1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 12 from Logicworks, Inc. for making SDP replication support possible. 13 14 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/jiffies.h> 21 #include <linux/drbd.h> 22 #include <linux/uaccess.h> 23 #include <asm/types.h> 24 #include <net/sock.h> 25 #include <linux/ctype.h> 26 #include <linux/mutex.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/proc_fs.h> 30 #include <linux/init.h> 31 #include <linux/mm.h> 32 #include <linux/memcontrol.h> 33 #include <linux/mm_inline.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/reboot.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/workqueue.h> 40 #define __KERNEL_SYSCALLS__ 41 #include <linux/unistd.h> 42 #include <linux/vmalloc.h> 43 #include <linux/sched/signal.h> 44 45 #include <linux/drbd_limits.h> 46 #include "drbd_int.h" 47 #include "drbd_protocol.h" 48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 49 #include "drbd_vli.h" 50 #include "drbd_debugfs.h" 51 52 static DEFINE_MUTEX(drbd_main_mutex); 53 static int drbd_open(struct block_device *bdev, fmode_t mode); 54 static void drbd_release(struct gendisk *gd, fmode_t mode); 55 static void md_sync_timer_fn(struct timer_list *t); 56 static int w_bitmap_io(struct drbd_work *w, int unused); 57 58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 59 "Lars Ellenberg <lars@linbit.com>"); 60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 61 MODULE_VERSION(REL_VERSION); 62 MODULE_LICENSE("GPL"); 63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 64 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 66 67 #include <linux/moduleparam.h> 68 /* thanks to these macros, if compiled into the kernel (not-module), 69 * these become boot parameters (e.g., drbd.minor_count) */ 70 71 #ifdef CONFIG_DRBD_FAULT_INJECTION 72 int drbd_enable_faults; 73 int drbd_fault_rate; 74 static int drbd_fault_count; 75 static int drbd_fault_devs; 76 /* bitmap of enabled faults */ 77 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 78 /* fault rate % value - applies to all enabled faults */ 79 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 80 /* count of faults inserted */ 81 module_param_named(fault_count, drbd_fault_count, int, 0664); 82 /* bitmap of devices to insert faults on */ 83 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 84 #endif 85 86 /* module parameters we can keep static */ 87 static bool drbd_allow_oos; /* allow_open_on_secondary */ 88 static bool drbd_disable_sendpage; 89 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 90 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 92 93 /* module parameters we share */ 94 int drbd_proc_details; /* Detail level in proc drbd*/ 95 module_param_named(proc_details, drbd_proc_details, int, 0644); 96 /* module parameters shared with defaults */ 97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 98 /* Module parameter for setting the user mode helper program 99 * to run. Default is /sbin/drbdadm */ 100 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 101 module_param_named(minor_count, drbd_minor_count, uint, 0444); 102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 103 104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 105 * as member "struct gendisk *vdisk;" 106 */ 107 struct idr drbd_devices; 108 struct list_head drbd_resources; 109 struct mutex resources_mutex; 110 111 struct kmem_cache *drbd_request_cache; 112 struct kmem_cache *drbd_ee_cache; /* peer requests */ 113 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 114 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 115 mempool_t drbd_request_mempool; 116 mempool_t drbd_ee_mempool; 117 mempool_t drbd_md_io_page_pool; 118 struct bio_set drbd_md_io_bio_set; 119 struct bio_set drbd_io_bio_set; 120 121 /* I do not use a standard mempool, because: 122 1) I want to hand out the pre-allocated objects first. 123 2) I want to be able to interrupt sleeping allocation with a signal. 124 Note: This is a single linked list, the next pointer is the private 125 member of struct page. 126 */ 127 struct page *drbd_pp_pool; 128 spinlock_t drbd_pp_lock; 129 int drbd_pp_vacant; 130 wait_queue_head_t drbd_pp_wait; 131 132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 133 134 static const struct block_device_operations drbd_ops = { 135 .owner = THIS_MODULE, 136 .open = drbd_open, 137 .release = drbd_release, 138 }; 139 140 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 141 { 142 struct bio *bio; 143 144 if (!bioset_initialized(&drbd_md_io_bio_set)) 145 return bio_alloc(gfp_mask, 1); 146 147 bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set); 148 if (!bio) 149 return NULL; 150 return bio; 151 } 152 153 #ifdef __CHECKER__ 154 /* When checking with sparse, and this is an inline function, sparse will 155 give tons of false positives. When this is a real functions sparse works. 156 */ 157 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 158 { 159 int io_allowed; 160 161 atomic_inc(&device->local_cnt); 162 io_allowed = (device->state.disk >= mins); 163 if (!io_allowed) { 164 if (atomic_dec_and_test(&device->local_cnt)) 165 wake_up(&device->misc_wait); 166 } 167 return io_allowed; 168 } 169 170 #endif 171 172 /** 173 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 174 * @connection: DRBD connection. 175 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 176 * @set_size: Expected number of requests before that barrier. 177 * 178 * In case the passed barrier_nr or set_size does not match the oldest 179 * epoch of not yet barrier-acked requests, this function will cause a 180 * termination of the connection. 181 */ 182 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 183 unsigned int set_size) 184 { 185 struct drbd_request *r; 186 struct drbd_request *req = NULL; 187 int expect_epoch = 0; 188 int expect_size = 0; 189 190 spin_lock_irq(&connection->resource->req_lock); 191 192 /* find oldest not yet barrier-acked write request, 193 * count writes in its epoch. */ 194 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 195 const unsigned s = r->rq_state; 196 if (!req) { 197 if (!(s & RQ_WRITE)) 198 continue; 199 if (!(s & RQ_NET_MASK)) 200 continue; 201 if (s & RQ_NET_DONE) 202 continue; 203 req = r; 204 expect_epoch = req->epoch; 205 expect_size ++; 206 } else { 207 if (r->epoch != expect_epoch) 208 break; 209 if (!(s & RQ_WRITE)) 210 continue; 211 /* if (s & RQ_DONE): not expected */ 212 /* if (!(s & RQ_NET_MASK)): not expected */ 213 expect_size++; 214 } 215 } 216 217 /* first some paranoia code */ 218 if (req == NULL) { 219 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 220 barrier_nr); 221 goto bail; 222 } 223 if (expect_epoch != barrier_nr) { 224 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 225 barrier_nr, expect_epoch); 226 goto bail; 227 } 228 229 if (expect_size != set_size) { 230 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 231 barrier_nr, set_size, expect_size); 232 goto bail; 233 } 234 235 /* Clean up list of requests processed during current epoch. */ 236 /* this extra list walk restart is paranoia, 237 * to catch requests being barrier-acked "unexpectedly". 238 * It usually should find the same req again, or some READ preceding it. */ 239 list_for_each_entry(req, &connection->transfer_log, tl_requests) 240 if (req->epoch == expect_epoch) 241 break; 242 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 243 if (req->epoch != expect_epoch) 244 break; 245 _req_mod(req, BARRIER_ACKED); 246 } 247 spin_unlock_irq(&connection->resource->req_lock); 248 249 return; 250 251 bail: 252 spin_unlock_irq(&connection->resource->req_lock); 253 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 254 } 255 256 257 /** 258 * _tl_restart() - Walks the transfer log, and applies an action to all requests 259 * @connection: DRBD connection to operate on. 260 * @what: The action/event to perform with all request objects 261 * 262 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 263 * RESTART_FROZEN_DISK_IO. 264 */ 265 /* must hold resource->req_lock */ 266 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 267 { 268 struct drbd_request *req, *r; 269 270 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 271 _req_mod(req, what); 272 } 273 274 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 275 { 276 spin_lock_irq(&connection->resource->req_lock); 277 _tl_restart(connection, what); 278 spin_unlock_irq(&connection->resource->req_lock); 279 } 280 281 /** 282 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 283 * @device: DRBD device. 284 * 285 * This is called after the connection to the peer was lost. The storage covered 286 * by the requests on the transfer gets marked as our of sync. Called from the 287 * receiver thread and the worker thread. 288 */ 289 void tl_clear(struct drbd_connection *connection) 290 { 291 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 292 } 293 294 /** 295 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 296 * @device: DRBD device. 297 */ 298 void tl_abort_disk_io(struct drbd_device *device) 299 { 300 struct drbd_connection *connection = first_peer_device(device)->connection; 301 struct drbd_request *req, *r; 302 303 spin_lock_irq(&connection->resource->req_lock); 304 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 305 if (!(req->rq_state & RQ_LOCAL_PENDING)) 306 continue; 307 if (req->device != device) 308 continue; 309 _req_mod(req, ABORT_DISK_IO); 310 } 311 spin_unlock_irq(&connection->resource->req_lock); 312 } 313 314 static int drbd_thread_setup(void *arg) 315 { 316 struct drbd_thread *thi = (struct drbd_thread *) arg; 317 struct drbd_resource *resource = thi->resource; 318 unsigned long flags; 319 int retval; 320 321 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 322 thi->name[0], 323 resource->name); 324 325 allow_kernel_signal(DRBD_SIGKILL); 326 allow_kernel_signal(SIGXCPU); 327 restart: 328 retval = thi->function(thi); 329 330 spin_lock_irqsave(&thi->t_lock, flags); 331 332 /* if the receiver has been "EXITING", the last thing it did 333 * was set the conn state to "StandAlone", 334 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 335 * and receiver thread will be "started". 336 * drbd_thread_start needs to set "RESTARTING" in that case. 337 * t_state check and assignment needs to be within the same spinlock, 338 * so either thread_start sees EXITING, and can remap to RESTARTING, 339 * or thread_start see NONE, and can proceed as normal. 340 */ 341 342 if (thi->t_state == RESTARTING) { 343 drbd_info(resource, "Restarting %s thread\n", thi->name); 344 thi->t_state = RUNNING; 345 spin_unlock_irqrestore(&thi->t_lock, flags); 346 goto restart; 347 } 348 349 thi->task = NULL; 350 thi->t_state = NONE; 351 smp_mb(); 352 complete_all(&thi->stop); 353 spin_unlock_irqrestore(&thi->t_lock, flags); 354 355 drbd_info(resource, "Terminating %s\n", current->comm); 356 357 /* Release mod reference taken when thread was started */ 358 359 if (thi->connection) 360 kref_put(&thi->connection->kref, drbd_destroy_connection); 361 kref_put(&resource->kref, drbd_destroy_resource); 362 module_put(THIS_MODULE); 363 return retval; 364 } 365 366 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 367 int (*func) (struct drbd_thread *), const char *name) 368 { 369 spin_lock_init(&thi->t_lock); 370 thi->task = NULL; 371 thi->t_state = NONE; 372 thi->function = func; 373 thi->resource = resource; 374 thi->connection = NULL; 375 thi->name = name; 376 } 377 378 int drbd_thread_start(struct drbd_thread *thi) 379 { 380 struct drbd_resource *resource = thi->resource; 381 struct task_struct *nt; 382 unsigned long flags; 383 384 /* is used from state engine doing drbd_thread_stop_nowait, 385 * while holding the req lock irqsave */ 386 spin_lock_irqsave(&thi->t_lock, flags); 387 388 switch (thi->t_state) { 389 case NONE: 390 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 391 thi->name, current->comm, current->pid); 392 393 /* Get ref on module for thread - this is released when thread exits */ 394 if (!try_module_get(THIS_MODULE)) { 395 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 396 spin_unlock_irqrestore(&thi->t_lock, flags); 397 return false; 398 } 399 400 kref_get(&resource->kref); 401 if (thi->connection) 402 kref_get(&thi->connection->kref); 403 404 init_completion(&thi->stop); 405 thi->reset_cpu_mask = 1; 406 thi->t_state = RUNNING; 407 spin_unlock_irqrestore(&thi->t_lock, flags); 408 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 409 410 nt = kthread_create(drbd_thread_setup, (void *) thi, 411 "drbd_%c_%s", thi->name[0], thi->resource->name); 412 413 if (IS_ERR(nt)) { 414 drbd_err(resource, "Couldn't start thread\n"); 415 416 if (thi->connection) 417 kref_put(&thi->connection->kref, drbd_destroy_connection); 418 kref_put(&resource->kref, drbd_destroy_resource); 419 module_put(THIS_MODULE); 420 return false; 421 } 422 spin_lock_irqsave(&thi->t_lock, flags); 423 thi->task = nt; 424 thi->t_state = RUNNING; 425 spin_unlock_irqrestore(&thi->t_lock, flags); 426 wake_up_process(nt); 427 break; 428 case EXITING: 429 thi->t_state = RESTARTING; 430 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 431 thi->name, current->comm, current->pid); 432 /* fall through */ 433 case RUNNING: 434 case RESTARTING: 435 default: 436 spin_unlock_irqrestore(&thi->t_lock, flags); 437 break; 438 } 439 440 return true; 441 } 442 443 444 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 445 { 446 unsigned long flags; 447 448 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 449 450 /* may be called from state engine, holding the req lock irqsave */ 451 spin_lock_irqsave(&thi->t_lock, flags); 452 453 if (thi->t_state == NONE) { 454 spin_unlock_irqrestore(&thi->t_lock, flags); 455 if (restart) 456 drbd_thread_start(thi); 457 return; 458 } 459 460 if (thi->t_state != ns) { 461 if (thi->task == NULL) { 462 spin_unlock_irqrestore(&thi->t_lock, flags); 463 return; 464 } 465 466 thi->t_state = ns; 467 smp_mb(); 468 init_completion(&thi->stop); 469 if (thi->task != current) 470 send_sig(DRBD_SIGKILL, thi->task, 1); 471 } 472 473 spin_unlock_irqrestore(&thi->t_lock, flags); 474 475 if (wait) 476 wait_for_completion(&thi->stop); 477 } 478 479 int conn_lowest_minor(struct drbd_connection *connection) 480 { 481 struct drbd_peer_device *peer_device; 482 int vnr = 0, minor = -1; 483 484 rcu_read_lock(); 485 peer_device = idr_get_next(&connection->peer_devices, &vnr); 486 if (peer_device) 487 minor = device_to_minor(peer_device->device); 488 rcu_read_unlock(); 489 490 return minor; 491 } 492 493 #ifdef CONFIG_SMP 494 /** 495 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 496 * 497 * Forces all threads of a resource onto the same CPU. This is beneficial for 498 * DRBD's performance. May be overwritten by user's configuration. 