xref: /linux/drivers/block/drbd/drbd_main.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13 
14 
15  */
16 
17 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44 
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51 
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57 
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 	      "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66 
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70 
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85 
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92 
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103 
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110 
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;	/* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120 
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125 	 member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 DEFINE_SPINLOCK(drbd_pp_lock);
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131 
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133 
134 static const struct block_device_operations drbd_ops = {
135 	.owner		= THIS_MODULE,
136 	.submit_bio	= drbd_submit_bio,
137 	.open		= drbd_open,
138 	.release	= drbd_release,
139 };
140 
141 #ifdef __CHECKER__
142 /* When checking with sparse, and this is an inline function, sparse will
143    give tons of false positives. When this is a real functions sparse works.
144  */
145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
146 {
147 	int io_allowed;
148 
149 	atomic_inc(&device->local_cnt);
150 	io_allowed = (device->state.disk >= mins);
151 	if (!io_allowed) {
152 		if (atomic_dec_and_test(&device->local_cnt))
153 			wake_up(&device->misc_wait);
154 	}
155 	return io_allowed;
156 }
157 
158 #endif
159 
160 /**
161  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
162  * @connection:	DRBD connection.
163  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
164  * @set_size:	Expected number of requests before that barrier.
165  *
166  * In case the passed barrier_nr or set_size does not match the oldest
167  * epoch of not yet barrier-acked requests, this function will cause a
168  * termination of the connection.
169  */
170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
171 		unsigned int set_size)
172 {
173 	struct drbd_request *r;
174 	struct drbd_request *req = NULL;
175 	int expect_epoch = 0;
176 	int expect_size = 0;
177 
178 	spin_lock_irq(&connection->resource->req_lock);
179 
180 	/* find oldest not yet barrier-acked write request,
181 	 * count writes in its epoch. */
182 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
183 		const unsigned s = r->rq_state;
184 		if (!req) {
185 			if (!(s & RQ_WRITE))
186 				continue;
187 			if (!(s & RQ_NET_MASK))
188 				continue;
189 			if (s & RQ_NET_DONE)
190 				continue;
191 			req = r;
192 			expect_epoch = req->epoch;
193 			expect_size ++;
194 		} else {
195 			if (r->epoch != expect_epoch)
196 				break;
197 			if (!(s & RQ_WRITE))
198 				continue;
199 			/* if (s & RQ_DONE): not expected */
200 			/* if (!(s & RQ_NET_MASK)): not expected */
201 			expect_size++;
202 		}
203 	}
204 
205 	/* first some paranoia code */
206 	if (req == NULL) {
207 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
208 			 barrier_nr);
209 		goto bail;
210 	}
211 	if (expect_epoch != barrier_nr) {
212 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
213 			 barrier_nr, expect_epoch);
214 		goto bail;
215 	}
216 
217 	if (expect_size != set_size) {
218 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
219 			 barrier_nr, set_size, expect_size);
220 		goto bail;
221 	}
222 
223 	/* Clean up list of requests processed during current epoch. */
224 	/* this extra list walk restart is paranoia,
225 	 * to catch requests being barrier-acked "unexpectedly".
226 	 * It usually should find the same req again, or some READ preceding it. */
227 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
228 		if (req->epoch == expect_epoch)
229 			break;
230 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
231 		if (req->epoch != expect_epoch)
232 			break;
233 		_req_mod(req, BARRIER_ACKED);
234 	}
235 	spin_unlock_irq(&connection->resource->req_lock);
236 
237 	return;
238 
239 bail:
240 	spin_unlock_irq(&connection->resource->req_lock);
241 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
242 }
243 
244 
245 /**
246  * _tl_restart() - Walks the transfer log, and applies an action to all requests
247  * @connection:	DRBD connection to operate on.
248  * @what:       The action/event to perform with all request objects
249  *
250  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
251  * RESTART_FROZEN_DISK_IO.
252  */
253 /* must hold resource->req_lock */
254 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
255 {
256 	struct drbd_request *req, *r;
257 
258 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
259 		_req_mod(req, what);
260 }
261 
262 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
263 {
264 	spin_lock_irq(&connection->resource->req_lock);
265 	_tl_restart(connection, what);
266 	spin_unlock_irq(&connection->resource->req_lock);
267 }
268 
269 /**
270  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
271  * @connection:	DRBD connection.
272  *
273  * This is called after the connection to the peer was lost. The storage covered
274  * by the requests on the transfer gets marked as our of sync. Called from the
275  * receiver thread and the worker thread.
276  */
277 void tl_clear(struct drbd_connection *connection)
278 {
279 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
280 }
281 
282 /**
283  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
284  * @device:	DRBD device.
285  */
286 void tl_abort_disk_io(struct drbd_device *device)
287 {
288 	struct drbd_connection *connection = first_peer_device(device)->connection;
289 	struct drbd_request *req, *r;
290 
291 	spin_lock_irq(&connection->resource->req_lock);
292 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
293 		if (!(req->rq_state & RQ_LOCAL_PENDING))
294 			continue;
295 		if (req->device != device)
296 			continue;
297 		_req_mod(req, ABORT_DISK_IO);
298 	}
299 	spin_unlock_irq(&connection->resource->req_lock);
300 }
301 
302 static int drbd_thread_setup(void *arg)
303 {
304 	struct drbd_thread *thi = (struct drbd_thread *) arg;
305 	struct drbd_resource *resource = thi->resource;
306 	unsigned long flags;
307 	int retval;
308 
309 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
310 		 thi->name[0],
311 		 resource->name);
312 
313 	allow_kernel_signal(DRBD_SIGKILL);
314 	allow_kernel_signal(SIGXCPU);
315 restart:
316 	retval = thi->function(thi);
317 
318 	spin_lock_irqsave(&thi->t_lock, flags);
319 
320 	/* if the receiver has been "EXITING", the last thing it did
321 	 * was set the conn state to "StandAlone",
322 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
323 	 * and receiver thread will be "started".
324 	 * drbd_thread_start needs to set "RESTARTING" in that case.
325 	 * t_state check and assignment needs to be within the same spinlock,
326 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
327 	 * or thread_start see NONE, and can proceed as normal.
328 	 */
329 
330 	if (thi->t_state == RESTARTING) {
331 		drbd_info(resource, "Restarting %s thread\n", thi->name);
332 		thi->t_state = RUNNING;
333 		spin_unlock_irqrestore(&thi->t_lock, flags);
334 		goto restart;
335 	}
336 
337 	thi->task = NULL;
338 	thi->t_state = NONE;
339 	smp_mb();
340 	complete_all(&thi->stop);
341 	spin_unlock_irqrestore(&thi->t_lock, flags);
342 
343 	drbd_info(resource, "Terminating %s\n", current->comm);
344 
345 	/* Release mod reference taken when thread was started */
346 
347 	if (thi->connection)
348 		kref_put(&thi->connection->kref, drbd_destroy_connection);
349 	kref_put(&resource->kref, drbd_destroy_resource);
350 	module_put(THIS_MODULE);
351 	return retval;
352 }
353 
354 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
355 			     int (*func) (struct drbd_thread *), const char *name)
356 {
357 	spin_lock_init(&thi->t_lock);
358 	thi->task    = NULL;
359 	thi->t_state = NONE;
360 	thi->function = func;
361 	thi->resource = resource;
362 	thi->connection = NULL;
363 	thi->name = name;
364 }
365 
366 int drbd_thread_start(struct drbd_thread *thi)
367 {
368 	struct drbd_resource *resource = thi->resource;
369 	struct task_struct *nt;
370 	unsigned long flags;
371 
372 	/* is used from state engine doing drbd_thread_stop_nowait,
373 	 * while holding the req lock irqsave */
374 	spin_lock_irqsave(&thi->t_lock, flags);
375 
376 	switch (thi->t_state) {
377 	case NONE:
378 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
379 			 thi->name, current->comm, current->pid);
380 
381 		/* Get ref on module for thread - this is released when thread exits */
382 		if (!try_module_get(THIS_MODULE)) {
383 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
384 			spin_unlock_irqrestore(&thi->t_lock, flags);
385 			return false;
386 		}
387 
388 		kref_get(&resource->kref);
389 		if (thi->connection)
390 			kref_get(&thi->connection->kref);
391 
392 		init_completion(&thi->stop);
393 		thi->reset_cpu_mask = 1;
394 		thi->t_state = RUNNING;
395 		spin_unlock_irqrestore(&thi->t_lock, flags);
396 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
397 
398 		nt = kthread_create(drbd_thread_setup, (void *) thi,
399 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
400 
401 		if (IS_ERR(nt)) {
402 			drbd_err(resource, "Couldn't start thread\n");
403 
404 			if (thi->connection)
405 				kref_put(&thi->connection->kref, drbd_destroy_connection);
406 			kref_put(&resource->kref, drbd_destroy_resource);
407 			module_put(THIS_MODULE);
408 			return false;
409 		}
410 		spin_lock_irqsave(&thi->t_lock, flags);
411 		thi->task = nt;
412 		thi->t_state = RUNNING;
413 		spin_unlock_irqrestore(&thi->t_lock, flags);
414 		wake_up_process(nt);
415 		break;
416 	case EXITING:
417 		thi->t_state = RESTARTING;
418 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
419 				thi->name, current->comm, current->pid);
420 		fallthrough;
421 	case RUNNING:
422 	case RESTARTING:
423 	default:
424 		spin_unlock_irqrestore(&thi->t_lock, flags);
425 		break;
426 	}
427 
428 	return true;
429 }
430 
431 
432 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
433 {
434 	unsigned long flags;
435 
436 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
437 
438 	/* may be called from state engine, holding the req lock irqsave */
439 	spin_lock_irqsave(&thi->t_lock, flags);
440 
441 	if (thi->t_state == NONE) {
442 		spin_unlock_irqrestore(&thi->t_lock, flags);
443 		if (restart)
444 			drbd_thread_start(thi);
445 		return;
446 	}
447 
448 	if (thi->t_state != ns) {
449 		if (thi->task == NULL) {
450 			spin_unlock_irqrestore(&thi->t_lock, flags);
451 			return;
452 		}
453 
454 		thi->t_state = ns;
455 		smp_mb();
456 		init_completion(&thi->stop);
457 		if (thi->task != current)
458 			send_sig(DRBD_SIGKILL, thi->task, 1);
459 	}
460 
461 	spin_unlock_irqrestore(&thi->t_lock, flags);
462 
463 	if (wait)
464 		wait_for_completion(&thi->stop);
465 }
466 
467 int conn_lowest_minor(struct drbd_connection *connection)
468 {
469 	struct drbd_peer_device *peer_device;
470 	int vnr = 0, minor = -1;
471 
472 	rcu_read_lock();
473 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
474 	if (peer_device)
475 		minor = device_to_minor(peer_device->device);
476 	rcu_read_unlock();
477 
478 	return minor;
479 }
480 
481 #ifdef CONFIG_SMP
482 /*
483  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
484  *
485  * Forces all threads of a resource onto the same CPU. This is beneficial for
486  * DRBD's performance. May be overwritten by user's configuration.
487  */
488 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
489 {
490 	unsigned int *resources_per_cpu, min_index = ~0;
491 
492 	resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
493 				    GFP_KERNEL);
494 	if (resources_per_cpu) {
495 		struct drbd_resource *resource;
496 		unsigned int cpu, min = ~0;
497 
498 		rcu_read_lock();
499 		for_each_resource_rcu(resource, &drbd_resources) {
500 			for_each_cpu(cpu, resource->cpu_mask)
501 				resources_per_cpu[cpu]++;
502 		}
503 		rcu_read_unlock();
504 		for_each_online_cpu(cpu) {
505 			if (resources_per_cpu[cpu] < min) {
506 				min = resources_per_cpu[cpu];
507 				min_index = cpu;
508 			}
509 		}
510 		kfree(resources_per_cpu);
511 	}
512 	if (min_index == ~0) {
513 		cpumask_setall(*cpu_mask);
514 		return;
515 	}
516 	cpumask_set_cpu(min_index, *cpu_mask);
517 }
518 
519 /**
520  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
521  * @thi:	drbd_thread object
522  *
523  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
524  * prematurely.
525  */
526 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
527 {
528 	struct drbd_resource *resource = thi->resource;
529 	struct task_struct *p = current;
530 
531 	if (!thi->reset_cpu_mask)
532 		return;
533 	thi->reset_cpu_mask = 0;
534 	set_cpus_allowed_ptr(p, resource->cpu_mask);
535 }
536 #else
537 #define drbd_calc_cpu_mask(A) ({})
538 #endif
539 
540 /*
541  * drbd_header_size  -  size of a packet header
542  *
543  * The header size is a multiple of 8, so any payload following the header is
544  * word aligned on 64-bit architectures.  (The bitmap send and receive code
545  * relies on this.)
546  */
547 unsigned int drbd_header_size(struct drbd_connection *connection)
548 {
549 	if (connection->agreed_pro_version >= 100) {
550 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
551 		return sizeof(struct p_header100);
552 	} else {
553 		BUILD_BUG_ON(sizeof(struct p_header80) !=
554 			     sizeof(struct p_header95));
555 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
556 		return sizeof(struct p_header80);
557 	}
558 }
559 
560 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
561 {
562 	h->magic   = cpu_to_be32(DRBD_MAGIC);
563 	h->command = cpu_to_be16(cmd);
564 	h->length  = cpu_to_be16(size);
565 	return sizeof(struct p_header80);
566 }
567 
568 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
569 {
570 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
571 	h->command = cpu_to_be16(cmd);
572 	h->length = cpu_to_be32(size);
573 	return sizeof(struct p_header95);
574 }
575 
576 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
577 				      int size, int vnr)
578 {
579 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
580 	h->volume = cpu_to_be16(vnr);
581 	h->command = cpu_to_be16(cmd);
582 	h->length = cpu_to_be32(size);
583 	h->pad = 0;
584 	return sizeof(struct p_header100);
585 }
586 
587 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
588 				   void *buffer, enum drbd_packet cmd, int size)
589 {
590 	if (connection->agreed_pro_version >= 100)
591 		return prepare_header100(buffer, cmd, size, vnr);
592 	else if (connection->agreed_pro_version >= 95 &&
593 		 size > DRBD_MAX_SIZE_H80_PACKET)
594 		return prepare_header95(buffer, cmd, size);
595 	else
596 		return prepare_header80(buffer, cmd, size);
597 }
598 
599 static void *__conn_prepare_command(struct drbd_connection *connection,
600 				    struct drbd_socket *sock)
601 {
602 	if (!sock->socket)
603 		return NULL;
604 	return sock->sbuf + drbd_header_size(connection);
605 }
606 
607 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
608 {
609 	void *p;
610 
611 	mutex_lock(&sock->mutex);
612 	p = __conn_prepare_command(connection, sock);
613 	if (!p)
614 		mutex_unlock(&sock->mutex);
615 
616 	return p;
617 }
618 
619 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
620 {
621 	return conn_prepare_command(peer_device->connection, sock);
622 }
623 
624 static int __send_command(struct drbd_connection *connection, int vnr,
625 			  struct drbd_socket *sock, enum drbd_packet cmd,
626 			  unsigned int header_size, void *data,
627 			  unsigned int size)
628 {
629 	int msg_flags;
630 	int err;
631 
632 	/*
633 	 * Called with @data == NULL and the size of the data blocks in @size
634 	 * for commands that send data blocks.  For those commands, omit the
635 	 * MSG_MORE flag: this will increase the likelihood that data blocks
636 	 * which are page aligned on the sender will end up page aligned on the
637 	 * receiver.
