1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 drbd.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 12 from Logicworks, Inc. for making SDP replication support possible. 13 14 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/jiffies.h> 21 #include <linux/drbd.h> 22 #include <linux/uaccess.h> 23 #include <asm/types.h> 24 #include <net/sock.h> 25 #include <linux/ctype.h> 26 #include <linux/mutex.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/proc_fs.h> 30 #include <linux/init.h> 31 #include <linux/mm.h> 32 #include <linux/memcontrol.h> 33 #include <linux/mm_inline.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/reboot.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/workqueue.h> 40 #define __KERNEL_SYSCALLS__ 41 #include <linux/unistd.h> 42 #include <linux/vmalloc.h> 43 #include <linux/sched/signal.h> 44 45 #include <linux/drbd_limits.h> 46 #include "drbd_int.h" 47 #include "drbd_protocol.h" 48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 49 #include "drbd_vli.h" 50 #include "drbd_debugfs.h" 51 52 static DEFINE_MUTEX(drbd_main_mutex); 53 static int drbd_open(struct block_device *bdev, fmode_t mode); 54 static void drbd_release(struct gendisk *gd, fmode_t mode); 55 static void md_sync_timer_fn(struct timer_list *t); 56 static int w_bitmap_io(struct drbd_work *w, int unused); 57 58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 59 "Lars Ellenberg <lars@linbit.com>"); 60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 61 MODULE_VERSION(REL_VERSION); 62 MODULE_LICENSE("GPL"); 63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 64 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 66 67 #include <linux/moduleparam.h> 68 /* thanks to these macros, if compiled into the kernel (not-module), 69 * these become boot parameters (e.g., drbd.minor_count) */ 70 71 #ifdef CONFIG_DRBD_FAULT_INJECTION 72 int drbd_enable_faults; 73 int drbd_fault_rate; 74 static int drbd_fault_count; 75 static int drbd_fault_devs; 76 /* bitmap of enabled faults */ 77 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 78 /* fault rate % value - applies to all enabled faults */ 79 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 80 /* count of faults inserted */ 81 module_param_named(fault_count, drbd_fault_count, int, 0664); 82 /* bitmap of devices to insert faults on */ 83 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 84 #endif 85 86 /* module parameters we can keep static */ 87 static bool drbd_allow_oos; /* allow_open_on_secondary */ 88 static bool drbd_disable_sendpage; 89 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 90 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 92 93 /* module parameters we share */ 94 int drbd_proc_details; /* Detail level in proc drbd*/ 95 module_param_named(proc_details, drbd_proc_details, int, 0644); 96 /* module parameters shared with defaults */ 97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 98 /* Module parameter for setting the user mode helper program 99 * to run. Default is /sbin/drbdadm */ 100 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 101 module_param_named(minor_count, drbd_minor_count, uint, 0444); 102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 103 104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 105 * as member "struct gendisk *vdisk;" 106 */ 107 struct idr drbd_devices; 108 struct list_head drbd_resources; 109 struct mutex resources_mutex; 110 111 struct kmem_cache *drbd_request_cache; 112 struct kmem_cache *drbd_ee_cache; /* peer requests */ 113 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 114 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 115 mempool_t drbd_request_mempool; 116 mempool_t drbd_ee_mempool; 117 mempool_t drbd_md_io_page_pool; 118 struct bio_set drbd_md_io_bio_set; 119 struct bio_set drbd_io_bio_set; 120 121 /* I do not use a standard mempool, because: 122 1) I want to hand out the pre-allocated objects first. 123 2) I want to be able to interrupt sleeping allocation with a signal. 124 Note: This is a single linked list, the next pointer is the private 125 member of struct page. 126 */ 127 struct page *drbd_pp_pool; 128 DEFINE_SPINLOCK(drbd_pp_lock); 129 int drbd_pp_vacant; 130 wait_queue_head_t drbd_pp_wait; 131 132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 133 134 static const struct block_device_operations drbd_ops = { 135 .owner = THIS_MODULE, 136 .submit_bio = drbd_submit_bio, 137 .open = drbd_open, 138 .release = drbd_release, 139 }; 140 141 #ifdef __CHECKER__ 142 /* When checking with sparse, and this is an inline function, sparse will 143 give tons of false positives. When this is a real functions sparse works. 144 */ 145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 146 { 147 int io_allowed; 148 149 atomic_inc(&device->local_cnt); 150 io_allowed = (device->state.disk >= mins); 151 if (!io_allowed) { 152 if (atomic_dec_and_test(&device->local_cnt)) 153 wake_up(&device->misc_wait); 154 } 155 return io_allowed; 156 } 157 158 #endif 159 160 /** 161 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 162 * @connection: DRBD connection. 163 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 164 * @set_size: Expected number of requests before that barrier. 165 * 166 * In case the passed barrier_nr or set_size does not match the oldest 167 * epoch of not yet barrier-acked requests, this function will cause a 168 * termination of the connection. 169 */ 170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 171 unsigned int set_size) 172 { 173 struct drbd_request *r; 174 struct drbd_request *req = NULL, *tmp = NULL; 175 int expect_epoch = 0; 176 int expect_size = 0; 177 178 spin_lock_irq(&connection->resource->req_lock); 179 180 /* find oldest not yet barrier-acked write request, 181 * count writes in its epoch. */ 182 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 183 const unsigned s = r->rq_state; 184 if (!req) { 185 if (!(s & RQ_WRITE)) 186 continue; 187 if (!(s & RQ_NET_MASK)) 188 continue; 189 if (s & RQ_NET_DONE) 190 continue; 191 req = r; 192 expect_epoch = req->epoch; 193 expect_size ++; 194 } else { 195 if (r->epoch != expect_epoch) 196 break; 197 if (!(s & RQ_WRITE)) 198 continue; 199 /* if (s & RQ_DONE): not expected */ 200 /* if (!(s & RQ_NET_MASK)): not expected */ 201 expect_size++; 202 } 203 } 204 205 /* first some paranoia code */ 206 if (req == NULL) { 207 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 208 barrier_nr); 209 goto bail; 210 } 211 if (expect_epoch != barrier_nr) { 212 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 213 barrier_nr, expect_epoch); 214 goto bail; 215 } 216 217 if (expect_size != set_size) { 218 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 219 barrier_nr, set_size, expect_size); 220 goto bail; 221 } 222 223 /* Clean up list of requests processed during current epoch. */ 224 /* this extra list walk restart is paranoia, 225 * to catch requests being barrier-acked "unexpectedly". 226 * It usually should find the same req again, or some READ preceding it. */ 227 list_for_each_entry(req, &connection->transfer_log, tl_requests) 228 if (req->epoch == expect_epoch) { 229 tmp = req; 230 break; 231 } 232 req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests); 233 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 234 struct drbd_peer_device *peer_device; 235 if (req->epoch != expect_epoch) 236 break; 237 peer_device = conn_peer_device(connection, req->device->vnr); 238 _req_mod(req, BARRIER_ACKED, peer_device); 239 } 240 spin_unlock_irq(&connection->resource->req_lock); 241 242 return; 243 244 bail: 245 spin_unlock_irq(&connection->resource->req_lock); 246 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 247 } 248 249 250 /** 251 * _tl_restart() - Walks the transfer log, and applies an action to all requests 252 * @connection: DRBD connection to operate on. 253 * @what: The action/event to perform with all request objects 254 * 255 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 256 * RESTART_FROZEN_DISK_IO. 257 */ 258 /* must hold resource->req_lock */ 259 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 260 { 261 struct drbd_peer_device *peer_device; 262 struct drbd_request *req, *r; 263 264 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 265 peer_device = conn_peer_device(connection, req->device->vnr); 266 _req_mod(req, what, peer_device); 267 } 268 } 269 270 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 271 { 272 spin_lock_irq(&connection->resource->req_lock); 273 _tl_restart(connection, what); 274 spin_unlock_irq(&connection->resource->req_lock); 275 } 276 277 /** 278 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 279 * @connection: DRBD connection. 280 * 281 * This is called after the connection to the peer was lost. The storage covered 282 * by the requests on the transfer gets marked as our of sync. Called from the 283 * receiver thread and the worker thread. 284 */ 285 void tl_clear(struct drbd_connection *connection) 286 { 287 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 288 } 289 290 /** 291 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 292 * @device: DRBD device. 