499 */ 500 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 501 { 502 unsigned int *resources_per_cpu, min_index = ~0; 503 504 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 505 GFP_KERNEL); 506 if (resources_per_cpu) { 507 struct drbd_resource *resource; 508 unsigned int cpu, min = ~0; 509 510 rcu_read_lock(); 511 for_each_resource_rcu(resource, &drbd_resources) { 512 for_each_cpu(cpu, resource->cpu_mask) 513 resources_per_cpu[cpu]++; 514 } 515 rcu_read_unlock(); 516 for_each_online_cpu(cpu) { 517 if (resources_per_cpu[cpu] < min) { 518 min = resources_per_cpu[cpu]; 519 min_index = cpu; 520 } 521 } 522 kfree(resources_per_cpu); 523 } 524 if (min_index == ~0) { 525 cpumask_setall(*cpu_mask); 526 return; 527 } 528 cpumask_set_cpu(min_index, *cpu_mask); 529 } 530 531 /** 532 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 533 * @device: DRBD device. 534 * @thi: drbd_thread object 535 * 536 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 537 * prematurely. 538 */ 539 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 540 { 541 struct drbd_resource *resource = thi->resource; 542 struct task_struct *p = current; 543 544 if (!thi->reset_cpu_mask) 545 return; 546 thi->reset_cpu_mask = 0; 547 set_cpus_allowed_ptr(p, resource->cpu_mask); 548 } 549 #else 550 #define drbd_calc_cpu_mask(A) ({}) 551 #endif 552 553 /** 554 * drbd_header_size - size of a packet header 555 * 556 * The header size is a multiple of 8, so any payload following the header is 557 * word aligned on 64-bit architectures. (The bitmap send and receive code 558 * relies on this.) 559 */ 560 unsigned int drbd_header_size(struct drbd_connection *connection) 561 { 562 if (connection->agreed_pro_version >= 100) { 563 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 564 return sizeof(struct p_header100); 565 } else { 566 BUILD_BUG_ON(sizeof(struct p_header80) != 567 sizeof(struct p_header95)); 568 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 569 return sizeof(struct p_header80); 570 } 571 } 572 573 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 574 { 575 h->magic = cpu_to_be32(DRBD_MAGIC); 576 h->command = cpu_to_be16(cmd); 577 h->length = cpu_to_be16(size); 578 return sizeof(struct p_header80); 579 } 580 581 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 582 { 583 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 584 h->command = cpu_to_be16(cmd); 585 h->length = cpu_to_be32(size); 586 return sizeof(struct p_header95); 587 } 588 589 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 590 int size, int vnr) 591 { 592 h->magic = cpu_to_be32(DRBD_MAGIC_100); 593 h->volume = cpu_to_be16(vnr); 594 h->command = cpu_to_be16(cmd); 595 h->length = cpu_to_be32(size); 596 h->pad = 0; 597 return sizeof(struct p_header100); 598 } 599 600 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 601 void *buffer, enum drbd_packet cmd, int size) 602 { 603 if (connection->agreed_pro_version >= 100) 604 return prepare_header100(buffer, cmd, size, vnr); 605 else if (connection->agreed_pro_version >= 95 && 606 size > DRBD_MAX_SIZE_H80_PACKET) 607 return prepare_header95(buffer, cmd, size); 608 else 609 return prepare_header80(buffer, cmd, size); 610 } 611 612 static void *__conn_prepare_command(struct drbd_connection *connection, 613 struct drbd_socket *sock) 614 { 615 if (!sock->socket) 616 return NULL; 617 return sock->sbuf + drbd_header_size(connection); 618 } 619 620 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 621 { 622 void *p; 623 624 mutex_lock(&sock->mutex); 625 p = __conn_prepare_command(connection, sock); 626 if (!p) 627 mutex_unlock(&sock->mutex); 628 629 return p; 630 } 631 632 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 633 { 634 return conn_prepare_command(peer_device->connection, sock); 635 } 636 637 static int __send_command(struct drbd_connection *connection, int vnr, 638 struct drbd_socket *sock, enum drbd_packet cmd, 639 unsigned int header_size, void *data, 640 unsigned int size) 641 { 642 int msg_flags; 643 int err; 644 645 /* 646 * Called with @data == NULL and the size of the data blocks in @size 647 * for commands that send data blocks. For those commands, omit the 648 * MSG_MORE flag: this will increase the likelihood that data blocks 649 * which are page aligned on the sender will end up page aligned on the 650 * receiver. 651 */ 652 msg_flags = data ? MSG_MORE : 0; 653 654 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 655 header_size + size); 656 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 657 msg_flags); 658 if (data && !err) 659 err = drbd_send_all(connection, sock->socket, data, size, 0); 660 /* DRBD protocol "pings" are latency critical. 661 * This is supposed to trigger tcp_push_pending_frames() */ 662 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 663 drbd_tcp_nodelay(sock->socket); 664 665 return err; 666 } 667 668 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 669 enum drbd_packet cmd, unsigned int header_size, 670 void *data, unsigned int size) 671 { 672 return __send_command(connection, 0, sock, cmd, header_size, data, size); 673 } 674 675 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 676 enum drbd_packet cmd, unsigned int header_size, 677 void *data, unsigned int size) 678 { 679 int err; 680 681 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 682 mutex_unlock(&sock->mutex); 683 return err; 684 } 685 686 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 687 enum drbd_packet cmd, unsigned int header_size, 688 void *data, unsigned int size) 689 { 690 int err; 691 692 err = __send_command(peer_device->connection, peer_device->device->vnr, 693 sock, cmd, header_size, data, size); 694 mutex_unlock(&sock->mutex); 695 return err; 696 } 697 698 int drbd_send_ping(struct drbd_connection *connection) 699 { 700 struct drbd_socket *sock; 701 702 sock = &connection->meta; 703 if (!conn_prepare_command(connection, sock)) 704 return -EIO; 705 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 706 } 707 708 int drbd_send_ping_ack(struct drbd_connection *connection) 709 { 710 struct drbd_socket *sock; 711 712 sock = &connection->meta; 713 if (!conn_prepare_command(connection, sock)) 714 return -EIO; 715 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 716 } 717 718 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 719 { 720 struct drbd_socket *sock; 721 struct p_rs_param_95 *p; 722 int size; 723 const int apv = peer_device->connection->agreed_pro_version; 724 enum drbd_packet cmd; 725 struct net_conf *nc; 726 struct disk_conf *dc; 727 728 sock = &peer_device->connection->data; 729 p = drbd_prepare_command(peer_device, sock); 730 if (!p) 731 return -EIO; 732 733 rcu_read_lock(); 734 nc = rcu_dereference(peer_device->connection->net_conf); 735 736 size = apv <= 87 ? sizeof(struct p_rs_param) 737 : apv == 88 ? sizeof(struct p_rs_param) 738 + strlen(nc->verify_alg) + 1 739 : apv <= 94 ? sizeof(struct p_rs_param_89) 740 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 741 742 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 743 744 /* initialize verify_alg and csums_alg */ 745 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 746 747 if (get_ldev(peer_device->device)) { 748 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 749 p->resync_rate = cpu_to_be32(dc->resync_rate); 750 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 751 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 752 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 753 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 754 put_ldev(peer_device->device); 755 } else { 756 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 757 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 758 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 759 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 760 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 761 } 762 763 if (apv >= 88) 764 strcpy(p->verify_alg, nc->verify_alg); 765 if (apv >= 89) 766 strcpy(p->csums_alg, nc->csums_alg); 767 rcu_read_unlock(); 768 769 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 770 } 771 772 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 773 { 774 struct drbd_socket *sock; 775 struct p_protocol *p; 776 struct net_conf *nc; 777 int size, cf; 778 779 sock = &connection->data; 780 p = __conn_prepare_command(connection, sock); 781 if (!p) 782 return -EIO; 783 784 rcu_read_lock(); 785 nc = rcu_dereference(connection->net_conf); 786 787 if (nc->tentative && connection->agreed_pro_version < 92) { 788 rcu_read_unlock(); 789 drbd_err(connection, "--dry-run is not supported by peer"); 790 return -EOPNOTSUPP; 791 } 792 793 size = sizeof(*p); 794 if (connection->agreed_pro_version >= 87) 795 size += strlen(nc->integrity_alg) + 1; 796 797 p->protocol = cpu_to_be32(nc->wire_protocol); 798 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 799 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 800 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 801 p->two_primaries = cpu_to_be32(nc->two_primaries); 802 cf = 0; 803 if (nc->discard_my_data) 804 cf |= CF_DISCARD_MY_DATA; 805 if (nc->tentative) 806 cf |= CF_DRY_RUN; 807 p->conn_flags = cpu_to_be32(cf); 808 809 if (connection->agreed_pro_version >= 87) 810 strcpy(p->integrity_alg, nc->integrity_alg); 811 rcu_read_unlock(); 812 813 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 814 } 815 816 int drbd_send_protocol(struct drbd_connection *connection) 817 { 818 int err; 819 820 mutex_lock(&connection->data.mutex); 821 err = __drbd_send_protocol(connection, P_PROTOCOL); 822 mutex_unlock(&connection->data.mutex); 823 824 return err; 825 } 826 827 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 828 { 829 struct drbd_device *device = peer_device->device; 830 struct drbd_socket *sock; 831 struct p_uuids *p; 832 int i; 833 834 if (!get_ldev_if_state(device, D_NEGOTIATING)) 835 return 0; 836 837 sock = &peer_device->connection->data; 838 p = drbd_prepare_command(peer_device, sock); 839 if (!p) { 840 put_ldev(device); 841 return -EIO; 842 } 843 spin_lock_irq(&device->ldev->md.uuid_lock); 844 for (i = UI_CURRENT; i < UI_SIZE; i++) 845 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 846 spin_unlock_irq(&device->ldev->md.uuid_lock); 847 848 device->comm_bm_set = drbd_bm_total_weight(device); 849 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 850 rcu_read_lock(); 851 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 852 rcu_read_unlock(); 853 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 854 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 855 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 856 857 put_ldev(device); 858 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 859 } 860 861 int drbd_send_uuids(struct drbd_peer_device *peer_device) 862 { 863 return _drbd_send_uuids(peer_device, 0); 864 } 865 866 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 867 { 868 return _drbd_send_uuids(peer_device, 8); 869 } 870 871 void drbd_print_uuids(struct drbd_device *device, const char *text) 872 { 873 if (get_ldev_if_state(device, D_NEGOTIATING)) { 874 u64 *uuid = device->ldev->md.uuid; 875 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 876 text, 877 (unsigned long long)uuid[UI_CURRENT], 878 (unsigned long long)uuid[UI_BITMAP], 879 (unsigned long long)uuid[UI_HISTORY_START], 880 (unsigned long long)uuid[UI_HISTORY_END]); 881 put_ldev(device); 882 } else { 883 drbd_info(device, "%s effective data uuid: %016llX\n", 884 text, 885 (unsigned long long)device->ed_uuid); 886 } 887 } 888 889 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 890 { 891 struct drbd_device *device = peer_device->device; 892 struct drbd_socket *sock; 893 struct p_rs_uuid *p; 894 u64 uuid; 895 896 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 897 898 uuid = device->ldev->md.uuid[UI_BITMAP]; 899 if (uuid && uuid != UUID_JUST_CREATED) 900 uuid = uuid + UUID_NEW_BM_OFFSET; 901 else 902 get_random_bytes(&uuid, sizeof(u64)); 903 drbd_uuid_set(device, UI_BITMAP, uuid); 904 drbd_print_uuids(device, "updated sync UUID"); 905 drbd_md_sync(device); 906 907 sock = &peer_device->connection->data; 908 p = drbd_prepare_command(peer_device, sock); 909 if (p) { 910 p->uuid = cpu_to_be64(uuid); 911 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 912 } 913 } 914 915 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 916 static void 917 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, 918 struct request_queue *q) 919 { 920 if (q) { 921 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 922 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 923 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 924 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 925 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 926 p->qlim->discard_enabled = blk_queue_discard(q); 927 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors; 928 } else { 929 q = device->rq_queue; 930 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 931 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 932 p->qlim->alignment_offset = 0; 933 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 934 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 935 p->qlim->discard_enabled = 0; 936 p->qlim->write_same_capable = 0; 937 } 938 } 939 940 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 941 { 942 struct drbd_device *device = peer_device->device; 943 struct drbd_socket *sock; 944 struct p_sizes *p; 945 sector_t d_size, u_size; 946 int q_order_type; 947 unsigned int max_bio_size; 948 unsigned int packet_size; 949 950 sock = &peer_device->connection->data; 951 p = drbd_prepare_command(peer_device, sock); 952 if (!p) 953 return -EIO; 954 955 packet_size = sizeof(*p); 956 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 957 packet_size += sizeof(p->qlim[0]); 958 959 memset(p, 0, packet_size); 960 if (get_ldev_if_state(device, D_NEGOTIATING)) { 961 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 962 d_size = drbd_get_max_capacity(device->ldev); 963 rcu_read_lock(); 964 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 965 rcu_read_unlock(); 966 q_order_type = drbd_queue_order_type(device); 967 max_bio_size = queue_max_hw_sectors(q) << 9; 968 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 969 assign_p_sizes_qlim(device, p, q); 970 put_ldev(device); 971 } else { 972 d_size = 0; 973 u_size = 0; 974 q_order_type = QUEUE_ORDERED_NONE; 975 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 976 assign_p_sizes_qlim(device, p, NULL); 977 } 978 979 if (peer_device->connection->agreed_pro_version <= 94) 980 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 981 else if (peer_device->connection->agreed_pro_version < 100) 982 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 983 984 p->d_size = cpu_to_be64(d_size); 985 p->u_size = cpu_to_be64(u_size); 986 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 987 p->max_bio_size = cpu_to_be32(max_bio_size); 988 p->queue_order_type = cpu_to_be16(q_order_type); 989 p->dds_flags = cpu_to_be16(flags); 990 991 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 992 } 993 994 /** 995 * drbd_send_current_state() - Sends the drbd state to the peer 996 * @peer_device: DRBD peer device. 