blksize = cpu_to_be32(peer_req->i.size); 1429 p->pad = 0; 1430 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1431 } 1432 1433 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1434 sector_t sector, int size, u64 block_id) 1435 { 1436 struct drbd_socket *sock; 1437 struct p_block_req *p; 1438 1439 sock = &peer_device->connection->data; 1440 p = drbd_prepare_command(peer_device, sock); 1441 if (!p) 1442 return -EIO; 1443 p->sector = cpu_to_be64(sector); 1444 p->block_id = block_id; 1445 p->blksize = cpu_to_be32(size); 1446 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1447 } 1448 1449 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1450 void *digest, int digest_size, enum drbd_packet cmd) 1451 { 1452 struct drbd_socket *sock; 1453 struct p_block_req *p; 1454 1455 /* FIXME: Put the digest into the preallocated socket buffer. */ 1456 1457 sock = &peer_device->connection->data; 1458 p = drbd_prepare_command(peer_device, sock); 1459 if (!p) 1460 return -EIO; 1461 p->sector = cpu_to_be64(sector); 1462 p->block_id = ID_SYNCER /* unused */; 1463 p->blksize = cpu_to_be32(size); 1464 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1465 } 1466 1467 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1468 { 1469 struct drbd_socket *sock; 1470 struct p_block_req *p; 1471 1472 sock = &peer_device->connection->data; 1473 p = drbd_prepare_command(peer_device, sock); 1474 if (!p) 1475 return -EIO; 1476 p->sector = cpu_to_be64(sector); 1477 p->block_id = ID_SYNCER /* unused */; 1478 p->blksize = cpu_to_be32(size); 1479 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1480 } 1481 1482 /* called on sndtimeo 1483 * returns false if we should retry, 1484 * true if we think connection is dead 1485 */ 1486 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1487 { 1488 int drop_it; 1489 /* long elapsed = (long)(jiffies - device->last_received); */ 1490 1491 drop_it = connection->meta.socket == sock 1492 || !connection->ack_receiver.task 1493 || get_t_state(&connection->ack_receiver) != RUNNING 1494 || connection->cstate < C_WF_REPORT_PARAMS; 1495 1496 if (drop_it) 1497 return true; 1498 1499 drop_it = !--connection->ko_count; 1500 if (!drop_it) { 1501 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1502 current->comm, current->pid, connection->ko_count); 1503 request_ping(connection); 1504 } 1505 1506 return drop_it; /* && (device->state == R_PRIMARY) */; 1507 } 1508 1509 static void drbd_update_congested(struct drbd_connection *connection) 1510 { 1511 struct sock *sk = connection->data.socket->sk; 1512 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1513 set_bit(NET_CONGESTED, &connection->flags); 1514 } 1515 1516 /* The idea of sendpage seems to be to put some kind of reference 1517 * to the page into the skb, and to hand it over to the NIC. In 1518 * this process get_page() gets called. 1519 * 1520 * As soon as the page was really sent over the network put_page() 1521 * gets called by some part of the network layer. [ NIC driver? ] 1522 * 1523 * [ get_page() / put_page() increment/decrement the count. If count 1524 * reaches 0 the page will be freed. ] 1525 * 1526 * This works nicely with pages from FSs. 1527 * But this means that in protocol A we might signal IO completion too early! 1528 * 1529 * In order not to corrupt data during a resync we must make sure 1530 * that we do not reuse our own buffer pages (EEs) to early, therefore 1531 * we have the net_ee list. 1532 * 1533 * XFS seems to have problems, still, it submits pages with page_count == 0! 1534 * As a workaround, we disable sendpage on pages 1535 * with page_count == 0 or PageSlab. 1536 */ 1537 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1538 int offset, size_t size, unsigned msg_flags) 1539 { 1540 struct socket *socket; 1541 void *addr; 1542 int err; 1543 1544 socket = peer_device->connection->data.socket; 1545 addr = kmap(page) + offset; 1546 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1547 kunmap(page); 1548 if (!err) 1549 peer_device->device->send_cnt += size >> 9; 1550 return err; 1551 } 1552 1553 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1554 int offset, size_t size, unsigned msg_flags) 1555 { 1556 struct socket *socket = peer_device->connection->data.socket; 1557 int len = size; 1558 int err = -EIO; 1559 1560 /* e.g. XFS meta- & log-data is in slab pages, which have a 1561 * page_count of 0 and/or have PageSlab() set. 1562 * we cannot use send_page for those, as that does get_page(); 1563 * put_page(); and would cause either a VM_BUG directly, or 1564 * __page_cache_release a page that would actually still be referenced 1565 * by someone, leading to some obscure delayed Oops somewhere else. */ 1566 if (drbd_disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1567 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1568 1569 msg_flags |= MSG_NOSIGNAL; 1570 drbd_update_congested(peer_device->connection); 1571 do { 1572 int sent; 1573 1574 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1575 if (sent <= 0) { 1576 if (sent == -EAGAIN) { 1577 if (we_should_drop_the_connection(peer_device->connection, socket)) 1578 break; 1579 continue; 1580 } 1581 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1582 __func__, (int)size, len, sent); 1583 if (sent < 0) 1584 err = sent; 1585 break; 1586 } 1587 len -= sent; 1588 offset += sent; 1589 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1590 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1591 1592 if (len == 0) { 1593 err = 0; 1594 peer_device->device->send_cnt += size >> 9; 1595 } 1596 return err; 1597 } 1598 1599 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1600 { 1601 struct bio_vec bvec; 1602 struct bvec_iter iter; 1603 1604 /* hint all but last page with MSG_MORE */ 1605 bio_for_each_segment(bvec, bio, iter) { 1606 int err; 1607 1608 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1609 bvec.bv_offset, bvec.bv_len, 1610 bio_iter_last(bvec, iter) 1611 ? 0 : MSG_MORE); 1612 if (err) 1613 return err; 1614 /* REQ_OP_WRITE_SAME has only one segment */ 1615 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1616 break; 1617 } 1618 return 0; 1619 } 1620 1621 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1622 { 1623 struct bio_vec bvec; 1624 struct bvec_iter iter; 1625 1626 /* hint all but last page with MSG_MORE */ 1627 bio_for_each_segment(bvec, bio, iter) { 1628 int err; 1629 1630 err = _drbd_send_page(peer_device, bvec.bv_page, 1631 bvec.bv_offset, bvec.bv_len, 1632 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1633 if (err) 1634 return err; 1635 /* REQ_OP_WRITE_SAME has only one segment */ 1636 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1637 break; 1638 } 1639 return 0; 1640 } 1641 1642 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1643 struct drbd_peer_request *peer_req) 1644 { 1645 struct page *page = peer_req->pages; 1646 unsigned len = peer_req->i.size; 1647 int err; 1648 1649 /* hint all but last page with MSG_MORE */ 1650 page_chain_for_each(page) { 1651 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1652 1653 err = _drbd_send_page(peer_device, page, 0, l, 1654 page_chain_next(page) ? MSG_MORE : 0); 1655 if (err) 1656 return err; 1657 len -= l; 1658 } 1659 return 0; 1660 } 1661 1662 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1663 struct bio *bio) 1664 { 1665 if (connection->agreed_pro_version >= 95) 1666 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1667 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1668 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1669 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) | 1670 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1671 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? DP_DISCARD : 0); 1672 else 1673 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1674 } 1675 1676 /* Used to send write or TRIM aka REQ_DISCARD requests 1677 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1678 */ 1679 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1680 { 1681 struct drbd_device *device = peer_device->device; 1682 struct drbd_socket *sock; 1683 struct p_data *p; 1684 struct p_wsame *wsame = NULL; 1685 void *digest_out; 1686 unsigned int dp_flags = 0; 1687 int digest_size; 1688 int err; 1689 1690 sock = &peer_device->connection->data; 1691 p = drbd_prepare_command(peer_device, sock); 1692 digest_size = peer_device->connection->integrity_tfm ? 1693 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1694 1695 if (!p) 1696 return -EIO; 1697 p->sector = cpu_to_be64(req->i.sector); 1698 p->block_id = (unsigned long)req; 1699 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1700 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1701 if (device->state.conn >= C_SYNC_SOURCE && 1702 device->state.conn <= C_PAUSED_SYNC_T) 1703 dp_flags |= DP_MAY_SET_IN_SYNC; 1704 if (peer_device->connection->agreed_pro_version >= 100) { 1705 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1706 dp_flags |= DP_SEND_RECEIVE_ACK; 1707 /* During resync, request an explicit write ack, 1708 * even in protocol != C */ 1709 if (req->rq_state & RQ_EXP_WRITE_ACK 1710 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1711 dp_flags |= DP_SEND_WRITE_ACK; 1712 } 1713 p->dp_flags = cpu_to_be32(dp_flags); 1714 1715 if (dp_flags & DP_DISCARD) { 1716 struct p_trim *t = (struct p_trim*)p; 1717 t->size = cpu_to_be32(req->i.size); 1718 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0); 1719 goto out; 1720 } 1721 if (dp_flags & DP_WSAME) { 1722 /* this will only work if DRBD_FF_WSAME is set AND the 1723 * handshake agreed that all nodes and backend devices are 1724 * WRITE_SAME capable and agree on logical_block_size */ 1725 wsame = (struct p_wsame*)p; 1726 digest_out = wsame + 1; 1727 wsame->size = cpu_to_be32(req->i.size); 1728 } else 1729 digest_out = p + 1; 1730 1731 /* our digest is still only over the payload. 