638 	 */
639 	msg_flags = data ? MSG_MORE : 0;
640 
641 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
642 				      header_size + size);
643 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
644 			    msg_flags);
645 	if (data && !err)
646 		err = drbd_send_all(connection, sock->socket, data, size, 0);
647 	/* DRBD protocol "pings" are latency critical.
648 	 * This is supposed to trigger tcp_push_pending_frames() */
649 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
650 		tcp_sock_set_nodelay(sock->socket->sk);
651 
652 	return err;
653 }
654 
655 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
656 			       enum drbd_packet cmd, unsigned int header_size,
657 			       void *data, unsigned int size)
658 {
659 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
660 }
661 
662 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
663 		      enum drbd_packet cmd, unsigned int header_size,
664 		      void *data, unsigned int size)
665 {
666 	int err;
667 
668 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
669 	mutex_unlock(&sock->mutex);
670 	return err;
671 }
672 
673 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
674 		      enum drbd_packet cmd, unsigned int header_size,
675 		      void *data, unsigned int size)
676 {
677 	int err;
678 
679 	err = __send_command(peer_device->connection, peer_device->device->vnr,
680 			     sock, cmd, header_size, data, size);
681 	mutex_unlock(&sock->mutex);
682 	return err;
683 }
684 
685 int drbd_send_ping(struct drbd_connection *connection)
686 {
687 	struct drbd_socket *sock;
688 
689 	sock = &connection->meta;
690 	if (!conn_prepare_command(connection, sock))
691 		return -EIO;
692 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
693 }
694 
695 int drbd_send_ping_ack(struct drbd_connection *connection)
696 {
697 	struct drbd_socket *sock;
698 
699 	sock = &connection->meta;
700 	if (!conn_prepare_command(connection, sock))
701 		return -EIO;
702 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
703 }
704 
705 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
706 {
707 	struct drbd_socket *sock;
708 	struct p_rs_param_95 *p;
709 	int size;
710 	const int apv = peer_device->connection->agreed_pro_version;
711 	enum drbd_packet cmd;
712 	struct net_conf *nc;
713 	struct disk_conf *dc;
714 
715 	sock = &peer_device->connection->data;
716 	p = drbd_prepare_command(peer_device, sock);
717 	if (!p)
718 		return -EIO;
719 
720 	rcu_read_lock();
721 	nc = rcu_dereference(peer_device->connection->net_conf);
722 
723 	size = apv <= 87 ? sizeof(struct p_rs_param)
724 		: apv == 88 ? sizeof(struct p_rs_param)
725 			+ strlen(nc->verify_alg) + 1
726 		: apv <= 94 ? sizeof(struct p_rs_param_89)
727 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
728 
729 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
730 
731 	/* initialize verify_alg and csums_alg */
732 	BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
733 	memset(&p->algs, 0, sizeof(p->algs));
734 
735 	if (get_ldev(peer_device->device)) {
736 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
737 		p->resync_rate = cpu_to_be32(dc->resync_rate);
738 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
739 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
740 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
741 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
742 		put_ldev(peer_device->device);
743 	} else {
744 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
745 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
746 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
747 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
748 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
749 	}
750 
751 	if (apv >= 88)
752 		strcpy(p->verify_alg, nc->verify_alg);
753 	if (apv >= 89)
754 		strcpy(p->csums_alg, nc->csums_alg);
755 	rcu_read_unlock();
756 
757 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
758 }
759 
760 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
761 {
762 	struct drbd_socket *sock;
763 	struct p_protocol *p;
764 	struct net_conf *nc;
765 	int size, cf;
766 
767 	sock = &connection->data;
768 	p = __conn_prepare_command(connection, sock);
769 	if (!p)
770 		return -EIO;
771 
772 	rcu_read_lock();
773 	nc = rcu_dereference(connection->net_conf);
774 
775 	if (nc->tentative && connection->agreed_pro_version < 92) {
776 		rcu_read_unlock();
777 		drbd_err(connection, "--dry-run is not supported by peer");
778 		return -EOPNOTSUPP;
779 	}
780 
781 	size = sizeof(*p);
782 	if (connection->agreed_pro_version >= 87)
783 		size += strlen(nc->integrity_alg) + 1;
784 
785 	p->protocol      = cpu_to_be32(nc->wire_protocol);
786 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
787 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
788 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
789 	p->two_primaries = cpu_to_be32(nc->two_primaries);
790 	cf = 0;
791 	if (nc->discard_my_data)
792 		cf |= CF_DISCARD_MY_DATA;
793 	if (nc->tentative)
794 		cf |= CF_DRY_RUN;
795 	p->conn_flags    = cpu_to_be32(cf);
796 
797 	if (connection->agreed_pro_version >= 87)
798 		strcpy(p->integrity_alg, nc->integrity_alg);
799 	rcu_read_unlock();
800 
801 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
802 }
803 
804 int drbd_send_protocol(struct drbd_connection *connection)
805 {
806 	int err;
807 
808 	mutex_lock(&connection->data.mutex);
809 	err = __drbd_send_protocol(connection, P_PROTOCOL);
810 	mutex_unlock(&connection->data.mutex);
811 
812 	return err;
813 }
814 
815 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
816 {
817 	struct drbd_device *device = peer_device->device;
818 	struct drbd_socket *sock;
819 	struct p_uuids *p;
820 	int i;
821 
822 	if (!get_ldev_if_state(device, D_NEGOTIATING))
823 		return 0;
824 
825 	sock = &peer_device->connection->data;
826 	p = drbd_prepare_command(peer_device, sock);
827 	if (!p) {
828 		put_ldev(device);
829 		return -EIO;
830 	}
831 	spin_lock_irq(&device->ldev->md.uuid_lock);
832 	for (i = UI_CURRENT; i < UI_SIZE; i++)
833 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
834 	spin_unlock_irq(&device->ldev->md.uuid_lock);
835 
836 	device->comm_bm_set = drbd_bm_total_weight(device);
837 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
838 	rcu_read_lock();
839 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
840 	rcu_read_unlock();
841 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
842 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
843 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
844 
845 	put_ldev(device);
846 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
847 }
848 
849 int drbd_send_uuids(struct drbd_peer_device *peer_device)
850 {
851 	return _drbd_send_uuids(peer_device, 0);
852 }
853 
854 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
855 {
856 	return _drbd_send_uuids(peer_device, 8);
857 }
858 
859 void drbd_print_uuids(struct drbd_device *device, const char *text)
860 {
861 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
862 		u64 *uuid = device->ldev->md.uuid;
863 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
864 		     text,
865 		     (unsigned long long)uuid[UI_CURRENT],
866 		     (unsigned long long)uuid[UI_BITMAP],
867 		     (unsigned long long)uuid[UI_HISTORY_START],
868 		     (unsigned long long)uuid[UI_HISTORY_END]);
869 		put_ldev(device);
870 	} else {
871 		drbd_info(device, "%s effective data uuid: %016llX\n",
872 				text,
873 				(unsigned long long)device->ed_uuid);
874 	}
875 }
876 
877 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
878 {
879 	struct drbd_device *device = peer_device->device;
880 	struct drbd_socket *sock;
881 	struct p_rs_uuid *p;
882 	u64 uuid;
883 
884 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
885 
886 	uuid = device->ldev->md.uuid[UI_BITMAP];
887 	if (uuid && uuid != UUID_JUST_CREATED)
888 		uuid = uuid + UUID_NEW_BM_OFFSET;
889 	else
890 		get_random_bytes(&uuid, sizeof(u64));
891 	drbd_uuid_set(device, UI_BITMAP, uuid);
892 	drbd_print_uuids(device, "updated sync UUID");
893 	drbd_md_sync(device);
894 
895 	sock = &peer_device->connection->data;
896 	p = drbd_prepare_command(peer_device, sock);
897 	if (p) {
898 		p->uuid = cpu_to_be64(uuid);
899 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
900 	}
901 }
902 
903 /* communicated if (agreed_features & DRBD_FF_WSAME) */
904 static void
905 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
906 					struct request_queue *q)
907 {
908 	if (q) {
909 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
910 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
911 		p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
912 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
913 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
914 		p->qlim->discard_enabled = blk_queue_discard(q);
915 		p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
916 	} else {
917 		q = device->rq_queue;
918 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
919 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
920 		p->qlim->alignment_offset = 0;
921 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
922 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
923 		p->qlim->discard_enabled = 0;
924 		p->qlim->write_same_capable = 0;
925 	}
926 }
927 
928 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
929 {
930 	struct drbd_device *device = peer_device->device;
931 	struct drbd_socket *sock;
932 	struct p_sizes *p;
933 	sector_t d_size, u_size;
934 	int q_order_type;
935 	unsigned int max_bio_size;
936 	unsigned int packet_size;
937 
938 	sock = &peer_device->connection->data;
939 	p = drbd_prepare_command(peer_device, sock);
940 	if (!p)
941 		return -EIO;
942 
943 	packet_size = sizeof(*p);
944 	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
945 		packet_size += sizeof(p->qlim[0]);
946 
947 	memset(p, 0, packet_size);
948 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
949 		struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
950 		d_size = drbd_get_max_capacity(device->ldev);
951 		rcu_read_lock();
952 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
953 		rcu_read_unlock();
954 		q_order_type = drbd_queue_order_type(device);
955 		max_bio_size = queue_max_hw_sectors(q) << 9;
956 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
957 		assign_p_sizes_qlim(device, p, q);
958 		put_ldev(device);
959 	} else {
960 		d_size = 0;
961 		u_size = 0;
962 		q_order_type = QUEUE_ORDERED_NONE;
963 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
964 		assign_p_sizes_qlim(device, p, NULL);
965 	}
966 
967 	if (peer_device->connection->agreed_pro_version <= 94)
968 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
969 	else if (peer_device->connection->agreed_pro_version < 100)
970 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
971 
972 	p->d_size = cpu_to_be64(d_size);
973 	p->u_size = cpu_to_be64(u_size);
974 	if (trigger_reply)
975 		p->c_size = 0;
976 	else
977 		p->c_size = cpu_to_be64(get_capacity(device->vdisk));
978 	p->max_bio_size = cpu_to_be32(max_bio_size);
979 	p->queue_order_type = cpu_to_be16(q_order_type);
980 	p->dds_flags = cpu_to_be16(flags);
981 
982 	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
983 }
984 
985 /**
986  * drbd_send_current_state() - Sends the drbd state to the peer
987  * @peer_device:	DRBD peer device.
988  */
989 int drbd_send_current_state(struct drbd_peer_device *peer_device)
990 {
991 	struct drbd_socket *sock;
992 	struct p_state *p;
993 
994 	sock = &peer_device->connection->data;
995 	p = drbd_prepare_command(peer_device, sock);
996 	if (!p)
997 		return -EIO;
998 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
999 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1000 }
1001 
1002 /**
1003  * drbd_send_state() - After a state change, sends the new state to the peer
1004  * @peer_device:      DRBD peer device.
1005  * @state:     the state to send, not necessarily the current state.
1006  *
1007  * Each state change queues an "after_state_ch" work, which will eventually
1008  * send the resulting new state to the peer. If more state changes happen
1009  * between queuing and processing of the after_state_ch work, we still
1010  * want to send each intermediary state in the order it occurred.
1011  */
1012 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1013 {
1014 	struct drbd_socket *sock;
1015 	struct p_state *p;
1016 
1017 	sock = &peer_device->connection->data;
1018 	p = drbd_prepare_command(peer_device, sock);
1019 	if (!p)
1020 		return -EIO;
1021 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1022 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1023 }
1024 
1025 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1026 {
1027 	struct drbd_socket *sock;
1028 	struct p_req_state *p;
1029 
1030 	sock = &peer_device->connection->data;
1031 	p = drbd_prepare_command(peer_device, sock);
1032 	if (!p)
1033 		return -EIO;
1034 	p->mask = cpu_to_be32(mask.i);
1035 	p->val = cpu_to_be32(val.i);
1036 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1037 }
1038 
1039 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1040 {
1041 	enum drbd_packet cmd;
1042 	struct drbd_socket *sock;
1043 	struct p_req_state *p;
1044 
1045 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1046 	sock = &connection->data;
1047 	p = conn_prepare_command(connection, sock);
1048 	if (!p)
1049 		return -EIO;
1050 	p->mask = cpu_to_be32(mask.i);
1051 	p->val = cpu_to_be32(val.i);
1052 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1053 }
1054 
1055 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1056 {
1057 	struct drbd_socket *sock;
1058 	struct p_req_state_reply *p;
1059 
1060 	sock = &peer_device->connection->meta;
1061 	p = drbd_prepare_command(peer_device, sock);
1062 	if (p) {
1063 		p->retcode = cpu_to_be32(retcode);
1064 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1065 	}
1066 }
1067 
1068 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1069 {
1070 	struct drbd_socket *sock;
1071 	struct p_req_state_reply *p;
1072 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1073 
1074 	sock = &connection->meta;
1075 	p = conn_prepare_command(connection, sock);
1076 	if (p) {
1077 		p->retcode = cpu_to_be32(retcode);
1078 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1079 	}
1080 }
1081 
1082 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1083 {
1084 	BUG_ON(code & ~0xf);
1085 	p->encoding = (p->encoding & ~0xf) | code;
1086 }
1087 
1088 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1089 {
1090 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1091 }
1092 
1093 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1094 {
1095 	BUG_ON(n & ~0x7);
1096 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1097 }
1098 
1099 static int fill_bitmap_rle_bits(struct drbd_device *device,
1100 			 struct p_compressed_bm *p,
1101 			 unsigned int size,
1102 			 struct bm_xfer_ctx *c)
1103 {
1104 	struct bitstream bs;
1105 	unsigned long plain_bits;
1106 	unsigned long tmp;
1107 	unsigned long rl;
1108 	unsigned len;
1109 	unsigned toggle;
1110 	int bits, use_rle;
1111 
1112 	/* may we use this feature? */
1113 	rcu_read_lock();
1114 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1115 	rcu_read_unlock();
1116 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1117 		return 0;
1118 
1119 	if (c->bit_offset >= c->bm_bits)
1120 		return 0; /* nothing to do. */
1121 
1122 	/* use at most thus many bytes */
1123 	bitstream_init(&bs, p->code, size, 0);
1124 	memset(p->code, 0, size);
1125 	/* plain bits covered in this code string */
1126 	plain_bits = 0;
1127 
1128 	/* p->encoding & 0x80 stores whether the first run length is set.