997 */ 998 int drbd_send_current_state(struct drbd_peer_device *peer_device) 999 { 1000 struct drbd_socket *sock; 1001 struct p_state *p; 1002 1003 sock = &peer_device->connection->data; 1004 p = drbd_prepare_command(peer_device, sock); 1005 if (!p) 1006 return -EIO; 1007 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1008 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1009 } 1010 1011 /** 1012 * drbd_send_state() - After a state change, sends the new state to the peer 1013 * @peer_device: DRBD peer device. 1014 * @state: the state to send, not necessarily the current state. 1015 * 1016 * Each state change queues an "after_state_ch" work, which will eventually 1017 * send the resulting new state to the peer. If more state changes happen 1018 * between queuing and processing of the after_state_ch work, we still 1019 * want to send each intermediary state in the order it occurred. 1020 */ 1021 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1022 { 1023 struct drbd_socket *sock; 1024 struct p_state *p; 1025 1026 sock = &peer_device->connection->data; 1027 p = drbd_prepare_command(peer_device, sock); 1028 if (!p) 1029 return -EIO; 1030 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1031 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1032 } 1033 1034 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1035 { 1036 struct drbd_socket *sock; 1037 struct p_req_state *p; 1038 1039 sock = &peer_device->connection->data; 1040 p = drbd_prepare_command(peer_device, sock); 1041 if (!p) 1042 return -EIO; 1043 p->mask = cpu_to_be32(mask.i); 1044 p->val = cpu_to_be32(val.i); 1045 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1046 } 1047 1048 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1049 { 1050 enum drbd_packet cmd; 1051 struct drbd_socket *sock; 1052 struct p_req_state *p; 1053 1054 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1055 sock = &connection->data; 1056 p = conn_prepare_command(connection, sock); 1057 if (!p) 1058 return -EIO; 1059 p->mask = cpu_to_be32(mask.i); 1060 p->val = cpu_to_be32(val.i); 1061 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1062 } 1063 1064 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1065 { 1066 struct drbd_socket *sock; 1067 struct p_req_state_reply *p; 1068 1069 sock = &peer_device->connection->meta; 1070 p = drbd_prepare_command(peer_device, sock); 1071 if (p) { 1072 p->retcode = cpu_to_be32(retcode); 1073 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1074 } 1075 } 1076 1077 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1078 { 1079 struct drbd_socket *sock; 1080 struct p_req_state_reply *p; 1081 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1082 1083 sock = &connection->meta; 1084 p = conn_prepare_command(connection, sock); 1085 if (p) { 1086 p->retcode = cpu_to_be32(retcode); 1087 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1088 } 1089 } 1090 1091 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1092 { 1093 BUG_ON(code & ~0xf); 1094 p->encoding = (p->encoding & ~0xf) | code; 1095 } 1096 1097 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1098 { 1099 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1100 } 1101 1102 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1103 { 1104 BUG_ON(n & ~0x7); 1105 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1106 } 1107 1108 static int fill_bitmap_rle_bits(struct drbd_device *device, 1109 struct p_compressed_bm *p, 1110 unsigned int size, 1111 struct bm_xfer_ctx *c) 1112 { 1113 struct bitstream bs; 1114 unsigned long plain_bits; 1115 unsigned long tmp; 1116 unsigned long rl; 1117 unsigned len; 1118 unsigned toggle; 1119 int bits, use_rle; 1120 1121 /* may we use this feature? */ 1122 rcu_read_lock(); 1123 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1124 rcu_read_unlock(); 1125 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1126 return 0; 1127 1128 if (c->bit_offset >= c->bm_bits) 1129 return 0; /* nothing to do. */ 1130 1131 /* use at most thus many bytes */ 1132 bitstream_init(&bs, p->code, size, 0); 1133 memset(p->code, 0, size); 1134 /* plain bits covered in this code string */ 1135 plain_bits = 0; 1136 1137 /* p->encoding & 0x80 stores whether the first run length is set. 1138 * bit offset is implicit. 1139 * start with toggle == 2 to be able to tell the first iteration */ 1140 toggle = 2; 1141 1142 /* see how much plain bits we can stuff into one packet 1143 * using RLE and VLI. */ 1144 do { 1145 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1146 : _drbd_bm_find_next(device, c->bit_offset); 1147 if (tmp == -1UL) 1148 tmp = c->bm_bits; 1149 rl = tmp - c->bit_offset; 1150 1151 if (toggle == 2) { /* first iteration */ 1152 if (rl == 0) { 1153 /* the first checked bit was set, 1154 * store start value, */ 1155 dcbp_set_start(p, 1); 1156 /* but skip encoding of zero run length */ 1157 toggle = !toggle; 1158 continue; 1159 } 1160 dcbp_set_start(p, 0); 1161 } 1162 1163 /* paranoia: catch zero runlength. 1164 * can only happen if bitmap is modified while we scan it. */ 1165 if (rl == 0) { 1166 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1167 "t:%u bo:%lu\n", toggle, c->bit_offset); 1168 return -1; 1169 } 1170 1171 bits = vli_encode_bits(&bs, rl); 1172 if (bits == -ENOBUFS) /* buffer full */ 1173 break; 1174 if (bits <= 0) { 1175 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1176 return 0; 1177 } 1178 1179 toggle = !toggle; 1180 plain_bits += rl; 1181 c->bit_offset = tmp; 1182 } while (c->bit_offset < c->bm_bits); 1183 1184 len = bs.cur.b - p->code + !!bs.cur.bit; 1185 1186 if (plain_bits < (len << 3)) { 1187 /* incompressible with this method. 1188 * we need to rewind both word and bit position. */ 1189 c->bit_offset -= plain_bits; 1190 bm_xfer_ctx_bit_to_word_offset(c); 1191 c->bit_offset = c->word_offset * BITS_PER_LONG; 1192 return 0; 1193 } 1194 1195 /* RLE + VLI was able to compress it just fine. 1196 * update c->word_offset. */ 1197 bm_xfer_ctx_bit_to_word_offset(c); 1198 1199 /* store pad_bits */ 1200 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1201 1202 return len; 1203 } 1204 1205 /** 1206 * send_bitmap_rle_or_plain 1207 * 1208 * Return 0 when done, 1 when another iteration is needed, and a negative error 1209 * code upon failure. 1210 */ 1211 static int 1212 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1213 { 1214 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1215 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1216 struct p_compressed_bm *p = sock->sbuf + header_size; 1217 int len, err; 1218 1219 len = fill_bitmap_rle_bits(device, p, 1220 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1221 if (len < 0) 1222 return -EIO; 1223 1224 if (len) { 1225 dcbp_set_code(p, RLE_VLI_Bits); 1226 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1227 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1228 NULL, 0); 1229 c->packets[0]++; 1230 c->bytes[0] += header_size + sizeof(*p) + len; 1231 1232 if (c->bit_offset >= c->bm_bits) 1233 len = 0; /* DONE */ 1234 } else { 1235 /* was not compressible. 1236 * send a buffer full of plain text bits instead. */ 1237 unsigned int data_size; 1238 unsigned long num_words; 1239 unsigned long *p = sock->sbuf + header_size; 1240 1241 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1242 num_words = min_t(size_t, data_size / sizeof(*p), 1243 c->bm_words - c->word_offset); 1244 len = num_words * sizeof(*p); 1245 if (len) 1246 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1247 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1248 c->word_offset += num_words; 1249 c->bit_offset = c->word_offset * BITS_PER_LONG; 1250 1251 c->packets[1]++; 1252 c->bytes[1] += header_size + len; 1253 1254 if (c->bit_offset > c->bm_bits) 1255 c->bit_offset = c->bm_bits; 1256 } 1257 if (!err) { 1258 if (len == 0) { 1259 INFO_bm_xfer_stats(device, "send", c); 1260 return 0; 1261 } else 1262 return 1; 1263 } 1264 return -EIO; 1265 } 1266 1267 /* See the comment at receive_bitmap() */ 1268 static int _drbd_send_bitmap(struct drbd_device *device) 1269 { 1270 struct bm_xfer_ctx c; 1271 int err; 1272 1273 if (!expect(device->bitmap)) 1274 return false; 1275 1276 if (get_ldev(device)) { 1277 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1278 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1279 drbd_bm_set_all(device); 1280 if (drbd_bm_write(device)) { 1281 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1282 * but otherwise process as per normal - need to tell other 1283 * side that a full resync is required! */ 1284 drbd_err(device, "Failed to write bitmap to disk!\n"); 1285 } else { 1286 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1287 drbd_md_sync(device); 1288 } 1289 } 1290 put_ldev(device); 1291 } 1292 1293 c = (struct bm_xfer_ctx) { 1294 .bm_bits = drbd_bm_bits(device), 1295 .bm_words = drbd_bm_words(device), 1296 }; 1297 1298 do { 1299 err = send_bitmap_rle_or_plain(device, &c); 1300 } while (err > 0); 1301 1302 return err == 0; 1303 } 1304 1305 int drbd_send_bitmap(struct drbd_device *device) 1306 { 1307 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1308 int err = -1; 1309 1310 mutex_lock(&sock->mutex); 1311 if (sock->socket) 1312 err = !_drbd_send_bitmap(device); 1313 mutex_unlock(&sock->mutex); 1314 return err; 1315 } 1316 1317 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1318 { 1319 struct drbd_socket *sock; 1320 struct p_barrier_ack *p; 1321 1322 if (connection->cstate < C_WF_REPORT_PARAMS) 1323 return; 1324 1325 sock = &connection->meta; 1326 p = conn_prepare_command(connection, sock); 1327 if (!p) 1328 return; 1329 p->barrier = barrier_nr; 1330 p->set_size = cpu_to_be32(set_size); 1331 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1332 } 1333 1334 /** 1335 * _drbd_send_ack() - Sends an ack packet 1336 * @device: DRBD device. 1337 * @cmd: Packet command code. 1338 * @sector: sector, needs to be in big endian byte order 1339 * @blksize: size in byte, needs to be in big endian byte order 1340 * @block_id: Id, big endian byte order 1341 */ 1342 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1343 u64 sector, u32 blksize, u64 block_id) 1344 { 1345 struct drbd_socket *sock; 1346 struct p_block_ack *p; 1347 1348 if (peer_device->device->state.conn < C_CONNECTED) 1349 return -EIO; 1350 1351 sock = &peer_device->connection->meta; 1352 p = drbd_prepare_command(peer_device, sock); 1353 if (!p) 1354 return -EIO; 1355 p->sector = sector; 1356 p->block_id = block_id; 1357 p->blksize = blksize; 1358 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1359 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1360 } 1361 1362 /* dp->sector and dp->block_id already/still in network byte order, 1363 * data_size is payload size according to dp->head, 1364 * and may need to be corrected for digest size. */ 1365 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1366 struct p_data *dp, int data_size) 1367 { 1368 if (peer_device->connection->peer_integrity_tfm) 1369 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1370 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1371 dp->block_id); 1372 } 1373 1374 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1375 struct p_block_req *rp) 1376 { 1377 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1378 } 1379 1380 /** 1381 * drbd_send_ack() - Sends an ack packet 1382 * @device: DRBD device 1383 * @cmd: packet command code 1384 * @peer_req: peer request 1385 */ 1386 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1387 struct drbd_peer_request *peer_req) 1388 { 1389 return _drbd_send_ack(peer_device, cmd, 1390 cpu_to_be64(peer_req->i.sector), 1391 cpu_to_be32(peer_req->i.size), 1392 peer_req->block_id); 1393 } 1394 1395 /* This function misuses the block_id field to signal if the blocks 1396 * are is sync or not. */ 1397 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1398 sector_t sector, int blksize, u64 block_id) 1399 { 1400 return _drbd_send_ack(peer_device, cmd, 1401 cpu_to_be64(sector), 1402 cpu_to_be32(blksize), 1403 cpu_to_be64(block_id)); 1404 } 1405 1406 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1407 struct drbd_peer_request *peer_req) 1408 { 1409 struct drbd_socket *sock; 1410 struct p_block_desc *p; 1411 1412 sock = &peer_device->connection->data; 1413 p = drbd_prepare_command(peer_device, sock); 1414 if (!p) 1415 return -EIO; 1416 p->sector = cpu_to_be64(peer_req->i.sector); 1417 p->blksize = cpu_to_be32(peer_req->i.size); 1418 p->pad = 0; 1419 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1420 } 1421 1422 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1423 sector_t sector, int size, u64 block_id) 1424 { 1425 struct drbd_socket *sock; 1426 struct p_block_req *p; 1427 1428 sock = &peer_device->connection->data; 1429 p = drbd_prepare_command(peer_device, sock); 1430 if (!p) 1431 return -EIO; 1432 p->sector = cpu_to_be64(sector); 1433 p->block_id = block_id; 1434 p->blksize = cpu_to_be32(size); 1435 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1436 } 1437 1438 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1439 void *digest, int digest_size, enum drbd_packet cmd) 1440 { 1441 struct drbd_socket *sock; 1442 struct p_block_req *p; 1443 1444 /* FIXME: Put the digest into the preallocated socket buffer. */ 1445 1446 sock = &peer_device->connection->data; 1447 p = drbd_prepare_command(peer_device, sock); 1448 if (!p) 1449 return -EIO; 1450 p->sector = cpu_to_be64(sector); 1451 p->block_id = ID_SYNCER /* unused */; 1452 p->blksize = cpu_to_be32(size); 1453 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1454 } 1455 1456 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1457 { 1458 struct drbd_socket *sock; 1459 struct p_block_req *p; 1460 1461 sock = &peer_device->connection->data; 1462 p = drbd_prepare_command(peer_device, sock); 1463 if (!p) 1464 return -EIO; 1465 p->sector = cpu_to_be64(sector); 1466 p->block_id = ID_SYNCER /* unused */; 1467 p->blksize = cpu_to_be32(size); 1468 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1469 } 1470 1471 /* called on sndtimeo 1472 * returns false if we should retry, 1473 * true if we think connection is dead 1474 */ 1475 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1476 { 1477 int drop_it; 1478 /* long elapsed = (long)(jiffies - device->last_received); */ 1479 1480 drop_it = connection->meta.socket == sock 1481 || !connection->ack_receiver.task 1482 || get_t_state(&connection->ack_receiver) != RUNNING 1483 || connection->cstate < C_WF_REPORT_PARAMS; 1484 1485 if (drop_it) 1486 return true; 1487 1488 drop_it = !--connection->ko_count; 1489 if (!drop_it) { 1490 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1491 current->comm, current->pid, connection->ko_count); 1492 request_ping(connection); 1493 } 1494 1495 return drop_it; /* && (device->state == R_PRIMARY) */; 1496 } 1497 1498 static void drbd_update_congested(struct drbd_connection *connection) 1499 { 1500 struct sock *sk = connection->data.socket->sk; 1501 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1502 set_bit(NET_CONGESTED, &connection->flags); 1503 } 1504 1505 /* The idea of sendpage seems to be to put some kind of reference 1506 * to the page into the skb, and to hand it over to the NIC. In 1507 * this process get_page() gets called. 