293 */ 294 void tl_abort_disk_io(struct drbd_device *device) 295 { 296 struct drbd_connection *connection = first_peer_device(device)->connection; 297 struct drbd_request *req, *r; 298 299 spin_lock_irq(&connection->resource->req_lock); 300 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 301 if (!(req->rq_state & RQ_LOCAL_PENDING)) 302 continue; 303 if (req->device != device) 304 continue; 305 _req_mod(req, ABORT_DISK_IO, NULL); 306 } 307 spin_unlock_irq(&connection->resource->req_lock); 308 } 309 310 static int drbd_thread_setup(void *arg) 311 { 312 struct drbd_thread *thi = (struct drbd_thread *) arg; 313 struct drbd_resource *resource = thi->resource; 314 unsigned long flags; 315 int retval; 316 317 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 318 thi->name[0], 319 resource->name); 320 321 allow_kernel_signal(DRBD_SIGKILL); 322 allow_kernel_signal(SIGXCPU); 323 restart: 324 retval = thi->function(thi); 325 326 spin_lock_irqsave(&thi->t_lock, flags); 327 328 /* if the receiver has been "EXITING", the last thing it did 329 * was set the conn state to "StandAlone", 330 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 331 * and receiver thread will be "started". 332 * drbd_thread_start needs to set "RESTARTING" in that case. 333 * t_state check and assignment needs to be within the same spinlock, 334 * so either thread_start sees EXITING, and can remap to RESTARTING, 335 * or thread_start see NONE, and can proceed as normal. 336 */ 337 338 if (thi->t_state == RESTARTING) { 339 drbd_info(resource, "Restarting %s thread\n", thi->name); 340 thi->t_state = RUNNING; 341 spin_unlock_irqrestore(&thi->t_lock, flags); 342 goto restart; 343 } 344 345 thi->task = NULL; 346 thi->t_state = NONE; 347 smp_mb(); 348 complete_all(&thi->stop); 349 spin_unlock_irqrestore(&thi->t_lock, flags); 350 351 drbd_info(resource, "Terminating %s\n", current->comm); 352 353 /* Release mod reference taken when thread was started */ 354 355 if (thi->connection) 356 kref_put(&thi->connection->kref, drbd_destroy_connection); 357 kref_put(&resource->kref, drbd_destroy_resource); 358 module_put(THIS_MODULE); 359 return retval; 360 } 361 362 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 363 int (*func) (struct drbd_thread *), const char *name) 364 { 365 spin_lock_init(&thi->t_lock); 366 thi->task = NULL; 367 thi->t_state = NONE; 368 thi->function = func; 369 thi->resource = resource; 370 thi->connection = NULL; 371 thi->name = name; 372 } 373 374 int drbd_thread_start(struct drbd_thread *thi) 375 { 376 struct drbd_resource *resource = thi->resource; 377 struct task_struct *nt; 378 unsigned long flags; 379 380 /* is used from state engine doing drbd_thread_stop_nowait, 381 * while holding the req lock irqsave */ 382 spin_lock_irqsave(&thi->t_lock, flags); 383 384 switch (thi->t_state) { 385 case NONE: 386 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 387 thi->name, current->comm, current->pid); 388 389 /* Get ref on module for thread - this is released when thread exits */ 390 if (!try_module_get(THIS_MODULE)) { 391 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 392 spin_unlock_irqrestore(&thi->t_lock, flags); 393 return false; 394 } 395 396 kref_get(&resource->kref); 397 if (thi->connection) 398 kref_get(&thi->connection->kref); 399 400 init_completion(&thi->stop); 401 thi->reset_cpu_mask = 1; 402 thi->t_state = RUNNING; 403 spin_unlock_irqrestore(&thi->t_lock, flags); 404 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 405 406 nt = kthread_create(drbd_thread_setup, (void *) thi, 407 "drbd_%c_%s", thi->name[0], thi->resource->name); 408 409 if (IS_ERR(nt)) { 410 drbd_err(resource, "Couldn't start thread\n"); 411 412 if (thi->connection) 413 kref_put(&thi->connection->kref, drbd_destroy_connection); 414 kref_put(&resource->kref, drbd_destroy_resource); 415 module_put(THIS_MODULE); 416 return false; 417 } 418 spin_lock_irqsave(&thi->t_lock, flags); 419 thi->task = nt; 420 thi->t_state = RUNNING; 421 spin_unlock_irqrestore(&thi->t_lock, flags); 422 wake_up_process(nt); 423 break; 424 case EXITING: 425 thi->t_state = RESTARTING; 426 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 427 thi->name, current->comm, current->pid); 428 fallthrough; 429 case RUNNING: 430 case RESTARTING: 431 default: 432 spin_unlock_irqrestore(&thi->t_lock, flags); 433 break; 434 } 435 436 return true; 437 } 438 439 440 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 441 { 442 unsigned long flags; 443 444 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 445 446 /* may be called from state engine, holding the req lock irqsave */ 447 spin_lock_irqsave(&thi->t_lock, flags); 448 449 if (thi->t_state == NONE) { 450 spin_unlock_irqrestore(&thi->t_lock, flags); 451 if (restart) 452 drbd_thread_start(thi); 453 return; 454 } 455 456 if (thi->t_state != ns) { 457 if (thi->task == NULL) { 458 spin_unlock_irqrestore(&thi->t_lock, flags); 459 return; 460 } 461 462 thi->t_state = ns; 463 smp_mb(); 464 init_completion(&thi->stop); 465 if (thi->task != current) 466 send_sig(DRBD_SIGKILL, thi->task, 1); 467 } 468 469 spin_unlock_irqrestore(&thi->t_lock, flags); 470 471 if (wait) 472 wait_for_completion(&thi->stop); 473 } 474 475 int conn_lowest_minor(struct drbd_connection *connection) 476 { 477 struct drbd_peer_device *peer_device; 478 int vnr = 0, minor = -1; 479 480 rcu_read_lock(); 481 peer_device = idr_get_next(&connection->peer_devices, &vnr); 482 if (peer_device) 483 minor = device_to_minor(peer_device->device); 484 rcu_read_unlock(); 485 486 return minor; 487 } 488 489 #ifdef CONFIG_SMP 490 /* 491 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 492 * 493 * Forces all threads of a resource onto the same CPU. This is beneficial for 494 * DRBD's performance. May be overwritten by user's configuration. 495 */ 496 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 497 { 498 unsigned int *resources_per_cpu, min_index = ~0; 499 500 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 501 GFP_KERNEL); 502 if (resources_per_cpu) { 503 struct drbd_resource *resource; 504 unsigned int cpu, min = ~0; 505 506 rcu_read_lock(); 507 for_each_resource_rcu(resource, &drbd_resources) { 508 for_each_cpu(cpu, resource->cpu_mask) 509 resources_per_cpu[cpu]++; 510 } 511 rcu_read_unlock(); 512 for_each_online_cpu(cpu) { 513 if (resources_per_cpu[cpu] < min) { 514 min = resources_per_cpu[cpu]; 515 min_index = cpu; 516 } 517 } 518 kfree(resources_per_cpu); 519 } 520 if (min_index == ~0) { 521 cpumask_setall(*cpu_mask); 522 return; 523 } 524 cpumask_set_cpu(min_index, *cpu_mask); 525 } 526 527 /** 528 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 529 * @thi: drbd_thread object 530 * 531 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 532 * prematurely. 533 */ 534 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 535 { 536 struct drbd_resource *resource = thi->resource; 537 struct task_struct *p = current; 538 539 if (!thi->reset_cpu_mask) 540 return; 541 thi->reset_cpu_mask = 0; 542 set_cpus_allowed_ptr(p, resource->cpu_mask); 543 } 544 #else 545 #define drbd_calc_cpu_mask(A) ({}) 546 #endif 547 548 /* 549 * drbd_header_size - size of a packet header 550 * 551 * The header size is a multiple of 8, so any payload following the header is 552 * word aligned on 64-bit architectures. (The bitmap send and receive code 553 * relies on this.) 554 */ 555 unsigned int drbd_header_size(struct drbd_connection *connection) 556 { 557 if (connection->agreed_pro_version >= 100) { 558 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 559 return sizeof(struct p_header100); 560 } else { 561 BUILD_BUG_ON(sizeof(struct p_header80) != 562 sizeof(struct p_header95)); 563 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 564 return sizeof(struct p_header80); 565 } 566 } 567 568 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 569 { 570 h->magic = cpu_to_be32(DRBD_MAGIC); 571 h->command = cpu_to_be16(cmd); 572 h->length = cpu_to_be16(size); 573 return sizeof(struct p_header80); 574 } 575 576 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 577 { 578 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 579 h->command = cpu_to_be16(cmd); 580 h->length = cpu_to_be32(size); 581 return sizeof(struct p_header95); 582 } 583 584 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 585 int size, int vnr) 586 { 587 h->magic = cpu_to_be32(DRBD_MAGIC_100); 588 h->volume = cpu_to_be16(vnr); 589 h->command = cpu_to_be16(cmd); 590 h->length = cpu_to_be32(size); 591 h->pad = 0; 592 return sizeof(struct p_header100); 593 } 594 595 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 596 void *buffer, enum drbd_packet cmd, int size) 597 { 598 if (connection->agreed_pro_version >= 100) 599 return prepare_header100(buffer, cmd, size, vnr); 600 else if (connection->agreed_pro_version >= 95 && 601 size > DRBD_MAX_SIZE_H80_PACKET) 602 return prepare_header95(buffer, cmd, size); 603 else 604 return prepare_header80(buffer, cmd, size); 605 } 606 607 static void *__conn_prepare_command(struct drbd_connection *connection, 608 struct drbd_socket *sock) 609 { 610 if (!sock->socket) 611 return NULL; 612 return sock->sbuf + drbd_header_size(connection); 613 } 614 615 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 616 { 617 void *p; 618 619 mutex_lock(&sock->mutex); 620 p = __conn_prepare_command(connection, sock); 621 if (!p) 622 mutex_unlock(&sock->mutex); 623 624 return p; 625 } 626 627 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 628 { 629 return conn_prepare_command(peer_device->connection, sock); 630 } 631 632 static int __send_command(struct drbd_connection *connection, int vnr, 633 struct drbd_socket *sock, enum drbd_packet cmd, 634 unsigned int header_size, void *data, 635 unsigned int size) 636 { 637 int msg_flags; 638 int err; 639 640 /* 641 * Called with @data == NULL and the size of the data blocks in @size 642 * for commands that send data blocks. For those commands, omit the 643 * MSG_MORE flag: this will increase the likelihood that data blocks 644 * which are page aligned on the sender will end up page aligned on the 645 * receiver. 