1732 * TRIM does not carry any payload. */ 1733 if (digest_size) 1734 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1735 if (wsame) { 1736 err = 1737 __send_command(peer_device->connection, device->vnr, sock, P_WSAME, 1738 sizeof(*wsame) + digest_size, NULL, 1739 bio_iovec(req->master_bio).bv_len); 1740 } else 1741 err = 1742 __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1743 sizeof(*p) + digest_size, NULL, req->i.size); 1744 if (!err) { 1745 /* For protocol A, we have to memcpy the payload into 1746 * socket buffers, as we may complete right away 1747 * as soon as we handed it over to tcp, at which point the data 1748 * pages may become invalid. 1749 * 1750 * For data-integrity enabled, we copy it as well, so we can be 1751 * sure that even if the bio pages may still be modified, it 1752 * won't change the data on the wire, thus if the digest checks 1753 * out ok after sending on this side, but does not fit on the 1754 * receiving side, we sure have detected corruption elsewhere. 1755 */ 1756 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1757 err = _drbd_send_bio(peer_device, req->master_bio); 1758 else 1759 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1760 1761 /* double check digest, sometimes buffers have been modified in flight. */ 1762 if (digest_size > 0 && digest_size <= 64) { 1763 /* 64 byte, 512 bit, is the largest digest size 1764 * currently supported in kernel crypto. */ 1765 unsigned char digest[64]; 1766 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1767 if (memcmp(p + 1, digest, digest_size)) { 1768 drbd_warn(device, 1769 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1770 (unsigned long long)req->i.sector, req->i.size); 1771 } 1772 } /* else if (digest_size > 64) { 1773 ... Be noisy about digest too large ... 1774 } */ 1775 } 1776 out: 1777 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1778 1779 return err; 1780 } 1781 1782 /* answer packet, used to send data back for read requests: 1783 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1784 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1785 */ 1786 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1787 struct drbd_peer_request *peer_req) 1788 { 1789 struct drbd_device *device = peer_device->device; 1790 struct drbd_socket *sock; 1791 struct p_data *p; 1792 int err; 1793 int digest_size; 1794 1795 sock = &peer_device->connection->data; 1796 p = drbd_prepare_command(peer_device, sock); 1797 1798 digest_size = peer_device->connection->integrity_tfm ? 1799 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1800 1801 if (!p) 1802 return -EIO; 1803 p->sector = cpu_to_be64(peer_req->i.sector); 1804 p->block_id = peer_req->block_id; 1805 p->seq_num = 0; /* unused */ 1806 p->dp_flags = 0; 1807 if (digest_size) 1808 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1809 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1810 if (!err) 1811 err = _drbd_send_zc_ee(peer_device, peer_req); 1812 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1813 1814 return err; 1815 } 1816 1817 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1818 { 1819 struct drbd_socket *sock; 1820 struct p_block_desc *p; 1821 1822 sock = &peer_device->connection->data; 1823 p = drbd_prepare_command(peer_device, sock); 1824 if (!p) 1825 return -EIO; 1826 p->sector = cpu_to_be64(req->i.sector); 1827 p->blksize = cpu_to_be32(req->i.size); 1828 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1829 } 1830 1831 /* 1832 drbd_send distinguishes two cases: 1833 1834 Packets sent via the data socket "sock" 1835 and packets sent via the meta data socket "msock" 1836 1837 sock msock 1838 -----------------+-------------------------+------------------------------ 1839 timeout conf.timeout / 2 conf.timeout / 2 1840 timeout action send a ping via msock Abort communication 1841 and close all sockets 1842 */ 1843 1844 /* 1845 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1846 */ 1847 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1848 void *buf, size_t size, unsigned msg_flags) 1849 { 1850 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1851 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1852 int rv, sent = 0; 1853 1854 if (!sock) 1855 return -EBADR; 1856 1857 /* THINK if (signal_pending) return ... ? */ 1858 1859 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, &iov, 1, size); 1860 1861 if (sock == connection->data.socket) { 1862 rcu_read_lock(); 1863 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1864 rcu_read_unlock(); 1865 drbd_update_congested(connection); 1866 } 1867 do { 1868 rv = sock_sendmsg(sock, &msg); 1869 if (rv == -EAGAIN) { 1870 if (we_should_drop_the_connection(connection, sock)) 1871 break; 1872 else 1873 continue; 1874 } 1875 if (rv == -EINTR) { 1876 flush_signals(current); 1877 rv = 0; 1878 } 1879 if (rv < 0) 1880 break; 1881 sent += rv; 1882 } while (sent < size); 1883 1884 if (sock == connection->data.socket) 1885 clear_bit(NET_CONGESTED, &connection->flags); 1886 1887 if (rv <= 0) { 1888 if (rv != -EAGAIN) { 1889 drbd_err(connection, "%s_sendmsg returned %d\n", 1890 sock == connection->meta.socket ? "msock" : "sock", 1891 rv); 1892 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1893 } else 1894 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1895 } 1896 1897 return sent; 1898 } 1899 1900 /** 1901 * drbd_send_all - Send an entire buffer 1902 * 1903 * Returns 0 upon success and a negative error value otherwise. 1904 */ 1905 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1906 size_t size, unsigned msg_flags) 1907 { 1908 int err; 1909 1910 err = drbd_send(connection, sock, buffer, size, msg_flags); 1911 if (err < 0) 1912 return err; 1913 if (err != size) 1914 return -EIO; 1915 return 0; 1916 } 1917 1918 static int drbd_open(struct block_device *bdev, fmode_t mode) 1919 { 1920 struct drbd_device *device = bdev->bd_disk->private_data; 1921 unsigned long flags; 1922 int rv = 0; 1923 1924 mutex_lock(&drbd_main_mutex); 1925 spin_lock_irqsave(&device->resource->req_lock, flags); 1926 /* to have a stable device->state.role 1927 * and no race with updating open_cnt */ 1928 1929 if (device->state.role != R_PRIMARY) { 1930 if (mode & FMODE_WRITE) 1931 rv = -EROFS; 1932 else if (!drbd_allow_oos) 1933 rv = -EMEDIUMTYPE; 1934 } 1935 1936 if (!rv) 1937 device->open_cnt++; 1938 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1939 mutex_unlock(&drbd_main_mutex); 1940 1941 return rv; 1942 } 1943 1944 static void drbd_release(struct gendisk *gd, fmode_t mode) 1945 { 1946 struct drbd_device *device = gd->private_data; 1947 mutex_lock(&drbd_main_mutex); 1948 device->open_cnt--; 1949 mutex_unlock(&drbd_main_mutex); 1950 } 1951 1952 /* need to hold resource->req_lock */ 1953 void drbd_queue_unplug(struct drbd_device *device) 1954 { 1955 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1956 D_ASSERT(device, device->state.role == R_PRIMARY); 1957 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1958 drbd_queue_work_if_unqueued( 1959 &first_peer_device(device)->connection->sender_work, 1960 &device->unplug_work); 1961 } 1962 } 1963 } 1964 1965 static void drbd_set_defaults(struct drbd_device *device) 1966 { 1967 /* Beware! The actual layout differs 1968 * between big endian and little endian */ 1969 device->state = (union drbd_dev_state) { 1970 { .role = R_SECONDARY, 1971 .peer = R_UNKNOWN, 1972 .conn = C_STANDALONE, 1973 .disk = D_DISKLESS, 1974 .pdsk = D_UNKNOWN, 1975 } }; 1976 } 1977 1978 void drbd_init_set_defaults(struct drbd_device *device) 1979 { 1980 /* the memset(,0,) did most of this. 1981 * note: only assignments, no allocation in here */ 1982 1983 drbd_set_defaults(device); 1984 1985 atomic_set(&device->ap_bio_cnt, 0); 1986 atomic_set(&device->ap_actlog_cnt, 0); 1987 atomic_set(&device->ap_pending_cnt, 0); 1988 atomic_set(&device->rs_pending_cnt, 0); 1989 atomic_set(&device->unacked_cnt, 0); 1990 atomic_set(&device->local_cnt, 0); 1991 atomic_set(&device->pp_in_use_by_net, 0); 1992 atomic_set(&device->rs_sect_in, 0); 1993 atomic_set(&device->rs_sect_ev, 0); 1994 atomic_set(&device->ap_in_flight, 0); 1995 atomic_set(&device->md_io.in_use, 0); 1996 1997 mutex_init(&device->own_state_mutex); 1998 device->state_mutex = &device->own_state_mutex; 1999 2000 spin_lock_init(&device->al_lock); 2001 spin_lock_init(&device->peer_seq_lock); 2002 2003 INIT_LIST_HEAD(&device->active_ee); 2004 INIT_LIST_HEAD(&device->sync_ee); 2005 INIT_LIST_HEAD(&device->done_ee); 2006 INIT_LIST_HEAD(&device->read_ee); 2007 INIT_LIST_HEAD(&device->net_ee); 2008 INIT_LIST_HEAD(&device->resync_reads); 2009 INIT_LIST_HEAD(&device->resync_work.list); 2010 INIT_LIST_HEAD(&device->unplug_work.list); 2011 INIT_LIST_HEAD(&device->bm_io_work.w.list); 2012 INIT_LIST_HEAD(&device->pending_master_completion[0]); 2013 INIT_LIST_HEAD(&device->pending_master_completion[1]); 2014 INIT_LIST_HEAD(&device->pending_completion[0]); 2015 INIT_LIST_HEAD(&device->pending_completion[1]); 2016 2017 device->resync_work.cb = w_resync_timer; 2018 device->unplug_work.cb = w_send_write_hint; 2019 device->bm_io_work.w.cb = w_bitmap_io; 2020 2021 timer_setup(&device->resync_timer, resync_timer_fn, 0); 2022 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 2023 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 2024 timer_setup(&device->request_timer, request_timer_fn, 0); 2025 2026 init_waitqueue_head(&device->misc_wait); 2027 init_waitqueue_head(&device->state_wait); 2028 