1508 * 1509 * As soon as the page was really sent over the network put_page() 1510 * gets called by some part of the network layer. [ NIC driver? ] 1511 * 1512 * [ get_page() / put_page() increment/decrement the count. If count 1513 * reaches 0 the page will be freed. ] 1514 * 1515 * This works nicely with pages from FSs. 1516 * But this means that in protocol A we might signal IO completion too early! 1517 * 1518 * In order not to corrupt data during a resync we must make sure 1519 * that we do not reuse our own buffer pages (EEs) to early, therefore 1520 * we have the net_ee list. 1521 * 1522 * XFS seems to have problems, still, it submits pages with page_count == 0! 1523 * As a workaround, we disable sendpage on pages 1524 * with page_count == 0 or PageSlab. 1525 */ 1526 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1527 int offset, size_t size, unsigned msg_flags) 1528 { 1529 struct socket *socket; 1530 void *addr; 1531 int err; 1532 1533 socket = peer_device->connection->data.socket; 1534 addr = kmap(page) + offset; 1535 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1536 kunmap(page); 1537 if (!err) 1538 peer_device->device->send_cnt += size >> 9; 1539 return err; 1540 } 1541 1542 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1543 int offset, size_t size, unsigned msg_flags) 1544 { 1545 struct socket *socket = peer_device->connection->data.socket; 1546 int len = size; 1547 int err = -EIO; 1548 1549 /* e.g. XFS meta- & log-data is in slab pages, which have a 1550 * page_count of 0 and/or have PageSlab() set. 1551 * we cannot use send_page for those, as that does get_page(); 1552 * put_page(); and would cause either a VM_BUG directly, or 1553 * __page_cache_release a page that would actually still be referenced 1554 * by someone, leading to some obscure delayed Oops somewhere else. */ 1555 if (drbd_disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1556 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1557 1558 msg_flags |= MSG_NOSIGNAL; 1559 drbd_update_congested(peer_device->connection); 1560 do { 1561 int sent; 1562 1563 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1564 if (sent <= 0) { 1565 if (sent == -EAGAIN) { 1566 if (we_should_drop_the_connection(peer_device->connection, socket)) 1567 break; 1568 continue; 1569 } 1570 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1571 __func__, (int)size, len, sent); 1572 if (sent < 0) 1573 err = sent; 1574 break; 1575 } 1576 len -= sent; 1577 offset += sent; 1578 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1579 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1580 1581 if (len == 0) { 1582 err = 0; 1583 peer_device->device->send_cnt += size >> 9; 1584 } 1585 return err; 1586 } 1587 1588 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1589 { 1590 struct bio_vec bvec; 1591 struct bvec_iter iter; 1592 1593 /* hint all but last page with MSG_MORE */ 1594 bio_for_each_segment(bvec, bio, iter) { 1595 int err; 1596 1597 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1598 bvec.bv_offset, bvec.bv_len, 1599 bio_iter_last(bvec, iter) 1600 ? 0 : MSG_MORE); 1601 if (err) 1602 return err; 1603 /* REQ_OP_WRITE_SAME has only one segment */ 1604 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1605 break; 1606 } 1607 return 0; 1608 } 1609 1610 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1611 { 1612 struct bio_vec bvec; 1613 struct bvec_iter iter; 1614 1615 /* hint all but last page with MSG_MORE */ 1616 bio_for_each_segment(bvec, bio, iter) { 1617 int err; 1618 1619 err = _drbd_send_page(peer_device, bvec.bv_page, 1620 bvec.bv_offset, bvec.bv_len, 1621 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1622 if (err) 1623 return err; 1624 /* REQ_OP_WRITE_SAME has only one segment */ 1625 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1626 break; 1627 } 1628 return 0; 1629 } 1630 1631 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1632 struct drbd_peer_request *peer_req) 1633 { 1634 struct page *page = peer_req->pages; 1635 unsigned len = peer_req->i.size; 1636 int err; 1637 1638 /* hint all but last page with MSG_MORE */ 1639 page_chain_for_each(page) { 1640 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1641 1642 err = _drbd_send_page(peer_device, page, 0, l, 1643 page_chain_next(page) ? MSG_MORE : 0); 1644 if (err) 1645 return err; 1646 len -= l; 1647 } 1648 return 0; 1649 } 1650 1651 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1652 struct bio *bio) 1653 { 1654 if (connection->agreed_pro_version >= 95) 1655 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1656 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1657 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1658 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) | 1659 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1660 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? 1661 ((connection->agreed_features & DRBD_FF_WZEROES) ? 1662 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0)) 1663 : DP_DISCARD) 1664 : 0); 1665 else 1666 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1667 } 1668 1669 /* Used to send write or TRIM aka REQ_OP_DISCARD requests 1670 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1671 */ 1672 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1673 { 1674 struct drbd_device *device = peer_device->device; 1675 struct drbd_socket *sock; 1676 struct p_data *p; 1677 struct p_wsame *wsame = NULL; 1678 void *digest_out; 1679 unsigned int dp_flags = 0; 1680 int digest_size; 1681 int err; 1682 1683 sock = &peer_device->connection->data; 1684 p = drbd_prepare_command(peer_device, sock); 1685 digest_size = peer_device->connection->integrity_tfm ? 1686 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1687 1688 if (!p) 1689 return -EIO; 1690 p->sector = cpu_to_be64(req->i.sector); 1691 p->block_id = (unsigned long)req; 1692 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1693 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1694 if (device->state.conn >= C_SYNC_SOURCE && 1695 device->state.conn <= C_PAUSED_SYNC_T) 1696 dp_flags |= DP_MAY_SET_IN_SYNC; 1697 if (peer_device->connection->agreed_pro_version >= 100) { 1698 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1699 dp_flags |= DP_SEND_RECEIVE_ACK; 1700 /* During resync, request an explicit write ack, 1701 * even in protocol != C */ 1702 if (req->rq_state & RQ_EXP_WRITE_ACK 1703 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1704 dp_flags |= DP_SEND_WRITE_ACK; 1705 } 1706 p->dp_flags = cpu_to_be32(dp_flags); 1707 1708 if (dp_flags & (DP_DISCARD|DP_ZEROES)) { 1709 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM; 1710 struct p_trim *t = (struct p_trim*)p; 1711 t->size = cpu_to_be32(req->i.size); 1712 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0); 1713 goto out; 1714 } 1715 if (dp_flags & DP_WSAME) { 1716 /* this will only work if DRBD_FF_WSAME is set AND the 1717 * handshake agreed that all nodes and backend devices are 1718 * WRITE_SAME capable and agree on logical_block_size */ 1719 wsame = (struct p_wsame*)p; 1720 digest_out = wsame + 1; 1721 wsame->size = cpu_to_be32(req->i.size); 1722 } else 1723 digest_out = p + 1; 1724 1725 /* our digest is still only over the payload. 1726 * TRIM does not carry any payload. */ 1727 if (digest_size) 1728 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1729 if (wsame) { 1730 err = 1731 __send_command(peer_device->connection, device->vnr, sock, P_WSAME, 1732 sizeof(*wsame) + digest_size, NULL, 1733 bio_iovec(req->master_bio).bv_len); 1734 } else 1735 err = 1736 __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1737 sizeof(*p) + digest_size, NULL, req->i.size); 1738 if (!err) { 1739 /* For protocol A, we have to memcpy the payload into 1740 * socket buffers, as we may complete right away 1741 * as soon as we handed it over to tcp, at which point the data 1742 * pages may become invalid. 1743 * 1744 * For data-integrity enabled, we copy it as well, so we can be 1745 * sure that even if the bio pages may still be modified, it 1746 * won't change the data on the wire, thus if the digest checks 1747 * out ok after sending on this side, but does not fit on the 1748 * receiving side, we sure have detected corruption elsewhere. 1749 */ 1750 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1751 err = _drbd_send_bio(peer_device, req->master_bio); 1752 else 1753 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1754 1755 /* double check digest, sometimes buffers have been modified in flight. */ 1756 if (digest_size > 0 && digest_size <= 64) { 1757 /* 64 byte, 512 bit, is the largest digest size 1758 * currently supported in kernel crypto. */ 1759 unsigned char digest[64]; 1760 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1761 if (memcmp(p + 1, digest, digest_size)) { 1762 drbd_warn(device, 1763 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1764 (unsigned long long)req->i.sector, req->i.size); 1765 } 1766 } /* else if (digest_size > 64) { 1767 ... Be noisy about digest too large ... 1768 } */ 1769 } 1770 out: 1771 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1772 1773 return err; 1774 } 1775 1776 /* answer packet, used to send data back for read requests: 1777 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1778 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1779 */ 1780 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1781 struct drbd_peer_request *peer_req) 1782 { 1783 struct drbd_device *device = peer_device->device; 1784 struct drbd_socket *sock; 1785 struct p_data *p; 1786 int err; 1787 int digest_size; 1788 1789 sock = &peer_device->connection->data; 1790 p = drbd_prepare_command(peer_device, sock); 1791 1792 digest_size = peer_device->connection->integrity_tfm ? 1793 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1794 1795 if (!p) 1796 return -EIO; 1797 p->sector = cpu_to_be64(peer_req->i.sector); 1798 p->block_id = peer_req->block_id; 1799 p->seq_num = 0; /* unused */ 1800 p->dp_flags = 0; 1801 if (digest_size) 1802 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1803 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1804 if (!err) 1805 err = _drbd_send_zc_ee(peer_device, peer_req); 1806 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1807 1808 return err; 1809 } 1810 1811 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1812 { 1813 struct drbd_socket *sock; 1814 struct p_block_desc *p; 1815 1816 sock = &peer_device->connection->data; 1817 p = drbd_prepare_command(peer_device, sock); 1818 if (!p) 1819 return -EIO; 1820 p->sector = cpu_to_be64(req->i.sector); 1821 p->blksize = cpu_to_be32(req->i.size); 1822 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1823 } 1824 1825 /* 1826 drbd_send distinguishes two cases: 1827 1828 Packets sent via the data socket "sock" 1829 and packets sent via the meta data socket "msock" 1830 1831 sock msock 1832 -----------------+-------------------------+------------------------------ 1833 timeout conf.timeout / 2 conf.timeout / 2 1834 timeout action send a ping via msock Abort communication 1835 and close all sockets 1836 */ 1837 1838 /* 1839 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1840 */ 1841 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1842 void *buf, size_t size, unsigned msg_flags) 1843 { 1844 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1845 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1846 int rv, sent = 0; 1847 1848 if (!sock) 1849 return -EBADR; 1850 1851 /* THINK if (signal_pending) return ... ? */ 1852 1853 iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size); 1854 1855 if (sock == connection->data.socket) { 1856 rcu_read_lock(); 1857 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1858 rcu_read_unlock(); 1859 drbd_update_congested(connection); 1860 } 1861 do { 1862 rv = sock_sendmsg(sock, &msg); 1863 if (rv == -EAGAIN) { 1864 if (we_should_drop_the_connection(connection, sock)) 1865 break; 1866 else 1867 continue; 1868 } 1869 if (rv == -EINTR) { 1870 flush_signals(current); 1871 rv = 0; 1872 } 1873 if (rv < 0) 1874 break; 1875 sent += rv; 1876 } while (sent < size); 1877 1878 if (sock == connection->data.socket) 1879 clear_bit(NET_CONGESTED, &connection->flags); 1880 1881 if (rv <= 0) { 1882 if (rv != -EAGAIN) { 1883 drbd_err(connection, "%s_sendmsg returned %d\n", 1884 sock == connection->meta.socket ? "msock" : "sock", 1885 rv); 1886 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1887 } else 1888 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1889 } 1890 1891 return sent; 1892 } 1893 1894 /** 1895 * drbd_send_all - Send an entire buffer 1896 * 1897 * Returns 0 upon success and a negative error value otherwise. 