646 */ 647 msg_flags = data ? MSG_MORE : 0; 648 649 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 650 header_size + size); 651 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 652 msg_flags); 653 if (data && !err) 654 err = drbd_send_all(connection, sock->socket, data, size, 0); 655 /* DRBD protocol "pings" are latency critical. 656 * This is supposed to trigger tcp_push_pending_frames() */ 657 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 658 tcp_sock_set_nodelay(sock->socket->sk); 659 660 return err; 661 } 662 663 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 664 enum drbd_packet cmd, unsigned int header_size, 665 void *data, unsigned int size) 666 { 667 return __send_command(connection, 0, sock, cmd, header_size, data, size); 668 } 669 670 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 671 enum drbd_packet cmd, unsigned int header_size, 672 void *data, unsigned int size) 673 { 674 int err; 675 676 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 677 mutex_unlock(&sock->mutex); 678 return err; 679 } 680 681 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 682 enum drbd_packet cmd, unsigned int header_size, 683 void *data, unsigned int size) 684 { 685 int err; 686 687 err = __send_command(peer_device->connection, peer_device->device->vnr, 688 sock, cmd, header_size, data, size); 689 mutex_unlock(&sock->mutex); 690 return err; 691 } 692 693 int drbd_send_ping(struct drbd_connection *connection) 694 { 695 struct drbd_socket *sock; 696 697 sock = &connection->meta; 698 if (!conn_prepare_command(connection, sock)) 699 return -EIO; 700 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 701 } 702 703 int drbd_send_ping_ack(struct drbd_connection *connection) 704 { 705 struct drbd_socket *sock; 706 707 sock = &connection->meta; 708 if (!conn_prepare_command(connection, sock)) 709 return -EIO; 710 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 711 } 712 713 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 714 { 715 struct drbd_socket *sock; 716 struct p_rs_param_95 *p; 717 int size; 718 const int apv = peer_device->connection->agreed_pro_version; 719 enum drbd_packet cmd; 720 struct net_conf *nc; 721 struct disk_conf *dc; 722 723 sock = &peer_device->connection->data; 724 p = drbd_prepare_command(peer_device, sock); 725 if (!p) 726 return -EIO; 727 728 rcu_read_lock(); 729 nc = rcu_dereference(peer_device->connection->net_conf); 730 731 size = apv <= 87 ? sizeof(struct p_rs_param) 732 : apv == 88 ? sizeof(struct p_rs_param) 733 + strlen(nc->verify_alg) + 1 734 : apv <= 94 ? sizeof(struct p_rs_param_89) 735 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 736 737 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 738 739 /* initialize verify_alg and csums_alg */ 740 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); 741 memset(&p->algs, 0, sizeof(p->algs)); 742 743 if (get_ldev(peer_device->device)) { 744 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 745 p->resync_rate = cpu_to_be32(dc->resync_rate); 746 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 747 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 748 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 749 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 750 put_ldev(peer_device->device); 751 } else { 752 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 753 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 754 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 755 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 756 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 757 } 758 759 if (apv >= 88) 760 strcpy(p->verify_alg, nc->verify_alg); 761 if (apv >= 89) 762 strcpy(p->csums_alg, nc->csums_alg); 763 rcu_read_unlock(); 764 765 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 766 } 767 768 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 769 { 770 struct drbd_socket *sock; 771 struct p_protocol *p; 772 struct net_conf *nc; 773 int size, cf; 774 775 sock = &connection->data; 776 p = __conn_prepare_command(connection, sock); 777 if (!p) 778 return -EIO; 779 780 rcu_read_lock(); 781 nc = rcu_dereference(connection->net_conf); 782 783 if (nc->tentative && connection->agreed_pro_version < 92) { 784 rcu_read_unlock(); 785 drbd_err(connection, "--dry-run is not supported by peer"); 786 return -EOPNOTSUPP; 787 } 788 789 size = sizeof(*p); 790 if (connection->agreed_pro_version >= 87) 791 size += strlen(nc->integrity_alg) + 1; 792 793 p->protocol = cpu_to_be32(nc->wire_protocol); 794 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 795 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 796 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 797 p->two_primaries = cpu_to_be32(nc->two_primaries); 798 cf = 0; 799 if (nc->discard_my_data) 800 cf |= CF_DISCARD_MY_DATA; 801 if (nc->tentative) 802 cf |= CF_DRY_RUN; 803 p->conn_flags = cpu_to_be32(cf); 804 805 if (connection->agreed_pro_version >= 87) 806 strcpy(p->integrity_alg, nc->integrity_alg); 807 rcu_read_unlock(); 808 809 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 810 } 811 812 int drbd_send_protocol(struct drbd_connection *connection) 813 { 814 int err; 815 816 mutex_lock(&connection->data.mutex); 817 err = __drbd_send_protocol(connection, P_PROTOCOL); 818 mutex_unlock(&connection->data.mutex); 819 820 return err; 821 } 822 823 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 824 { 825 struct drbd_device *device = peer_device->device; 826 struct drbd_socket *sock; 827 struct p_uuids *p; 828 int i; 829 830 if (!get_ldev_if_state(device, D_NEGOTIATING)) 831 return 0; 832 833 sock = &peer_device->connection->data; 834 p = drbd_prepare_command(peer_device, sock); 835 if (!p) { 836 put_ldev(device); 837 return -EIO; 838 } 839 spin_lock_irq(&device->ldev->md.uuid_lock); 840 for (i = UI_CURRENT; i < UI_SIZE; i++) 841 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 842 spin_unlock_irq(&device->ldev->md.uuid_lock); 843 844 device->comm_bm_set = drbd_bm_total_weight(device); 845 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 846 rcu_read_lock(); 847 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 848 rcu_read_unlock(); 849 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 850 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 851 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 852 853 put_ldev(device); 854 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 855 } 856 857 int drbd_send_uuids(struct drbd_peer_device *peer_device) 858 { 859 return _drbd_send_uuids(peer_device, 0); 860 } 861 862 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 863 { 864 return _drbd_send_uuids(peer_device, 8); 865 } 866 867 void drbd_print_uuids(struct drbd_device *device, const char *text) 868 { 869 if (get_ldev_if_state(device, D_NEGOTIATING)) { 870 u64 *uuid = device->ldev->md.uuid; 871 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 872 text, 873 (unsigned long long)uuid[UI_CURRENT], 874 (unsigned long long)uuid[UI_BITMAP], 875 (unsigned long long)uuid[UI_HISTORY_START], 876 (unsigned long long)uuid[UI_HISTORY_END]); 877 put_ldev(device); 878 } else { 879 drbd_info(device, "%s effective data uuid: %016llX\n", 880 text, 881 (unsigned long long)device->ed_uuid); 882 } 883 } 884 885 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 886 { 887 struct drbd_device *device = peer_device->device; 888 struct drbd_socket *sock; 889 struct p_rs_uuid *p; 890 u64 uuid; 891 892 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 893 894 uuid = device->ldev->md.uuid[UI_BITMAP]; 895 if (uuid && uuid != UUID_JUST_CREATED) 896 uuid = uuid + UUID_NEW_BM_OFFSET; 897 else 898 get_random_bytes(&uuid, sizeof(u64)); 899 drbd_uuid_set(device, UI_BITMAP, uuid); 900 drbd_print_uuids(device, "updated sync UUID"); 901 drbd_md_sync(device); 902 903 sock = &peer_device->connection->data; 904 p = drbd_prepare_command(peer_device, sock); 905 if (p) { 906 p->uuid = cpu_to_be64(uuid); 907 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 908 } 909 } 910 911 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 912 { 913 struct drbd_device *device = peer_device->device; 914 struct drbd_socket *sock; 915 struct p_sizes *p; 916 sector_t d_size, u_size; 917 int q_order_type; 918 unsigned int max_bio_size; 919 unsigned int packet_size; 920 921 sock = &peer_device->connection->data; 922 p = drbd_prepare_command(peer_device, sock); 923 if (!p) 924 return -EIO; 925 926 packet_size = sizeof(*p); 927 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 928 packet_size += sizeof(p->qlim[0]); 929 930 memset(p, 0, packet_size); 931 if (get_ldev_if_state(device, D_NEGOTIATING)) { 932 struct block_device *bdev = device->ldev->backing_bdev; 933 struct request_queue *q = bdev_get_queue(bdev); 934 935 d_size = drbd_get_max_capacity(device->ldev); 936 rcu_read_lock(); 937 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 938 rcu_read_unlock(); 939 q_order_type = drbd_queue_order_type(device); 940 max_bio_size = queue_max_hw_sectors(q) << 9; 941 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 942 p->qlim->physical_block_size = 943 cpu_to_be32(bdev_physical_block_size(bdev)); 944 p->qlim->logical_block_size = 945 cpu_to_be32(bdev_logical_block_size(bdev)); 946 p->qlim->alignment_offset = 947 cpu_to_be32(bdev_alignment_offset(bdev)); 948 p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev)); 949 p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev)); 950 p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev); 951 put_ldev(device); 952 } else { 953 struct request_queue *q = device->rq_queue; 954 955 p->qlim->physical_block_size = 956 cpu_to_be32(queue_physical_block_size(q)); 957 p->qlim->logical_block_size = 958 cpu_to_be32(queue_logical_block_size(q)); 959 p->qlim->alignment_offset = 0; 960 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 961 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 962 p->qlim->discard_enabled = 0; 963 964 d_size = 0; 965 u_size = 0; 966 q_order_type = QUEUE_ORDERED_NONE; 967 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 968 } 969 970 if (peer_device->connection->agreed_pro_version <= 94) 971 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 972 else if (peer_device->connection->agreed_pro_version < 100) 973 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 974 975 p->d_size = cpu_to_be64(d_size); 976 p->u_size = cpu_to_be64(u_size); 977 if (trigger_reply) 978 p->c_size = 0; 979 else 980 p->c_size = cpu_to_be64(get_capacity(device->vdisk)); 981 p->max_bio_size = cpu_to_be32(max_bio_size); 982 p->queue_order_type = cpu_to_be16(q_order_type); 983 p->dds_flags = cpu_to_be16(flags); 984 985 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 986 } 987 988 /** 989 * drbd_send_current_state() - Sends the drbd state to the peer 990 * @peer_device: DRBD peer device. 991 */ 992 int drbd_send_current_state(struct drbd_peer_device *peer_device) 993 { 994 struct drbd_socket *sock; 995 struct p_state *p; 996 997 sock = &peer_device->connection->data; 998 p = drbd_prepare_command(peer_device, sock); 999 if (!p) 1000 return -EIO; 1001 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1002 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1003 } 1004 1005 /** 1006 * drbd_send_state() - After a state change, sends the new state to the peer 1007 * @peer_device: DRBD peer device. 1008 * @state: the state to send, not necessarily the current state. 1009 * 1010 * Each state change queues an "after_state_ch" work, which will eventually 1011 * send the resulting new state to the peer. If more state changes happen 1012 * between queuing and processing of the after_state_ch work, we still 1013 * want to send each intermediary state in the order it occurred. 1014 */ 1015 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1016 { 1017 struct drbd_socket *sock; 1018 struct p_state *p; 1019 1020 sock = &peer_device->connection->data; 1021 p = drbd_prepare_command(peer_device, sock); 1022 if (!p) 1023 return -EIO; 1024 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1025 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1026 } 1027 1028 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1029 { 1030 struct drbd_socket *sock; 1031 struct p_req_state *p; 1032 1033 sock = &peer_device->connection->data; 1034 p = drbd_prepare_command(peer_device, sock); 1035 if (!p) 1036 return -EIO; 1037 p->mask = cpu_to_be32(mask.i); 1038 p->val = cpu_to_be32(val.i); 1039 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1040 } 1041 1042 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1043 { 1044 enum drbd_packet cmd; 1045 struct drbd_socket *sock; 1046 struct p_req_state *p; 1047 1048 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1049 sock = &connection->data; 1050 p = conn_prepare_command(connection, sock); 1051 if (!p) 1052 return -EIO; 1053 p->mask = cpu_to_be32(mask.i); 1054 p->val = cpu_to_be32(val.i); 1055 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1056 } 1057 1058 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1059 { 1060 struct drbd_socket *sock; 1061 struct p_req_state_reply *p; 1062 1063 sock = &peer_device->connection->meta; 1064 p = drbd_prepare_command(peer_device, sock); 1065 if (p) { 1066 p->retcode = cpu_to_be32(retcode); 1067 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1068 } 1069 } 1070 1071 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1072 { 1073 struct drbd_socket *sock; 1074 struct p_req_state_reply *p; 1075 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1076 1077 sock = &connection->meta; 1078 p = conn_prepare_command(connection, sock); 1079 if (p) { 1080 p->retcode = cpu_to_be32(retcode); 1081 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1082 } 1083 } 1084 1085 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1086 { 1087 BUG_ON(code & ~0xf); 1088 p->encoding = (p->encoding & ~0xf) | code; 1089 } 1090 1091 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1092 { 1093 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1094 } 1095 1096 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1097 { 1098 BUG_ON(n & ~0x7); 1099 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1100 } 1101 1102 static int fill_bitmap_rle_bits(struct drbd_device *device, 1103 struct p_compressed_bm *p, 1104 unsigned int size, 1105 struct bm_xfer_ctx *c) 1106 { 1107 struct bitstream bs; 1108 unsigned long plain_bits; 1109 unsigned long tmp; 1110 unsigned long rl; 1111 unsigned len; 1112 unsigned toggle; 1113 int bits, use_rle; 1114 1115 /* may we use this feature? */ 1116 rcu_read_lock(); 1117 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1118 rcu_read_unlock(); 1119 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1120 return 0; 1121 1122 if (c->bit_offset >= c->bm_bits) 1123 return 0; /* nothing to do. */ 1124 1125 /* use at most thus many bytes */ 1126 bitstream_init(&bs, p->code, size, 0); 1127 memset(p->code, 0, size); 1128 /* plain bits covered in this code string */ 1129 plain_bits = 0; 1130 1131 /* p->encoding & 0x80 stores whether the first run length is set. 1132 * bit offset is implicit. 1133 * start with toggle == 2 to be able to tell the first iteration */ 1134 toggle = 2; 1135 1136 /* see how much plain bits we can stuff into one packet 1137 * using RLE and VLI. */ 1138 do { 1139 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1140 : _drbd_bm_find_next(device, c->bit_offset); 1141 if (tmp == -1UL) 1142 tmp = c->bm_bits; 1143 rl = tmp - c->bit_offset; 1144 1145 if (toggle == 2) { /* first iteration */ 1146 if (rl == 0) { 1147 /* the first checked bit was set, 1148 * store start value, */ 1149 dcbp_set_start(p, 1); 1150 /* but skip encoding of zero run length */ 1151 toggle = !toggle; 1152 continue; 1153 } 1154 dcbp_set_start(p, 0); 1155 } 1156 1157 /* paranoia: catch zero runlength. 1158 * can only happen if bitmap is modified while we scan it. */ 1159 if (rl == 0) { 1160 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1161 "t:%u bo:%lu\n", toggle, c->bit_offset); 1162 return -1; 1163 } 1164 1165 bits = vli_encode_bits(&bs, rl); 1166 if (bits == -ENOBUFS) /* buffer full */ 1167 break; 1168 if (bits <= 0) { 1169 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1170 return 0; 1171 } 1172 1173 toggle = !toggle; 1174 plain_bits += rl; 1175 c->bit_offset = tmp; 1176 } while (c->bit_offset < c->bm_bits); 1177 1178 len = bs.cur.b - p->code + !!bs.cur.bit; 1179 1180 if (plain_bits < (len << 3)) { 1181 /* incompressible with this method. 1182 * we need to rewind both word and bit position. */ 1183 c->bit_offset -= plain_bits; 1184 bm_xfer_ctx_bit_to_word_offset(c); 1185 c->bit_offset = c->word_offset * BITS_PER_LONG; 1186 return 0; 1187 } 1188 1189 /* RLE + VLI was able to compress it just fine. 1190 * update c->word_offset. */ 1191 bm_xfer_ctx_bit_to_word_offset(c); 1192 1193 /* store pad_bits */ 1194 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1195 1196 return len; 1197 } 1198 1199 /* 1200 * send_bitmap_rle_or_plain 1201 * 1202 * Return 0 when done, 1 when another iteration is needed, and a negative error 1203 * code upon failure. 1204 */ 1205 static int 1206 send_bitmap_rle_or_plain(struct drbd_peer_device *peer_device, struct bm_xfer_ctx *c) 1207 { 1208 struct drbd_device *device = peer_device->device; 1209 struct drbd_socket *sock = &peer_device->connection->data; 1210 unsigned int header_size = drbd_header_size(peer_device->connection); 1211 struct p_compressed_bm *p = sock->sbuf + header_size; 1212 int len, err; 1213 1214 len = fill_bitmap_rle_bits(device, p, 1215 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1216 if (len < 0) 1217 return -EIO; 1218 1219 if (len) { 1220 dcbp_set_code(p, RLE_VLI_Bits); 1221 err = __send_command(peer_device->connection, device->vnr, sock, 1222 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1223 NULL, 0); 1224 c->packets[0]++; 1225 c->bytes[0] += header_size + sizeof(*p) + len; 1226 1227 if (c->bit_offset >= c->bm_bits) 1228 len = 0; /* DONE */ 1229 } else { 1230 /* was not compressible. 