init_waitqueue_head(&device->ee_wait); 2029 init_waitqueue_head(&device->al_wait); 2030 init_waitqueue_head(&device->seq_wait); 2031 2032 device->resync_wenr = LC_FREE; 2033 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2034 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2035 } 2036 2037 void drbd_device_cleanup(struct drbd_device *device) 2038 { 2039 int i; 2040 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2041 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2042 first_peer_device(device)->connection->receiver.t_state); 2043 2044 device->al_writ_cnt = 2045 device->bm_writ_cnt = 2046 device->read_cnt = 2047 device->recv_cnt = 2048 device->send_cnt = 2049 device->writ_cnt = 2050 device->p_size = 2051 device->rs_start = 2052 device->rs_total = 2053 device->rs_failed = 0; 2054 device->rs_last_events = 0; 2055 device->rs_last_sect_ev = 0; 2056 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2057 device->rs_mark_left[i] = 0; 2058 device->rs_mark_time[i] = 0; 2059 } 2060 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2061 2062 drbd_set_my_capacity(device, 0); 2063 if (device->bitmap) { 2064 /* maybe never allocated. */ 2065 drbd_bm_resize(device, 0, 1); 2066 drbd_bm_cleanup(device); 2067 } 2068 2069 drbd_backing_dev_free(device, device->ldev); 2070 device->ldev = NULL; 2071 2072 clear_bit(AL_SUSPENDED, &device->flags); 2073 2074 D_ASSERT(device, list_empty(&device->active_ee)); 2075 D_ASSERT(device, list_empty(&device->sync_ee)); 2076 D_ASSERT(device, list_empty(&device->done_ee)); 2077 D_ASSERT(device, list_empty(&device->read_ee)); 2078 D_ASSERT(device, list_empty(&device->net_ee)); 2079 D_ASSERT(device, list_empty(&device->resync_reads)); 2080 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2081 D_ASSERT(device, list_empty(&device->resync_work.list)); 2082 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2083 2084 drbd_set_defaults(device); 2085 } 2086 2087 2088 static void drbd_destroy_mempools(void) 2089 { 2090 struct page *page; 2091 2092 while (drbd_pp_pool) { 2093 page = drbd_pp_pool; 2094 drbd_pp_pool = (struct page *)page_private(page); 2095 __free_page(page); 2096 drbd_pp_vacant--; 2097 } 2098 2099 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2100 2101 bioset_exit(&drbd_io_bio_set); 2102 bioset_exit(&drbd_md_io_bio_set); 2103 mempool_exit(&drbd_md_io_page_pool); 2104 mempool_exit(&drbd_ee_mempool); 2105 mempool_exit(&drbd_request_mempool); 2106 kmem_cache_destroy(drbd_ee_cache); 2107 kmem_cache_destroy(drbd_request_cache); 2108 kmem_cache_destroy(drbd_bm_ext_cache); 2109 kmem_cache_destroy(drbd_al_ext_cache); 2110 2111 drbd_ee_cache = NULL; 2112 drbd_request_cache = NULL; 2113 drbd_bm_ext_cache = NULL; 2114 drbd_al_ext_cache = NULL; 2115 2116 return; 2117 } 2118 2119 static int drbd_create_mempools(void) 2120 { 2121 struct page *page; 2122 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2123 int i, ret; 2124 2125 /* caches */ 2126 drbd_request_cache = kmem_cache_create( 2127 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2128 if (drbd_request_cache == NULL) 2129 goto Enomem; 2130 2131 drbd_ee_cache = kmem_cache_create( 2132 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2133 if (drbd_ee_cache == NULL) 2134 goto Enomem; 2135 2136 drbd_bm_ext_cache = kmem_cache_create( 2137 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2138 if (drbd_bm_ext_cache == NULL) 2139 goto Enomem; 2140 2141 drbd_al_ext_cache = kmem_cache_create( 2142 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2143 if (drbd_al_ext_cache == NULL) 2144 goto Enomem; 2145 2146 /* mempools */ 2147 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2148 if (ret) 2149 goto Enomem; 2150 2151 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2152 BIOSET_NEED_BVECS); 2153 if (ret) 2154 goto Enomem; 2155 2156 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2157 if (ret) 2158 goto Enomem; 2159 2160 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2161 drbd_request_cache); 2162 if (ret) 2163 goto Enomem; 2164 2165 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2166 if (ret) 2167 goto Enomem; 2168 2169 /* drbd's page pool */ 2170 spin_lock_init(&drbd_pp_lock); 2171 2172 for (i = 0; i < number; i++) { 2173 page = alloc_page(GFP_HIGHUSER); 2174 if (!page) 2175 goto Enomem; 2176 set_page_private(page, (unsigned long)drbd_pp_pool); 2177 drbd_pp_pool = page; 2178 } 2179 drbd_pp_vacant = number; 2180 2181 return 0; 2182 2183 Enomem: 2184 drbd_destroy_mempools(); /* in case we allocated some */ 2185 return -ENOMEM; 2186 } 2187 2188 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2189 { 2190 int rr; 2191 2192 rr = drbd_free_peer_reqs(device, &device->active_ee); 2193 if (rr) 2194 drbd_err(device, "%d EEs in active list found!\n", rr); 2195 2196 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2197 if (rr) 2198 drbd_err(device, "%d EEs in sync list found!\n", rr); 2199 2200 rr = drbd_free_peer_reqs(device, &device->read_ee); 2201 if (rr) 2202 drbd_err(device, "%d EEs in read list found!\n", rr); 2203 2204 rr = drbd_free_peer_reqs(device, &device->done_ee); 2205 if (rr) 2206 drbd_err(device, "%d EEs in done list found!\n", rr); 2207 2208 rr = drbd_free_peer_reqs(device, &device->net_ee); 2209 if (rr) 2210 drbd_err(device, "%d EEs in net list found!\n", rr); 2211 } 2212 2213 /* caution. no locking. */ 2214 void drbd_destroy_device(struct kref *kref) 2215 { 2216 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2217 struct drbd_resource *resource = device->resource; 2218 struct drbd_peer_device *peer_device, *tmp_peer_device; 2219 2220 del_timer_sync(&device->request_timer); 2221 2222 /* paranoia asserts */ 2223 D_ASSERT(device, device->open_cnt == 0); 2224 /* end paranoia asserts */ 2225 2226 /* cleanup stuff that may have been allocated during 2227 * device (re-)configuration or state changes */ 2228 2229 if (device->this_bdev) 2230 bdput(device->this_bdev); 2231 2232 drbd_backing_dev_free(device, device->ldev); 2233 device->ldev = NULL; 2234 2235 drbd_release_all_peer_reqs(device); 2236 2237 lc_destroy(device->act_log); 2238 lc_destroy(device->resync); 2239 2240 kfree(device->p_uuid); 2241 /* device->p_uuid = NULL; */ 2242 2243 if (device->bitmap) /* should no longer be there. */ 2244 drbd_bm_cleanup(device); 2245 __free_page(device->md_io.page); 2246 put_disk(device->vdisk); 2247 blk_cleanup_queue(device->rq_queue); 2248 kfree(device->rs_plan_s); 2249 2250 /* not for_each_connection(connection, resource): 2251 * those may have been cleaned up and disassociated already. 2252 */ 2253 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2254 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2255 kfree(peer_device); 2256 } 2257 memset(device, 0xfd, sizeof(*device)); 2258 kfree(device); 2259 kref_put(&resource->kref, drbd_destroy_resource); 2260 } 2261 2262 /* One global retry thread, if we need to push back some bio and have it 2263 * reinserted through our make request function. 2264 */ 2265 static struct retry_worker { 2266 struct workqueue_struct *wq; 2267 struct work_struct worker; 2268 2269 spinlock_t lock; 2270 struct list_head writes; 2271 } retry; 2272 2273 static void do_retry(struct work_struct *ws) 2274 { 2275 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2276 LIST_HEAD(writes); 2277 struct drbd_request *req, *tmp; 2278 2279 spin_lock_irq(&retry->lock); 2280 list_splice_init(&retry->writes, &writes); 2281 spin_unlock_irq(&retry->lock); 2282 2283 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2284 struct drbd_device *device = req->device; 2285 struct bio *bio = req->master_bio; 2286 unsigned long start_jif = req->start_jif; 2287 bool expected; 2288 2289 expected = 2290 expect(atomic_read(&req->completion_ref) == 0) && 2291 expect(req->rq_state & RQ_POSTPONED) && 2292 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2293 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2294 2295 if (!expected) 2296 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2297 req, atomic_read(&req->completion_ref), 2298 req->rq_state); 2299 2300 /* We still need to put one kref associated with the 2301 * "completion_ref" going zero in the code path that queued it 2302 * here. The request object may still be referenced by a 2303 * frozen local req->private_bio, in case we force-detached. 2304 */ 2305 kref_put(&req->kref, drbd_req_destroy); 2306 2307 /* A single suspended or otherwise blocking device may stall 2308 * all others as well. Fortunately, this code path is to 2309 * recover from a situation that "should not happen": 2310 * concurrent writes in multi-primary setup. 2311 * In a "normal" lifecycle, this workqueue is supposed to be 2312 * destroyed without ever doing anything. 2313 * If it turns out to be an issue anyways, we can do per 2314 * resource (replication group) or per device (minor) retry 2315 * workqueues instead. 