1898 */ 1899 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1900 size_t size, unsigned msg_flags) 1901 { 1902 int err; 1903 1904 err = drbd_send(connection, sock, buffer, size, msg_flags); 1905 if (err < 0) 1906 return err; 1907 if (err != size) 1908 return -EIO; 1909 return 0; 1910 } 1911 1912 static int drbd_open(struct block_device *bdev, fmode_t mode) 1913 { 1914 struct drbd_device *device = bdev->bd_disk->private_data; 1915 unsigned long flags; 1916 int rv = 0; 1917 1918 mutex_lock(&drbd_main_mutex); 1919 spin_lock_irqsave(&device->resource->req_lock, flags); 1920 /* to have a stable device->state.role 1921 * and no race with updating open_cnt */ 1922 1923 if (device->state.role != R_PRIMARY) { 1924 if (mode & FMODE_WRITE) 1925 rv = -EROFS; 1926 else if (!drbd_allow_oos) 1927 rv = -EMEDIUMTYPE; 1928 } 1929 1930 if (!rv) 1931 device->open_cnt++; 1932 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1933 mutex_unlock(&drbd_main_mutex); 1934 1935 return rv; 1936 } 1937 1938 static void drbd_release(struct gendisk *gd, fmode_t mode) 1939 { 1940 struct drbd_device *device = gd->private_data; 1941 mutex_lock(&drbd_main_mutex); 1942 device->open_cnt--; 1943 mutex_unlock(&drbd_main_mutex); 1944 } 1945 1946 /* need to hold resource->req_lock */ 1947 void drbd_queue_unplug(struct drbd_device *device) 1948 { 1949 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1950 D_ASSERT(device, device->state.role == R_PRIMARY); 1951 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1952 drbd_queue_work_if_unqueued( 1953 &first_peer_device(device)->connection->sender_work, 1954 &device->unplug_work); 1955 } 1956 } 1957 } 1958 1959 static void drbd_set_defaults(struct drbd_device *device) 1960 { 1961 /* Beware! The actual layout differs 1962 * between big endian and little endian */ 1963 device->state = (union drbd_dev_state) { 1964 { .role = R_SECONDARY, 1965 .peer = R_UNKNOWN, 1966 .conn = C_STANDALONE, 1967 .disk = D_DISKLESS, 1968 .pdsk = D_UNKNOWN, 1969 } }; 1970 } 1971 1972 void drbd_init_set_defaults(struct drbd_device *device) 1973 { 1974 /* the memset(,0,) did most of this. 1975 * note: only assignments, no allocation in here */ 1976 1977 drbd_set_defaults(device); 1978 1979 atomic_set(&device->ap_bio_cnt, 0); 1980 atomic_set(&device->ap_actlog_cnt, 0); 1981 atomic_set(&device->ap_pending_cnt, 0); 1982 atomic_set(&device->rs_pending_cnt, 0); 1983 atomic_set(&device->unacked_cnt, 0); 1984 atomic_set(&device->local_cnt, 0); 1985 atomic_set(&device->pp_in_use_by_net, 0); 1986 atomic_set(&device->rs_sect_in, 0); 1987 atomic_set(&device->rs_sect_ev, 0); 1988 atomic_set(&device->ap_in_flight, 0); 1989 atomic_set(&device->md_io.in_use, 0); 1990 1991 mutex_init(&device->own_state_mutex); 1992 device->state_mutex = &device->own_state_mutex; 1993 1994 spin_lock_init(&device->al_lock); 1995 spin_lock_init(&device->peer_seq_lock); 1996 1997 INIT_LIST_HEAD(&device->active_ee); 1998 INIT_LIST_HEAD(&device->sync_ee); 1999 INIT_LIST_HEAD(&device->done_ee); 2000 INIT_LIST_HEAD(&device->read_ee); 2001 INIT_LIST_HEAD(&device->net_ee); 2002 INIT_LIST_HEAD(&device->resync_reads); 2003 INIT_LIST_HEAD(&device->resync_work.list); 2004 INIT_LIST_HEAD(&device->unplug_work.list); 2005 INIT_LIST_HEAD(&device->bm_io_work.w.list); 2006 INIT_LIST_HEAD(&device->pending_master_completion[0]); 2007 INIT_LIST_HEAD(&device->pending_master_completion[1]); 2008 INIT_LIST_HEAD(&device->pending_completion[0]); 2009 INIT_LIST_HEAD(&device->pending_completion[1]); 2010 2011 device->resync_work.cb = w_resync_timer; 2012 device->unplug_work.cb = w_send_write_hint; 2013 device->bm_io_work.w.cb = w_bitmap_io; 2014 2015 timer_setup(&device->resync_timer, resync_timer_fn, 0); 2016 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 2017 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 2018 timer_setup(&device->request_timer, request_timer_fn, 0); 2019 2020 init_waitqueue_head(&device->misc_wait); 2021 init_waitqueue_head(&device->state_wait); 2022 init_waitqueue_head(&device->ee_wait); 2023 init_waitqueue_head(&device->al_wait); 2024 init_waitqueue_head(&device->seq_wait); 2025 2026 device->resync_wenr = LC_FREE; 2027 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2028 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2029 } 2030 2031 static void _drbd_set_my_capacity(struct drbd_device *device, sector_t size) 2032 { 2033 /* set_capacity(device->this_bdev->bd_disk, size); */ 2034 set_capacity(device->vdisk, size); 2035 device->this_bdev->bd_inode->i_size = (loff_t)size << 9; 2036 } 2037 2038 void drbd_set_my_capacity(struct drbd_device *device, sector_t size) 2039 { 2040 char ppb[10]; 2041 _drbd_set_my_capacity(device, size); 2042 drbd_info(device, "size = %s (%llu KB)\n", 2043 ppsize(ppb, size>>1), (unsigned long long)size>>1); 2044 } 2045 2046 void drbd_device_cleanup(struct drbd_device *device) 2047 { 2048 int i; 2049 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2050 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2051 first_peer_device(device)->connection->receiver.t_state); 2052 2053 device->al_writ_cnt = 2054 device->bm_writ_cnt = 2055 device->read_cnt = 2056 device->recv_cnt = 2057 device->send_cnt = 2058 device->writ_cnt = 2059 device->p_size = 2060 device->rs_start = 2061 device->rs_total = 2062 device->rs_failed = 0; 2063 device->rs_last_events = 0; 2064 device->rs_last_sect_ev = 0; 2065 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2066 device->rs_mark_left[i] = 0; 2067 device->rs_mark_time[i] = 0; 2068 } 2069 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2070 2071 _drbd_set_my_capacity(device, 0); 2072 if (device->bitmap) { 2073 /* maybe never allocated. */ 2074 drbd_bm_resize(device, 0, 1); 2075 drbd_bm_cleanup(device); 2076 } 2077 2078 drbd_backing_dev_free(device, device->ldev); 2079 device->ldev = NULL; 2080 2081 clear_bit(AL_SUSPENDED, &device->flags); 2082 2083 D_ASSERT(device, list_empty(&device->active_ee)); 2084 D_ASSERT(device, list_empty(&device->sync_ee)); 2085 D_ASSERT(device, list_empty(&device->done_ee)); 2086 D_ASSERT(device, list_empty(&device->read_ee)); 2087 D_ASSERT(device, list_empty(&device->net_ee)); 2088 D_ASSERT(device, list_empty(&device->resync_reads)); 2089 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2090 D_ASSERT(device, list_empty(&device->resync_work.list)); 2091 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2092 2093 drbd_set_defaults(device); 2094 } 2095 2096 2097 static void drbd_destroy_mempools(void) 2098 { 2099 struct page *page; 2100 2101 while (drbd_pp_pool) { 2102 page = drbd_pp_pool; 2103 drbd_pp_pool = (struct page *)page_private(page); 2104 __free_page(page); 2105 drbd_pp_vacant--; 2106 } 2107 2108 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2109 2110 bioset_exit(&drbd_io_bio_set); 2111 bioset_exit(&drbd_md_io_bio_set); 2112 mempool_exit(&drbd_md_io_page_pool); 2113 mempool_exit(&drbd_ee_mempool); 2114 mempool_exit(&drbd_request_mempool); 2115 kmem_cache_destroy(drbd_ee_cache); 2116 kmem_cache_destroy(drbd_request_cache); 2117 kmem_cache_destroy(drbd_bm_ext_cache); 2118 kmem_cache_destroy(drbd_al_ext_cache); 2119 2120 drbd_ee_cache = NULL; 2121 drbd_request_cache = NULL; 2122 drbd_bm_ext_cache = NULL; 2123 drbd_al_ext_cache = NULL; 2124 2125 return; 2126 } 2127 2128 static int drbd_create_mempools(void) 2129 { 2130 struct page *page; 2131 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2132 int i, ret; 2133 2134 /* caches */ 2135 drbd_request_cache = kmem_cache_create( 2136 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2137 if (drbd_request_cache == NULL) 2138 goto Enomem; 2139 2140 drbd_ee_cache = kmem_cache_create( 2141 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2142 if (drbd_ee_cache == NULL) 2143 goto Enomem; 2144 2145 drbd_bm_ext_cache = kmem_cache_create( 2146 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2147 if (drbd_bm_ext_cache == NULL) 2148 goto Enomem; 2149 2150 drbd_al_ext_cache = kmem_cache_create( 2151 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2152 if (drbd_al_ext_cache == NULL) 2153 goto Enomem; 2154 2155 /* mempools */ 2156 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2157 if (ret) 2158 goto Enomem; 2159 2160 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2161 BIOSET_NEED_BVECS); 2162 if (ret) 2163 goto Enomem; 2164 2165 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2166 if (ret) 2167 goto Enomem; 2168 2169 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2170 drbd_request_cache); 2171 if (ret) 2172 goto Enomem; 2173 2174 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2175 if (ret) 2176 goto Enomem; 2177 2178 /* drbd's page pool */ 2179 spin_lock_init(&drbd_pp_lock); 2180 2181 for (i = 0; i < number; i++) { 2182 page = alloc_page(GFP_HIGHUSER); 2183 if (!page) 2184 goto Enomem; 2185 set_page_private(page, (unsigned long)drbd_pp_pool); 2186 drbd_pp_pool = page; 2187 } 2188 drbd_pp_vacant = number; 2189 2190 return 0; 2191 2192 Enomem: 2193 drbd_destroy_mempools(); /* in case we allocated some */ 2194 return -ENOMEM; 2195 } 2196 2197 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2198 { 2199 int rr; 2200 2201 rr = drbd_free_peer_reqs(device, &device->active_ee); 2202 if (rr) 2203 drbd_err(device, "%d EEs in active list found!\n", rr); 2204 2205 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2206 if (rr) 2207 drbd_err(device, "%d EEs in sync list found!\n", rr); 2208 2209 rr = drbd_free_peer_reqs(device, &device->read_ee); 2210 if (rr) 2211 drbd_err(device, "%d EEs in read list found!\n", rr); 2212 2213 rr = drbd_free_peer_reqs(device, &device->done_ee); 2214 if (rr) 2215 drbd_err(device, "%d EEs in done list found!\n", rr); 2216 2217 rr = drbd_free_peer_reqs(device, &device->net_ee); 2218 if (rr) 2219 drbd_err(device, "%d EEs in net list found!\n", rr); 2220 } 2221 2222 /* caution. no locking. */ 2223 void drbd_destroy_device(struct kref *kref) 2224 { 2225 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2226 struct drbd_resource *resource = device->resource; 2227 struct drbd_peer_device *peer_device, *tmp_peer_device; 2228 2229 del_timer_sync(&device->request_timer); 2230 2231 /* paranoia asserts */ 2232 D_ASSERT(device, device->open_cnt == 0); 2233 /* end paranoia asserts */ 2234 2235 /* cleanup stuff that may have been allocated during 2236 * device (re-)configuration or state changes */ 2237 2238 if (device->this_bdev) 2239 bdput(device->this_bdev); 2240 2241 drbd_backing_dev_free(device, device->ldev); 2242 device->ldev = NULL; 2243 2244 drbd_release_all_peer_reqs(device); 2245 2246 lc_destroy(device->act_log); 2247 lc_destroy(device->resync); 2248 2249 kfree(device->p_uuid); 2250 /* device->p_uuid = NULL; */ 2251 2252 if (device->bitmap) /* should no longer be there. */ 2253 drbd_bm_cleanup(device); 2254 __free_page(device->md_io.page); 2255 put_disk(device->vdisk); 2256 blk_cleanup_queue(device->rq_queue); 2257 kfree(device->rs_plan_s); 2258 2259 /* not for_each_connection(connection, resource): 2260 * those may have been cleaned up and disassociated already. 2261 */ 2262 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2263 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2264 kfree(peer_device); 2265 } 2266 memset(device, 0xfd, sizeof(*device)); 2267 kfree(device); 2268 kref_put(&resource->kref, drbd_destroy_resource); 2269 } 2270 2271 /* One global retry thread, if we need to push back some bio and have it 2272 * reinserted through our make request function. 2273 */ 2274 static struct retry_worker { 2275 struct workqueue_struct *wq; 2276 struct work_struct worker; 2277 2278 spinlock_t lock; 2279 struct list_head writes; 2280 } retry; 2281 2282 static void do_retry(struct work_struct *ws) 2283 { 2284 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2285 LIST_HEAD(writes); 2286 struct drbd_request *req, *tmp; 2287 2288 spin_lock_irq(&retry->lock); 2289 list_splice_init(&retry->writes, &writes); 2290 spin_unlock_irq(&retry->lock); 2291 2292 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2293 struct drbd_device *device = req->device; 2294 struct bio *bio = req->master_bio; 2295 unsigned long start_jif = req->start_jif; 2296 bool expected; 2297 2298 expected = 2299 expect(atomic_read(&req->completion_ref) == 0) && 2300 expect(req->rq_state & RQ_POSTPONED) && 2301 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2302 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2303 2304 if (!expected) 2305 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2306 req, atomic_read(&req->completion_ref), 2307 req->rq_state); 2308 2309 /* We still need to put one kref associated with the 2310 * "completion_ref" going zero in the code path that queued it 2311 * here. The request object may still be referenced by a 2312 * frozen local req->private_bio, in case we force-detached. 2313 */ 2314 kref_put(&req->kref, drbd_req_destroy); 2315 2316 /* A single suspended or otherwise blocking device may stall 2317 * all others as well. Fortunately, this code path is to 2318 * recover from a situation that "should not happen": 2319 * concurrent writes in multi-primary setup. 2320 * In a "normal" lifecycle, this workqueue is supposed to be 2321 * destroyed without ever doing anything. 2322 * If it turns out to be an issue anyways, we can do per 2323 * resource (replication group) or per device (minor) retry 2324 * workqueues instead. 2325 */ 2326 2327 /* We are not just doing generic_make_request(), 2328 * as we want to keep the start_time information. */ 2329 inc_ap_bio(device); 2330 __drbd_make_request(device, bio, start_jif); 2331 } 2332 } 2333 2334 /* called via drbd_req_put_completion_ref(), 2335 * holds resource->req_lock */ 2336 void drbd_restart_request(struct drbd_request *req) 2337 { 2338 unsigned long flags; 2339 spin_lock_irqsave(&retry.lock, flags); 2340 list_move_tail(&req->tl_requests, &retry.writes); 2341 spin_unlock_irqrestore(&retry.lock, flags); 2342 2343 /* Drop the extra reference that would otherwise 2344 * have been dropped by complete_master_bio. 2345 * do_retry() needs to grab a new one. */ 2346 dec_ap_bio(req->device); 2347 2348 queue_work(retry.wq, &retry.worker); 2349 } 2350 2351 void drbd_destroy_resource(struct kref *kref) 2352 { 2353 struct drbd_resource *resource = 2354 container_of(kref, struct drbd_resource, kref); 2355 2356 idr_destroy(&resource->devices); 2357 free_cpumask_var(resource->cpu_mask); 2358 kfree(resource->name); 2359 memset(resource, 0xf2, sizeof(*resource)); 2360 kfree(resource); 2361 } 2362 2363 void drbd_free_resource(struct drbd_resource *resource) 2364 { 2365 struct drbd_connection *connection, *tmp; 2366 2367 for_each_connection_safe(connection, tmp, resource) { 2368 list_del(&connection->connections); 2369 drbd_debugfs_connection_cleanup(connection); 2370 kref_put(&connection->kref, drbd_destroy_connection); 2371 } 2372 drbd_debugfs_resource_cleanup(resource); 2373 kref_put(&resource->kref, drbd_destroy_resource); 2374 } 2375 2376 static void drbd_cleanup(void) 2377 { 2378 unsigned int i; 2379 struct drbd_device *device; 2380 struct drbd_resource *resource, *tmp; 2381 2382 /* first remove proc, 2383 * drbdsetup uses it's presence to detect 2384 * whether DRBD is loaded. 2385 * If we would get stuck in proc removal, 2386 * but have netlink already deregistered, 2387 * some drbdsetup commands may wait forever 2388 * for an answer. 2389 */ 2390 if (drbd_proc) 2391 remove_proc_entry("drbd", NULL); 2392 2393 if (retry.wq) 2394 destroy_workqueue(retry.wq); 2395 2396 drbd_genl_unregister(); 2397 2398 idr_for_each_entry(&drbd_devices, device, i) 2399 drbd_delete_device(device); 2400 2401 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2402 for_each_resource_safe(resource, tmp, &drbd_resources) { 2403 list_del(&resource->resources); 2404 drbd_free_resource(resource); 2405 } 2406 2407 drbd_debugfs_cleanup(); 2408 2409 drbd_destroy_mempools(); 2410 unregister_blkdev(DRBD_MAJOR, "drbd"); 2411 2412 idr_destroy(&drbd_devices); 2413 2414 pr_info("module cleanup done.\n"); 2415 } 2416 2417 /** 2418 * drbd_congested() - Callback for the flusher thread 2419 * @congested_data: User data 2420 * @bdi_bits: Bits the BDI flusher thread is currently interested in 2421 * 2422 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested. 2423 */ 2424 static int drbd_congested(void *congested_data, int bdi_bits) 2425 { 2426 struct drbd_device *device = congested_data; 2427 struct request_queue *q; 2428 char reason = '-'; 2429 int r = 0; 2430 2431 if (!may_inc_ap_bio(device)) { 2432 /* DRBD has frozen IO */ 2433 r = bdi_bits; 2434 reason = 'd'; 2435 goto out; 2436 } 2437 2438 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) { 2439 r |= (1 << WB_async_congested); 2440 /* Without good local data, we would need to read from remote, 2441 * and that would need the worker thread as well, which is 2442 * currently blocked waiting for that usermode helper to 2443 * finish. 