1231 * send a buffer full of plain text bits instead. */ 1232 unsigned int data_size; 1233 unsigned long num_words; 1234 unsigned long *p = sock->sbuf + header_size; 1235 1236 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1237 num_words = min_t(size_t, data_size / sizeof(*p), 1238 c->bm_words - c->word_offset); 1239 len = num_words * sizeof(*p); 1240 if (len) 1241 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1242 err = __send_command(peer_device->connection, device->vnr, sock, P_BITMAP, 1243 len, NULL, 0); 1244 c->word_offset += num_words; 1245 c->bit_offset = c->word_offset * BITS_PER_LONG; 1246 1247 c->packets[1]++; 1248 c->bytes[1] += header_size + len; 1249 1250 if (c->bit_offset > c->bm_bits) 1251 c->bit_offset = c->bm_bits; 1252 } 1253 if (!err) { 1254 if (len == 0) { 1255 INFO_bm_xfer_stats(peer_device, "send", c); 1256 return 0; 1257 } else 1258 return 1; 1259 } 1260 return -EIO; 1261 } 1262 1263 /* See the comment at receive_bitmap() */ 1264 static int _drbd_send_bitmap(struct drbd_device *device, 1265 struct drbd_peer_device *peer_device) 1266 { 1267 struct bm_xfer_ctx c; 1268 int err; 1269 1270 if (!expect(device, device->bitmap)) 1271 return false; 1272 1273 if (get_ldev(device)) { 1274 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1275 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1276 drbd_bm_set_all(device); 1277 if (drbd_bm_write(device, peer_device)) { 1278 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1279 * but otherwise process as per normal - need to tell other 1280 * side that a full resync is required! */ 1281 drbd_err(device, "Failed to write bitmap to disk!\n"); 1282 } else { 1283 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1284 drbd_md_sync(device); 1285 } 1286 } 1287 put_ldev(device); 1288 } 1289 1290 c = (struct bm_xfer_ctx) { 1291 .bm_bits = drbd_bm_bits(device), 1292 .bm_words = drbd_bm_words(device), 1293 }; 1294 1295 do { 1296 err = send_bitmap_rle_or_plain(peer_device, &c); 1297 } while (err > 0); 1298 1299 return err == 0; 1300 } 1301 1302 int drbd_send_bitmap(struct drbd_device *device, struct drbd_peer_device *peer_device) 1303 { 1304 struct drbd_socket *sock = &peer_device->connection->data; 1305 int err = -1; 1306 1307 mutex_lock(&sock->mutex); 1308 if (sock->socket) 1309 err = !_drbd_send_bitmap(device, peer_device); 1310 mutex_unlock(&sock->mutex); 1311 return err; 1312 } 1313 1314 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1315 { 1316 struct drbd_socket *sock; 1317 struct p_barrier_ack *p; 1318 1319 if (connection->cstate < C_WF_REPORT_PARAMS) 1320 return; 1321 1322 sock = &connection->meta; 1323 p = conn_prepare_command(connection, sock); 1324 if (!p) 1325 return; 1326 p->barrier = barrier_nr; 1327 p->set_size = cpu_to_be32(set_size); 1328 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1329 } 1330 1331 /** 1332 * _drbd_send_ack() - Sends an ack packet 1333 * @peer_device: DRBD peer device. 1334 * @cmd: Packet command code. 1335 * @sector: sector, needs to be in big endian byte order 1336 * @blksize: size in byte, needs to be in big endian byte order 1337 * @block_id: Id, big endian byte order 1338 */ 1339 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1340 u64 sector, u32 blksize, u64 block_id) 1341 { 1342 struct drbd_socket *sock; 1343 struct p_block_ack *p; 1344 1345 if (peer_device->device->state.conn < C_CONNECTED) 1346 return -EIO; 1347 1348 sock = &peer_device->connection->meta; 1349 p = drbd_prepare_command(peer_device, sock); 1350 if (!p) 1351 return -EIO; 1352 p->sector = sector; 1353 p->block_id = block_id; 1354 p->blksize = blksize; 1355 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1356 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1357 } 1358 1359 /* dp->sector and dp->block_id already/still in network byte order, 1360 * data_size is payload size according to dp->head, 1361 * and may need to be corrected for digest size. */ 1362 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1363 struct p_data *dp, int data_size) 1364 { 1365 if (peer_device->connection->peer_integrity_tfm) 1366 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1367 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1368 dp->block_id); 1369 } 1370 1371 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1372 struct p_block_req *rp) 1373 { 1374 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1375 } 1376 1377 /** 1378 * drbd_send_ack() - Sends an ack packet 1379 * @peer_device: DRBD peer device 1380 * @cmd: packet command code 1381 * @peer_req: peer request 1382 */ 1383 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1384 struct drbd_peer_request *peer_req) 1385 { 1386 return _drbd_send_ack(peer_device, cmd, 1387 cpu_to_be64(peer_req->i.sector), 1388 cpu_to_be32(peer_req->i.size), 1389 peer_req->block_id); 1390 } 1391 1392 /* This function misuses the block_id field to signal if the blocks 1393 * are is sync or not. */ 1394 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1395 sector_t sector, int blksize, u64 block_id) 1396 { 1397 return _drbd_send_ack(peer_device, cmd, 1398 cpu_to_be64(sector), 1399 cpu_to_be32(blksize), 1400 cpu_to_be64(block_id)); 1401 } 1402 1403 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1404 struct drbd_peer_request *peer_req) 1405 { 1406 struct drbd_socket *sock; 1407 struct p_block_desc *p; 1408 1409 sock = &peer_device->connection->data; 1410 p = drbd_prepare_command(peer_device, sock); 1411 if (!p) 1412 return -EIO; 1413 p->sector = cpu_to_be64(peer_req->i.sector); 1414 p->blksize = cpu_to_be32(peer_req->i.size); 1415 p->pad = 0; 1416 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1417 } 1418 1419 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1420 sector_t sector, int size, u64 block_id) 1421 { 1422 struct drbd_socket *sock; 1423 struct p_block_req *p; 1424 1425 sock = &peer_device->connection->data; 1426 p = drbd_prepare_command(peer_device, sock); 1427 if (!p) 1428 return -EIO; 1429 p->sector = cpu_to_be64(sector); 1430 p->block_id = block_id; 1431 p->blksize = cpu_to_be32(size); 1432 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1433 } 1434 1435 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1436 void *digest, int digest_size, enum drbd_packet cmd) 1437 { 1438 struct drbd_socket *sock; 1439 struct p_block_req *p; 1440 1441 /* FIXME: Put the digest into the preallocated socket buffer. */ 1442 1443 sock = &peer_device->connection->data; 1444 p = drbd_prepare_command(peer_device, sock); 1445 if (!p) 1446 return -EIO; 1447 p->sector = cpu_to_be64(sector); 1448 p->block_id = ID_SYNCER /* unused */; 1449 p->blksize = cpu_to_be32(size); 1450 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1451 } 1452 1453 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1454 { 1455 struct drbd_socket *sock; 1456 struct p_block_req *p; 1457 1458 sock = &peer_device->connection->data; 1459 p = drbd_prepare_command(peer_device, sock); 1460 if (!p) 1461 return -EIO; 1462 p->sector = cpu_to_be64(sector); 1463 p->block_id = ID_SYNCER /* unused */; 1464 p->blksize = cpu_to_be32(size); 1465 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1466 } 1467 1468 /* called on sndtimeo 1469 * returns false if we should retry, 1470 * true if we think connection is dead 1471 */ 1472 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1473 { 1474 int drop_it; 1475 /* long elapsed = (long)(jiffies - device->last_received); */ 1476 1477 drop_it = connection->meta.socket == sock 1478 || !connection->ack_receiver.task 1479 || get_t_state(&connection->ack_receiver) != RUNNING 1480 || connection->cstate < C_WF_REPORT_PARAMS; 1481 1482 if (drop_it) 1483 return true; 1484 1485 drop_it = !--connection->ko_count; 1486 if (!drop_it) { 1487 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1488 current->comm, current->pid, connection->ko_count); 1489 request_ping(connection); 1490 } 1491 1492 return drop_it; /* && (device->state == R_PRIMARY) */; 1493 } 1494 1495 static void drbd_update_congested(struct drbd_connection *connection) 1496 { 1497 struct sock *sk = connection->data.socket->sk; 1498 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1499 set_bit(NET_CONGESTED, &connection->flags); 1500 } 1501 1502 /* The idea of sendpage seems to be to put some kind of reference 1503 * to the page into the skb, and to hand it over to the NIC. In 1504 * this process get_page() gets called. 1505 * 1506 * As soon as the page was really sent over the network put_page() 1507 * gets called by some part of the network layer. [ NIC driver? ] 1508 * 1509 * [ get_page() / put_page() increment/decrement the count. If count 1510 * reaches 0 the page will be freed. ] 1511 * 1512 * This works nicely with pages from FSs. 1513 * But this means that in protocol A we might signal IO completion too early! 