2316 */ 2317 2318 /* We are not just doing generic_make_request(), 2319 * as we want to keep the start_time information. */ 2320 inc_ap_bio(device); 2321 __drbd_make_request(device, bio, start_jif); 2322 } 2323 } 2324 2325 /* called via drbd_req_put_completion_ref(), 2326 * holds resource->req_lock */ 2327 void drbd_restart_request(struct drbd_request *req) 2328 { 2329 unsigned long flags; 2330 spin_lock_irqsave(&retry.lock, flags); 2331 list_move_tail(&req->tl_requests, &retry.writes); 2332 spin_unlock_irqrestore(&retry.lock, flags); 2333 2334 /* Drop the extra reference that would otherwise 2335 * have been dropped by complete_master_bio. 2336 * do_retry() needs to grab a new one. */ 2337 dec_ap_bio(req->device); 2338 2339 queue_work(retry.wq, &retry.worker); 2340 } 2341 2342 void drbd_destroy_resource(struct kref *kref) 2343 { 2344 struct drbd_resource *resource = 2345 container_of(kref, struct drbd_resource, kref); 2346 2347 idr_destroy(&resource->devices); 2348 free_cpumask_var(resource->cpu_mask); 2349 kfree(resource->name); 2350 memset(resource, 0xf2, sizeof(*resource)); 2351 kfree(resource); 2352 } 2353 2354 void drbd_free_resource(struct drbd_resource *resource) 2355 { 2356 struct drbd_connection *connection, *tmp; 2357 2358 for_each_connection_safe(connection, tmp, resource) { 2359 list_del(&connection->connections); 2360 drbd_debugfs_connection_cleanup(connection); 2361 kref_put(&connection->kref, drbd_destroy_connection); 2362 } 2363 drbd_debugfs_resource_cleanup(resource); 2364 kref_put(&resource->kref, drbd_destroy_resource); 2365 } 2366 2367 static void drbd_cleanup(void) 2368 { 2369 unsigned int i; 2370 struct drbd_device *device; 2371 struct drbd_resource *resource, *tmp; 2372 2373 /* first remove proc, 2374 * drbdsetup uses it's presence to detect 2375 * whether DRBD is loaded. 2376 * If we would get stuck in proc removal, 2377 * but have netlink already deregistered, 2378 * some drbdsetup commands may wait forever 2379 * for an answer. 2380 */ 2381 if (drbd_proc) 2382 remove_proc_entry("drbd", NULL); 2383 2384 if (retry.wq) 2385 destroy_workqueue(retry.wq); 2386 2387 drbd_genl_unregister(); 2388 2389 idr_for_each_entry(&drbd_devices, device, i) 2390 drbd_delete_device(device); 2391 2392 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2393 for_each_resource_safe(resource, tmp, &drbd_resources) { 2394 list_del(&resource->resources); 2395 drbd_free_resource(resource); 2396 } 2397 2398 drbd_debugfs_cleanup(); 2399 2400 drbd_destroy_mempools(); 2401 unregister_blkdev(DRBD_MAJOR, "drbd"); 2402 2403 idr_destroy(&drbd_devices); 2404 2405 pr_info("module cleanup done.\n"); 2406 } 2407 2408 /** 2409 * drbd_congested() - Callback for the flusher thread 2410 * @congested_data: User data 2411 * @bdi_bits: Bits the BDI flusher thread is currently interested in 2412 * 2413 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested. 2414 */ 2415 static int drbd_congested(void *congested_data, int bdi_bits) 2416 { 2417 struct drbd_device *device = congested_data; 2418 struct request_queue *q; 2419 char reason = '-'; 2420 int r = 0; 2421 2422 if (!may_inc_ap_bio(device)) { 2423 /* DRBD has frozen IO */ 2424 r = bdi_bits; 2425 reason = 'd'; 2426 goto out; 2427 } 2428 2429 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) { 2430 r |= (1 << WB_async_congested); 2431 /* Without good local data, we would need to read from remote, 2432 * and that would need the worker thread as well, which is 2433 * currently blocked waiting for that usermode helper to 2434 * finish. 2435 */ 2436 if (!get_ldev_if_state(device, D_UP_TO_DATE)) 2437 r |= (1 << WB_sync_congested); 2438 else 2439 put_ldev(device); 2440 r &= bdi_bits; 2441 reason = 'c'; 2442 goto out; 2443 } 2444 2445 if (get_ldev(device)) { 2446 q = bdev_get_queue(device->ldev->backing_bdev); 2447 r = bdi_congested(q->backing_dev_info, bdi_bits); 2448 put_ldev(device); 2449 if (r) 2450 reason = 'b'; 2451 } 2452 2453 if (bdi_bits & (1 << WB_async_congested) && 2454 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) { 2455 r |= (1 << WB_async_congested); 2456 reason = reason == 'b' ? 'a' : 'n'; 2457 } 2458 2459 out: 2460 device->congestion_reason = reason; 2461 return r; 2462 } 2463 2464 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2465 { 2466 spin_lock_init(&wq->q_lock); 2467 INIT_LIST_HEAD(&wq->q); 2468 init_waitqueue_head(&wq->q_wait); 2469 } 2470 2471 struct completion_work { 2472 struct drbd_work w; 2473 struct completion done; 2474 }; 2475 2476 static int w_complete(struct drbd_work *w, int cancel) 2477 { 2478 struct completion_work *completion_work = 2479 container_of(w, struct completion_work, w); 2480 2481 complete(&completion_work->done); 2482 return 0; 2483 } 2484 2485 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2486 { 2487 struct completion_work completion_work; 2488 2489 completion_work.w.cb = w_complete; 2490 init_completion(&completion_work.done); 2491 drbd_queue_work(work_queue, &completion_work.w); 2492 wait_for_completion(&completion_work.done); 2493 } 2494 2495 struct drbd_resource *drbd_find_resource(const char *name) 2496 { 2497 struct drbd_resource *resource; 2498 2499 if (!name || !name[0]) 2500 return NULL; 2501 2502 rcu_read_lock(); 2503 for_each_resource_rcu(resource, &drbd_resources) { 2504 if (!strcmp(resource->name, name)) { 2505 kref_get(&resource->kref); 2506 goto found; 2507 } 2508 } 2509 resource = NULL; 2510 found: 2511 rcu_read_unlock(); 2512 return resource; 2513 } 2514 2515 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2516 void *peer_addr, int peer_addr_len) 2517 { 2518 struct drbd_resource *resource; 2519 struct drbd_connection *connection; 2520 2521 rcu_read_lock(); 2522 for_each_resource_rcu(resource, &drbd_resources) { 2523 for_each_connection_rcu(connection, resource) { 2524 if (connection->my_addr_len == my_addr_len && 2525 connection->peer_addr_len == peer_addr_len && 2526 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2527 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2528 kref_get(&connection->kref); 2529 goto found; 2530 } 2531 } 2532 } 2533 connection = NULL; 2534 found: 2535 rcu_read_unlock(); 2536 return connection; 2537 } 2538 2539 static int drbd_alloc_socket(struct drbd_socket *socket) 2540 { 2541 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2542 if (!socket->rbuf) 2543 return -ENOMEM; 2544 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2545 if (!socket->sbuf) 2546 return -ENOMEM; 2547 return 0; 2548 } 2549 2550 static void drbd_free_socket(struct drbd_socket *socket) 2551 { 2552 free_page((unsigned long) socket->sbuf); 2553 free_page((unsigned long) socket->rbuf); 2554 } 2555 2556 void conn_free_crypto(struct drbd_connection *connection) 2557 { 2558 drbd_free_sock(connection); 2559 2560 crypto_free_ahash(connection->csums_tfm); 2561 crypto_free_ahash(connection->verify_tfm); 2562 crypto_free_shash(connection->cram_hmac_tfm); 2563 crypto_free_ahash(connection->integrity_tfm); 2564 crypto_free_ahash(connection->peer_integrity_tfm); 2565 kfree(connection->int_dig_in); 2566 kfree(connection->int_dig_vv); 2567 2568 connection->csums_tfm = NULL; 2569 connection->verify_tfm = NULL; 2570 connection->cram_hmac_tfm = NULL; 2571 connection->integrity_tfm = NULL; 2572 connection->peer_integrity_tfm = NULL; 2573 connection->int_dig_in = NULL; 2574 connection->int_dig_vv = NULL; 2575 } 2576 2577 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2578 { 2579 struct drbd_connection *connection; 2580 cpumask_var_t new_cpu_mask; 2581 int err; 2582 2583 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2584 return -ENOMEM; 2585 2586 /* silently ignore cpu mask on UP kernel */ 2587 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2588 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2589 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2590 if (err == -EOVERFLOW) { 2591 /* So what. mask it out. */ 2592 cpumask_var_t tmp_cpu_mask; 2593 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2594 cpumask_setall(tmp_cpu_mask); 2595 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2596 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2597 res_opts->cpu_mask, 2598 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2599 nr_cpu_ids); 2600 free_cpumask_var(tmp_cpu_mask); 2601 err = 0; 2602 } 2603 } 2604 if (err) { 2605 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2606 /* retcode = ERR_CPU_MASK_PARSE; */ 2607 goto fail; 2608 } 2609 } 2610 resource->res_opts = *res_opts; 2611 if (cpumask_empty(new_cpu_mask)) 2612 drbd_calc_cpu_mask(&new_cpu_mask); 2613 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2614 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2615 for_each_connection_rcu(connection, resource) { 2616 connection->receiver.reset_cpu_mask = 1; 2617 connection->ack_receiver.reset_cpu_mask = 1; 2618 connection->worker.reset_cpu_mask = 1; 2619 } 2620 } 2621 err = 0; 2622 2623 fail: 2624 free_cpumask_var(new_cpu_mask); 2625 return err; 2626 2627 } 2628 2629 struct drbd_resource *drbd_create_resource(const char *name) 2630 { 2631 struct drbd_resource *resource; 2632 2633 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2634 if (!resource) 2635 goto fail; 2636 resource->name = kstrdup(name, GFP_KERNEL); 2637 if (!resource->name) 2638 goto fail_free_resource; 2639 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2640 goto fail_free_name; 2641 kref_init(&resource->kref); 2642 idr_init(&resource->devices); 2643 INIT_LIST_HEAD(&resource->connections); 2644 resource->write_ordering = WO_BDEV_FLUSH; 2645 list_add_tail_rcu(&resource->resources, &drbd_resources); 2646 mutex_init(&resource->conf_update); 2647 mutex_init(&resource->adm_mutex); 2648 spin_lock_init(&resource->req_lock); 2649 drbd_debugfs_resource_add(resource); 2650 return resource; 2651 2652 fail_free_name: 2653 kfree(resource->name); 2654 fail_free_resource: 2655 kfree(resource); 2656 fail: 2657 return NULL; 2658 } 2659 2660 /* caller must be under adm_mutex */ 2661 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2662 { 2663 struct drbd_resource *resource; 2664 struct drbd_connection *connection; 2665 2666 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2667 if (!connection) 2668 return NULL; 2669 2670 if (drbd_alloc_socket(&connection->data)) 2671 goto fail; 2672 if (drbd_alloc_socket(&connection->meta)) 2673 goto fail; 2674 2675 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2676 if (!connection->current_epoch) 2677 goto fail; 2678 2679 