2444 */ 2445 if (!get_ldev_if_state(device, D_UP_TO_DATE)) 2446 r |= (1 << WB_sync_congested); 2447 else 2448 put_ldev(device); 2449 r &= bdi_bits; 2450 reason = 'c'; 2451 goto out; 2452 } 2453 2454 if (get_ldev(device)) { 2455 q = bdev_get_queue(device->ldev->backing_bdev); 2456 r = bdi_congested(q->backing_dev_info, bdi_bits); 2457 put_ldev(device); 2458 if (r) 2459 reason = 'b'; 2460 } 2461 2462 if (bdi_bits & (1 << WB_async_congested) && 2463 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) { 2464 r |= (1 << WB_async_congested); 2465 reason = reason == 'b' ? 'a' : 'n'; 2466 } 2467 2468 out: 2469 device->congestion_reason = reason; 2470 return r; 2471 } 2472 2473 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2474 { 2475 spin_lock_init(&wq->q_lock); 2476 INIT_LIST_HEAD(&wq->q); 2477 init_waitqueue_head(&wq->q_wait); 2478 } 2479 2480 struct completion_work { 2481 struct drbd_work w; 2482 struct completion done; 2483 }; 2484 2485 static int w_complete(struct drbd_work *w, int cancel) 2486 { 2487 struct completion_work *completion_work = 2488 container_of(w, struct completion_work, w); 2489 2490 complete(&completion_work->done); 2491 return 0; 2492 } 2493 2494 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2495 { 2496 struct completion_work completion_work; 2497 2498 completion_work.w.cb = w_complete; 2499 init_completion(&completion_work.done); 2500 drbd_queue_work(work_queue, &completion_work.w); 2501 wait_for_completion(&completion_work.done); 2502 } 2503 2504 struct drbd_resource *drbd_find_resource(const char *name) 2505 { 2506 struct drbd_resource *resource; 2507 2508 if (!name || !name[0]) 2509 return NULL; 2510 2511 rcu_read_lock(); 2512 for_each_resource_rcu(resource, &drbd_resources) { 2513 if (!strcmp(resource->name, name)) { 2514 kref_get(&resource->kref); 2515 goto found; 2516 } 2517 } 2518 resource = NULL; 2519 found: 2520 rcu_read_unlock(); 2521 return resource; 2522 } 2523 2524 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2525 void *peer_addr, int peer_addr_len) 2526 { 2527 struct drbd_resource *resource; 2528 struct drbd_connection *connection; 2529 2530 rcu_read_lock(); 2531 for_each_resource_rcu(resource, &drbd_resources) { 2532 for_each_connection_rcu(connection, resource) { 2533 if (connection->my_addr_len == my_addr_len && 2534 connection->peer_addr_len == peer_addr_len && 2535 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2536 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2537 kref_get(&connection->kref); 2538 goto found; 2539 } 2540 } 2541 } 2542 connection = NULL; 2543 found: 2544 rcu_read_unlock(); 2545 return connection; 2546 } 2547 2548 static int drbd_alloc_socket(struct drbd_socket *socket) 2549 { 2550 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2551 if (!socket->rbuf) 2552 return -ENOMEM; 2553 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2554 if (!socket->sbuf) 2555 return -ENOMEM; 2556 return 0; 2557 } 2558 2559 static void drbd_free_socket(struct drbd_socket *socket) 2560 { 2561 free_page((unsigned long) socket->sbuf); 2562 free_page((unsigned long) socket->rbuf); 2563 } 2564 2565 void conn_free_crypto(struct drbd_connection *connection) 2566 { 2567 drbd_free_sock(connection); 2568 2569 crypto_free_shash(connection->csums_tfm); 2570 crypto_free_shash(connection->verify_tfm); 2571 crypto_free_shash(connection->cram_hmac_tfm); 2572 crypto_free_shash(connection->integrity_tfm); 2573 crypto_free_shash(connection->peer_integrity_tfm); 2574 kfree(connection->int_dig_in); 2575 kfree(connection->int_dig_vv); 2576 2577 connection->csums_tfm = NULL; 2578 connection->verify_tfm = NULL; 2579 connection->cram_hmac_tfm = NULL; 2580 connection->integrity_tfm = NULL; 2581 connection->peer_integrity_tfm = NULL; 2582 connection->int_dig_in = NULL; 2583 connection->int_dig_vv = NULL; 2584 } 2585 2586 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2587 { 2588 struct drbd_connection *connection; 2589 cpumask_var_t new_cpu_mask; 2590 int err; 2591 2592 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2593 return -ENOMEM; 2594 2595 /* silently ignore cpu mask on UP kernel */ 2596 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2597 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2598 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2599 if (err == -EOVERFLOW) { 2600 /* So what. mask it out. */ 2601 cpumask_var_t tmp_cpu_mask; 2602 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2603 cpumask_setall(tmp_cpu_mask); 2604 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2605 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2606 res_opts->cpu_mask, 2607 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2608 nr_cpu_ids); 2609 free_cpumask_var(tmp_cpu_mask); 2610 err = 0; 2611 } 2612 } 2613 if (err) { 2614 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2615 /* retcode = ERR_CPU_MASK_PARSE; */ 2616 goto fail; 2617 } 2618 } 2619 resource->res_opts = *res_opts; 2620 if (cpumask_empty(new_cpu_mask)) 2621 drbd_calc_cpu_mask(&new_cpu_mask); 2622 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2623 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2624 for_each_connection_rcu(connection, resource) { 2625 connection->receiver.reset_cpu_mask = 1; 2626 connection->ack_receiver.reset_cpu_mask = 1; 2627 connection->worker.reset_cpu_mask = 1; 2628 } 2629 } 2630 err = 0; 2631 2632 fail: 2633 free_cpumask_var(new_cpu_mask); 2634 return err; 2635 2636 } 2637 2638 struct drbd_resource *drbd_create_resource(const char *name) 2639 { 2640 struct drbd_resource *resource; 2641 2642 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2643 if (!resource) 2644 goto fail; 2645 resource->name = kstrdup(name, GFP_KERNEL); 2646 if (!resource->name) 2647 goto fail_free_resource; 2648 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2649 goto fail_free_name; 2650 kref_init(&resource->kref); 2651 idr_init(&resource->devices); 2652 INIT_LIST_HEAD(&resource->connections); 2653 resource->write_ordering = WO_BDEV_FLUSH; 2654 list_add_tail_rcu(&resource->resources, &drbd_resources); 2655 mutex_init(&resource->conf_update); 2656 mutex_init(&resource->adm_mutex); 2657 spin_lock_init(&resource->req_lock); 2658 drbd_debugfs_resource_add(resource); 2659 return resource; 2660 2661 fail_free_name: 2662 kfree(resource->name); 2663 fail_free_resource: 2664 kfree(resource); 2665 fail: 2666 return NULL; 2667 } 2668 2669 /* caller must be under adm_mutex */ 2670 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2671 { 2672 struct drbd_resource *resource; 2673 struct drbd_connection *connection; 2674 2675 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2676 if (!connection) 2677 return NULL; 2678 2679 if (drbd_alloc_socket(&connection->data)) 2680 goto fail; 2681 if (drbd_alloc_socket(&connection->meta)) 2682 goto fail; 2683 2684 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2685 if (!connection->current_epoch) 2686 goto fail; 2687 2688 INIT_LIST_HEAD(&connection->transfer_log); 2689 2690 INIT_LIST_HEAD(&connection->current_epoch->list); 2691 connection->epochs = 1; 2692 spin_lock_init(&connection->epoch_lock); 2693 2694 connection->send.seen_any_write_yet = false; 2695 connection->send.current_epoch_nr = 0; 2696 connection->send.current_epoch_writes = 0; 2697 2698 resource = drbd_create_resource(name); 2699 if (!resource) 2700 goto fail; 2701 2702 connection->cstate = C_STANDALONE; 2703 mutex_init(&connection->cstate_mutex); 2704 init_waitqueue_head(&connection->ping_wait); 2705 idr_init(&connection->peer_devices); 2706 2707 drbd_init_workqueue(&connection->sender_work); 2708 mutex_init(&connection->data.mutex); 2709 mutex_init(&connection->meta.mutex); 2710 2711 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2712 connection->receiver.connection = connection; 2713 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2714 connection->worker.connection = connection; 2715 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2716 connection->ack_receiver.connection = connection; 2717 2718 kref_init(&connection->kref); 2719 2720 connection->resource = resource; 2721 2722 if (set_resource_options(resource, res_opts)) 2723 goto fail_resource; 2724 2725 kref_get(&resource->kref); 2726 list_add_tail_rcu(&connection->connections, &resource->connections); 2727 drbd_debugfs_connection_add(connection); 2728 return connection; 2729 2730 fail_resource: 2731 list_del(&resource->resources); 2732 drbd_free_resource(resource); 2733 fail: 2734 kfree(connection->current_epoch); 2735 drbd_free_socket(&connection->meta); 2736 drbd_free_socket(&connection->data); 2737 kfree(connection); 2738 return NULL; 2739 } 2740 2741 void drbd_destroy_connection(struct kref *kref) 2742 { 2743 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2744 struct drbd_resource *resource = connection->resource; 2745 2746 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2747 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2748 kfree(connection->current_epoch); 2749 2750 idr_destroy(&connection->peer_devices); 2751 2752 drbd_free_socket(&connection->meta); 2753 drbd_free_socket(&connection->data); 2754 kfree(connection->int_dig_in); 2755 kfree(connection->int_dig_vv); 2756 memset(connection, 0xfc, sizeof(*connection)); 2757 kfree(connection); 2758 kref_put(&resource->kref, drbd_destroy_resource); 2759 } 2760 2761 static int init_submitter(struct drbd_device *device) 2762 { 2763 /* opencoded create_singlethread_workqueue(), 2764 * to be able to say "drbd%d", ..., minor */ 2765 device->submit.wq = 2766 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2767 if (!device->submit.wq) 2768 return -ENOMEM; 2769 2770 INIT_WORK(&device->submit.worker, do_submit); 2771 INIT_LIST_HEAD(&device->submit.writes); 2772 return 0; 2773 } 2774 2775 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2776 { 2777 struct drbd_resource *resource = adm_ctx->resource; 2778 struct drbd_connection *connection; 2779 struct drbd_device *device; 2780 struct drbd_peer_device *peer_device, *tmp_peer_device; 2781 struct gendisk *disk; 2782 struct request_queue *q; 2783 int id; 2784 int vnr = adm_ctx->volume; 2785 enum drbd_ret_code err = ERR_NOMEM; 2786 2787 device = minor_to_device(minor); 2788 if (device) 2789 return ERR_MINOR_OR_VOLUME_EXISTS; 2790 2791 /* GFP_KERNEL, we are outside of all write-out paths */ 2792 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2793 if (!device) 2794 return ERR_NOMEM; 2795 kref_init(&device->kref); 2796 2797 kref_get(&resource->kref); 2798 device->resource = resource; 2799 device->minor = minor; 2800 device->vnr = vnr; 2801 2802 drbd_init_set_defaults(device); 2803 2804 q = blk_alloc_queue(drbd_make_request, NUMA_NO_NODE); 2805 if (!q) 2806 goto out_no_q; 2807 device->rq_queue = q; 2808 q->queuedata = device; 2809 2810 disk = alloc_disk(1); 2811 if (!disk) 2812 goto out_no_disk; 2813 device->vdisk = disk; 2814 2815 set_disk_ro(disk, true); 2816 2817 disk->queue = q; 2818 disk->major = DRBD_MAJOR; 2819 disk->first_minor = minor; 2820 disk->fops = &drbd_ops; 2821 sprintf(disk->disk_name, "drbd%d", minor); 2822 disk->private_data = device; 2823 2824 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2825 /* we have no partitions. we contain only ourselves. */ 2826 device->this_bdev->bd_contains = device->this_bdev; 2827 2828 q->backing_dev_info->congested_fn = drbd_congested; 2829 q->backing_dev_info->congested_data = device; 2830 2831 blk_queue_write_cache(q, true, true); 2832 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2833 This triggers a max_bio_size message upon first attach or connect */ 2834 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2835 2836 device->md_io.page = alloc_page(GFP_KERNEL); 2837 if (!device->md_io.page) 2838 goto out_no_io_page; 2839 2840 if (drbd_bm_init(device)) 2841 goto out_no_bitmap; 2842 device->read_requests = RB_ROOT; 2843 device->write_requests = RB_ROOT; 2844 2845 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2846 if (id < 0) { 2847 if (id == -ENOSPC) 2848 err = ERR_MINOR_OR_VOLUME_EXISTS; 2849 goto out_no_minor_idr; 2850 } 2851 kref_get(&device->kref); 2852 2853 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2854 if (id < 0) { 2855 if (id == -ENOSPC) 2856 err = ERR_MINOR_OR_VOLUME_EXISTS; 2857 goto out_idr_remove_minor; 2858 } 2859 kref_get(&device->kref); 2860 2861 INIT_LIST_HEAD(&device->peer_devices); 2862 INIT_LIST_HEAD(&device->pending_bitmap_io); 2863 for_each_connection(connection, resource) { 2864 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2865 if (!peer_device) 2866 goto out_idr_remove_from_resource; 2867 peer_device->connection = connection; 2868 peer_device->device = device; 2869 2870 list_add(&peer_device->peer_devices, &device->peer_devices); 2871 kref_get(&device->kref); 2872 2873 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2874 if (id < 0) { 2875 if (id == -ENOSPC) 2876 err = ERR_INVALID_REQUEST; 2877 goto out_idr_remove_from_resource; 2878 } 2879 kref_get(&connection->kref); 2880 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2881 } 2882 2883 if (init_submitter(device)) { 2884 err = ERR_NOMEM; 2885 goto out_idr_remove_vol; 2886 } 2887 2888 add_disk(disk); 2889 2890 /* inherit the connection state */ 2891 device->state.conn = first_connection(resource)->cstate; 2892 if (device->state.conn == C_WF_REPORT_PARAMS) { 2893 for_each_peer_device(peer_device, device) 2894 drbd_connected(peer_device); 2895 } 2896 /* move to create_peer_device() */ 2897 for_each_peer_device(peer_device, device) 2898 drbd_debugfs_peer_device_add(peer_device); 2899 drbd_debugfs_device_add(device); 2900 return NO_ERROR; 2901 2902 out_idr_remove_vol: 2903 idr_remove(&connection->peer_devices, vnr); 2904 out_idr_remove_from_resource: 2905 for_each_connection(connection, resource) { 2906 peer_device = idr_remove(&connection->peer_devices, vnr); 2907 if (peer_device) 2908 kref_put(&connection->kref, drbd_destroy_connection); 2909 } 2910 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2911 list_del(&peer_device->peer_devices); 2912 kfree(peer_device); 2913 } 2914 idr_remove(&resource->devices, vnr); 2915 out_idr_remove_minor: 2916 idr_remove(&drbd_devices, minor); 2917 synchronize_rcu(); 2918 out_no_minor_idr: 2919 drbd_bm_cleanup(device); 2920 out_no_bitmap: 2921 __free_page(device->md_io.page); 2922 out_no_io_page: 2923 put_disk(disk); 2924 out_no_disk: 2925 blk_cleanup_queue(q); 2926 out_no_q: 2927 kref_put(&resource->kref, drbd_destroy_resource); 2928 kfree(device); 2929 return err; 2930 } 2931 2932 void drbd_delete_device(struct drbd_device *device) 2933 { 2934 struct drbd_resource *resource = device->resource; 2935 struct drbd_connection *connection; 2936 struct drbd_peer_device *peer_device; 2937 2938 /* move to free_peer_device() */ 2939 for_each_peer_device(peer_device, device) 2940 drbd_debugfs_peer_device_cleanup(peer_device); 2941 drbd_debugfs_device_cleanup(device); 2942 for_each_connection(connection, resource) { 2943 idr_remove(&connection->peer_devices, device->vnr); 2944 kref_put(&device->kref, drbd_destroy_device); 2945 } 2946 idr_remove(&resource->devices, device->vnr); 2947 kref_put(&device->kref, drbd_destroy_device); 