1514 * 1515 * In order not to corrupt data during a resync we must make sure 1516 * that we do not reuse our own buffer pages (EEs) to early, therefore 1517 * we have the net_ee list. 1518 * 1519 * XFS seems to have problems, still, it submits pages with page_count == 0! 1520 * As a workaround, we disable sendpage on pages 1521 * with page_count == 0 or PageSlab. 1522 */ 1523 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1524 int offset, size_t size, unsigned msg_flags) 1525 { 1526 struct socket *socket; 1527 void *addr; 1528 int err; 1529 1530 socket = peer_device->connection->data.socket; 1531 addr = kmap(page) + offset; 1532 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1533 kunmap(page); 1534 if (!err) 1535 peer_device->device->send_cnt += size >> 9; 1536 return err; 1537 } 1538 1539 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1540 int offset, size_t size, unsigned msg_flags) 1541 { 1542 struct socket *socket = peer_device->connection->data.socket; 1543 int len = size; 1544 int err = -EIO; 1545 1546 /* e.g. XFS meta- & log-data is in slab pages, which have a 1547 * page_count of 0 and/or have PageSlab() set. 1548 * we cannot use send_page for those, as that does get_page(); 1549 * put_page(); and would cause either a VM_BUG directly, or 1550 * __page_cache_release a page that would actually still be referenced 1551 * by someone, leading to some obscure delayed Oops somewhere else. */ 1552 if (drbd_disable_sendpage || !sendpage_ok(page)) 1553 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1554 1555 msg_flags |= MSG_NOSIGNAL; 1556 drbd_update_congested(peer_device->connection); 1557 do { 1558 int sent; 1559 1560 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1561 if (sent <= 0) { 1562 if (sent == -EAGAIN) { 1563 if (we_should_drop_the_connection(peer_device->connection, socket)) 1564 break; 1565 continue; 1566 } 1567 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1568 __func__, (int)size, len, sent); 1569 if (sent < 0) 1570 err = sent; 1571 break; 1572 } 1573 len -= sent; 1574 offset += sent; 1575 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1576 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1577 1578 if (len == 0) { 1579 err = 0; 1580 peer_device->device->send_cnt += size >> 9; 1581 } 1582 return err; 1583 } 1584 1585 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1586 { 1587 struct bio_vec bvec; 1588 struct bvec_iter iter; 1589 1590 /* hint all but last page with MSG_MORE */ 1591 bio_for_each_segment(bvec, bio, iter) { 1592 int err; 1593 1594 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1595 bvec.bv_offset, bvec.bv_len, 1596 bio_iter_last(bvec, iter) 1597 ? 0 : MSG_MORE); 1598 if (err) 1599 return err; 1600 } 1601 return 0; 1602 } 1603 1604 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1605 { 1606 struct bio_vec bvec; 1607 struct bvec_iter iter; 1608 1609 /* hint all but last page with MSG_MORE */ 1610 bio_for_each_segment(bvec, bio, iter) { 1611 int err; 1612 1613 err = _drbd_send_page(peer_device, bvec.bv_page, 1614 bvec.bv_offset, bvec.bv_len, 1615 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1616 if (err) 1617 return err; 1618 } 1619 return 0; 1620 } 1621 1622 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1623 struct drbd_peer_request *peer_req) 1624 { 1625 struct page *page = peer_req->pages; 1626 unsigned len = peer_req->i.size; 1627 int err; 1628 1629 /* hint all but last page with MSG_MORE */ 1630 page_chain_for_each(page) { 1631 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1632 1633 err = _drbd_send_page(peer_device, page, 0, l, 1634 page_chain_next(page) ? MSG_MORE : 0); 1635 if (err) 1636 return err; 1637 len -= l; 1638 } 1639 return 0; 1640 } 1641 1642 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1643 struct bio *bio) 1644 { 1645 if (connection->agreed_pro_version >= 95) 1646 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1647 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1648 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1649 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1650 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? 1651 ((connection->agreed_features & DRBD_FF_WZEROES) ? 1652 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0)) 1653 : DP_DISCARD) 1654 : 0); 1655 else 1656 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1657 } 1658 1659 /* Used to send write or TRIM aka REQ_OP_DISCARD requests 1660 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1661 */ 1662 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1663 { 1664 struct drbd_device *device = peer_device->device; 1665 struct drbd_socket *sock; 1666 struct p_data *p; 1667 void *digest_out; 1668 unsigned int dp_flags = 0; 1669 int digest_size; 1670 int err; 1671 1672 sock = &peer_device->connection->data; 1673 p = drbd_prepare_command(peer_device, sock); 1674 digest_size = peer_device->connection->integrity_tfm ? 1675 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1676 1677 if (!p) 1678 return -EIO; 1679 p->sector = cpu_to_be64(req->i.sector); 1680 p->block_id = (unsigned long)req; 1681 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1682 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1683 if (device->state.conn >= C_SYNC_SOURCE && 1684 device->state.conn <= C_PAUSED_SYNC_T) 1685 dp_flags |= DP_MAY_SET_IN_SYNC; 1686 if (peer_device->connection->agreed_pro_version >= 100) { 1687 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1688 dp_flags |= DP_SEND_RECEIVE_ACK; 1689 /* During resync, request an explicit write ack, 1690 * even in protocol != C */ 1691 if (req->rq_state & RQ_EXP_WRITE_ACK 1692 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1693 dp_flags |= DP_SEND_WRITE_ACK; 1694 } 1695 p->dp_flags = cpu_to_be32(dp_flags); 1696 1697 if (dp_flags & (DP_DISCARD|DP_ZEROES)) { 1698 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM; 1699 struct p_trim *t = (struct p_trim*)p; 1700 t->size = cpu_to_be32(req->i.size); 1701 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0); 1702 goto out; 1703 } 1704 digest_out = p + 1; 1705 1706 /* our digest is still only over the payload. 1707 * TRIM does not carry any payload. */ 1708 if (digest_size) 1709 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1710 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1711 sizeof(*p) + digest_size, NULL, req->i.size); 1712 if (!err) { 1713 /* For protocol A, we have to memcpy the payload into 1714 * socket buffers, as we may complete right away 1715 * as soon as we handed it over to tcp, at which point the data 1716 * pages may become invalid. 1717 * 1718 * For data-integrity enabled, we copy it as well, so we can be 1719 * sure that even if the bio pages may still be modified, it 1720 * won't change the data on the wire, thus if the digest checks 1721 * out ok after sending on this side, but does not fit on the 1722 * receiving side, we sure have detected corruption elsewhere. 1723 */ 1724 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1725 err = _drbd_send_bio(peer_device, req->master_bio); 1726 else 1727 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1728 1729 /* double check digest, sometimes buffers have been modified in flight. */ 1730 if (digest_size > 0 && digest_size <= 64) { 1731 /* 64 byte, 512 bit, is the largest digest size 1732 * currently supported in kernel crypto. */ 1733 unsigned char digest[64]; 1734 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1735 if (memcmp(p + 1, digest, digest_size)) { 1736 drbd_warn(device, 1737 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1738 (unsigned long long)req->i.sector, req->i.size); 1739 } 1740 } /* else if (digest_size > 64) { 1741 ... Be noisy about digest too large ... 1742 } */ 1743 } 1744 out: 1745 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1746 1747 return err; 1748 } 1749 1750 /* answer packet, used to send data back for read requests: 1751 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1752 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1753 */ 1754 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1755 struct drbd_peer_request *peer_req) 1756 { 1757 struct drbd_device *device = peer_device->device; 1758 struct drbd_socket *sock; 1759 struct p_data *p; 1760 int err; 1761 int digest_size; 1762 1763 sock = &peer_device->connection->data; 1764 p = drbd_prepare_command(peer_device, sock); 1765 1766 digest_size = peer_device->connection->integrity_tfm ? 