1129 	 * bit offset is implicit.
1130 	 * start with toggle == 2 to be able to tell the first iteration */
1131 	toggle = 2;
1132 
1133 	/* see how much plain bits we can stuff into one packet
1134 	 * using RLE and VLI. */
1135 	do {
1136 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1137 				    : _drbd_bm_find_next(device, c->bit_offset);
1138 		if (tmp == -1UL)
1139 			tmp = c->bm_bits;
1140 		rl = tmp - c->bit_offset;
1141 
1142 		if (toggle == 2) { /* first iteration */
1143 			if (rl == 0) {
1144 				/* the first checked bit was set,
1145 				 * store start value, */
1146 				dcbp_set_start(p, 1);
1147 				/* but skip encoding of zero run length */
1148 				toggle = !toggle;
1149 				continue;
1150 			}
1151 			dcbp_set_start(p, 0);
1152 		}
1153 
1154 		/* paranoia: catch zero runlength.
1155 		 * can only happen if bitmap is modified while we scan it. */
1156 		if (rl == 0) {
1157 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1158 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1159 			return -1;
1160 		}
1161 
1162 		bits = vli_encode_bits(&bs, rl);
1163 		if (bits == -ENOBUFS) /* buffer full */
1164 			break;
1165 		if (bits <= 0) {
1166 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1167 			return 0;
1168 		}
1169 
1170 		toggle = !toggle;
1171 		plain_bits += rl;
1172 		c->bit_offset = tmp;
1173 	} while (c->bit_offset < c->bm_bits);
1174 
1175 	len = bs.cur.b - p->code + !!bs.cur.bit;
1176 
1177 	if (plain_bits < (len << 3)) {
1178 		/* incompressible with this method.
1179 		 * we need to rewind both word and bit position. */
1180 		c->bit_offset -= plain_bits;
1181 		bm_xfer_ctx_bit_to_word_offset(c);
1182 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1183 		return 0;
1184 	}
1185 
1186 	/* RLE + VLI was able to compress it just fine.
1187 	 * update c->word_offset. */
1188 	bm_xfer_ctx_bit_to_word_offset(c);
1189 
1190 	/* store pad_bits */
1191 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1192 
1193 	return len;
1194 }
1195 
1196 /*
1197  * send_bitmap_rle_or_plain
1198  *
1199  * Return 0 when done, 1 when another iteration is needed, and a negative error
1200  * code upon failure.
1201  */
1202 static int
1203 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1204 {
1205 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1206 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1207 	struct p_compressed_bm *p = sock->sbuf + header_size;
1208 	int len, err;
1209 
1210 	len = fill_bitmap_rle_bits(device, p,
1211 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1212 	if (len < 0)
1213 		return -EIO;
1214 
1215 	if (len) {
1216 		dcbp_set_code(p, RLE_VLI_Bits);
1217 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1218 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1219 				     NULL, 0);
1220 		c->packets[0]++;
1221 		c->bytes[0] += header_size + sizeof(*p) + len;
1222 
1223 		if (c->bit_offset >= c->bm_bits)
1224 			len = 0; /* DONE */
1225 	} else {
1226 		/* was not compressible.
1227 		 * send a buffer full of plain text bits instead. */
1228 		unsigned int data_size;
1229 		unsigned long num_words;
1230 		unsigned long *p = sock->sbuf + header_size;
1231 
1232 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1233 		num_words = min_t(size_t, data_size / sizeof(*p),
1234 				  c->bm_words - c->word_offset);
1235 		len = num_words * sizeof(*p);
1236 		if (len)
1237 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1238 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1239 		c->word_offset += num_words;
1240 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1241 
1242 		c->packets[1]++;
1243 		c->bytes[1] += header_size + len;
1244 
1245 		if (c->bit_offset > c->bm_bits)
1246 			c->bit_offset = c->bm_bits;
1247 	}
1248 	if (!err) {
1249 		if (len == 0) {
1250 			INFO_bm_xfer_stats(device, "send", c);
1251 			return 0;
1252 		} else
1253 			return 1;
1254 	}
1255 	return -EIO;
1256 }
1257 
1258 /* See the comment at receive_bitmap() */
1259 static int _drbd_send_bitmap(struct drbd_device *device)
1260 {
1261 	struct bm_xfer_ctx c;
1262 	int err;
1263 
1264 	if (!expect(device->bitmap))
1265 		return false;
1266 
1267 	if (get_ldev(device)) {
1268 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1269 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1270 			drbd_bm_set_all(device);
1271 			if (drbd_bm_write(device)) {
1272 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1273 				 * but otherwise process as per normal - need to tell other
1274 				 * side that a full resync is required! */
1275 				drbd_err(device, "Failed to write bitmap to disk!\n");
1276 			} else {
1277 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1278 				drbd_md_sync(device);
1279 			}
1280 		}
1281 		put_ldev(device);
1282 	}
1283 
1284 	c = (struct bm_xfer_ctx) {
1285 		.bm_bits = drbd_bm_bits(device),
1286 		.bm_words = drbd_bm_words(device),
1287 	};
1288 
1289 	do {
1290 		err = send_bitmap_rle_or_plain(device, &c);
1291 	} while (err > 0);
1292 
1293 	return err == 0;
1294 }
1295 
1296 int drbd_send_bitmap(struct drbd_device *device)
1297 {
1298 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1299 	int err = -1;
1300 
1301 	mutex_lock(&sock->mutex);
1302 	if (sock->socket)
1303 		err = !_drbd_send_bitmap(device);
1304 	mutex_unlock(&sock->mutex);
1305 	return err;
1306 }
1307 
1308 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1309 {
1310 	struct drbd_socket *sock;
1311 	struct p_barrier_ack *p;
1312 
1313 	if (connection->cstate < C_WF_REPORT_PARAMS)
1314 		return;
1315 
1316 	sock = &connection->meta;
1317 	p = conn_prepare_command(connection, sock);
1318 	if (!p)
1319 		return;
1320 	p->barrier = barrier_nr;
1321 	p->set_size = cpu_to_be32(set_size);
1322 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1323 }
1324 
1325 /**
1326  * _drbd_send_ack() - Sends an ack packet
1327  * @peer_device:	DRBD peer device.
1328  * @cmd:		Packet command code.
1329  * @sector:		sector, needs to be in big endian byte order
1330  * @blksize:		size in byte, needs to be in big endian byte order
1331  * @block_id:		Id, big endian byte order
1332  */
1333 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1334 			  u64 sector, u32 blksize, u64 block_id)
1335 {
1336 	struct drbd_socket *sock;
1337 	struct p_block_ack *p;
1338 
1339 	if (peer_device->device->state.conn < C_CONNECTED)
1340 		return -EIO;
1341 
1342 	sock = &peer_device->connection->meta;
1343 	p = drbd_prepare_command(peer_device, sock);
1344 	if (!p)
1345 		return -EIO;
1346 	p->sector = sector;
1347 	p->block_id = block_id;
1348 	p->blksize = blksize;
1349 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1350 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1351 }
1352 
1353 /* dp->sector and dp->block_id already/still in network byte order,
1354  * data_size is payload size according to dp->head,
1355  * and may need to be corrected for digest size. */
1356 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1357 		      struct p_data *dp, int data_size)
1358 {
1359 	if (peer_device->connection->peer_integrity_tfm)
1360 		data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1361 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1362 		       dp->block_id);
1363 }
1364 
1365 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1366 		      struct p_block_req *rp)
1367 {
1368 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1369 }
1370 
1371 /**
1372  * drbd_send_ack() - Sends an ack packet
1373  * @peer_device:	DRBD peer device
1374  * @cmd:		packet command code
1375  * @peer_req:		peer request
1376  */
1377 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1378 		  struct drbd_peer_request *peer_req)
1379 {
1380 	return _drbd_send_ack(peer_device, cmd,
1381 			      cpu_to_be64(peer_req->i.sector),
1382 			      cpu_to_be32(peer_req->i.size),
1383 			      peer_req->block_id);
1384 }
1385 
1386 /* This function misuses the block_id field to signal if the blocks
1387  * are is sync or not. */
1388 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1389 		     sector_t sector, int blksize, u64 block_id)
1390 {
1391 	return _drbd_send_ack(peer_device, cmd,
1392 			      cpu_to_be64(sector),
1393 			      cpu_to_be32(blksize),
1394 			      cpu_to_be64(block_id));
1395 }
1396 
1397 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1398 			     struct drbd_peer_request *peer_req)
1399 {
1400 	struct drbd_socket *sock;
1401 	struct p_block_desc *p;
1402 
1403 	sock = &peer_device->connection->data;
1404 	p = drbd_prepare_command(peer_device, sock);
1405 	if (!p)
1406 		return -EIO;
1407 	p->sector = cpu_to_be64(peer_req->i.sector);
1408 	p->blksize = cpu_to_be32(peer_req->i.size);
1409 	p->pad = 0;
1410 	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1411 }
1412 
1413 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1414 		       sector_t sector, int size, u64 block_id)
1415 {
1416 	struct drbd_socket *sock;
1417 	struct p_block_req *p;
1418 
1419 	sock = &peer_device->connection->data;
1420 	p = drbd_prepare_command(peer_device, sock);
1421 	if (!p)
1422 		return -EIO;
1423 	p->sector = cpu_to_be64(sector);
1424 	p->block_id = block_id;
1425 	p->blksize = cpu_to_be32(size);
1426 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1427 }
1428 
1429 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1430 			    void *digest, int digest_size, enum drbd_packet cmd)
1431 {
1432 	struct drbd_socket *sock;
1433 	struct p_block_req *p;
1434 
1435 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1436 
1437 	sock = &peer_device->connection->data;
1438 	p = drbd_prepare_command(peer_device, sock);
1439 	if (!p)
1440 		return -EIO;
1441 	p->sector = cpu_to_be64(sector);
1442 	p->block_id = ID_SYNCER /* unused */;
1443 	p->blksize = cpu_to_be32(size);
1444 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1445 }
1446 
1447 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1448 {
1449 	struct drbd_socket *sock;
1450 	struct p_block_req *p;
1451 
1452 	sock = &peer_device->connection->data;
1453 	p = drbd_prepare_command(peer_device, sock);
1454 	if (!p)
1455 		return -EIO;
1456 	p->sector = cpu_to_be64(sector);
1457 	p->block_id = ID_SYNCER /* unused */;
1458 	p->blksize = cpu_to_be32(size);
1459 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1460 }
1461 
1462 /* called on sndtimeo
1463  * returns false if we should retry,
1464  * true if we think connection is dead
1465  */
1466 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1467 {
1468 	int drop_it;
1469 	/* long elapsed = (long)(jiffies - device->last_received); */
1470 
1471 	drop_it =   connection->meta.socket == sock
1472 		|| !connection->ack_receiver.task
1473 		|| get_t_state(&connection->ack_receiver) != RUNNING
1474 		|| connection->cstate < C_WF_REPORT_PARAMS;
1475 
1476 	if (drop_it)
1477 		return true;
1478 
1479 	drop_it = !--connection->ko_count;
1480 	if (!drop_it) {
1481 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1482 			 current->comm, current->pid, connection->ko_count);
1483 		request_ping(connection);
1484 	}
1485 
1486 	return drop_it; /* && (device->state == R_PRIMARY) */;
1487 }
1488 
1489 static void drbd_update_congested(struct drbd_connection *connection)
1490 {
1491 	struct sock *sk = connection->data.socket->sk;
1492 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1493 		set_bit(NET_CONGESTED, &connection->flags);
1494 }
1495 
1496 /* The idea of sendpage seems to be to put some kind of reference
1497  * to the page into the skb, and to hand it over to the NIC. In
1498  * this process get_page() gets called.
1499  *
1500  * As soon as the page was really sent over the network put_page()
1501  * gets called by some part of the network layer. [ NIC driver? ]
1502  *
1503  * [ get_page() / put_page() increment/decrement the count. If count
1504  *   reaches 0 the page will be freed. ]
1505  *
1506  * This works nicely with pages from FSs.
1507  * But this means that in protocol A we might signal IO completion too early!
1508  *
1509  * In order not to corrupt data during a resync we must make sure
1510  * that we do not reuse our own buffer pages (EEs) to early, therefore
1511  * we have the net_ee list.
1512  *
1513  * XFS seems to have problems, still, it submits pages with page_count == 0!
1514  * As a workaround, we disable sendpage on pages
1515  * with page_count == 0 or PageSlab.
1516  */
1517 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1518 			      int offset, size_t size, unsigned msg_flags)
1519 {
1520 	struct socket *socket;
1521 	void *addr;
1522 	int err;
1523 
1524 	socket = peer_device->connection->data.socket;
1525 	addr = kmap(page) + offset;
1526 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1527 	kunmap(page);
1528 	if (!err)
1529 		peer_device->device->send_cnt += size >> 9;
1530 	return err;
1531 }
1532 
1533 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1534 		    int offset, size_t size, unsigned msg_flags)
1535 {
1536 	struct socket *socket = peer_device->connection->data.socket;
1537 	int len = size;
1538 	int err = -EIO;
1539 
1540 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1541 	 * page_count of 0 and/or have PageSlab() set.