2948 idr_remove(&drbd_devices, device_to_minor(device)); 2949 kref_put(&device->kref, drbd_destroy_device); 2950 del_gendisk(device->vdisk); 2951 synchronize_rcu(); 2952 kref_put(&device->kref, drbd_destroy_device); 2953 } 2954 2955 static int __init drbd_init(void) 2956 { 2957 int err; 2958 2959 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2960 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2961 #ifdef MODULE 2962 return -EINVAL; 2963 #else 2964 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2965 #endif 2966 } 2967 2968 err = register_blkdev(DRBD_MAJOR, "drbd"); 2969 if (err) { 2970 pr_err("unable to register block device major %d\n", 2971 DRBD_MAJOR); 2972 return err; 2973 } 2974 2975 /* 2976 * allocate all necessary structs 2977 */ 2978 init_waitqueue_head(&drbd_pp_wait); 2979 2980 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2981 idr_init(&drbd_devices); 2982 2983 mutex_init(&resources_mutex); 2984 INIT_LIST_HEAD(&drbd_resources); 2985 2986 err = drbd_genl_register(); 2987 if (err) { 2988 pr_err("unable to register generic netlink family\n"); 2989 goto fail; 2990 } 2991 2992 err = drbd_create_mempools(); 2993 if (err) 2994 goto fail; 2995 2996 err = -ENOMEM; 2997 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 2998 if (!drbd_proc) { 2999 pr_err("unable to register proc file\n"); 3000 goto fail; 3001 } 3002 3003 retry.wq = create_singlethread_workqueue("drbd-reissue"); 3004 if (!retry.wq) { 3005 pr_err("unable to create retry workqueue\n"); 3006 goto fail; 3007 } 3008 INIT_WORK(&retry.worker, do_retry); 3009 spin_lock_init(&retry.lock); 3010 INIT_LIST_HEAD(&retry.writes); 3011 3012 drbd_debugfs_init(); 3013 3014 pr_info("initialized. " 3015 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 3016 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 3017 pr_info("%s\n", drbd_buildtag()); 3018 pr_info("registered as block device major %d\n", DRBD_MAJOR); 3019 return 0; /* Success! */ 3020 3021 fail: 3022 drbd_cleanup(); 3023 if (err == -ENOMEM) 3024 pr_err("ran out of memory\n"); 3025 else 3026 pr_err("initialization failure\n"); 3027 return err; 3028 } 3029 3030 static void drbd_free_one_sock(struct drbd_socket *ds) 3031 { 3032 struct socket *s; 3033 mutex_lock(&ds->mutex); 3034 s = ds->socket; 3035 ds->socket = NULL; 3036 mutex_unlock(&ds->mutex); 3037 if (s) { 3038 /* so debugfs does not need to mutex_lock() */ 3039 synchronize_rcu(); 3040 kernel_sock_shutdown(s, SHUT_RDWR); 3041 sock_release(s); 3042 } 3043 } 3044 3045 void drbd_free_sock(struct drbd_connection *connection) 3046 { 3047 if (connection->data.socket) 3048 drbd_free_one_sock(&connection->data); 3049 if (connection->meta.socket) 3050 drbd_free_one_sock(&connection->meta); 3051 } 3052 3053 /* meta data management */ 3054 3055 void conn_md_sync(struct drbd_connection *connection) 3056 { 3057 struct drbd_peer_device *peer_device; 3058 int vnr; 3059 3060 rcu_read_lock(); 3061 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 3062 struct drbd_device *device = peer_device->device; 3063 3064 kref_get(&device->kref); 3065 rcu_read_unlock(); 3066 drbd_md_sync(device); 3067 kref_put(&device->kref, drbd_destroy_device); 3068 rcu_read_lock(); 3069 } 3070 rcu_read_unlock(); 3071 } 3072 3073 /* aligned 4kByte */ 3074 struct meta_data_on_disk { 3075 u64 la_size_sect; /* last agreed size. */ 3076 u64 uuid[UI_SIZE]; /* UUIDs. */ 3077 u64 device_uuid; 3078 u64 reserved_u64_1; 3079 u32 flags; /* MDF */ 3080 u32 magic; 3081 u32 md_size_sect; 3082 u32 al_offset; /* offset to this block */ 3083 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3084 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3085 u32 bm_offset; /* offset to the bitmap, from here */ 3086 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3087 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3088 3089 /* see al_tr_number_to_on_disk_sector() */ 3090 u32 al_stripes; 3091 u32 al_stripe_size_4k; 3092 3093 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3094 } __packed; 3095 3096 3097 3098 void drbd_md_write(struct drbd_device *device, void *b) 3099 { 3100 struct meta_data_on_disk *buffer = b; 3101 sector_t sector; 3102 int i; 3103 3104 memset(buffer, 0, sizeof(*buffer)); 3105 3106 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3107 for (i = UI_CURRENT; i < UI_SIZE; i++) 3108 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3109 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3110 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3111 3112 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3113 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3114 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3115 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3116 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3117 3118 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3119 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3120 3121 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3122 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3123 3124 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3125 sector = device->ldev->md.md_offset; 3126 3127 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3128 /* this was a try anyways ... */ 3129 drbd_err(device, "meta data update failed!\n"); 3130 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3131 } 3132 } 3133 3134 /** 3135 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3136 * @device: DRBD device. 3137 */ 3138 void drbd_md_sync(struct drbd_device *device) 3139 { 3140 struct meta_data_on_disk *buffer; 3141 3142 /* Don't accidentally change the DRBD meta data layout. */ 3143 BUILD_BUG_ON(UI_SIZE != 4); 3144 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3145 3146 del_timer(&device->md_sync_timer); 3147 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3148 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3149 return; 3150 3151 /* We use here D_FAILED and not D_ATTACHING because we try to write 3152 * metadata even if we detach due to a disk failure! */ 3153 if (!get_ldev_if_state(device, D_FAILED)) 3154 return; 3155 3156 buffer = drbd_md_get_buffer(device, __func__); 3157 if (!buffer) 3158 goto out; 3159 3160 drbd_md_write(device, buffer); 3161 3162 /* Update device->ldev->md.la_size_sect, 3163 * since we updated it on metadata. */ 3164 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3165 3166 drbd_md_put_buffer(device); 3167 out: 3168 put_ldev(device); 3169 } 3170 3171 static int check_activity_log_stripe_size(struct drbd_device *device, 3172 struct meta_data_on_disk *on_disk, 3173 struct drbd_md *in_core) 3174 { 3175 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3176 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3177 u64 al_size_4k; 3178 3179 /* both not set: default to old fixed size activity log */ 3180 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3181 al_stripes = 1; 3182 al_stripe_size_4k = MD_32kB_SECT/8; 3183 } 3184 3185 /* some paranoia plausibility checks */ 3186 3187 /* we need both values to be set */ 3188 if (al_stripes == 0 || al_stripe_size_4k == 0) 3189 goto err; 3190 3191 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3192 3193 /* Upper limit of activity log area, to avoid potential overflow 3194 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3195 * than 72 * 4k blocks total only increases the amount of history, 3196 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3197 if (al_size_4k > (16 * 1024 * 1024/4)) 3198 goto err; 3199 3200 /* Lower limit: we need at least 8 transaction slots (32kB) 3201 * to not break existing setups */ 3202 if (al_size_4k < MD_32kB_SECT/8) 3203 goto err; 3204 3205 in_core->al_stripe_size_4k = al_stripe_size_4k; 3206 in_core->al_stripes = al_stripes; 3207 in_core->al_size_4k = al_size_4k; 3208 3209 return 0; 3210 err: 3211 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3212 al_stripes, al_stripe_size_4k); 3213 return -EINVAL; 3214 } 3215 3216 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3217 { 3218 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3219 struct drbd_md *in_core = &bdev->md; 3220 s32 on_disk_al_sect; 3221 s32 on_disk_bm_sect; 3222 3223 /* The on-disk size of the activity log, calculated from offsets, and 3224 * the size of the activity log calculated from the stripe settings, 3225 * should match. 3226 * Though we could relax this a bit: it is ok, if the striped activity log 3227 * fits in the available on-disk activity log size. 3228 * Right now, that would break how resize is implemented. 3229 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3230 * of possible unused padding space in the on disk layout. */ 3231 if (in_core->al_offset < 0) { 3232 if (in_core->bm_offset > in_core->al_offset) 3233 goto err; 3234 on_disk_al_sect = -in_core->al_offset; 3235 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3236 } else { 3237 if (in_core->al_offset != MD_4kB_SECT) 3238 goto err; 3239 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3240 goto err; 3241 3242 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3243 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3244 } 3245 3246 /* old fixed size meta data is exactly that: fixed. */ 3247 if (in_core->meta_dev_idx >= 0) { 3248 if (in_core->md_size_sect != MD_128MB_SECT 3249 || in_core->al_offset != MD_4kB_SECT 3250 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3251 || in_core->al_stripes != 1 3252 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3253 goto err; 3254 } 3255 3256 if (capacity < in_core->md_size_sect) 3257 goto err; 3258 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3259 goto err; 3260 3261 /* should be aligned, and at least 32k */ 3262 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3263 goto err; 3264 3265 /* should fit (for now: exactly) into the available on-disk space; 3266 * overflow prevention is in check_activity_log_stripe_size() above. */ 3267 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3268 goto err; 3269 3270 /* again, should be aligned */ 3271 if (in_core->bm_offset & 7) 3272 goto err; 3273 3274 /* FIXME check for device grow with flex external meta data? */ 3275 3276 /* can the available bitmap space cover the last agreed device size? */ 3277 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3278 goto err; 3279 3280 return 0; 3281 3282 err: 3283 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3284 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3285 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3286 in_core->meta_dev_idx, 3287 in_core->al_stripes, in_core->al_stripe_size_4k, 3288 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3289 (unsigned long long)in_core->la_size_sect, 3290 (unsigned long long)capacity); 3291 3292 return -EINVAL; 3293 } 3294 3295 3296 /** 3297 * drbd_md_read() - Reads in the meta data super block 3298 * @device: DRBD device. 3299 * @bdev: Device from which the meta data should be read in. 3300 * 3301 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3302 * something goes wrong. 3303 * 3304 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3305 * even before @bdev is assigned to @device->ldev. 3306 */ 3307 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3308 { 3309 struct meta_data_on_disk *buffer; 3310 u32 magic, flags; 3311 int i, rv = NO_ERROR; 3312 3313 if (device->state.disk != D_DISKLESS) 3314 return ERR_DISK_CONFIGURED; 3315 3316 buffer = drbd_md_get_buffer(device, __func__); 3317 if (!buffer) 3318 return ERR_NOMEM; 3319 3320 /* First, figure out where our meta data superblock is located, 3321 * and read it. */ 3322 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3323 bdev->md.md_offset = drbd_md_ss(bdev); 3324 /* Even for (flexible or indexed) external meta data, 3325 * initially restrict us to the 4k superblock for now. 3326 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3327 bdev->md.md_size_sect = 8; 3328 3329 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3330 REQ_OP_READ)) { 3331 /* NOTE: can't do normal error processing here as this is 3332 called BEFORE disk is attached */ 3333 drbd_err(device, "Error while reading metadata.\n"); 3334 rv = ERR_IO_MD_DISK; 3335 goto err; 3336 } 3337 3338 magic = be32_to_cpu(buffer->magic); 3339 flags = be32_to_cpu(buffer->flags); 3340 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3341 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3342 /* btw: that's Activity Log clean, not "all" clean. */ 3343 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3344 rv = ERR_MD_UNCLEAN; 3345 goto err; 3346 } 3347 3348 rv = ERR_MD_INVALID; 3349 if (magic != DRBD_MD_MAGIC_08) { 3350 if (magic == DRBD_MD_MAGIC_07) 3351 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3352 else 3353 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3354 goto err; 3355 } 3356 3357 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3358 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3359 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3360 goto err; 3361 } 3362 3363 3364 /* convert to in_core endian */ 3365 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3366 for (i = UI_CURRENT; i < UI_SIZE; i++) 3367 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3368 bdev->md.flags = be32_to_cpu(buffer->flags); 3369 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3370 3371 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3372 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3373 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3374 3375 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3376 goto err; 3377 if (check_offsets_and_sizes(device, bdev)) 3378 goto err; 3379 3380 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3381 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3382 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3383 goto err; 3384 } 3385 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3386 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3387 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3388 goto err; 3389 } 3390 3391 rv = NO_ERROR; 3392 3393 spin_lock_irq(&device->resource->req_lock); 3394 if (device->state.conn < C_CONNECTED) { 3395 unsigned int peer; 3396 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3397 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3398 device->peer_max_bio_size = peer; 3399 } 3400 spin_unlock_irq(&device->resource->req_lock); 3401 3402 err: 3403 drbd_md_put_buffer(device); 3404 3405 return rv; 3406 } 3407 3408 /** 3409 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3410 * @device: DRBD device. 