1767 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1768 1769 if (!p) 1770 return -EIO; 1771 p->sector = cpu_to_be64(peer_req->i.sector); 1772 p->block_id = peer_req->block_id; 1773 p->seq_num = 0; /* unused */ 1774 p->dp_flags = 0; 1775 if (digest_size) 1776 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1777 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1778 if (!err) 1779 err = _drbd_send_zc_ee(peer_device, peer_req); 1780 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1781 1782 return err; 1783 } 1784 1785 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1786 { 1787 struct drbd_socket *sock; 1788 struct p_block_desc *p; 1789 1790 sock = &peer_device->connection->data; 1791 p = drbd_prepare_command(peer_device, sock); 1792 if (!p) 1793 return -EIO; 1794 p->sector = cpu_to_be64(req->i.sector); 1795 p->blksize = cpu_to_be32(req->i.size); 1796 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1797 } 1798 1799 /* 1800 drbd_send distinguishes two cases: 1801 1802 Packets sent via the data socket "sock" 1803 and packets sent via the meta data socket "msock" 1804 1805 sock msock 1806 -----------------+-------------------------+------------------------------ 1807 timeout conf.timeout / 2 conf.timeout / 2 1808 timeout action send a ping via msock Abort communication 1809 and close all sockets 1810 */ 1811 1812 /* 1813 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1814 */ 1815 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1816 void *buf, size_t size, unsigned msg_flags) 1817 { 1818 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1819 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1820 int rv, sent = 0; 1821 1822 if (!sock) 1823 return -EBADR; 1824 1825 /* THINK if (signal_pending) return ... ? */ 1826 1827 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &iov, 1, size); 1828 1829 if (sock == connection->data.socket) { 1830 rcu_read_lock(); 1831 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1832 rcu_read_unlock(); 1833 drbd_update_congested(connection); 1834 } 1835 do { 1836 rv = sock_sendmsg(sock, &msg); 1837 if (rv == -EAGAIN) { 1838 if (we_should_drop_the_connection(connection, sock)) 1839 break; 1840 else 1841 continue; 1842 } 1843 if (rv == -EINTR) { 1844 flush_signals(current); 1845 rv = 0; 1846 } 1847 if (rv < 0) 1848 break; 1849 sent += rv; 1850 } while (sent < size); 1851 1852 if (sock == connection->data.socket) 1853 clear_bit(NET_CONGESTED, &connection->flags); 1854 1855 if (rv <= 0) { 1856 if (rv != -EAGAIN) { 1857 drbd_err(connection, "%s_sendmsg returned %d\n", 1858 sock == connection->meta.socket ? "msock" : "sock", 1859 rv); 1860 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1861 } else 1862 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1863 } 1864 1865 return sent; 1866 } 1867 1868 /* 1869 * drbd_send_all - Send an entire buffer 1870 * 1871 * Returns 0 upon success and a negative error value otherwise. 1872 */ 1873 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1874 size_t size, unsigned msg_flags) 1875 { 1876 int err; 1877 1878 err = drbd_send(connection, sock, buffer, size, msg_flags); 1879 if (err < 0) 1880 return err; 1881 if (err != size) 1882 return -EIO; 1883 return 0; 1884 } 1885 1886 static int drbd_open(struct block_device *bdev, fmode_t mode) 1887 { 1888 struct drbd_device *device = bdev->bd_disk->private_data; 1889 unsigned long flags; 1890 int rv = 0; 1891 1892 mutex_lock(&drbd_main_mutex); 1893 spin_lock_irqsave(&device->resource->req_lock, flags); 1894 /* to have a stable device->state.role 1895 * and no race with updating open_cnt */ 1896 1897 if (device->state.role != R_PRIMARY) { 1898 if (mode & FMODE_WRITE) 1899 rv = -EROFS; 1900 else if (!drbd_allow_oos) 1901 rv = -EMEDIUMTYPE; 1902 } 1903 1904 if (!rv) 1905 device->open_cnt++; 1906 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1907 mutex_unlock(&drbd_main_mutex); 1908 1909 return rv; 1910 } 1911 1912 static void drbd_release(struct gendisk *gd, fmode_t mode) 1913 { 1914 struct drbd_device *device = gd->private_data; 1915 mutex_lock(&drbd_main_mutex); 1916 device->open_cnt--; 1917 mutex_unlock(&drbd_main_mutex); 1918 } 1919 1920 /* need to hold resource->req_lock */ 1921 void drbd_queue_unplug(struct drbd_device *device) 1922 { 1923 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1924 D_ASSERT(device, device->state.role == R_PRIMARY); 1925 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1926 drbd_queue_work_if_unqueued( 1927 &first_peer_device(device)->connection->sender_work, 1928 &device->unplug_work); 1929 } 1930 } 1931 } 1932 1933 static void drbd_set_defaults(struct drbd_device *device) 1934 { 1935 /* Beware! The actual layout differs 1936 * between big endian and little endian */ 1937 device->state = (union drbd_dev_state) { 1938 { .role = R_SECONDARY, 1939 .peer = R_UNKNOWN, 1940 .conn = C_STANDALONE, 1941 .disk = D_DISKLESS, 1942 .pdsk = D_UNKNOWN, 1943 } }; 1944 } 1945 1946 void drbd_init_set_defaults(struct drbd_device *device) 1947 { 1948 /* the memset(,0,) did most of this. 1949 * note: only assignments, no allocation in here */ 1950 1951 drbd_set_defaults(device); 1952 1953 atomic_set(&device->ap_bio_cnt, 0); 1954 atomic_set(&device->ap_actlog_cnt, 0); 1955 atomic_set(&device->ap_pending_cnt, 0); 1956 atomic_set(&device->rs_pending_cnt, 0); 1957 atomic_set(&device->unacked_cnt, 0); 1958 atomic_set(&device->local_cnt, 0); 1959 atomic_set(&device->pp_in_use_by_net, 0); 1960 atomic_set(&device->rs_sect_in, 0); 1961 atomic_set(&device->rs_sect_ev, 0); 1962 atomic_set(&device->ap_in_flight, 0); 1963 atomic_set(&device->md_io.in_use, 0); 1964 1965 mutex_init(&device->own_state_mutex); 1966 device->state_mutex = &device->own_state_mutex; 1967 1968 spin_lock_init(&device->al_lock); 1969 spin_lock_init(&device->peer_seq_lock); 1970 1971 INIT_LIST_HEAD(&device->active_ee); 1972 INIT_LIST_HEAD(&device->sync_ee); 1973 INIT_LIST_HEAD(&device->done_ee); 1974 INIT_LIST_HEAD(&device->read_ee); 1975 INIT_LIST_HEAD(&device->net_ee); 1976 INIT_LIST_HEAD(&device->resync_reads); 1977 INIT_LIST_HEAD(&device->resync_work.list); 1978 INIT_LIST_HEAD(&device->unplug_work.list); 1979 INIT_LIST_HEAD(&device->bm_io_work.w.list); 1980 INIT_LIST_HEAD(&device->pending_master_completion[0]); 1981 INIT_LIST_HEAD(&device->pending_master_completion[1]); 1982 INIT_LIST_HEAD(&device->pending_completion[0]); 1983 INIT_LIST_HEAD(&device->pending_completion[1]); 1984 1985 device->resync_work.cb = w_resync_timer; 1986 device->unplug_work.cb = w_send_write_hint; 1987 device->bm_io_work.w.cb = w_bitmap_io; 1988 1989 timer_setup(&device->resync_timer, resync_timer_fn, 0); 1990 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 1991 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 1992 timer_setup(&device->request_timer, request_timer_fn, 0); 1993 1994 init_waitqueue_head(&device->misc_wait); 1995 init_waitqueue_head(&device->state_wait); 1996 init_waitqueue_head(&device->ee_wait); 1997 init_waitqueue_head(&device->al_wait); 1998 init_waitqueue_head(&device->seq_wait); 1999 2000 device->resync_wenr = LC_FREE; 2001 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2002 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2003 } 2004 2005 void drbd_set_my_capacity(struct drbd_device *device, sector_t size) 2006 { 2007 char ppb[10]; 2008 2009 set_capacity_and_notify(device->vdisk, size); 2010 2011 drbd_info(device, "size = %s (%llu KB)\n", 2012 ppsize(ppb, size>>1), (unsigned long long)size>>1); 2013 } 2014 2015 void drbd_device_cleanup(struct drbd_device *device) 2016 { 2017 int i; 2018 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2019 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2020 first_peer_device(device)->connection->receiver.t_state); 2021 2022 device->al_writ_cnt = 2023 device->bm_writ_cnt = 2024 device->read_cnt = 2025 device->recv_cnt = 2026 device->send_cnt = 2027 device->writ_cnt = 2028 device->p_size = 2029 device->rs_start = 2030 device->rs_total = 2031 device->rs_failed = 0; 2032 device->rs_last_events = 0; 2033 device->rs_last_sect_ev = 0; 2034 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2035 device->rs_mark_left[i] = 0; 2036 device->rs_mark_time[i] = 0; 2037 } 2038 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2039 2040 set_capacity_and_notify(device->vdisk, 0); 2041 if (device->bitmap) { 2042 /* maybe never allocated. */ 2043 drbd_bm_resize(device, 0, 1); 2044 drbd_bm_cleanup(device); 2045 } 2046 2047 drbd_backing_dev_free(device, device->ldev); 2048 device->ldev = NULL; 2049 2050 clear_bit(AL_SUSPENDED, &device->flags); 2051 2052 D_ASSERT(device, list_empty(&device->active_ee)); 2053 D_ASSERT(device, list_empty(&device->sync_ee)); 2054 D_ASSERT(device, list_empty(&device->done_ee)); 2055 D_ASSERT(device, list_empty(&device->read_ee)); 2056 D_ASSERT(device, list_empty(&device->net_ee)); 2057 D_ASSERT(device, list_empty(&device->resync_reads)); 2058 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2059 D_ASSERT(device, list_empty(&device->resync_work.list)); 2060 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2061 2062 drbd_set_defaults(device); 2063 } 2064 2065 2066 static void drbd_destroy_mempools(void) 2067 { 2068 struct page *page; 2069 2070 while (drbd_pp_pool) { 2071 page = drbd_pp_pool; 2072 drbd_pp_pool = (struct page *)page_private(page); 2073 __free_page(page); 2074 drbd_pp_vacant--; 2075 } 2076 2077 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2078 2079 bioset_exit(&drbd_io_bio_set); 2080 bioset_exit(&drbd_md_io_bio_set); 2081 mempool_exit(&drbd_md_io_page_pool); 2082 mempool_exit(&drbd_ee_mempool); 2083 mempool_exit(&drbd_request_mempool); 2084 kmem_cache_destroy(drbd_ee_cache); 2085 kmem_cache_destroy(drbd_request_cache); 2086 kmem_cache_destroy(drbd_bm_ext_cache); 2087 kmem_cache_destroy(drbd_al_ext_cache); 2088 2089 drbd_ee_cache = NULL; 2090 drbd_request_cache = NULL; 2091 drbd_bm_ext_cache = NULL; 2092 drbd_al_ext_cache = NULL; 2093 2094 return; 2095 } 2096 2097 static int drbd_create_mempools(void) 2098 { 2099 struct page *page; 2100 