INIT_LIST_HEAD(&connection->transfer_log); 2680 2681 INIT_LIST_HEAD(&connection->current_epoch->list); 2682 connection->epochs = 1; 2683 spin_lock_init(&connection->epoch_lock); 2684 2685 connection->send.seen_any_write_yet = false; 2686 connection->send.current_epoch_nr = 0; 2687 connection->send.current_epoch_writes = 0; 2688 2689 resource = drbd_create_resource(name); 2690 if (!resource) 2691 goto fail; 2692 2693 connection->cstate = C_STANDALONE; 2694 mutex_init(&connection->cstate_mutex); 2695 init_waitqueue_head(&connection->ping_wait); 2696 idr_init(&connection->peer_devices); 2697 2698 drbd_init_workqueue(&connection->sender_work); 2699 mutex_init(&connection->data.mutex); 2700 mutex_init(&connection->meta.mutex); 2701 2702 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2703 connection->receiver.connection = connection; 2704 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2705 connection->worker.connection = connection; 2706 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2707 connection->ack_receiver.connection = connection; 2708 2709 kref_init(&connection->kref); 2710 2711 connection->resource = resource; 2712 2713 if (set_resource_options(resource, res_opts)) 2714 goto fail_resource; 2715 2716 kref_get(&resource->kref); 2717 list_add_tail_rcu(&connection->connections, &resource->connections); 2718 drbd_debugfs_connection_add(connection); 2719 return connection; 2720 2721 fail_resource: 2722 list_del(&resource->resources); 2723 drbd_free_resource(resource); 2724 fail: 2725 kfree(connection->current_epoch); 2726 drbd_free_socket(&connection->meta); 2727 drbd_free_socket(&connection->data); 2728 kfree(connection); 2729 return NULL; 2730 } 2731 2732 void drbd_destroy_connection(struct kref *kref) 2733 { 2734 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2735 struct drbd_resource *resource = connection->resource; 2736 2737 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2738 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2739 kfree(connection->current_epoch); 2740 2741 idr_destroy(&connection->peer_devices); 2742 2743 drbd_free_socket(&connection->meta); 2744 drbd_free_socket(&connection->data); 2745 kfree(connection->int_dig_in); 2746 kfree(connection->int_dig_vv); 2747 memset(connection, 0xfc, sizeof(*connection)); 2748 kfree(connection); 2749 kref_put(&resource->kref, drbd_destroy_resource); 2750 } 2751 2752 static int init_submitter(struct drbd_device *device) 2753 { 2754 /* opencoded create_singlethread_workqueue(), 2755 * to be able to say "drbd%d", ..., minor */ 2756 device->submit.wq = 2757 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2758 if (!device->submit.wq) 2759 return -ENOMEM; 2760 2761 INIT_WORK(&device->submit.worker, do_submit); 2762 INIT_LIST_HEAD(&device->submit.writes); 2763 return 0; 2764 } 2765 2766 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2767 { 2768 struct drbd_resource *resource = adm_ctx->resource; 2769 struct drbd_connection *connection; 2770 struct drbd_device *device; 2771 struct drbd_peer_device *peer_device, *tmp_peer_device; 2772 struct gendisk *disk; 2773 struct request_queue *q; 2774 int id; 2775 int vnr = adm_ctx->volume; 2776 enum drbd_ret_code err = ERR_NOMEM; 2777 2778 device = minor_to_device(minor); 2779 if (device) 2780 return ERR_MINOR_OR_VOLUME_EXISTS; 2781 2782 /* GFP_KERNEL, we are outside of all write-out paths */ 2783 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2784 if (!device) 2785 return ERR_NOMEM; 2786 kref_init(&device->kref); 2787 2788 kref_get(&resource->kref); 2789 device->resource = resource; 2790 device->minor = minor; 2791 device->vnr = vnr; 2792 2793 drbd_init_set_defaults(device); 2794 2795 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, &resource->req_lock); 2796 if (!q) 2797 goto out_no_q; 2798 device->rq_queue = q; 2799 q->queuedata = device; 2800 2801 disk = alloc_disk(1); 2802 if (!disk) 2803 goto out_no_disk; 2804 device->vdisk = disk; 2805 2806 set_disk_ro(disk, true); 2807 2808 disk->queue = q; 2809 disk->major = DRBD_MAJOR; 2810 disk->first_minor = minor; 2811 disk->fops = &drbd_ops; 2812 sprintf(disk->disk_name, "drbd%d", minor); 2813 disk->private_data = device; 2814 2815 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2816 /* we have no partitions. we contain only ourselves. */ 2817 device->this_bdev->bd_contains = device->this_bdev; 2818 2819 q->backing_dev_info->congested_fn = drbd_congested; 2820 q->backing_dev_info->congested_data = device; 2821 2822 blk_queue_make_request(q, drbd_make_request); 2823 blk_queue_write_cache(q, true, true); 2824 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2825 This triggers a max_bio_size message upon first attach or connect */ 2826 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2827 2828 device->md_io.page = alloc_page(GFP_KERNEL); 2829 if (!device->md_io.page) 2830 goto out_no_io_page; 2831 2832 if (drbd_bm_init(device)) 2833 goto out_no_bitmap; 2834 device->read_requests = RB_ROOT; 2835 device->write_requests = RB_ROOT; 2836 2837 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2838 if (id < 0) { 2839 if (id == -ENOSPC) 2840 err = ERR_MINOR_OR_VOLUME_EXISTS; 2841 goto out_no_minor_idr; 2842 } 2843 kref_get(&device->kref); 2844 2845 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2846 if (id < 0) { 2847 if (id == -ENOSPC) 2848 err = ERR_MINOR_OR_VOLUME_EXISTS; 2849 goto out_idr_remove_minor; 2850 } 2851 kref_get(&device->kref); 2852 2853 INIT_LIST_HEAD(&device->peer_devices); 2854 INIT_LIST_HEAD(&device->pending_bitmap_io); 2855 for_each_connection(connection, resource) { 2856 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2857 if (!peer_device) 2858 goto out_idr_remove_from_resource; 2859 peer_device->connection = connection; 2860 peer_device->device = device; 2861 2862 list_add(&peer_device->peer_devices, &device->peer_devices); 2863 kref_get(&device->kref); 2864 2865 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2866 if (id < 0) { 2867 if (id == -ENOSPC) 2868 err = ERR_INVALID_REQUEST; 2869 goto out_idr_remove_from_resource; 2870 } 2871 kref_get(&connection->kref); 2872 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2873 } 2874 2875 if (init_submitter(device)) { 2876 err = ERR_NOMEM; 2877 goto out_idr_remove_vol; 2878 } 2879 2880 add_disk(disk); 2881 2882 /* inherit the connection state */ 2883 device->state.conn = first_connection(resource)->cstate; 2884 if (device->state.conn == C_WF_REPORT_PARAMS) { 2885 for_each_peer_device(peer_device, device) 2886 drbd_connected(peer_device); 2887 } 2888 /* move to create_peer_device() */ 2889 for_each_peer_device(peer_device, device) 2890 drbd_debugfs_peer_device_add(peer_device); 2891 drbd_debugfs_device_add(device); 2892 return NO_ERROR; 2893 2894 out_idr_remove_vol: 2895 idr_remove(&connection->peer_devices, vnr); 2896 out_idr_remove_from_resource: 2897 for_each_connection(connection, resource) { 2898 peer_device = idr_remove(&connection->peer_devices, vnr); 2899 if (peer_device) 2900 kref_put(&connection->kref, drbd_destroy_connection); 2901 } 2902 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2903 list_del(&peer_device->peer_devices); 2904 kfree(peer_device); 2905 } 2906 idr_remove(&resource->devices, vnr); 2907 out_idr_remove_minor: 2908 idr_remove(&drbd_devices, minor); 2909 synchronize_rcu(); 2910 out_no_minor_idr: 2911 drbd_bm_cleanup(device); 2912 out_no_bitmap: 2913 __free_page(device->md_io.page); 2914 out_no_io_page: 2915 put_disk(disk); 2916 out_no_disk: 2917 blk_cleanup_queue(q); 2918 out_no_q: 2919 kref_put(&resource->kref, drbd_destroy_resource); 2920 kfree(device); 2921 return err; 2922 } 2923 2924 void drbd_delete_device(struct drbd_device *device) 2925 { 2926 struct drbd_resource *resource = device->resource; 2927 struct drbd_connection *connection; 2928 struct drbd_peer_device *peer_device; 2929 2930 /* move to free_peer_device() */ 2931 for_each_peer_device(peer_device, device) 2932 drbd_debugfs_peer_device_cleanup(peer_device); 2933 drbd_debugfs_device_cleanup(device); 2934 for_each_connection(connection, resource) { 2935 idr_remove(&connection->peer_devices, device->vnr); 2936 kref_put(&device->kref, drbd_destroy_device); 2937 } 2938 idr_remove(&resource->devices, device->vnr); 2939 kref_put(&device->kref, drbd_destroy_device); 2940 idr_remove(&drbd_devices, device_to_minor(device)); 2941 kref_put(&device->kref, drbd_destroy_device); 2942 del_gendisk(device->vdisk); 2943 synchronize_rcu(); 2944 kref_put(&device->kref, drbd_destroy_device); 2945 } 2946 2947 static int __init drbd_init(void) 2948 { 2949 int err; 2950 2951 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2952 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2953 #ifdef MODULE 2954 return -EINVAL; 2955 #else 2956 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2957 #endif 2958 } 2959 2960 err = register_blkdev(DRBD_MAJOR, "drbd"); 2961 if (err) { 2962 pr_err("unable to register block device major %d\n", 2963 DRBD_MAJOR); 2964 return err; 2965 } 2966 2967 /* 2968 * allocate all necessary structs 2969 */ 2970 init_waitqueue_head(&drbd_pp_wait); 2971 2972 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2973 idr_init(&drbd_devices); 2974 2975 mutex_init(&resources_mutex); 2976 INIT_LIST_HEAD(&drbd_resources); 2977 2978 err = drbd_genl_register(); 2979 if (err) { 2980 pr_err("unable to register generic netlink family\n"); 2981 goto fail; 2982 } 2983 2984 err = drbd_create_mempools(); 2985 if (err) 2986 goto fail; 2987 2988 err = -ENOMEM; 2989 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 2990 if (!drbd_proc) { 2991 pr_err("unable to register proc file\n"); 2992 goto fail; 2993 } 2994 2995 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2996 