1542 	 * we cannot use send_page for those, as that does get_page();
1543 	 * put_page(); and would cause either a VM_BUG directly, or
1544 	 * __page_cache_release a page that would actually still be referenced
1545 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1546 	if (drbd_disable_sendpage || !sendpage_ok(page))
1547 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1548 
1549 	msg_flags |= MSG_NOSIGNAL;
1550 	drbd_update_congested(peer_device->connection);
1551 	do {
1552 		int sent;
1553 
1554 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1555 		if (sent <= 0) {
1556 			if (sent == -EAGAIN) {
1557 				if (we_should_drop_the_connection(peer_device->connection, socket))
1558 					break;
1559 				continue;
1560 			}
1561 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1562 			     __func__, (int)size, len, sent);
1563 			if (sent < 0)
1564 				err = sent;
1565 			break;
1566 		}
1567 		len    -= sent;
1568 		offset += sent;
1569 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1570 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1571 
1572 	if (len == 0) {
1573 		err = 0;
1574 		peer_device->device->send_cnt += size >> 9;
1575 	}
1576 	return err;
1577 }
1578 
1579 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1580 {
1581 	struct bio_vec bvec;
1582 	struct bvec_iter iter;
1583 
1584 	/* hint all but last page with MSG_MORE */
1585 	bio_for_each_segment(bvec, bio, iter) {
1586 		int err;
1587 
1588 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1589 					 bvec.bv_offset, bvec.bv_len,
1590 					 bio_iter_last(bvec, iter)
1591 					 ? 0 : MSG_MORE);
1592 		if (err)
1593 			return err;
1594 		/* REQ_OP_WRITE_SAME has only one segment */
1595 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1596 			break;
1597 	}
1598 	return 0;
1599 }
1600 
1601 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1602 {
1603 	struct bio_vec bvec;
1604 	struct bvec_iter iter;
1605 
1606 	/* hint all but last page with MSG_MORE */
1607 	bio_for_each_segment(bvec, bio, iter) {
1608 		int err;
1609 
1610 		err = _drbd_send_page(peer_device, bvec.bv_page,
1611 				      bvec.bv_offset, bvec.bv_len,
1612 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1613 		if (err)
1614 			return err;
1615 		/* REQ_OP_WRITE_SAME has only one segment */
1616 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1617 			break;
1618 	}
1619 	return 0;
1620 }
1621 
1622 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1623 			    struct drbd_peer_request *peer_req)
1624 {
1625 	struct page *page = peer_req->pages;
1626 	unsigned len = peer_req->i.size;
1627 	int err;
1628 
1629 	/* hint all but last page with MSG_MORE */
1630 	page_chain_for_each(page) {
1631 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1632 
1633 		err = _drbd_send_page(peer_device, page, 0, l,
1634 				      page_chain_next(page) ? MSG_MORE : 0);
1635 		if (err)
1636 			return err;
1637 		len -= l;
1638 	}
1639 	return 0;
1640 }
1641 
1642 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1643 			     struct bio *bio)
1644 {
1645 	if (connection->agreed_pro_version >= 95)
1646 		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1647 			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1648 			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1649 			(bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1650 			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1651 			(bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1652 			  ((connection->agreed_features & DRBD_FF_WZEROES) ?
1653 			   (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1654 			   : DP_DISCARD)
1655 			: 0);
1656 	else
1657 		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1658 }
1659 
1660 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1661  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1662  */
1663 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1664 {
1665 	struct drbd_device *device = peer_device->device;
1666 	struct drbd_socket *sock;
1667 	struct p_data *p;
1668 	struct p_wsame *wsame = NULL;
1669 	void *digest_out;
1670 	unsigned int dp_flags = 0;
1671 	int digest_size;
1672 	int err;
1673 
1674 	sock = &peer_device->connection->data;
1675 	p = drbd_prepare_command(peer_device, sock);
1676 	digest_size = peer_device->connection->integrity_tfm ?
1677 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1678 
1679 	if (!p)
1680 		return -EIO;
1681 	p->sector = cpu_to_be64(req->i.sector);
1682 	p->block_id = (unsigned long)req;
1683 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1684 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1685 	if (device->state.conn >= C_SYNC_SOURCE &&
1686 	    device->state.conn <= C_PAUSED_SYNC_T)
1687 		dp_flags |= DP_MAY_SET_IN_SYNC;
1688 	if (peer_device->connection->agreed_pro_version >= 100) {
1689 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1690 			dp_flags |= DP_SEND_RECEIVE_ACK;
1691 		/* During resync, request an explicit write ack,
1692 		 * even in protocol != C */
1693 		if (req->rq_state & RQ_EXP_WRITE_ACK
1694 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1695 			dp_flags |= DP_SEND_WRITE_ACK;
1696 	}
1697 	p->dp_flags = cpu_to_be32(dp_flags);
1698 
1699 	if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1700 		enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1701 		struct p_trim *t = (struct p_trim*)p;
1702 		t->size = cpu_to_be32(req->i.size);
1703 		err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1704 		goto out;
1705 	}
1706 	if (dp_flags & DP_WSAME) {
1707 		/* this will only work if DRBD_FF_WSAME is set AND the
1708 		 * handshake agreed that all nodes and backend devices are
1709 		 * WRITE_SAME capable and agree on logical_block_size */
1710 		wsame = (struct p_wsame*)p;
1711 		digest_out = wsame + 1;
1712 		wsame->size = cpu_to_be32(req->i.size);
1713 	} else
1714 		digest_out = p + 1;
1715 
1716 	/* our digest is still only over the payload.
1717 	 * TRIM does not carry any payload. */
1718 	if (digest_size)
1719 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1720 	if (wsame) {
1721 		err =
1722 		    __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1723 				   sizeof(*wsame) + digest_size, NULL,
1724 				   bio_iovec(req->master_bio).bv_len);
1725 	} else
1726 		err =
1727 		    __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1728 				   sizeof(*p) + digest_size, NULL, req->i.size);
1729 	if (!err) {
1730 		/* For protocol A, we have to memcpy the payload into
1731 		 * socket buffers, as we may complete right away
1732 		 * as soon as we handed it over to tcp, at which point the data
1733 		 * pages may become invalid.
1734 		 *
1735 		 * For data-integrity enabled, we copy it as well, so we can be
1736 		 * sure that even if the bio pages may still be modified, it
1737 		 * won't change the data on the wire, thus if the digest checks
1738 		 * out ok after sending on this side, but does not fit on the
1739 		 * receiving side, we sure have detected corruption elsewhere.
1740 		 */
1741 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1742 			err = _drbd_send_bio(peer_device, req->master_bio);
1743 		else
1744 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1745 
1746 		/* double check digest, sometimes buffers have been modified in flight. */
1747 		if (digest_size > 0 && digest_size <= 64) {
1748 			/* 64 byte, 512 bit, is the largest digest size
1749 			 * currently supported in kernel crypto. */
1750 			unsigned char digest[64];
1751 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1752 			if (memcmp(p + 1, digest, digest_size)) {
1753 				drbd_warn(device,
1754 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1755 					(unsigned long long)req->i.sector, req->i.size);
1756 			}
1757 		} /* else if (digest_size > 64) {
1758 		     ... Be noisy about digest too large ...
1759 		} */
1760 	}
1761 out:
1762 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1763 
1764 	return err;
1765 }
1766 
1767 /* answer packet, used to send data back for read requests:
1768  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1769  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1770  */
1771 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1772 		    struct drbd_peer_request *peer_req)
1773 {
1774 	struct drbd_device *device = peer_device->device;
1775 	struct drbd_socket *sock;
1776 	struct p_data *p;
1777 	int err;
1778 	int digest_size;
1779 
1780 	sock = &peer_device->connection->data;
1781 	p = drbd_prepare_command(peer_device, sock);
1782 
1783 	digest_size = peer_device->connection->integrity_tfm ?
1784 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1785 
1786 	if (!p)
1787 		return -EIO;
1788 	p->sector = cpu_to_be64(peer_req->i.sector);
1789 	p->block_id = peer_req->block_id;
1790 	p->seq_num = 0;  /* unused */
1791 	p->dp_flags = 0;
1792 	if (digest_size)
1793 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1794 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1795 	if (!err)
1796 		err = _drbd_send_zc_ee(peer_device, peer_req);
1797 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1798 
1799 	return err;
1800 }
1801 
1802 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1803 {
1804 	struct drbd_socket *sock;
1805 	struct p_block_desc *p;
1806 
1807 	sock = &peer_device->connection->data;
1808 	p = drbd_prepare_command(peer_device, sock);
1809 	if (!p)
1810 		return -EIO;
1811 	p->sector = cpu_to_be64(req->i.sector);
1812 	p->blksize = cpu_to_be32(req->i.size);
1813 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1814 }
1815 
1816 /*
1817   drbd_send distinguishes two cases:
1818 
1819   Packets sent via the data socket "sock"
1820   and packets sent via the meta data socket "msock"
1821 
1822 		    sock                      msock
1823   -----------------+-------------------------+------------------------------
1824   timeout           conf.timeout / 2          conf.timeout / 2
1825   timeout action    send a ping via msock     Abort communication
1826 					      and close all sockets
1827 */
1828 
1829 /*
1830  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1831  */
1832 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1833 	      void *buf, size_t size, unsigned msg_flags)
1834 {
1835 	struct kvec iov = {.iov_base = buf, .iov_len = size};
1836 	struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1837 	int rv, sent = 0;
1838 
1839 	if (!sock)
1840 		return -EBADR;
1841 
1842 	/* THINK  if (signal_pending) return ... ? */
1843 
1844 	iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1845 
1846 	if (sock == connection->data.socket) {
1847 		rcu_read_lock();
1848 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1849 		rcu_read_unlock();
1850 		drbd_update_congested(connection);
1851 	}
1852 	do {
1853 		rv = sock_sendmsg(sock, &msg);
1854 		if (rv == -EAGAIN) {
1855 			if (we_should_drop_the_connection(connection, sock))
1856 				break;
1857 			else
1858 				continue;
1859 		}
1860 		if (rv == -EINTR) {
1861 			flush_signals(current);
1862 			rv = 0;
1863 		}
1864 		if (rv < 0)
1865 			break;
1866 		sent += rv;
1867 	} while (sent < size);
1868 
1869 	if (sock == connection->data.socket)
1870 		clear_bit(NET_CONGESTED, &connection->flags);
1871 
1872 	if (rv <= 0) {
1873 		if (rv != -EAGAIN) {
1874 			drbd_err(connection, "%s_sendmsg returned %d\n",
1875 				 sock == connection->meta.socket ? "msock" : "sock",
1876 				 rv);
1877 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1878 		} else
1879 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1880 	}
1881 
1882 	return sent;
1883 }
1884 
1885 /*
1886  * drbd_send_all  -  Send an entire buffer
1887  *
1888  * Returns 0 upon success and a negative error value otherwise.
1889  */
1890 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1891 		  size_t size, unsigned msg_flags)
1892 {
1893 	int err;
1894 
1895 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1896 	if (err < 0)
1897 		return err;
1898 	if (err != size)
1899 		return -EIO;
1900 	return 0;
1901 }
1902 
1903 static int drbd_open(struct block_device *bdev, fmode_t mode)
1904 {
1905 	struct drbd_device *device = bdev->bd_disk->private_data;
1906 	unsigned long flags;
1907 	int rv = 0;
1908 
1909 	mutex_lock(&drbd_main_mutex);
1910 	spin_lock_irqsave(&device->resource->req_lock, flags);
1911 	/* to have a stable device->state.role
1912 	 * and no race with updating open_cnt */
1913 
1914 	if (device->state.role != R_PRIMARY) {
1915 		if (mode & FMODE_WRITE)
1916 			rv = -EROFS;
1917 		else if (!drbd_allow_oos)
1918 			rv = -EMEDIUMTYPE;
1919 	}
1920 
1921 	if (!rv)
1922 		device->open_cnt++;
1923 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1924 	mutex_unlock(&drbd_main_mutex);
1925 
1926 	return rv;
1927 }
1928 
1929 static void drbd_release(struct gendisk *gd, fmode_t mode)
1930 {
1931 	struct drbd_device *device = gd->private_data;
1932 	mutex_lock(&drbd_main_mutex);
1933 	device->open_cnt--;
1934 	mutex_unlock(&drbd_main_mutex);
1935 }
1936 
1937 /* need to hold resource->req_lock */
1938 void drbd_queue_unplug(struct drbd_device *device)
1939 {
1940 	if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1941 		D_ASSERT(device, device->state.role == R_PRIMARY);
1942 		if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1943 			drbd_queue_work_if_unqueued(
1944 				&first_peer_device(device)->connection->sender_work,
1945 				&device->unplug_work);
1946 		}
1947 	}
1948 }
1949 
1950 static void drbd_set_defaults(struct drbd_device *device)
1951 {
1952 	/* Beware! The actual layout differs
1953 	 * between big endian and little endian */
1954 	device->state = (union drbd_dev_state) {
1955 		{ .role = R_SECONDARY,
1956 		  .peer = R_UNKNOWN,
1957 		  .conn = C_STANDALONE,
1958 		  .disk = D_DISKLESS,
1959 		  .pdsk = D_UNKNOWN,
1960 		} };
1961 }
1962 
1963 void drbd_init_set_defaults(struct drbd_device *device)
1964 {
1965 	/* the memset(,0,) did most of this.