3411 * 3412 * Call this function if you change anything that should be written to 3413 * the meta-data super block. This function sets MD_DIRTY, and starts a 3414 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3415 */ 3416 void drbd_md_mark_dirty(struct drbd_device *device) 3417 { 3418 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3419 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3420 } 3421 3422 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3423 { 3424 int i; 3425 3426 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3427 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3428 } 3429 3430 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3431 { 3432 if (idx == UI_CURRENT) { 3433 if (device->state.role == R_PRIMARY) 3434 val |= 1; 3435 else 3436 val &= ~((u64)1); 3437 3438 drbd_set_ed_uuid(device, val); 3439 } 3440 3441 device->ldev->md.uuid[idx] = val; 3442 drbd_md_mark_dirty(device); 3443 } 3444 3445 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3446 { 3447 unsigned long flags; 3448 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3449 __drbd_uuid_set(device, idx, val); 3450 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3451 } 3452 3453 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3454 { 3455 unsigned long flags; 3456 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3457 if (device->ldev->md.uuid[idx]) { 3458 drbd_uuid_move_history(device); 3459 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3460 } 3461 __drbd_uuid_set(device, idx, val); 3462 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3463 } 3464 3465 /** 3466 * drbd_uuid_new_current() - Creates a new current UUID 3467 * @device: DRBD device. 3468 * 3469 * Creates a new current UUID, and rotates the old current UUID into 3470 * the bitmap slot. Causes an incremental resync upon next connect. 3471 */ 3472 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3473 { 3474 u64 val; 3475 unsigned long long bm_uuid; 3476 3477 get_random_bytes(&val, sizeof(u64)); 3478 3479 spin_lock_irq(&device->ldev->md.uuid_lock); 3480 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3481 3482 if (bm_uuid) 3483 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3484 3485 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3486 __drbd_uuid_set(device, UI_CURRENT, val); 3487 spin_unlock_irq(&device->ldev->md.uuid_lock); 3488 3489 drbd_print_uuids(device, "new current UUID"); 3490 /* get it to stable storage _now_ */ 3491 drbd_md_sync(device); 3492 } 3493 3494 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3495 { 3496 unsigned long flags; 3497 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3498 return; 3499 3500 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3501 if (val == 0) { 3502 drbd_uuid_move_history(device); 3503 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3504 device->ldev->md.uuid[UI_BITMAP] = 0; 3505 } else { 3506 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3507 if (bm_uuid) 3508 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3509 3510 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3511 } 3512 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3513 3514 drbd_md_mark_dirty(device); 3515 } 3516 3517 /** 3518 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3519 * @device: DRBD device. 3520 * 3521 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3522 */ 3523 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3524 { 3525 int rv = -EIO; 3526 3527 drbd_md_set_flag(device, MDF_FULL_SYNC); 3528 drbd_md_sync(device); 3529 drbd_bm_set_all(device); 3530 3531 rv = drbd_bm_write(device); 3532 3533 if (!rv) { 3534 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3535 drbd_md_sync(device); 3536 } 3537 3538 return rv; 3539 } 3540 3541 /** 3542 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3543 * @device: DRBD device. 3544 * 3545 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3546 */ 3547 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3548 { 3549 drbd_resume_al(device); 3550 drbd_bm_clear_all(device); 3551 return drbd_bm_write(device); 3552 } 3553 3554 static int w_bitmap_io(struct drbd_work *w, int unused) 3555 { 3556 struct drbd_device *device = 3557 container_of(w, struct drbd_device, bm_io_work.w); 3558 struct bm_io_work *work = &device->bm_io_work; 3559 int rv = -EIO; 3560 3561 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3562 int cnt = atomic_read(&device->ap_bio_cnt); 3563 if (cnt) 3564 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3565 cnt, work->why); 3566 } 3567 3568 if (get_ldev(device)) { 3569 drbd_bm_lock(device, work->why, work->flags); 3570 rv = work->io_fn(device); 3571 drbd_bm_unlock(device); 3572 put_ldev(device); 3573 } 3574 3575 clear_bit_unlock(BITMAP_IO, &device->flags); 3576 wake_up(&device->misc_wait); 3577 3578 if (work->done) 3579 work->done(device, rv); 3580 3581 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3582 work->why = NULL; 3583 work->flags = 0; 3584 3585 return 0; 3586 } 3587 3588 /** 3589 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3590 * @device: DRBD device. 3591 * @io_fn: IO callback to be called when bitmap IO is possible 3592 * @done: callback to be called after the bitmap IO was performed 3593 * @why: Descriptive text of the reason for doing the IO 3594 * 3595 * While IO on the bitmap happens we freeze application IO thus we ensure 3596 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3597 * called from worker context. It MUST NOT be used while a previous such 3598 * work is still pending! 3599 * 3600 * Its worker function encloses the call of io_fn() by get_ldev() and 3601 * put_ldev(). 3602 */ 3603 void drbd_queue_bitmap_io(struct drbd_device *device, 3604 int (*io_fn)(struct drbd_device *), 3605 void (*done)(struct drbd_device *, int), 3606 char *why, enum bm_flag flags) 3607 { 3608 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3609 3610 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3611 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3612 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3613 if (device->bm_io_work.why) 3614 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3615 why, device->bm_io_work.why); 3616 3617 device->bm_io_work.io_fn = io_fn; 3618 device->bm_io_work.done = done; 3619 device->bm_io_work.why = why; 3620 device->bm_io_work.flags = flags; 3621 3622 spin_lock_irq(&device->resource->req_lock); 3623 set_bit(BITMAP_IO, &device->flags); 3624 /* don't wait for pending application IO if the caller indicates that 3625 * application IO does not conflict anyways. */ 3626 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3627 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3628 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3629 &device->bm_io_work.w); 3630 } 3631 spin_unlock_irq(&device->resource->req_lock); 3632 } 3633 3634 /** 3635 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3636 * @device: DRBD device. 3637 * @io_fn: IO callback to be called when bitmap IO is possible 3638 * @why: Descriptive text of the reason for doing the IO 3639 * 3640 * freezes application IO while that the actual IO operations runs. This 3641 * functions MAY NOT be called from worker context. 3642 */ 3643 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3644 char *why, enum bm_flag flags) 3645 { 3646 /* Only suspend io, if some operation is supposed to be locked out */ 3647 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3648 int rv; 3649 3650 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3651 3652 if (do_suspend_io) 3653 drbd_suspend_io(device); 3654 3655 drbd_bm_lock(device, why, flags); 3656 rv = io_fn(device); 3657 drbd_bm_unlock(device); 3658 3659 if (do_suspend_io) 3660 drbd_resume_io(device); 3661 3662 return rv; 3663 } 3664 3665 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3666 { 3667 if ((device->ldev->md.flags & flag) != flag) { 3668 drbd_md_mark_dirty(device); 3669 device->ldev->md.flags |= flag; 3670 } 3671 } 3672 3673 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3674 { 3675 if ((device->ldev->md.flags & flag) != 0) { 3676 drbd_md_mark_dirty(device); 3677 device->ldev->md.flags &= ~flag; 3678 } 3679 } 3680 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3681 { 3682 return (bdev->md.flags & flag) != 0; 3683 } 3684 3685 static void md_sync_timer_fn(struct timer_list *t) 3686 { 3687 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3688 drbd_device_post_work(device, MD_SYNC); 3689 } 3690 3691 const char *cmdname(enum drbd_packet cmd) 3692 { 3693 /* THINK may need to become several global tables 3694 * when we want to support more than 3695 * one PRO_VERSION */ 3696 static const char *cmdnames[] = { 3697 [P_DATA] = "Data", 3698 [P_WSAME] = "WriteSame", 3699 [P_TRIM] = "Trim", 3700 [P_DATA_REPLY] = "DataReply", 3701 [P_RS_DATA_REPLY] = "RSDataReply", 3702 [P_BARRIER] = "Barrier", 3703 [P_BITMAP] = "ReportBitMap", 3704 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3705 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3706 [P_UNPLUG_REMOTE] = "UnplugRemote", 3707 [P_DATA_REQUEST] = "DataRequest", 3708 [P_RS_DATA_REQUEST] = "RSDataRequest", 3709 [P_SYNC_PARAM] = "SyncParam", 3710 [P_SYNC_PARAM89] = "SyncParam89", 3711 [P_PROTOCOL] = "ReportProtocol", 3712 [P_UUIDS] = "ReportUUIDs", 3713 [P_SIZES] = "ReportSizes", 3714 [P_STATE] = "ReportState", 3715 [P_SYNC_UUID] = "ReportSyncUUID", 3716 [P_AUTH_CHALLENGE] = "AuthChallenge", 3717 [P_AUTH_RESPONSE] = "AuthResponse", 3718 [P_PING] = "Ping", 3719 [P_PING_ACK] = "PingAck", 3720 [P_RECV_ACK] = "RecvAck", 3721 [P_WRITE_ACK] = "WriteAck", 3722 [P_RS_WRITE_ACK] = "RSWriteAck", 3723 [P_SUPERSEDED] = "Superseded", 3724 [P_NEG_ACK] = "NegAck", 3725 [P_NEG_DREPLY] = "NegDReply", 3726 [P_NEG_RS_DREPLY] = "NegRSDReply", 3727 [P_BARRIER_ACK] = "BarrierAck", 3728 [P_STATE_CHG_REQ] = "StateChgRequest", 3729 [P_STATE_CHG_REPLY] = "StateChgReply", 3730 [P_OV_REQUEST] = "OVRequest", 3731 [P_OV_REPLY] = "OVReply", 3732 [P_OV_RESULT] = "OVResult", 3733 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3734 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3735 [P_COMPRESSED_BITMAP] = "CBitmap", 3736 [P_DELAY_PROBE] = "DelayProbe", 3737 [P_OUT_OF_SYNC] = "OutOfSync", 3738 [P_RETRY_WRITE] = "RetryWrite", 3739 [P_RS_CANCEL] = "RSCancel", 3740 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3741 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3742 [P_RETRY_WRITE] = "retry_write", 3743 [P_PROTOCOL_UPDATE] = "protocol_update", 3744 [P_RS_THIN_REQ] = "rs_thin_req", 3745 [P_RS_DEALLOCATED] = "rs_deallocated", 3746 3747 /* enum drbd_packet, but not commands - obsoleted flags: 3748 * P_MAY_IGNORE 3749 * P_MAX_OPT_CMD 3750 */ 3751 }; 3752 3753 /* too big for the array: 0xfffX */ 3754 if (cmd == P_INITIAL_META) 3755 return "InitialMeta"; 3756 if (cmd == P_INITIAL_DATA) 3757 return "InitialData"; 3758 if (cmd == P_CONNECTION_FEATURES) 3759 return "ConnectionFeatures"; 3760 if (cmd >= ARRAY_SIZE(cmdnames)) 3761 return "Unknown"; 3762 return cmdnames[cmd]; 3763 } 3764 3765 /** 3766 * drbd_wait_misc - wait for a request to make progress 3767 * @device: device associated with the request 3768 * @i: the struct drbd_interval embedded in struct drbd_request or 3769 * struct drbd_peer_request 3770 */ 3771 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3772 { 3773 struct net_conf *nc; 3774 DEFINE_WAIT(wait); 3775 long timeout; 3776 3777 rcu_read_lock(); 3778 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3779 if (!nc) { 3780 rcu_read_unlock(); 3781 return -ETIMEDOUT; 3782 } 3783 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3784 rcu_read_unlock(); 3785 3786 /* Indicate to wake up device->misc_wait on progress. */ 3787 i->waiting = true; 3788 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3789 spin_unlock_irq(&device->resource->req_lock); 3790 timeout = schedule_timeout(timeout); 3791 finish_wait(&device->misc_wait, &wait); 3792 spin_lock_irq(&device->resource->req_lock); 3793 if (!timeout || device->state.conn < C_CONNECTED) 3794 return -ETIMEDOUT; 3795 if (signal_pending(current)) 3796 return -ERESTARTSYS; 3797 return 0; 3798 } 3799 3800 void lock_all_resources(void) 3801 { 3802 struct drbd_resource *resource; 3803 int __maybe_unused i = 0; 3804 3805 mutex_lock(&resources_mutex); 3806 local_irq_disable(); 3807 for_each_resource(resource, &drbd_resources) 3808 spin_lock_nested(&resource->req_lock, i++); 3809 } 3810 3811 void unlock_all_resources(void) 3812 { 3813 struct drbd_resource *resource; 3814 3815 for_each_resource(resource, &drbd_resources) 3816 spin_unlock(&resource->req_lock); 3817 local_irq_enable(); 3818 mutex_unlock(&resources_mutex); 3819 } 3820 3821 #ifdef CONFIG_DRBD_FAULT_INJECTION 3822 /* Fault insertion support including random number generator shamelessly 3823 * stolen from kernel/rcutorture.c */ 3824 struct fault_random_state { 3825 unsigned long state; 3826 unsigned long count; 3827 }; 3828 3829 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3830 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3831 #define FAULT_RANDOM_REFRESH 10000 3832 3833 /* 3834 * Crude but fast random-number generator. Uses a linear congruential 3835 * generator, with occasional help from get_random_bytes(). 3836 */ 3837 static unsigned long 3838 _drbd_fault_random(struct fault_random_state *rsp) 3839 { 3840 long refresh; 3841 3842 if (!rsp->count--) { 3843 get_random_bytes(&refresh, sizeof(refresh)); 3844 rsp->state += refresh; 3845 rsp->count = FAULT_RANDOM_REFRESH; 3846 } 3847 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3848 return swahw32(rsp->state); 3849 } 3850 3851 static char * 3852 _drbd_fault_str(unsigned int type) { 3853 static char *_faults[] = { 3854 [DRBD_FAULT_MD_WR] = "Meta-data write", 3855 [DRBD_FAULT_MD_RD] = "Meta-data read", 3856 [DRBD_FAULT_RS_WR] = "Resync write", 3857 [DRBD_FAULT_RS_RD] = "Resync read", 3858 [DRBD_FAULT_DT_WR] = "Data write", 3859 [DRBD_FAULT_DT_RD] = "Data read", 3860 [DRBD_FAULT_DT_RA] = "Data read ahead", 3861 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3862 [DRBD_FAULT_AL_EE] = "EE allocation", 3863 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3864 }; 3865 3866 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3867 } 3868 3869 unsigned int 3870 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3871 { 3872 static struct fault_random_state rrs = {0, 0}; 3873 3874 unsigned int ret = ( 3875 (drbd_fault_devs == 0 || 3876 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3877 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3878 3879 if (ret) { 3880 drbd_fault_count++; 3881 3882 if (__ratelimit(&drbd_ratelimit_state)) 3883 drbd_warn(device, "***Simulating %s failure\n", 3884 _drbd_fault_str(type)); 3885 } 3886 3887 return ret; 3888 } 3889 #endif 3890 3891 const char *drbd_buildtag(void) 3892 { 3893 /* DRBD built from external sources has here a reference to the 3894 git hash of the source code. */ 3895 3896 static char buildtag[38] = "\0uilt-in"; 3897 3898 if (buildtag[0] == 0) { 3899 #ifdef MODULE 3900 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3901 #else 3902 buildtag[0] = 'b'; 3903 #endif 3904 } 3905 3906 return buildtag; 3907 } 3908 3909 module_init(drbd_init) 3910 module_exit(drbd_cleanup) 3911 3912 EXPORT_SYMBOL(drbd_conn_str); 3913 EXPORT_SYMBOL(drbd_role_str); 3914 EXPORT_SYMBOL(drbd_disk_str); 3915 EXPORT_SYMBOL(drbd_set_st_err_str); 3916