if (!retry.wq) { 2997 pr_err("unable to create retry workqueue\n"); 2998 goto fail; 2999 } 3000 INIT_WORK(&retry.worker, do_retry); 3001 spin_lock_init(&retry.lock); 3002 INIT_LIST_HEAD(&retry.writes); 3003 3004 if (drbd_debugfs_init()) 3005 pr_notice("failed to initialize debugfs -- will not be available\n"); 3006 3007 pr_info("initialized. " 3008 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 3009 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 3010 pr_info("%s\n", drbd_buildtag()); 3011 pr_info("registered as block device major %d\n", DRBD_MAJOR); 3012 return 0; /* Success! */ 3013 3014 fail: 3015 drbd_cleanup(); 3016 if (err == -ENOMEM) 3017 pr_err("ran out of memory\n"); 3018 else 3019 pr_err("initialization failure\n"); 3020 return err; 3021 } 3022 3023 static void drbd_free_one_sock(struct drbd_socket *ds) 3024 { 3025 struct socket *s; 3026 mutex_lock(&ds->mutex); 3027 s = ds->socket; 3028 ds->socket = NULL; 3029 mutex_unlock(&ds->mutex); 3030 if (s) { 3031 /* so debugfs does not need to mutex_lock() */ 3032 synchronize_rcu(); 3033 kernel_sock_shutdown(s, SHUT_RDWR); 3034 sock_release(s); 3035 } 3036 } 3037 3038 void drbd_free_sock(struct drbd_connection *connection) 3039 { 3040 if (connection->data.socket) 3041 drbd_free_one_sock(&connection->data); 3042 if (connection->meta.socket) 3043 drbd_free_one_sock(&connection->meta); 3044 } 3045 3046 /* meta data management */ 3047 3048 void conn_md_sync(struct drbd_connection *connection) 3049 { 3050 struct drbd_peer_device *peer_device; 3051 int vnr; 3052 3053 rcu_read_lock(); 3054 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 3055 struct drbd_device *device = peer_device->device; 3056 3057 kref_get(&device->kref); 3058 rcu_read_unlock(); 3059 drbd_md_sync(device); 3060 kref_put(&device->kref, drbd_destroy_device); 3061 rcu_read_lock(); 3062 } 3063 rcu_read_unlock(); 3064 } 3065 3066 /* aligned 4kByte */ 3067 struct meta_data_on_disk { 3068 u64 la_size_sect; /* last agreed size. */ 3069 u64 uuid[UI_SIZE]; /* UUIDs. */ 3070 u64 device_uuid; 3071 u64 reserved_u64_1; 3072 u32 flags; /* MDF */ 3073 u32 magic; 3074 u32 md_size_sect; 3075 u32 al_offset; /* offset to this block */ 3076 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3077 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3078 u32 bm_offset; /* offset to the bitmap, from here */ 3079 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3080 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3081 3082 /* see al_tr_number_to_on_disk_sector() */ 3083 u32 al_stripes; 3084 u32 al_stripe_size_4k; 3085 3086 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3087 } __packed; 3088 3089 3090 3091 void drbd_md_write(struct drbd_device *device, void *b) 3092 { 3093 struct meta_data_on_disk *buffer = b; 3094 sector_t sector; 3095 int i; 3096 3097 memset(buffer, 0, sizeof(*buffer)); 3098 3099 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3100 for (i = UI_CURRENT; i < UI_SIZE; i++) 3101 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3102 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3103 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3104 3105 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3106 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3107 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3108 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3109 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3110 3111 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3112 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3113 3114 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3115 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3116 3117 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3118 sector = device->ldev->md.md_offset; 3119 3120 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3121 /* this was a try anyways ... */ 3122 drbd_err(device, "meta data update failed!\n"); 3123 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3124 } 3125 } 3126 3127 /** 3128 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3129 * @device: DRBD device. 3130 */ 3131 void drbd_md_sync(struct drbd_device *device) 3132 { 3133 struct meta_data_on_disk *buffer; 3134 3135 /* Don't accidentally change the DRBD meta data layout. */ 3136 BUILD_BUG_ON(UI_SIZE != 4); 3137 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3138 3139 del_timer(&device->md_sync_timer); 3140 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3141 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3142 return; 3143 3144 /* We use here D_FAILED and not D_ATTACHING because we try to write 3145 * metadata even if we detach due to a disk failure! */ 3146 if (!get_ldev_if_state(device, D_FAILED)) 3147 return; 3148 3149 buffer = drbd_md_get_buffer(device, __func__); 3150 if (!buffer) 3151 goto out; 3152 3153 drbd_md_write(device, buffer); 3154 3155 /* Update device->ldev->md.la_size_sect, 3156 * since we updated it on metadata. */ 3157 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3158 3159 drbd_md_put_buffer(device); 3160 out: 3161 put_ldev(device); 3162 } 3163 3164 static int check_activity_log_stripe_size(struct drbd_device *device, 3165 struct meta_data_on_disk *on_disk, 3166 struct drbd_md *in_core) 3167 { 3168 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3169 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3170 u64 al_size_4k; 3171 3172 /* both not set: default to old fixed size activity log */ 3173 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3174 al_stripes = 1; 3175 al_stripe_size_4k = MD_32kB_SECT/8; 3176 } 3177 3178 /* some paranoia plausibility checks */ 3179 3180 /* we need both values to be set */ 3181 if (al_stripes == 0 || al_stripe_size_4k == 0) 3182 goto err; 3183 3184 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3185 3186 /* Upper limit of activity log area, to avoid potential overflow 3187 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3188 * than 72 * 4k blocks total only increases the amount of history, 3189 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3190 if (al_size_4k > (16 * 1024 * 1024/4)) 3191 goto err; 3192 3193 /* Lower limit: we need at least 8 transaction slots (32kB) 3194 * to not break existing setups */ 3195 if (al_size_4k < MD_32kB_SECT/8) 3196 goto err; 3197 3198 in_core->al_stripe_size_4k = al_stripe_size_4k; 3199 in_core->al_stripes = al_stripes; 3200 in_core->al_size_4k = al_size_4k; 3201 3202 return 0; 3203 err: 3204 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3205 al_stripes, al_stripe_size_4k); 3206 return -EINVAL; 3207 } 3208 3209 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3210 { 3211 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3212 struct drbd_md *in_core = &bdev->md; 3213 s32 on_disk_al_sect; 3214 s32 on_disk_bm_sect; 3215 3216 /* The on-disk size of the activity log, calculated from offsets, and 3217 * the size of the activity log calculated from the stripe settings, 3218 * should match. 3219 * Though we could relax this a bit: it is ok, if the striped activity log 3220 * fits in the available on-disk activity log size. 3221 * Right now, that would break how resize is implemented. 3222 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3223 * of possible unused padding space in the on disk layout. */ 3224 if (in_core->al_offset < 0) { 3225 if (in_core->bm_offset > in_core->al_offset) 3226 goto err; 3227 on_disk_al_sect = -in_core->al_offset; 3228 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3229 } else { 3230 if (in_core->al_offset != MD_4kB_SECT) 3231 goto err; 3232 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3233 goto err; 3234 3235 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3236 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3237 } 3238 3239 /* old fixed size meta data is exactly that: fixed. */ 3240 if (in_core->meta_dev_idx >= 0) { 3241 if (in_core->md_size_sect != MD_128MB_SECT 3242 || in_core->al_offset != MD_4kB_SECT 3243 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3244 || in_core->al_stripes != 1 3245 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3246 goto err; 3247 } 3248 3249 if (capacity < in_core->md_size_sect) 3250 goto err; 3251 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3252 goto err; 3253 3254 /* should be aligned, and at least 32k */ 3255 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3256 goto err; 3257 3258 /* should fit (for now: exactly) into the available on-disk space; 3259 * overflow prevention is in check_activity_log_stripe_size() above. */ 3260 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3261 goto err; 3262 3263 /* again, should be aligned */ 3264 if (in_core->bm_offset & 7) 3265 goto err; 3266 3267 /* FIXME check for device grow with flex external meta data? */ 3268 3269 /* can the available bitmap space cover the last agreed device size? */ 3270 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3271 goto err; 3272 3273 return 0; 3274 3275 err: 3276 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3277 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3278 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3279 in_core->meta_dev_idx, 3280 in_core->al_stripes, in_core->al_stripe_size_4k, 3281 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3282 (unsigned long long)in_core->la_size_sect, 3283 (unsigned long long)capacity); 3284 3285 return -EINVAL; 3286 } 3287 3288 3289 /** 3290 * drbd_md_read() - Reads in the meta data super block 3291 * @device: DRBD device. 3292 * @bdev: Device from which the meta data should be read in. 3293 * 3294 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3295 * something goes wrong. 