1966 	 * note: only assignments, no allocation in here */
1967 
1968 	drbd_set_defaults(device);
1969 
1970 	atomic_set(&device->ap_bio_cnt, 0);
1971 	atomic_set(&device->ap_actlog_cnt, 0);
1972 	atomic_set(&device->ap_pending_cnt, 0);
1973 	atomic_set(&device->rs_pending_cnt, 0);
1974 	atomic_set(&device->unacked_cnt, 0);
1975 	atomic_set(&device->local_cnt, 0);
1976 	atomic_set(&device->pp_in_use_by_net, 0);
1977 	atomic_set(&device->rs_sect_in, 0);
1978 	atomic_set(&device->rs_sect_ev, 0);
1979 	atomic_set(&device->ap_in_flight, 0);
1980 	atomic_set(&device->md_io.in_use, 0);
1981 
1982 	mutex_init(&device->own_state_mutex);
1983 	device->state_mutex = &device->own_state_mutex;
1984 
1985 	spin_lock_init(&device->al_lock);
1986 	spin_lock_init(&device->peer_seq_lock);
1987 
1988 	INIT_LIST_HEAD(&device->active_ee);
1989 	INIT_LIST_HEAD(&device->sync_ee);
1990 	INIT_LIST_HEAD(&device->done_ee);
1991 	INIT_LIST_HEAD(&device->read_ee);
1992 	INIT_LIST_HEAD(&device->net_ee);
1993 	INIT_LIST_HEAD(&device->resync_reads);
1994 	INIT_LIST_HEAD(&device->resync_work.list);
1995 	INIT_LIST_HEAD(&device->unplug_work.list);
1996 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
1997 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
1998 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
1999 	INIT_LIST_HEAD(&device->pending_completion[0]);
2000 	INIT_LIST_HEAD(&device->pending_completion[1]);
2001 
2002 	device->resync_work.cb  = w_resync_timer;
2003 	device->unplug_work.cb  = w_send_write_hint;
2004 	device->bm_io_work.w.cb = w_bitmap_io;
2005 
2006 	timer_setup(&device->resync_timer, resync_timer_fn, 0);
2007 	timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2008 	timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2009 	timer_setup(&device->request_timer, request_timer_fn, 0);
2010 
2011 	init_waitqueue_head(&device->misc_wait);
2012 	init_waitqueue_head(&device->state_wait);
2013 	init_waitqueue_head(&device->ee_wait);
2014 	init_waitqueue_head(&device->al_wait);
2015 	init_waitqueue_head(&device->seq_wait);
2016 
2017 	device->resync_wenr = LC_FREE;
2018 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2019 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2020 }
2021 
2022 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2023 {
2024 	char ppb[10];
2025 
2026 	set_capacity_and_notify(device->vdisk, size);
2027 
2028 	drbd_info(device, "size = %s (%llu KB)\n",
2029 		ppsize(ppb, size>>1), (unsigned long long)size>>1);
2030 }
2031 
2032 void drbd_device_cleanup(struct drbd_device *device)
2033 {
2034 	int i;
2035 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2036 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2037 				first_peer_device(device)->connection->receiver.t_state);
2038 
2039 	device->al_writ_cnt  =
2040 	device->bm_writ_cnt  =
2041 	device->read_cnt     =
2042 	device->recv_cnt     =
2043 	device->send_cnt     =
2044 	device->writ_cnt     =
2045 	device->p_size       =
2046 	device->rs_start     =
2047 	device->rs_total     =
2048 	device->rs_failed    = 0;
2049 	device->rs_last_events = 0;
2050 	device->rs_last_sect_ev = 0;
2051 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2052 		device->rs_mark_left[i] = 0;
2053 		device->rs_mark_time[i] = 0;
2054 	}
2055 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2056 
2057 	set_capacity_and_notify(device->vdisk, 0);
2058 	if (device->bitmap) {
2059 		/* maybe never allocated. */
2060 		drbd_bm_resize(device, 0, 1);
2061 		drbd_bm_cleanup(device);
2062 	}
2063 
2064 	drbd_backing_dev_free(device, device->ldev);
2065 	device->ldev = NULL;
2066 
2067 	clear_bit(AL_SUSPENDED, &device->flags);
2068 
2069 	D_ASSERT(device, list_empty(&device->active_ee));
2070 	D_ASSERT(device, list_empty(&device->sync_ee));
2071 	D_ASSERT(device, list_empty(&device->done_ee));
2072 	D_ASSERT(device, list_empty(&device->read_ee));
2073 	D_ASSERT(device, list_empty(&device->net_ee));
2074 	D_ASSERT(device, list_empty(&device->resync_reads));
2075 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2076 	D_ASSERT(device, list_empty(&device->resync_work.list));
2077 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2078 
2079 	drbd_set_defaults(device);
2080 }
2081 
2082 
2083 static void drbd_destroy_mempools(void)
2084 {
2085 	struct page *page;
2086 
2087 	while (drbd_pp_pool) {
2088 		page = drbd_pp_pool;
2089 		drbd_pp_pool = (struct page *)page_private(page);
2090 		__free_page(page);
2091 		drbd_pp_vacant--;
2092 	}
2093 
2094 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2095 
2096 	bioset_exit(&drbd_io_bio_set);
2097 	bioset_exit(&drbd_md_io_bio_set);
2098 	mempool_exit(&drbd_md_io_page_pool);
2099 	mempool_exit(&drbd_ee_mempool);
2100 	mempool_exit(&drbd_request_mempool);
2101 	kmem_cache_destroy(drbd_ee_cache);
2102 	kmem_cache_destroy(drbd_request_cache);
2103 	kmem_cache_destroy(drbd_bm_ext_cache);
2104 	kmem_cache_destroy(drbd_al_ext_cache);
2105 
2106 	drbd_ee_cache        = NULL;
2107 	drbd_request_cache   = NULL;
2108 	drbd_bm_ext_cache    = NULL;
2109 	drbd_al_ext_cache    = NULL;
2110 
2111 	return;
2112 }
2113 
2114 static int drbd_create_mempools(void)
2115 {
2116 	struct page *page;
2117 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2118 	int i, ret;
2119 
2120 	/* caches */
2121 	drbd_request_cache = kmem_cache_create(
2122 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2123 	if (drbd_request_cache == NULL)
2124 		goto Enomem;
2125 
2126 	drbd_ee_cache = kmem_cache_create(
2127 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2128 	if (drbd_ee_cache == NULL)
2129 		goto Enomem;
2130 
2131 	drbd_bm_ext_cache = kmem_cache_create(
2132 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2133 	if (drbd_bm_ext_cache == NULL)
2134 		goto Enomem;
2135 
2136 	drbd_al_ext_cache = kmem_cache_create(
2137 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2138 	if (drbd_al_ext_cache == NULL)
2139 		goto Enomem;
2140 
2141 	/* mempools */
2142 	ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2143 	if (ret)
2144 		goto Enomem;
2145 
2146 	ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2147 			  BIOSET_NEED_BVECS);
2148 	if (ret)
2149 		goto Enomem;
2150 
2151 	ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2152 	if (ret)
2153 		goto Enomem;
2154 
2155 	ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2156 				     drbd_request_cache);
2157 	if (ret)
2158 		goto Enomem;
2159 
2160 	ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2161 	if (ret)
2162 		goto Enomem;
2163 
2164 	for (i = 0; i < number; i++) {
2165 		page = alloc_page(GFP_HIGHUSER);
2166 		if (!page)
2167 			goto Enomem;
2168 		set_page_private(page, (unsigned long)drbd_pp_pool);
2169 		drbd_pp_pool = page;
2170 	}
2171 	drbd_pp_vacant = number;
2172 
2173 	return 0;
2174 
2175 Enomem:
2176 	drbd_destroy_mempools(); /* in case we allocated some */
2177 	return -ENOMEM;
2178 }
2179 
2180 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2181 {
2182 	int rr;
2183 
2184 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2185 	if (rr)
2186 		drbd_err(device, "%d EEs in active list found!\n", rr);
2187 
2188 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2189 	if (rr)
2190 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2191 
2192 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2193 	if (rr)
2194 		drbd_err(device, "%d EEs in read list found!\n", rr);
2195 
2196 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2197 	if (rr)
2198 		drbd_err(device, "%d EEs in done list found!\n", rr);
2199 
2200 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2201 	if (rr)
2202 		drbd_err(device, "%d EEs in net list found!\n", rr);
2203 }
2204 
2205 /* caution. no locking. */
2206 void drbd_destroy_device(struct kref *kref)
2207 {
2208 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2209 	struct drbd_resource *resource = device->resource;
2210 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2211 
2212 	del_timer_sync(&device->request_timer);
2213 
2214 	/* paranoia asserts */
2215 	D_ASSERT(device, device->open_cnt == 0);
2216 	/* end paranoia asserts */
2217 
2218 	/* cleanup stuff that may have been allocated during
2219 	 * device (re-)configuration or state changes */
2220 
2221 	drbd_backing_dev_free(device, device->ldev);
2222 	device->ldev = NULL;
2223 
2224 	drbd_release_all_peer_reqs(device);
2225 
2226 	lc_destroy(device->act_log);
2227 	lc_destroy(device->resync);
2228 
2229 	kfree(device->p_uuid);
2230 	/* device->p_uuid = NULL; */
2231 
2232 	if (device->bitmap) /* should no longer be there. */
2233 		drbd_bm_cleanup(device);
2234 	__free_page(device->md_io.page);
2235 	blk_cleanup_disk(device->vdisk);
2236 	kfree(device->rs_plan_s);
2237 
2238 	/* not for_each_connection(connection, resource):
2239 	 * those may have been cleaned up and disassociated already.
2240 	 */
2241 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2242 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2243 		kfree(peer_device);
2244 	}
2245 	memset(device, 0xfd, sizeof(*device));
2246 	kfree(device);
2247 	kref_put(&resource->kref, drbd_destroy_resource);
2248 }
2249 
2250 /* One global retry thread, if we need to push back some bio and have it
2251  * reinserted through our make request function.
2252  */
2253 static struct retry_worker {
2254 	struct workqueue_struct *wq;
2255 	struct work_struct worker;
2256 
2257 	spinlock_t lock;
2258 	struct list_head writes;
2259 } retry;
2260 
2261 static void do_retry(struct work_struct *ws)
2262 {
2263 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2264 	LIST_HEAD(writes);
2265 	struct drbd_request *req, *tmp;
2266 
2267 	spin_lock_irq(&retry->lock);
2268 	list_splice_init(&retry->writes, &writes);
2269 	spin_unlock_irq(&retry->lock);
2270 
2271 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2272 		struct drbd_device *device = req->device;
2273 		struct bio *bio = req->master_bio;
2274 		bool expected;
2275 
2276 		expected =
2277 			expect(atomic_read(&req->completion_ref) == 0) &&
2278 			expect(req->rq_state & RQ_POSTPONED) &&
2279 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2280 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2281 
2282 		if (!expected)
2283 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2284 				req, atomic_read(&req->completion_ref),
2285 				req->rq_state);
2286 
2287 		/* We still need to put one kref associated with the
2288 		 * "completion_ref" going zero in the code path that queued it
2289 		 * here.  The request object may still be referenced by a
2290 		 * frozen local req->private_bio, in case we force-detached.
2291 		 */
2292 		kref_put(&req->kref, drbd_req_destroy);
2293 
2294 		/* A single suspended or otherwise blocking device may stall
2295 		 * all others as well.  Fortunately, this code path is to
2296 		 * recover from a situation that "should not happen":
2297 		 * concurrent writes in multi-primary setup.
2298 		 * In a "normal" lifecycle, this workqueue is supposed to be
2299 		 * destroyed without ever doing anything.
2300 		 * If it turns out to be an issue anyways, we can do per
2301 		 * resource (replication group) or per device (minor) retry
2302 		 * workqueues instead.
2303 		 */
2304 
2305 		/* We are not just doing submit_bio_noacct(),
2306 		 * as we want to keep the start_time information. */
2307 		inc_ap_bio(device);
2308 		__drbd_make_request(device, bio);
2309 	}
2310 }
2311 
2312 /* called via drbd_req_put_completion_ref(),
2313  * holds resource->req_lock */
2314 void drbd_restart_request(struct drbd_request *req)
2315 {
2316 	unsigned long flags;
2317 	spin_lock_irqsave(&retry.lock, flags);
2318 	list_move_tail(&req->tl_requests, &retry.writes);
2319 	spin_unlock_irqrestore(&retry.lock, flags);
2320 
2321 	/* Drop the extra reference that would otherwise
2322 	 * have been dropped by complete_master_bio.
2323 	 * do_retry() needs to grab a new one. */
2324 	dec_ap_bio(req->device);
2325 
2326 	queue_work(retry.wq, &retry.worker);
2327 }
2328 
2329 void drbd_destroy_resource(struct kref *kref)
2330 {
2331 	struct drbd_resource *resource =
2332 		container_of(kref, struct drbd_resource, kref);
2333 
2334 	idr_destroy(&resource->devices);
2335 	free_cpumask_var(resource->cpu_mask);
2336 	kfree(resource->name);
2337 	memset(resource, 0xf2, sizeof(*resource));
2338 	kfree(resource);
2339 }
2340 
2341 void drbd_free_resource(struct drbd_resource *resource)
2342 {
2343 	struct drbd_connection *connection, *tmp;
2344 
2345 	for_each_connection_safe(connection, tmp, resource) {
2346 		list_del(&connection->connections);
2347 		drbd_debugfs_connection_cleanup(connection);
2348 		kref_put(&connection->kref, drbd_destroy_connection);
2349 	}
2350 	drbd_debugfs_resource_cleanup(resource);
2351 	kref_put(&resource->kref, drbd_destroy_resource);
2352 }
2353 
2354 static void drbd_cleanup(void)
2355 {
2356 	unsigned int i;
2357 	struct drbd_device *device;
2358 	struct drbd_resource *resource, *tmp;
2359 
2360 	/* first remove proc,
2361 	 * drbdsetup uses it's presence to detect
2362 	 * whether DRBD is loaded.
2363 	 * If we would get stuck in proc removal,
2364 	 * but have netlink already deregistered,
2365 	 * some drbdsetup commands may wait forever
2366 	 * for an answer.
2367 	 */
2368 	if (drbd_proc)
2369 		remove_proc_entry("drbd", NULL);
2370 
2371 	if (retry.wq)
2372 		destroy_workqueue(retry.wq);
2373 
2374 	drbd_genl_unregister();
2375 
2376 	idr_for_each_entry(&drbd_devices, device, i)
2377 		drbd_delete_device(device);
2378 
2379 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2380 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2381 		list_del(&resource->resources);
2382 		drbd_free_resource(resource);
2383 	}
2384 
2385 	drbd_debugfs_cleanup();
2386 
2387 	drbd_destroy_mempools();
2388 	unregister_blkdev(DRBD_MAJOR, "drbd");
2389 
2390 	idr_destroy(&drbd_devices);
2391 
2392 	pr_info("module cleanup done.\n");
2393 }
2394 
2395 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2396 {
2397 	spin_lock_init(&wq->q_lock);
2398 	INIT_LIST_HEAD(&wq->q);
2399 	init_waitqueue_head(&wq->q_wait);
2400 }
2401 
2402 struct completion_work {
2403 	struct drbd_work w;
2404 	struct completion done;
2405 };
2406 
2407 static int w_complete(struct drbd_work *w, int cancel)
2408 {
2409 	struct completion_work *completion_work =
2410 		container_of(w, struct completion_work, w);
2411 
2412 	complete(&completion_work->done);
2413 	return 0;
2414 }
2415 
2416 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2417 {
2418 	struct completion_work completion_work;
2419 
2420 	completion_work.w.cb = w_complete;
2421 	init_completion(&completion_work.done);
2422 	drbd_queue_work(work_queue, &completion_work.w);
2423 	wait_for_completion(&completion_work.done);
2424 }
2425 
2426 struct drbd_resource *drbd_find_resource(const char *name)
2427 {
2428 	struct drbd_resource *resource;
2429 
2430 	if (!name || !name[0])
2431 		return NULL;
2432 
2433 	rcu_read_lock();
2434 	for_each_resource_rcu(resource, &drbd_resources) {
2435 		if (!strcmp(resource->name, name)) {
2436 			kref_get(&resource->kref);
2437 			goto found;
2438 		}
2439 	}
2440 	resource = NULL;
2441 found:
2442 	rcu_read_unlock();
2443 	return resource;
2444 }
2445 
2446 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2447 				     void *peer_addr, int peer_addr_len)
2448 {
2449 	struct drbd_resource *resource;
2450 	struct drbd_connection *connection;
2451 
2452 	rcu_read_lock();
2453 	for_each_resource_rcu(resource, &drbd_resources) {
2454 		for_each_connection_rcu(connection, resource) {
2455 			if (connection->my_addr_len == my_addr_len &&
2456 			    connection->peer_addr_len == peer_addr_len &&
2457 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2458 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2459 				kref_get(&connection->kref);
2460 				goto found;
2461 			}
2462 		}
2463 	}
2464 	connection = NULL;
2465 found:
2466 	rcu_read_unlock();
2467 	return connection;
2468 }
2469 
2470 static int drbd_alloc_socket(struct drbd_socket *socket)
2471 {
2472 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2473 	if (!socket->rbuf)
2474 		return -ENOMEM;
2475 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2476 	if (!socket->sbuf)
2477 		return -ENOMEM;
2478 	return 0;
2479 }
2480 
2481 static void drbd_free_socket(struct drbd_socket *socket)
2482 {
2483 	free_page((unsigned long) socket->sbuf);
2484 	free_page((unsigned long) socket->rbuf);
2485 }
2486 
2487 void conn_free_crypto(struct drbd_connection *connection)
2488 {
2489 	drbd_free_sock(connection);
2490 
2491 	crypto_free_shash(connection->csums_tfm);
2492 	crypto_free_shash(connection->verify_tfm);
2493 	crypto_free_shash(connection->cram_hmac_tfm);
2494 	crypto_free_shash(connection->integrity_tfm);
2495 	crypto_free_shash(connection->peer_integrity_tfm);
2496 	kfree(connection->int_dig_in);
2497 	kfree(connection->int_dig_vv);
2498 
2499 	connection->csums_tfm = NULL;
2500 	connection->verify_tfm = NULL;
2501 	connection->cram_hmac_tfm = NULL;
2502 	connection->integrity_tfm = NULL;
2503 	connection->peer_integrity_tfm = NULL;
2504 	connection->int_dig_in = NULL;
2505 	connection->int_dig_vv = NULL;
2506 }
2507 
2508 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2509 {
2510 	struct drbd_connection *connection;
2511 	cpumask_var_t new_cpu_mask;
2512 	int err;
2513 
2514 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2515 		return -ENOMEM;
2516 
2517 	/* silently ignore cpu mask on UP kernel */
2518 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2519 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2520 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2521 		if (err == -EOVERFLOW) {
2522 			/* So what. mask it out. */
2523 			cpumask_var_t tmp_cpu_mask;
2524 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2525 				cpumask_setall(tmp_cpu_mask);
2526 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2527 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2528 					res_opts->cpu_mask,
2529 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2530 					nr_cpu_ids);
2531 				free_cpumask_var(tmp_cpu_mask);
2532 				err = 0;
2533 			}
2534 		}
2535 		if (err) {
2536 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2537 			/* retcode = ERR_CPU_MASK_PARSE; */
2538 			goto fail;
2539 		}
2540 	}
2541 	resource->res_opts = *res_opts;
2542 	if (cpumask_empty(new_cpu_mask))
2543 		drbd_calc_cpu_mask(&new_cpu_mask);
2544 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2545 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2546 		for_each_connection_rcu(connection, resource) {
2547 			connection->receiver.reset_cpu_mask = 1;
2548 			connection->ack_receiver.reset_cpu_mask = 1;
2549 			connection->worker.reset_cpu_mask = 1;
2550 		}
2551 	}
2552 	err = 0;
2553 
2554 fail:
2555 	free_cpumask_var(new_cpu_mask);
2556 	return err;
2557 
2558 }
2559 
2560 struct drbd_resource *drbd_create_resource(const char *name)
2561 {
2562 	struct drbd_resource *resource;
2563 
2564 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2565 	if (!resource)
2566 		goto fail;
2567 	resource->name = kstrdup(name, GFP_KERNEL);
2568 	if (!resource->name)
2569 		goto fail_free_resource;
2570 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2571 		goto fail_free_name;
2572 	kref_init(&resource->kref);
2573 	idr_init(&resource->devices);
2574 	INIT_LIST_HEAD(&resource->connections);
2575 	resource->write_ordering = WO_BDEV_FLUSH;
2576 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2577 	mutex_init(&resource->conf_update);
2578 	mutex_init(&resource->adm_mutex);
2579 	spin_lock_init(&resource->req_lock);
2580 	drbd_debugfs_resource_add(resource);
2581 	return resource;
2582 
2583 fail_free_name:
2584 	kfree(resource->name);
2585 fail_free_resource:
2586 	kfree(resource);
2587 fail:
2588 	return NULL;
2589 }
2590 
2591 /* caller must be under adm_mutex */
2592 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2593 {
2594 	struct drbd_resource *resource;
2595 	struct drbd_connection *connection;
2596 
2597 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2598 	if (!connection)
2599 		return NULL;
2600 
2601 	if (drbd_alloc_socket(&connection->data))
2602 		goto fail;
2603 	if (drbd_alloc_socket(&connection->meta))
2604 		goto fail;
2605 
2606 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2607 	if (!connection->current_epoch)
2608 		goto fail;
2609 
2610 	INIT_LIST_HEAD(&connection->transfer_log);
2611 
2612 	INIT_LIST_HEAD(&connection->current_epoch->list);
2613 	connection->epochs = 1;
2614 	spin_lock_init(&connection->epoch_lock);
2615 
2616 	connection->send.seen_any_write_yet = false;
2617 	connection->send.current_epoch_nr = 0;
2618 	connection->send.current_epoch_writes = 0;
2619 
2620 	resource = drbd_create_resource(name);
2621 	if (!resource)
2622 		goto fail;
2623 
2624 	connection->cstate = C_STANDALONE;
2625 	mutex_init(&connection->cstate_mutex);
2626 	init_waitqueue_head(&connection->ping_wait);
2627 	idr_init(&connection->peer_devices);
2628 
2629 	drbd_init_workqueue(&connection->sender_work);
2630 	mutex_init(&connection->data.mutex);
2631 	mutex_init(&connection->meta.mutex);
2632 
2633 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2634 	connection->receiver.connection = connection;
2635 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2636 	connection->worker.connection = connection;
2637 	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2638 	connection->ack_receiver.connection = connection;
2639 
2640 	kref_init(&connection->kref);
2641 
2642 	connection->resource = resource;
2643 
2644 	if (set_resource_options(resource, res_opts))
2645 		goto fail_resource;
2646 
2647 	kref_get(&resource->kref);
2648 	list_add_tail_rcu(&connection->connections, &resource->connections);
2649 	drbd_debugfs_connection_add(connection);
2650 	return connection;
2651 
2652 fail_resource:
2653 	list_del(&resource->resources);
2654 	drbd_free_resource(resource);
2655 fail:
2656 	kfree(connection->current_epoch);
2657 	drbd_free_socket(&connection->meta);
2658 	drbd_free_socket(&connection->data);
2659 	kfree(connection);
2660 	return NULL;
2661 }
2662 
2663 void drbd_destroy_connection(struct kref *kref)
2664 {
2665 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2666 	struct drbd_resource *resource = connection->resource;
2667 
2668 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2669 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2670 	kfree(connection->current_epoch);
2671 
2672 	idr_destroy(&connection->peer_devices);
2673 
2674 	drbd_free_socket(&connection->meta);
2675 	drbd_free_socket(&connection->data);
2676 	kfree(connection->int_dig_in);
2677 	kfree(connection->int_dig_vv);
2678 	memset(connection, 0xfc, sizeof(*connection));
2679 	kfree(connection);
2680 	kref_put(&resource->kref, drbd_destroy_resource);
2681 }
2682 
2683 static int init_submitter(struct drbd_device *device)
2684 {
2685 	/* opencoded create_singlethread_workqueue(),
2686 	 * to be able to say "drbd%d", ..., minor */
2687 	device->submit.wq =
2688 		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2689 	if (!device->submit.wq)
2690 		return -ENOMEM;
2691 
2692 	INIT_WORK(&device->submit.worker, do_submit);
2693 	INIT_LIST_HEAD(&device->submit.writes);
2694 	return 0;
2695 }
2696 
2697 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2698 {
2699 	struct drbd_resource *resource = adm_ctx->resource;
2700 	struct drbd_connection *connection;
2701 	struct drbd_device *device;
2702 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2703 	struct gendisk *disk;
2704 	int id;
2705 	int vnr = adm_ctx->volume;
2706 	enum drbd_ret_code err = ERR_NOMEM;
2707 
2708 	device = minor_to_device(minor);
2709 	if (device)
2710 		return ERR_MINOR_OR_VOLUME_EXISTS;
2711 
2712 	/* GFP_KERNEL, we are outside of all write-out paths */
2713 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2714 	if (!device)
2715 		return ERR_NOMEM;
2716 	kref_init(&device->kref);
2717 
2718 	kref_get(&resource->kref);
2719 	device->resource = resource;
2720 	device->minor = minor;
2721 	device->vnr = vnr;
2722 
2723 	drbd_init_set_defaults(device);
2724 
2725 	disk = blk_alloc_disk(NUMA_NO_NODE);
2726 	if (!disk)
2727 		goto out_no_disk;
2728 
2729 	device->vdisk = disk;
2730 	device->rq_queue = disk->queue;
2731 
2732 	set_disk_ro(disk, true);
2733 
2734 	disk->major = DRBD_MAJOR;
2735 	disk->first_minor = minor;
2736 	disk->minors = 1;
2737 	disk->fops = &drbd_ops;
2738 	disk->flags |= GENHD_FL_NO_PART;
2739 	sprintf(disk->disk_name, "drbd%d", minor);
2740 	disk->private_data = device;
2741 
2742 	blk_queue_write_cache(disk->queue, true, true);
2743 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2744 	   This triggers a max_bio_size message upon first attach or connect */
2745 	blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2746 
2747 	device->md_io.page = alloc_page(GFP_KERNEL);
2748 	if (!device->md_io.page)
2749 		goto out_no_io_page;
2750 
2751 	if (drbd_bm_init(device))
2752 		goto out_no_bitmap;
2753 	device->read_requests = RB_ROOT;
2754 	device->write_requests = RB_ROOT;
2755 
2756 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2757 	if (id < 0) {
2758 		if (id == -ENOSPC)
2759 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2760 		goto out_no_minor_idr;
2761 	}
2762 	kref_get(&device->kref);
2763 
2764 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2765 	if (id < 0) {
2766 		if (id == -ENOSPC)
2767 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2768 		goto out_idr_remove_minor;
2769 	}
2770 	kref_get(&device->kref);
2771 
2772 	INIT_LIST_HEAD(&device->peer_devices);
2773 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2774 	for_each_connection(connection, resource) {
2775 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2776 		if (!peer_device)
2777 			goto out_idr_remove_from_resource;
2778 		peer_device->connection = connection;
2779 		peer_device->device = device;
2780 
2781 		list_add(&peer_device->peer_devices, &device->peer_devices);
2782 		kref_get(&device->kref);
2783 
2784 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2785 		if (id < 0) {
2786 			if (id == -ENOSPC)
2787 				err = ERR_INVALID_REQUEST;
2788 			goto out_idr_remove_from_resource;
2789 		}
2790 		kref_get(&connection->kref);
2791 		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2792 	}
2793 
2794 	if (init_submitter(device)) {
2795 		err = ERR_NOMEM;
2796 		goto out_idr_remove_vol;
2797 	}
2798 
2799 	err = add_disk(disk);
2800 	if (err)
2801 		goto out_idr_remove_vol;
2802 
2803 	/* inherit the connection state */
2804 	device->state.conn = first_connection(resource)->cstate;
2805 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2806 		for_each_peer_device(peer_device, device)
2807 			drbd_connected(peer_device);
2808 	}
2809 	/* move to create_peer_device() */
2810 	for_each_peer_device(peer_device, device)
2811 		drbd_debugfs_peer_device_add(peer_device);
2812 	drbd_debugfs_device_add(device);
2813 	return NO_ERROR;
2814 
2815 out_idr_remove_vol:
2816 	idr_remove(&connection->peer_devices, vnr);
2817 out_idr_remove_from_resource:
2818 	for_each_connection(connection, resource) {
2819 		peer_device = idr_remove(&connection->peer_devices, vnr);
2820 		if (peer_device)
2821 			kref_put(&connection->kref, drbd_destroy_connection);
2822 	}
2823 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2824 		list_del(&peer_device->peer_devices);
2825 		kfree(peer_device);
2826 	}
2827 	idr_remove(&resource->devices, vnr);
2828 out_idr_remove_minor:
2829 	idr_remove(&drbd_devices, minor);
2830 	synchronize_rcu();
2831 out_no_minor_idr:
2832 	drbd_bm_cleanup(device);
2833 out_no_bitmap:
2834 	__free_page(device->md_io.page);
2835 out_no_io_page:
2836 	blk_cleanup_disk(disk);
2837 out_no_disk:
2838 	kref_put(&resource->kref, drbd_destroy_resource);
2839 	kfree(device);
2840 	return err;
2841 }
2842 
2843 void drbd_delete_device(struct drbd_device *device)
2844 {
2845 	struct drbd_resource *resource = device->resource;
2846 	struct drbd_connection *connection;
2847 	struct drbd_peer_device *peer_device;
2848 
2849 	/* move to free_peer_device() */
2850 	for_each_peer_device(peer_device, device)
2851 		drbd_debugfs_peer_device_cleanup(peer_device);
2852 	drbd_debugfs_device_cleanup(device);
2853 	for_each_connection(connection, resource) {
2854 		idr_remove(&connection->peer_devices, device->vnr);
2855 		kref_put(&device->kref, drbd_destroy_device);
2856 	}
2857 	idr_remove(&resource->devices, device->vnr);
2858 	kref_put(&device->kref, drbd_destroy_device);
2859 	idr_remove(&drbd_devices, device_to_minor(device));
2860 	kref_put(&device->kref, drbd_destroy_device);
2861 	del_gendisk(device->vdisk);
2862 	synchronize_rcu();
2863 	kref_put(&device->kref, drbd_destroy_device);
2864 }
2865 
2866 static int __init drbd_init(void)
2867 {
2868 	int err;
2869 
2870 	if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2871 		pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2872 #ifdef MODULE
2873 		return -EINVAL;
2874 #else
2875 		drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2876 #endif
2877 	}
2878 
2879 	err = register_blkdev(DRBD_MAJOR, "drbd");
2880 	if (err) {
2881 		pr_err("unable to register block device major %d\n",
2882 		       DRBD_MAJOR);
2883 		return err;
2884 	}
2885 
2886 	/*