3296 * 3297 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3298 * even before @bdev is assigned to @device->ldev. 3299 */ 3300 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3301 { 3302 struct meta_data_on_disk *buffer; 3303 u32 magic, flags; 3304 int i, rv = NO_ERROR; 3305 3306 if (device->state.disk != D_DISKLESS) 3307 return ERR_DISK_CONFIGURED; 3308 3309 buffer = drbd_md_get_buffer(device, __func__); 3310 if (!buffer) 3311 return ERR_NOMEM; 3312 3313 /* First, figure out where our meta data superblock is located, 3314 * and read it. */ 3315 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3316 bdev->md.md_offset = drbd_md_ss(bdev); 3317 /* Even for (flexible or indexed) external meta data, 3318 * initially restrict us to the 4k superblock for now. 3319 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3320 bdev->md.md_size_sect = 8; 3321 3322 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3323 REQ_OP_READ)) { 3324 /* NOTE: can't do normal error processing here as this is 3325 called BEFORE disk is attached */ 3326 drbd_err(device, "Error while reading metadata.\n"); 3327 rv = ERR_IO_MD_DISK; 3328 goto err; 3329 } 3330 3331 magic = be32_to_cpu(buffer->magic); 3332 flags = be32_to_cpu(buffer->flags); 3333 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3334 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3335 /* btw: that's Activity Log clean, not "all" clean. */ 3336 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3337 rv = ERR_MD_UNCLEAN; 3338 goto err; 3339 } 3340 3341 rv = ERR_MD_INVALID; 3342 if (magic != DRBD_MD_MAGIC_08) { 3343 if (magic == DRBD_MD_MAGIC_07) 3344 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3345 else 3346 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3347 goto err; 3348 } 3349 3350 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3351 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3352 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3353 goto err; 3354 } 3355 3356 3357 /* convert to in_core endian */ 3358 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3359 for (i = UI_CURRENT; i < UI_SIZE; i++) 3360 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3361 bdev->md.flags = be32_to_cpu(buffer->flags); 3362 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3363 3364 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3365 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3366 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3367 3368 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3369 goto err; 3370 if (check_offsets_and_sizes(device, bdev)) 3371 goto err; 3372 3373 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3374 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3375 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3376 goto err; 3377 } 3378 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3379 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3380 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3381 goto err; 3382 } 3383 3384 rv = NO_ERROR; 3385 3386 spin_lock_irq(&device->resource->req_lock); 3387 if (device->state.conn < C_CONNECTED) { 3388 unsigned int peer; 3389 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3390 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3391 device->peer_max_bio_size = peer; 3392 } 3393 spin_unlock_irq(&device->resource->req_lock); 3394 3395 err: 3396 drbd_md_put_buffer(device); 3397 3398 return rv; 3399 } 3400 3401 /** 3402 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3403 * @device: DRBD device. 3404 * 3405 * Call this function if you change anything that should be written to 3406 * the meta-data super block. This function sets MD_DIRTY, and starts a 3407 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3408 */ 3409 #ifdef DEBUG 3410 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func) 3411 { 3412 if (!test_and_set_bit(MD_DIRTY, &device->flags)) { 3413 mod_timer(&device->md_sync_timer, jiffies + HZ); 3414 device->last_md_mark_dirty.line = line; 3415 device->last_md_mark_dirty.func = func; 3416 } 3417 } 3418 #else 3419 void drbd_md_mark_dirty(struct drbd_device *device) 3420 { 3421 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3422 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3423 } 3424 #endif 3425 3426 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3427 { 3428 int i; 3429 3430 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3431 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3432 } 3433 3434 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3435 { 3436 if (idx == UI_CURRENT) { 3437 if (device->state.role == R_PRIMARY) 3438 val |= 1; 3439 else 3440 val &= ~((u64)1); 3441 3442 drbd_set_ed_uuid(device, val); 3443 } 3444 3445 device->ldev->md.uuid[idx] = val; 3446 drbd_md_mark_dirty(device); 3447 } 3448 3449 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3450 { 3451 unsigned long flags; 3452 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3453 __drbd_uuid_set(device, idx, val); 3454 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3455 } 3456 3457 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3458 { 3459 unsigned long flags; 3460 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3461 if (device->ldev->md.uuid[idx]) { 3462 drbd_uuid_move_history(device); 3463 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3464 } 3465 __drbd_uuid_set(device, idx, val); 3466 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3467 } 3468 3469 /** 3470 * drbd_uuid_new_current() - Creates a new current UUID 3471 * @device: DRBD device. 3472 * 3473 * Creates a new current UUID, and rotates the old current UUID into 3474 * the bitmap slot. Causes an incremental resync upon next connect. 3475 */ 3476 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3477 { 3478 u64 val; 3479 unsigned long long bm_uuid; 3480 3481 get_random_bytes(&val, sizeof(u64)); 3482 3483 spin_lock_irq(&device->ldev->md.uuid_lock); 3484 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3485 3486 if (bm_uuid) 3487 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3488 3489 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3490 __drbd_uuid_set(device, UI_CURRENT, val); 3491 spin_unlock_irq(&device->ldev->md.uuid_lock); 3492 3493 drbd_print_uuids(device, "new current UUID"); 3494 /* get it to stable storage _now_ */ 3495 drbd_md_sync(device); 3496 } 3497 3498 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3499 { 3500 unsigned long flags; 3501 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3502 return; 3503 3504 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3505 if (val == 0) { 3506 drbd_uuid_move_history(device); 3507 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3508 device->ldev->md.uuid[UI_BITMAP] = 0; 3509 } else { 3510 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3511 if (bm_uuid) 3512 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3513 3514 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3515 } 3516 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3517 3518 drbd_md_mark_dirty(device); 3519 } 3520 3521 /** 3522 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3523 * @device: DRBD device. 3524 * 3525 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3526 */ 3527 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3528 { 3529 int rv = -EIO; 3530 3531 drbd_md_set_flag(device, MDF_FULL_SYNC); 3532 drbd_md_sync(device); 3533 drbd_bm_set_all(device); 3534 3535 rv = drbd_bm_write(device); 3536 3537 if (!rv) { 3538 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3539 drbd_md_sync(device); 3540 } 3541 3542 return rv; 3543 } 3544 3545 /** 3546 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3547 * @device: DRBD device. 3548 * 3549 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3550 */ 3551 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3552 { 3553 drbd_resume_al(device); 3554 drbd_bm_clear_all(device); 3555 return drbd_bm_write(device); 3556 } 3557 3558 static int w_bitmap_io(struct drbd_work *w, int unused) 3559 { 3560 struct drbd_device *device = 3561 container_of(w, struct drbd_device, bm_io_work.w); 3562 struct bm_io_work *work = &device->bm_io_work; 3563 int rv = -EIO; 3564 3565 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3566 int cnt = atomic_read(&device->ap_bio_cnt); 3567 if (cnt) 3568 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3569 cnt, work->why); 3570 } 3571 3572 if (get_ldev(device)) { 3573 drbd_bm_lock(device, work->why, work->flags); 3574 rv = work->io_fn(device); 3575 drbd_bm_unlock(device); 3576 put_ldev(device); 3577 } 3578 3579 clear_bit_unlock(BITMAP_IO, &device->flags); 3580 wake_up(&device->misc_wait); 3581 3582 if (work->done) 3583 work->done(device, rv); 3584 3585 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3586 work->why = NULL; 3587 work->flags = 0; 3588 3589 return 0; 3590 } 3591 3592 /** 3593 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3594 * @device: DRBD device. 3595 * @io_fn: IO callback to be called when bitmap IO is possible 3596 * @done: callback to be called after the bitmap IO was performed 3597 * @why: Descriptive text of the reason for doing the IO 3598 * 3599 * While IO on the bitmap happens we freeze application IO thus we ensure 3600 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3601 * called from worker context. It MUST NOT be used while a previous such 3602 * work is still pending! 3603 * 3604 * Its worker function encloses the call of io_fn() by get_ldev() and 3605 * put_ldev(). 