2887 	 * allocate all necessary structs
2888 	 */
2889 	init_waitqueue_head(&drbd_pp_wait);
2890 
2891 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2892 	idr_init(&drbd_devices);
2893 
2894 	mutex_init(&resources_mutex);
2895 	INIT_LIST_HEAD(&drbd_resources);
2896 
2897 	err = drbd_genl_register();
2898 	if (err) {
2899 		pr_err("unable to register generic netlink family\n");
2900 		goto fail;
2901 	}
2902 
2903 	err = drbd_create_mempools();
2904 	if (err)
2905 		goto fail;
2906 
2907 	err = -ENOMEM;
2908 	drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2909 	if (!drbd_proc)	{
2910 		pr_err("unable to register proc file\n");
2911 		goto fail;
2912 	}
2913 
2914 	retry.wq = create_singlethread_workqueue("drbd-reissue");
2915 	if (!retry.wq) {
2916 		pr_err("unable to create retry workqueue\n");
2917 		goto fail;
2918 	}
2919 	INIT_WORK(&retry.worker, do_retry);
2920 	spin_lock_init(&retry.lock);
2921 	INIT_LIST_HEAD(&retry.writes);
2922 
2923 	drbd_debugfs_init();
2924 
2925 	pr_info("initialized. "
2926 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2927 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2928 	pr_info("%s\n", drbd_buildtag());
2929 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
2930 	return 0; /* Success! */
2931 
2932 fail:
2933 	drbd_cleanup();
2934 	if (err == -ENOMEM)
2935 		pr_err("ran out of memory\n");
2936 	else
2937 		pr_err("initialization failure\n");
2938 	return err;
2939 }
2940 
2941 static void drbd_free_one_sock(struct drbd_socket *ds)
2942 {
2943 	struct socket *s;
2944 	mutex_lock(&ds->mutex);
2945 	s = ds->socket;
2946 	ds->socket = NULL;
2947 	mutex_unlock(&ds->mutex);
2948 	if (s) {
2949 		/* so debugfs does not need to mutex_lock() */
2950 		synchronize_rcu();
2951 		kernel_sock_shutdown(s, SHUT_RDWR);
2952 		sock_release(s);
2953 	}
2954 }
2955 
2956 void drbd_free_sock(struct drbd_connection *connection)
2957 {
2958 	if (connection->data.socket)
2959 		drbd_free_one_sock(&connection->data);
2960 	if (connection->meta.socket)
2961 		drbd_free_one_sock(&connection->meta);
2962 }
2963 
2964 /* meta data management */
2965 
2966 void conn_md_sync(struct drbd_connection *connection)
2967 {
2968 	struct drbd_peer_device *peer_device;
2969 	int vnr;
2970 
2971 	rcu_read_lock();
2972 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2973 		struct drbd_device *device = peer_device->device;
2974 
2975 		kref_get(&device->kref);
2976 		rcu_read_unlock();
2977 		drbd_md_sync(device);
2978 		kref_put(&device->kref, drbd_destroy_device);
2979 		rcu_read_lock();
2980 	}
2981 	rcu_read_unlock();
2982 }
2983 
2984 /* aligned 4kByte */
2985 struct meta_data_on_disk {
2986 	u64 la_size_sect;      /* last agreed size. */
2987 	u64 uuid[UI_SIZE];   /* UUIDs. */
2988 	u64 device_uuid;
2989 	u64 reserved_u64_1;
2990 	u32 flags;             /* MDF */
2991 	u32 magic;
2992 	u32 md_size_sect;
2993 	u32 al_offset;         /* offset to this block */
2994 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
2995 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2996 	u32 bm_offset;         /* offset to the bitmap, from here */
2997 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
2998 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
2999 
3000 	/* see al_tr_number_to_on_disk_sector() */
3001 	u32 al_stripes;
3002 	u32 al_stripe_size_4k;
3003 
3004 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3005 } __packed;
3006 
3007 
3008 
3009 void drbd_md_write(struct drbd_device *device, void *b)
3010 {
3011 	struct meta_data_on_disk *buffer = b;
3012 	sector_t sector;
3013 	int i;
3014 
3015 	memset(buffer, 0, sizeof(*buffer));
3016 
3017 	buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3018 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3019 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3020 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3021 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3022 
3023 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3024 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3025 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3026 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3027 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3028 
3029 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3030 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3031 
3032 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3033 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3034 
3035 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3036 	sector = device->ldev->md.md_offset;
3037 
3038 	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3039 		/* this was a try anyways ... */
3040 		drbd_err(device, "meta data update failed!\n");
3041 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3042 	}
3043 }
3044 
3045 /**
3046  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3047  * @device:	DRBD device.
3048  */
3049 void drbd_md_sync(struct drbd_device *device)
3050 {
3051 	struct meta_data_on_disk *buffer;
3052 
3053 	/* Don't accidentally change the DRBD meta data layout. */
3054 	BUILD_BUG_ON(UI_SIZE != 4);
3055 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3056 
3057 	del_timer(&device->md_sync_timer);
3058 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3059 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3060 		return;
3061 
3062 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3063 	 * metadata even if we detach due to a disk failure! */
3064 	if (!get_ldev_if_state(device, D_FAILED))
3065 		return;
3066 
3067 	buffer = drbd_md_get_buffer(device, __func__);
3068 	if (!buffer)
3069 		goto out;
3070 
3071 	drbd_md_write(device, buffer);
3072 
3073 	/* Update device->ldev->md.la_size_sect,
3074 	 * since we updated it on metadata. */
3075 	device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3076 
3077 	drbd_md_put_buffer(device);
3078 out:
3079 	put_ldev(device);
3080 }
3081 
3082 static int check_activity_log_stripe_size(struct drbd_device *device,
3083 		struct meta_data_on_disk *on_disk,
3084 		struct drbd_md *in_core)
3085 {
3086 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3087 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3088 	u64 al_size_4k;
3089 
3090 	/* both not set: default to old fixed size activity log */
3091 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3092 		al_stripes = 1;
3093 		al_stripe_size_4k = MD_32kB_SECT/8;
3094 	}
3095 
3096 	/* some paranoia plausibility checks */
3097 
3098 	/* we need both values to be set */
3099 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3100 		goto err;
3101 
3102 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3103 
3104 	/* Upper limit of activity log area, to avoid potential overflow
3105 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3106 	 * than 72 * 4k blocks total only increases the amount of history,
3107 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3108 	if (al_size_4k > (16 * 1024 * 1024/4))
3109 		goto err;
3110 
3111 	/* Lower limit: we need at least 8 transaction slots (32kB)
3112 	 * to not break existing setups */
3113 	if (al_size_4k < MD_32kB_SECT/8)
3114 		goto err;
3115 
3116 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3117 	in_core->al_stripes = al_stripes;
3118 	in_core->al_size_4k = al_size_4k;
3119 
3120 	return 0;
3121 err:
3122 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3123 			al_stripes, al_stripe_size_4k);
3124 	return -EINVAL;
3125 }
3126 
3127 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3128 {
3129 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3130 	struct drbd_md *in_core = &bdev->md;
3131 	s32 on_disk_al_sect;
3132 	s32 on_disk_bm_sect;
3133 
3134 	/* The on-disk size of the activity log, calculated from offsets, and
3135 	 * the size of the activity log calculated from the stripe settings,
3136 	 * should match.
3137 	 * Though we could relax this a bit: it is ok, if the striped activity log
3138 	 * fits in the available on-disk activity log size.
3139 	 * Right now, that would break how resize is implemented.
3140 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3141 	 * of possible unused padding space in the on disk layout. */
3142 	if (in_core->al_offset < 0) {
3143 		if (in_core->bm_offset > in_core->al_offset)
3144 			goto err;
3145 		on_disk_al_sect = -in_core->al_offset;
3146 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3147 	} else {
3148 		if (in_core->al_offset != MD_4kB_SECT)
3149 			goto err;
3150 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3151 			goto err;
3152 
3153 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3154 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3155 	}
3156 
3157 	/* old fixed size meta data is exactly that: fixed. */
3158 	if (in_core->meta_dev_idx >= 0) {
3159 		if (in_core->md_size_sect != MD_128MB_SECT
3160 		||  in_core->al_offset != MD_4kB_SECT
3161 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3162 		||  in_core->al_stripes != 1
3163 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3164 			goto err;
3165 	}
3166 
3167 	if (capacity < in_core->md_size_sect)
3168 		goto err;
3169 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3170 		goto err;
3171 
3172 	/* should be aligned, and at least 32k */
3173 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3174 		goto err;
3175 
3176 	/* should fit (for now: exactly) into the available on-disk space;
3177 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3178 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3179 		goto err;
3180 
3181 	/* again, should be aligned */
3182 	if (in_core->bm_offset & 7)
3183 		goto err;
3184 
3185 	/* FIXME check for device grow with flex external meta data? */
3186 
3187 	/* can the available bitmap space cover the last agreed device size? */
3188 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3189 		goto err;
3190 
3191 	return 0;
3192 
3193 err:
3194 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3195 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3196 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3197 			in_core->meta_dev_idx,
3198 			in_core->al_stripes, in_core->al_stripe_size_4k,
3199 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3200 			(unsigned long long)in_core->la_size_sect,
3201 			(unsigned long long)capacity);
3202 
3203 	return -EINVAL;
3204 }
3205 
3206 
3207 /**
3208  * drbd_md_read() - Reads in the meta data super block
3209  * @device:	DRBD device.
3210  * @bdev:	Device from which the meta data should be read in.
3211  *
3212  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3213  * something goes wrong.
3214  *
3215  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3216  * even before @bdev is assigned to @device->ldev.
3217  */
3218 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3219 {
3220 	struct meta_data_on_disk *buffer;
3221 	u32 magic, flags;
3222 	int i, rv = NO_ERROR;
3223 
3224 	if (device->state.disk != D_DISKLESS)
3225 		return ERR_DISK_CONFIGURED;
3226 
3227 	buffer = drbd_md_get_buffer(device, __func__);
3228 	if (!buffer)
3229 		return ERR_NOMEM;
3230 
3231 	/* First, figure out where our meta data superblock is located,
3232 	 * and read it. */
3233 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3234 	bdev->md.md_offset = drbd_md_ss(bdev);
3235 	/* Even for (flexible or indexed) external meta data,
3236 	 * initially restrict us to the 4k superblock for now.
3237 	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3238 	bdev->md.md_size_sect = 8;
3239 
3240 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3241 				 REQ_OP_READ)) {
3242 		/* NOTE: can't do normal error processing here as this is
3243 		   called BEFORE disk is attached */
3244 		drbd_err(device, "Error while reading metadata.\n");
3245 		rv = ERR_IO_MD_DISK;
3246 		goto err;
3247 	}
3248 
3249 	magic = be32_to_cpu(buffer->magic);
3250 	flags = be32_to_cpu(buffer->flags);
3251 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3252 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3253 			/* btw: that's Activity Log clean, not "all" clean. */
3254 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3255 		rv = ERR_MD_UNCLEAN;
3256 		goto err;
3257 	}
3258 
3259 	rv = ERR_MD_INVALID;
3260 	if (magic != DRBD_MD_MAGIC_08) {
3261 		if (magic == DRBD_MD_MAGIC_07)
3262 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3263 		else
3264 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3265 		goto err;
3266 	}
3267 
3268 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3269 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3270 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3271 		goto err;
3272 	}
3273 
3274 
3275 	/* convert to in_core endian */
3276 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3277 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3278 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3279 	bdev->md.flags = be32_to_cpu(buffer->flags);
3280 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3281 
3282 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3283 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3284 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3285 
3286 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3287 		goto err;
3288 	if (check_offsets_and_sizes(device, bdev))
3289 		goto err;
3290 
3291 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3292 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3293 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3294 		goto err;
3295 	}
3296 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3297 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3298 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3299 		goto err;
3300 	}
3301 
3302 	rv = NO_ERROR;
3303 
3304 	spin_lock_irq(&device->resource->req_lock);
3305 	if (device->state.conn < C_CONNECTED) {
3306 		unsigned int peer;
3307 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3308 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3309 		device->peer_max_bio_size = peer;
3310 	}
3311 	spin_unlock_irq(&device->resource->req_lock);
3312 
3313  err:
3314 	drbd_md_put_buffer(device);
3315 
3316 	return rv;
3317 }
3318 
3319 /**
3320  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3321  * @device:	DRBD device.
3322  *
3323  * Call this function if you change anything that should be written to
3324  * the meta-data super block. This function sets MD_DIRTY, and starts a
3325  * timer that ensures that within five seconds you have to call drbd_md_sync().
3326  */
3327 void drbd_md_mark_dirty(struct drbd_device *device)
3328 {
3329 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3330 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3331 }
3332 
3333 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3334 {
3335 	int i;
3336 
3337 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3338 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3339 }
3340 
3341 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3342 {
3343 	if (idx == UI_CURRENT) {
3344 		if (device->state.role == R_PRIMARY)
3345 			val |= 1;
3346 		else
3347 			val &= ~((u64)1);
3348 
3349 		drbd_set_ed_uuid(device, val);
3350 	}
3351 
3352 	device->ldev->md.uuid[idx] = val;
3353 	drbd_md_mark_dirty(device);
3354 }
3355 
3356 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3357 {
3358 	unsigned long flags;
3359 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3360 	__drbd_uuid_set(device, idx, val);
3361 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3362 }
3363 
3364 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3365 {
3366 	unsigned long flags;
3367 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3368 	if (device->ldev->md.uuid[idx]) {
3369 		drbd_uuid_move_history(device);
3370 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3371 	}
3372 	__drbd_uuid_set(device, idx, val);
3373 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3374 }
3375 
3376 /**
3377  * drbd_uuid_new_current() - Creates a new current UUID
3378  * @device:	DRBD device.
3379  *
3380  * Creates a new current UUID, and rotates the old current UUID into
3381  * the bitmap slot. Causes an incremental resync upon next connect.
3382  */
3383 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3384 {
3385 	u64 val;
3386 	unsigned long long bm_uuid;
3387 
3388 	get_random_bytes(&val, sizeof(u64));
3389 
3390 	spin_lock_irq(&device->ldev->md.uuid_lock);
3391 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3392 
3393 	if (bm_uuid)
3394 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3395 
3396 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3397 	__drbd_uuid_set(device, UI_CURRENT, val);
3398 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3399 
3400 	drbd_print_uuids(device, "new current UUID");
3401 	/* get it to stable storage _now_ */
3402 	drbd_md_sync(device);
3403 }
3404 
3405 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3406 {
3407 	unsigned long flags;
3408 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3409 		return;
3410 
3411 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3412 	if (val == 0) {
3413 		drbd_uuid_move_history(device);
3414 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3415 		device->ldev->md.uuid[UI_BITMAP] = 0;
3416 	} else {
3417 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3418 		if (bm_uuid)
3419 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3420 
3421 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3422 	}
3423 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3424 
3425 	drbd_md_mark_dirty(device);
3426 }
3427 
3428 /**
3429  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3430  * @device:	DRBD device.
3431  *
3432  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3433  */
3434 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3435 {
3436 	int rv = -EIO;
3437 
3438 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3439 	drbd_md_sync(device);
3440 	drbd_bm_set_all(device);
3441 
3442 	rv = drbd_bm_write(device);
3443 
3444 	if (!rv) {
3445 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3446 		drbd_md_sync(device);
3447 	}
3448 
3449 	return rv;
3450 }
3451 
3452 /**
3453  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3454  * @device:	DRBD device.
3455  *
3456  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3457  */
3458 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3459 {
3460 	drbd_resume_al(device);
3461 	drbd_bm_clear_all(device);
3462 	return drbd_bm_write(device);
3463 }
3464 
3465 static int w_bitmap_io(struct drbd_work *w, int unused)
3466 {
3467 	struct drbd_device *device =
3468 		container_of(w, struct drbd_device, bm_io_work.w);
3469 	struct bm_io_work *work = &device->bm_io_work;
3470 	int rv = -EIO;
3471 
3472 	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3473 		int cnt = atomic_read(&device->ap_bio_cnt);
3474 		if (cnt)
3475 			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3476 					cnt, work->why);
3477 	}
3478 
3479 	if (get_ldev(device)) {
3480 		drbd_bm_lock(device, work->why, work->flags);
3481 		rv = work->io_fn(device);
3482 		drbd_bm_unlock(device);
3483 		put_ldev(device);
3484 	}
3485 
3486 	clear_bit_unlock(BITMAP_IO, &device->flags);
3487 	wake_up(&device->misc_wait);
3488 
3489 	if (work->done)
3490 		work->done(device, rv);
3491 
3492 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3493 	work->why = NULL;
3494 	work->flags = 0;
3495 
3496 	return 0;
3497 }
3498 
3499 /**
3500  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3501  * @device:	DRBD device.
3502  * @io_fn:	IO callback to be called when bitmap IO is possible
3503  * @done:	callback to be called after the bitmap IO was performed
3504  * @why:	Descriptive text of the reason for doing the IO
3505  * @flags:	Bitmap flags
3506  *
3507  * While IO on the bitmap happens we freeze application IO thus we ensure
3508  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3509  * called from worker context. It MUST NOT be used while a previous such
3510  * work is still pending!
3511  *
3512  * Its worker function encloses the call of io_fn() by get_ldev() and
3513  * put_ldev().
3514  */
3515 void drbd_queue_bitmap_io(struct drbd_device *device,
3516 			  int (*io_fn)(struct drbd_device *),
3517 			  void (*done)(struct drbd_device *, int),
3518 			  char *why, enum bm_flag flags)
3519 {
3520 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3521 
3522 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3523 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3524 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3525 	if (device->bm_io_work.why)
3526 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3527 			why, device->bm_io_work.why);
3528 
3529 	device->bm_io_work.io_fn = io_fn;
3530 	device->bm_io_work.done = done;
3531 	device->bm_io_work.why = why;
3532 	device->bm_io_work.flags = flags;
3533 
3534 	spin_lock_irq(&device->resource->req_lock);
3535 	set_bit(BITMAP_IO, &device->flags);
3536 	/* don't wait for pending application IO if the caller indicates that
3537 	 * application IO does not conflict anyways. */
3538 	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3539 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3540 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3541 					&device->bm_io_work.w);
3542 	}
3543 	spin_unlock_irq(&device->resource->req_lock);
3544 }
3545 
3546 /**
3547  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3548  * @device:	DRBD device.
3549  * @io_fn:	IO callback to be called when bitmap IO is possible
3550  * @why:	Descriptive text of the reason for doing the IO
3551  * @flags:	Bitmap flags
3552  *
3553  * freezes application IO while that the actual IO operations runs. This
3554  * functions MAY NOT be called from worker context.
3555  */
3556 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3557 		char *why, enum bm_flag flags)
3558 {
3559 	/* Only suspend io, if some operation is supposed to be locked out */
3560 	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3561 	int rv;
3562 
3563 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3564 
3565 	if (do_suspend_io)
3566 		drbd_suspend_io(device);
3567 
3568 	drbd_bm_lock(device, why, flags);
3569 	rv = io_fn(device);
3570 	drbd_bm_unlock(device);
3571 
3572 	if (do_suspend_io)
3573 		drbd_resume_io(device);
3574 
3575 	return rv;
3576 }
3577 
3578 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3579 {
3580 	if ((device->ldev->md.flags & flag) != flag) {
3581 		drbd_md_mark_dirty(device);
3582 		device->ldev->md.flags |= flag;
3583 	}
3584 }
3585 
3586 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3587 {
3588 	if ((device->ldev->md.flags & flag) != 0) {
3589 		drbd_md_mark_dirty(device);
3590 		device->ldev->md.flags &= ~flag;
3591 	}
3592 }
3593 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3594 {
3595 	return (bdev->md.flags & flag) != 0;
3596 }
3597 
3598 static void md_sync_timer_fn(struct timer_list *t)
3599 {
3600 	struct drbd_device *device = from_timer(device, t, md_sync_timer);
3601 	drbd_device_post_work(device, MD_SYNC);
3602 }
3603 
3604 const char *cmdname(enum drbd_packet cmd)
3605 {
3606 	/* THINK may need to become several global tables
3607 	 * when we want to support more than
3608 	 * one PRO_VERSION */
3609 	static const char *cmdnames[] = {
3610 		[P_DATA]	        = "Data",
3611 		[P_WSAME]	        = "WriteSame",
3612 		[P_TRIM]	        = "Trim",
3613 		[P_DATA_REPLY]	        = "DataReply",
3614 		[P_RS_DATA_REPLY]	= "RSDataReply",
3615 		[P_BARRIER]	        = "Barrier",
3616 		[P_BITMAP]	        = "ReportBitMap",
3617 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3618 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3619 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3620 		[P_DATA_REQUEST]	= "DataRequest",
3621 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3622 		[P_SYNC_PARAM]	        = "SyncParam",
3623 		[P_SYNC_PARAM89]	= "SyncParam89",
3624 		[P_PROTOCOL]            = "ReportProtocol",
3625 		[P_UUIDS]	        = "ReportUUIDs",
3626 		[P_SIZES]	        = "ReportSizes",
3627 		[P_STATE]	        = "ReportState",
3628 		[P_SYNC_UUID]           = "ReportSyncUUID",
3629 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3630 		[P_AUTH_RESPONSE]	= "AuthResponse",
3631 		[P_PING]		= "Ping",
3632 		[P_PING_ACK]	        = "PingAck",
3633 		[P_RECV_ACK]	        = "RecvAck",
3634 		[P_WRITE_ACK]	        = "WriteAck",
3635 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3636 		[P_SUPERSEDED]          = "Superseded",
3637 		[P_NEG_ACK]	        = "NegAck",
3638 		[P_NEG_DREPLY]	        = "NegDReply",
3639 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3640 		[P_BARRIER_ACK]	        = "BarrierAck",
3641 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3642 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3643 		[P_OV_REQUEST]          = "OVRequest",
3644 		[P_OV_REPLY]            = "OVReply",
3645 		[P_OV_RESULT]           = "OVResult",
3646 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3647 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3648 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3649 		[P_DELAY_PROBE]         = "DelayProbe",
3650 		[P_OUT_OF_SYNC]		= "OutOfSync",
3651 		[P_RETRY_WRITE]		= "RetryWrite",
3652 		[P_RS_CANCEL]		= "RSCancel",
3653 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3654 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3655 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3656 		[P_RS_THIN_REQ]         = "rs_thin_req",
3657 		[P_RS_DEALLOCATED]      = "rs_deallocated",
3658 
3659 		/* enum drbd_packet, but not commands - obsoleted flags:
3660 		 *	P_MAY_IGNORE
3661 		 *	P_MAX_OPT_CMD
3662 		 */
3663 	};
3664 
3665 	/* too big for the array: 0xfffX */
3666 	if (cmd == P_INITIAL_META)
3667 		return "InitialMeta";
3668 	if (cmd == P_INITIAL_DATA)
3669 		return "InitialData";
3670 	if (cmd == P_CONNECTION_FEATURES)
3671 		return "ConnectionFeatures";
3672 	if (cmd >= ARRAY_SIZE(cmdnames))
3673 		return "Unknown";
3674 	return cmdnames[cmd];
3675 }
3676 
3677 /**
3678  * drbd_wait_misc  -  wait for a request to make progress
3679  * @device:	device associated with the request
3680  * @i:		the struct drbd_interval embedded in struct drbd_request or
3681  *		struct drbd_peer_request
3682  */
3683 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3684 {
3685 	struct net_conf *nc;
3686 	DEFINE_WAIT(wait);
3687 	long timeout;
3688 
3689 	rcu_read_lock();
3690 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3691 	if (!nc) {
3692 		rcu_read_unlock();
3693 		return -ETIMEDOUT;
3694 	}
3695 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3696 	rcu_read_unlock();
3697 
3698 	/* Indicate to wake up device->misc_wait on progress.  */
3699 	i->waiting = true;
3700 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3701 	spin_unlock_irq(&device->resource->req_lock);
3702 	timeout = schedule_timeout(timeout);
3703 	finish_wait(&device->misc_wait, &wait);
3704 	spin_lock_irq(&device->resource->req_lock);
3705 	if (!timeout || device->state.conn < C_CONNECTED)
3706 		return -ETIMEDOUT;
3707 	if (signal_pending(current))
3708 		return -ERESTARTSYS;
3709 	return 0;
3710 }
3711 
3712 void lock_all_resources(void)
3713 {
3714 	struct drbd_resource *resource;
3715 	int __maybe_unused i = 0;
3716 
3717 	mutex_lock(&resources_mutex);
3718 	local_irq_disable();
3719 	for_each_resource(resource, &drbd_resources)
3720 		spin_lock_nested(&resource->req_lock, i++);
3721 }
3722 
3723 void unlock_all_resources(void)
3724 {
3725 	struct drbd_resource *resource;
3726 
3727 	for_each_resource(resource, &drbd_resources)
3728 		spin_unlock(&resource->req_lock);
3729 	local_irq_enable();
3730 	mutex_unlock(&resources_mutex);
3731 }
3732 
3733 #ifdef CONFIG_DRBD_FAULT_INJECTION
3734 /* Fault insertion support including random number generator shamelessly
3735  * stolen from kernel/rcutorture.c */
3736 struct fault_random_state {
3737 	unsigned long state;
3738 	unsigned long count;
3739 };
3740 
3741 #define FAULT_RANDOM_MULT 39916801  /* prime */
3742 #define FAULT_RANDOM_ADD	479001701 /* prime */
3743 #define FAULT_RANDOM_REFRESH 10000
3744 
3745 /*
3746  * Crude but fast random-number generator.  Uses a linear congruential
3747  * generator, with occasional help from get_random_bytes().
3748  */
3749 static unsigned long
3750 _drbd_fault_random(struct fault_random_state *rsp)
3751 {
3752 	long refresh;
3753 
3754 	if (!rsp->count--) {
3755 		get_random_bytes(&refresh, sizeof(refresh));
3756 		rsp->state += refresh;
3757 		rsp->count = FAULT_RANDOM_REFRESH;
3758 	}
3759 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3760 	return swahw32(rsp->state);
3761 }
3762 
3763 static char *
3764 _drbd_fault_str(unsigned int type) {
3765 	static char *_faults[] = {
3766 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3767 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3768 		[DRBD_FAULT_RS_WR] = "Resync write",
3769 		[DRBD_FAULT_RS_RD] = "Resync read",
3770 		[DRBD_FAULT_DT_WR] = "Data write",
3771 		[DRBD_FAULT_DT_RD] = "Data read",
3772 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3773 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3774 		[DRBD_FAULT_AL_EE] = "EE allocation",
3775 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3776 	};
3777 
3778 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3779 }
3780 
3781 unsigned int
3782 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3783 {
3784 	static struct fault_random_state rrs = {0, 0};
3785 
3786 	unsigned int ret = (
3787 		(drbd_fault_devs == 0 ||
3788 			((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3789 		(((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3790 
3791 	if (ret) {
3792 		drbd_fault_count++;
3793 
3794 		if (__ratelimit(&drbd_ratelimit_state))
3795 			drbd_warn(device, "***Simulating %s failure\n",
3796 				_drbd_fault_str(type));
3797 	}
3798 
3799 	return ret;
3800 }
3801 #endif
3802 
3803 const char *drbd_buildtag(void)
3804 {
3805 	/* DRBD built from external sources has here a reference to the
3806 	   git hash of the source code. */
3807 
3808 	static char buildtag[38] = "\0uilt-in";
3809 
3810 	if (buildtag[0] == 0) {
3811 #ifdef MODULE
3812 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3813 #else
3814 		buildtag[0] = 'b';
3815 #endif
3816 	}
3817 
3818 	return buildtag;
3819 }
3820 
3821 module_init(drbd_init)
3822 module_exit(drbd_cleanup)
3823 
3824 EXPORT_SYMBOL(drbd_conn_str);
3825 EXPORT_SYMBOL(drbd_role_str);
3826 EXPORT_SYMBOL(drbd_disk_str);
3827 EXPORT_SYMBOL(drbd_set_st_err_str);
3828