3606 */ 3607 void drbd_queue_bitmap_io(struct drbd_device *device, 3608 int (*io_fn)(struct drbd_device *), 3609 void (*done)(struct drbd_device *, int), 3610 char *why, enum bm_flag flags) 3611 { 3612 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3613 3614 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3615 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3616 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3617 if (device->bm_io_work.why) 3618 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3619 why, device->bm_io_work.why); 3620 3621 device->bm_io_work.io_fn = io_fn; 3622 device->bm_io_work.done = done; 3623 device->bm_io_work.why = why; 3624 device->bm_io_work.flags = flags; 3625 3626 spin_lock_irq(&device->resource->req_lock); 3627 set_bit(BITMAP_IO, &device->flags); 3628 /* don't wait for pending application IO if the caller indicates that 3629 * application IO does not conflict anyways. */ 3630 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3631 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3632 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3633 &device->bm_io_work.w); 3634 } 3635 spin_unlock_irq(&device->resource->req_lock); 3636 } 3637 3638 /** 3639 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3640 * @device: DRBD device. 3641 * @io_fn: IO callback to be called when bitmap IO is possible 3642 * @why: Descriptive text of the reason for doing the IO 3643 * 3644 * freezes application IO while that the actual IO operations runs. This 3645 * functions MAY NOT be called from worker context. 3646 */ 3647 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3648 char *why, enum bm_flag flags) 3649 { 3650 /* Only suspend io, if some operation is supposed to be locked out */ 3651 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3652 int rv; 3653 3654 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3655 3656 if (do_suspend_io) 3657 drbd_suspend_io(device); 3658 3659 drbd_bm_lock(device, why, flags); 3660 rv = io_fn(device); 3661 drbd_bm_unlock(device); 3662 3663 if (do_suspend_io) 3664 drbd_resume_io(device); 3665 3666 return rv; 3667 } 3668 3669 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3670 { 3671 if ((device->ldev->md.flags & flag) != flag) { 3672 drbd_md_mark_dirty(device); 3673 device->ldev->md.flags |= flag; 3674 } 3675 } 3676 3677 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3678 { 3679 if ((device->ldev->md.flags & flag) != 0) { 3680 drbd_md_mark_dirty(device); 3681 device->ldev->md.flags &= ~flag; 3682 } 3683 } 3684 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3685 { 3686 return (bdev->md.flags & flag) != 0; 3687 } 3688 3689 static void md_sync_timer_fn(struct timer_list *t) 3690 { 3691 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3692 drbd_device_post_work(device, MD_SYNC); 3693 } 3694 3695 const char *cmdname(enum drbd_packet cmd) 3696 { 3697 /* THINK may need to become several global tables 3698 * when we want to support more than 3699 * one PRO_VERSION */ 3700 static const char *cmdnames[] = { 3701 [P_DATA] = "Data", 3702 [P_WSAME] = "WriteSame", 3703 [P_TRIM] = "Trim", 3704 [P_DATA_REPLY] = "DataReply", 3705 [P_RS_DATA_REPLY] = "RSDataReply", 3706 [P_BARRIER] = "Barrier", 3707 [P_BITMAP] = "ReportBitMap", 3708 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3709 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3710 [P_UNPLUG_REMOTE] = "UnplugRemote", 3711 [P_DATA_REQUEST] = "DataRequest", 3712 [P_RS_DATA_REQUEST] = "RSDataRequest", 3713 [P_SYNC_PARAM] = "SyncParam", 3714 [P_SYNC_PARAM89] = "SyncParam89", 3715 [P_PROTOCOL] = "ReportProtocol", 3716 [P_UUIDS] = "ReportUUIDs", 3717 [P_SIZES] = "ReportSizes", 3718 [P_STATE] = "ReportState", 3719 [P_SYNC_UUID] = "ReportSyncUUID", 3720 [P_AUTH_CHALLENGE] = "AuthChallenge", 3721 [P_AUTH_RESPONSE] = "AuthResponse", 3722 [P_PING] = "Ping", 3723 [P_PING_ACK] = "PingAck", 3724 [P_RECV_ACK] = "RecvAck", 3725 [P_WRITE_ACK] = "WriteAck", 3726 [P_RS_WRITE_ACK] = "RSWriteAck", 3727 [P_SUPERSEDED] = "Superseded", 3728 [P_NEG_ACK] = "NegAck", 3729 [P_NEG_DREPLY] = "NegDReply", 3730 [P_NEG_RS_DREPLY] = "NegRSDReply", 3731 [P_BARRIER_ACK] = "BarrierAck", 3732 [P_STATE_CHG_REQ] = "StateChgRequest", 3733 [P_STATE_CHG_REPLY] = "StateChgReply", 3734 [P_OV_REQUEST] = "OVRequest", 3735 [P_OV_REPLY] = "OVReply", 3736 [P_OV_RESULT] = "OVResult", 3737 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3738 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3739 [P_COMPRESSED_BITMAP] = "CBitmap", 3740 [P_DELAY_PROBE] = "DelayProbe", 3741 [P_OUT_OF_SYNC] = "OutOfSync", 3742 [P_RETRY_WRITE] = "RetryWrite", 3743 [P_RS_CANCEL] = "RSCancel", 3744 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3745 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3746 [P_RETRY_WRITE] = "retry_write", 3747 [P_PROTOCOL_UPDATE] = "protocol_update", 3748 [P_RS_THIN_REQ] = "rs_thin_req", 3749 [P_RS_DEALLOCATED] = "rs_deallocated", 3750 3751 /* enum drbd_packet, but not commands - obsoleted flags: 3752 * P_MAY_IGNORE 3753 * P_MAX_OPT_CMD 3754 */ 3755 }; 3756 3757 /* too big for the array: 0xfffX */ 3758 if (cmd == P_INITIAL_META) 3759 return "InitialMeta"; 3760 if (cmd == P_INITIAL_DATA) 3761 return "InitialData"; 3762 if (cmd == P_CONNECTION_FEATURES) 3763 return "ConnectionFeatures"; 3764 if (cmd >= ARRAY_SIZE(cmdnames)) 3765 return "Unknown"; 3766 return cmdnames[cmd]; 3767 } 3768 3769 /** 3770 * drbd_wait_misc - wait for a request to make progress 3771 * @device: device associated with the request 3772 * @i: the struct drbd_interval embedded in struct drbd_request or 3773 * struct drbd_peer_request 3774 */ 3775 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3776 { 3777 struct net_conf *nc; 3778 DEFINE_WAIT(wait); 3779 long timeout; 3780 3781 rcu_read_lock(); 3782 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3783 if (!nc) { 3784 rcu_read_unlock(); 3785 return -ETIMEDOUT; 3786 } 3787 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3788 rcu_read_unlock(); 3789 3790 /* Indicate to wake up device->misc_wait on progress. */ 3791 i->waiting = true; 3792 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3793 spin_unlock_irq(&device->resource->req_lock); 3794 timeout = schedule_timeout(timeout); 3795 finish_wait(&device->misc_wait, &wait); 3796 spin_lock_irq(&device->resource->req_lock); 3797 if (!timeout || device->state.conn < C_CONNECTED) 3798 return -ETIMEDOUT; 3799 if (signal_pending(current)) 3800 return -ERESTARTSYS; 3801 return 0; 3802 } 3803 3804 void lock_all_resources(void) 3805 { 3806 struct drbd_resource *resource; 3807 int __maybe_unused i = 0; 3808 3809 mutex_lock(&resources_mutex); 3810 local_irq_disable(); 3811 for_each_resource(resource, &drbd_resources) 3812 spin_lock_nested(&resource->req_lock, i++); 3813 } 3814 3815 void unlock_all_resources(void) 3816 { 3817 struct drbd_resource *resource; 3818 3819 for_each_resource(resource, &drbd_resources) 3820 spin_unlock(&resource->req_lock); 3821 local_irq_enable(); 3822 mutex_unlock(&resources_mutex); 3823 } 3824 3825 #ifdef CONFIG_DRBD_FAULT_INJECTION 3826 /* Fault insertion support including random number generator shamelessly 3827 * stolen from kernel/rcutorture.c */ 3828 struct fault_random_state { 3829 unsigned long state; 3830 unsigned long count; 3831 }; 3832 3833 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3834 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3835 #define FAULT_RANDOM_REFRESH 10000 3836 3837 /* 3838 * Crude but fast random-number generator. Uses a linear congruential 3839 * generator, with occasional help from get_random_bytes(). 3840 */ 3841 static unsigned long 3842 _drbd_fault_random(struct fault_random_state *rsp) 3843 { 3844 long refresh; 3845 3846 if (!rsp->count--) { 3847 get_random_bytes(&refresh, sizeof(refresh)); 3848 rsp->state += refresh; 3849 rsp->count = FAULT_RANDOM_REFRESH; 3850 } 3851 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3852 return swahw32(rsp->state); 3853 } 3854 3855 static char * 3856 _drbd_fault_str(unsigned int type) { 3857 static char *_faults[] = { 3858 [DRBD_FAULT_MD_WR] = "Meta-data write", 3859 [DRBD_FAULT_MD_RD] = "Meta-data read", 3860 [DRBD_FAULT_RS_WR] = "Resync write", 3861 [DRBD_FAULT_RS_RD] = "Resync read", 3862 [DRBD_FAULT_DT_WR] = "Data write", 3863 [DRBD_FAULT_DT_RD] = "Data read", 3864 [DRBD_FAULT_DT_RA] = "Data read ahead", 3865 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3866 [DRBD_FAULT_AL_EE] = "EE allocation", 3867 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3868 }; 3869 3870 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3871 } 3872 3873 unsigned int 3874 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3875 { 3876 static struct fault_random_state rrs = {0, 0}; 3877 3878 unsigned int ret = ( 3879 (drbd_fault_devs == 0 || 3880 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3881 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3882 3883 if (ret) { 3884 drbd_fault_count++; 3885 3886 if (__ratelimit(&drbd_ratelimit_state)) 3887 drbd_warn(device, "***Simulating %s failure\n", 3888 _drbd_fault_str(type)); 3889 } 3890 3891 return ret; 3892 } 3893 #endif 3894 3895 const char *drbd_buildtag(void) 3896 { 3897 /* DRBD built from external sources has here a reference to the 3898 git hash of the source code. */ 3899 3900 static char buildtag[38] = "\0uilt-in"; 3901 3902 if (buildtag[0] == 0) { 3903 #ifdef MODULE 3904 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3905 #else 3906 buildtag[0] = 'b'; 3907 #endif 3908 } 3909 3910 return buildtag; 3911 } 3912 3913 module_init(drbd_init) 3914 module_exit(drbd_cleanup) 3915 3916 EXPORT_SYMBOL(drbd_conn_str); 3917 EXPORT_SYMBOL(drbd_role_str); 3918 EXPORT_SYMBOL(drbd_disk_str); 3919 EXPORT_SYMBOL(drbd_set_st_err_str); 3920