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2101 int i, ret; 2102 2103 /* caches */ 2104 drbd_request_cache = kmem_cache_create( 2105 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2106 if (drbd_request_cache == NULL) 2107 goto Enomem; 2108 2109 drbd_ee_cache = kmem_cache_create( 2110 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2111 if (drbd_ee_cache == NULL) 2112 goto Enomem; 2113 2114 drbd_bm_ext_cache = kmem_cache_create( 2115 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2116 if (drbd_bm_ext_cache == NULL) 2117 goto Enomem; 2118 2119 drbd_al_ext_cache = kmem_cache_create( 2120 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2121 if (drbd_al_ext_cache == NULL) 2122 goto Enomem; 2123 2124 /* mempools */ 2125 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2126 if (ret) 2127 goto Enomem; 2128 2129 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2130 BIOSET_NEED_BVECS); 2131 if (ret) 2132 goto Enomem; 2133 2134 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2135 if (ret) 2136 goto Enomem; 2137 2138 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2139 drbd_request_cache); 2140 if (ret) 2141 goto Enomem; 2142 2143 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2144 if (ret) 2145 goto Enomem; 2146 2147 for (i = 0; i < number; i++) { 2148 page = alloc_page(GFP_HIGHUSER); 2149 if (!page) 2150 goto Enomem; 2151 set_page_private(page, (unsigned long)drbd_pp_pool); 2152 drbd_pp_pool = page; 2153 } 2154 drbd_pp_vacant = number; 2155 2156 return 0; 2157 2158 Enomem: 2159 drbd_destroy_mempools(); /* in case we allocated some */ 2160 return -ENOMEM; 2161 } 2162 2163 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2164 { 2165 int rr; 2166 2167 rr = drbd_free_peer_reqs(device, &device->active_ee); 2168 if (rr) 2169 drbd_err(device, "%d EEs in active list found!\n", rr); 2170 2171 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2172 if (rr) 2173 drbd_err(device, "%d EEs in sync list found!\n", rr); 2174 2175 rr = drbd_free_peer_reqs(device, &device->read_ee); 2176 if (rr) 2177 drbd_err(device, "%d EEs in read list found!\n", rr); 2178 2179 rr = drbd_free_peer_reqs(device, &device->done_ee); 2180 if (rr) 2181 drbd_err(device, "%d EEs in done list found!\n", rr); 2182 2183 rr = drbd_free_peer_reqs(device, &device->net_ee); 2184 if (rr) 2185 drbd_err(device, "%d EEs in net list found!\n", rr); 2186 } 2187 2188 /* caution. no locking. */ 2189 void drbd_destroy_device(struct kref *kref) 2190 { 2191 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2192 struct drbd_resource *resource = device->resource; 2193 struct drbd_peer_device *peer_device, *tmp_peer_device; 2194 2195 timer_shutdown_sync(&device->request_timer); 2196 2197 /* paranoia asserts */ 2198 D_ASSERT(device, device->open_cnt == 0); 2199 /* end paranoia asserts */ 2200 2201 /* cleanup stuff that may have been allocated during 2202 * device (re-)configuration or state changes */ 2203 2204 drbd_backing_dev_free(device, device->ldev); 2205 device->ldev = NULL; 2206 2207 drbd_release_all_peer_reqs(device); 2208 2209 lc_destroy(device->act_log); 2210 lc_destroy(device->resync); 2211 2212 kfree(device->p_uuid); 2213 /* device->p_uuid = NULL; */ 2214 2215 if (device->bitmap) /* should no longer be there. */ 2216 drbd_bm_cleanup(device); 2217 __free_page(device->md_io.page); 2218 put_disk(device->vdisk); 2219 kfree(device->rs_plan_s); 2220 2221 /* not for_each_connection(connection, resource): 2222 * those may have been cleaned up and disassociated already. 2223 */ 2224 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2225 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2226 kfree(peer_device); 2227 } 2228 if (device->submit.wq) 2229 destroy_workqueue(device->submit.wq); 2230 kfree(device); 2231 kref_put(&resource->kref, drbd_destroy_resource); 2232 } 2233 2234 /* One global retry thread, if we need to push back some bio and have it 2235 * reinserted through our make request function. 2236 */ 2237 static struct retry_worker { 2238 struct workqueue_struct *wq; 2239 struct work_struct worker; 2240 2241 spinlock_t lock; 2242 struct list_head writes; 2243 } retry; 2244 2245 static void do_retry(struct work_struct *ws) 2246 { 2247 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2248 LIST_HEAD(writes); 2249 struct drbd_request *req, *tmp; 2250 2251 spin_lock_irq(&retry->lock); 2252 list_splice_init(&retry->writes, &writes); 2253 spin_unlock_irq(&retry->lock); 2254 2255 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2256 struct drbd_device *device = req->device; 2257 struct bio *bio = req->master_bio; 2258 bool expected; 2259 2260 expected = 2261 expect(device, atomic_read(&req->completion_ref) == 0) && 2262 expect(device, req->rq_state & RQ_POSTPONED) && 2263 expect(device, (req->rq_state & RQ_LOCAL_PENDING) == 0 || 2264 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2265 2266 if (!expected) 2267 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2268 req, atomic_read(&req->completion_ref), 2269 req->rq_state); 2270 2271 /* We still need to put one kref associated with the 2272 * "completion_ref" going zero in the code path that queued it 2273 * here. The request object may still be referenced by a 2274 * frozen local req->private_bio, in case we force-detached. 2275 */ 2276 kref_put(&req->kref, drbd_req_destroy); 2277 2278 /* A single suspended or otherwise blocking device may stall 2279 * all others as well. Fortunately, this code path is to 2280 * recover from a situation that "should not happen": 2281 * concurrent writes in multi-primary setup. 2282 * In a "normal" lifecycle, this workqueue is supposed to be 2283 * destroyed without ever doing anything. 2284 * If it turns out to be an issue anyways, we can do per 2285 * resource (replication group) or per device (minor) retry 2286 * workqueues instead. 2287 */ 2288 2289 /* We are not just doing submit_bio_noacct(), 2290 * as we want to keep the start_time information. */ 2291 inc_ap_bio(device); 2292 __drbd_make_request(device, bio); 2293 } 2294 } 2295 2296 /* called via drbd_req_put_completion_ref(), 2297 * holds resource->req_lock */ 2298 void drbd_restart_request(struct drbd_request *req) 2299 { 2300 unsigned long flags; 2301 spin_lock_irqsave(&retry.lock, flags); 2302 list_move_tail(&req->tl_requests, &retry.writes); 2303 spin_unlock_irqrestore(&retry.lock, flags); 2304 2305 /* Drop the extra reference that would otherwise 2306 * have been dropped by complete_master_bio. 2307 * do_retry() needs to grab a new one. */ 2308 dec_ap_bio(req->device); 2309 2310 queue_work(retry.wq, &retry.worker); 2311 } 2312 2313 void drbd_destroy_resource(struct kref *kref) 2314 { 2315 struct drbd_resource *resource = 2316 container_of(kref, struct drbd_resource, kref); 2317 2318 idr_destroy(&resource->devices); 2319 free_cpumask_var(resource->cpu_mask); 2320 kfree(resource->name); 2321 kfree(resource); 2322 } 2323 2324 void drbd_free_resource(struct drbd_resource *resource) 2325 { 2326 struct drbd_connection *connection, *tmp; 2327 2328 for_each_connection_safe(connection, tmp, resource) { 2329 list_del(&connection->connections); 2330 drbd_debugfs_connection_cleanup(connection); 2331 kref_put(&connection->kref, drbd_destroy_connection); 2332 } 2333 drbd_debugfs_resource_cleanup(resource); 2334 kref_put(&resource->kref, drbd_destroy_resource); 2335 } 2336 2337 static void drbd_cleanup(void) 2338 { 2339 unsigned int i; 2340 struct drbd_device *device; 2341 struct drbd_resource *resource, *tmp; 2342 2343 /* first remove proc, 2344 * drbdsetup uses it's presence to detect 2345 * whether DRBD is loaded. 2346 * If we would get stuck in proc removal, 2347 * but have netlink already deregistered, 2348 * some drbdsetup commands may wait forever 2349 * for an answer. 2350 */ 2351 if (drbd_proc) 2352 remove_proc_entry("drbd", NULL); 2353 2354 if (retry.wq) 2355 destroy_workqueue(retry.wq); 2356 2357 drbd_genl_unregister(); 2358 2359 idr_for_each_entry(&drbd_devices, device, i) 2360 drbd_delete_device(device); 2361 2362 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2363 for_each_resource_safe(resource, tmp, &drbd_resources) { 2364 list_del(&resource->resources); 2365 drbd_free_resource(resource); 2366 } 2367 2368 drbd_debugfs_cleanup(); 2369 2370 drbd_destroy_mempools(); 2371 unregister_blkdev(DRBD_MAJOR, "drbd"); 2372 2373 idr_destroy(&drbd_devices); 2374 2375 pr_info("module cleanup done.\n"); 2376 } 2377 2378 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2379 { 2380 spin_lock_init(&wq->q_lock); 2381 INIT_LIST_HEAD(&wq->q); 2382 init_waitqueue_head(&wq->q_wait); 2383 } 2384 2385 struct completion_work { 2386 struct drbd_work w; 2387 struct completion done; 2388 }; 2389 2390 static int w_complete(struct drbd_work *w, int cancel) 2391 { 2392 struct completion_work *completion_work = 2393 container_of(w, struct completion_work, w); 2394 2395 complete(&completion_work->done); 2396 return 0; 2397 } 2398 2399 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2400 { 2401 struct completion_work completion_work; 2402 2403 completion_work.w.cb = w_complete; 2404 init_completion(&completion_work.done); 2405 drbd_queue_work(work_queue, &completion_work.w); 2406 wait_for_completion(&completion_work.done); 2407 } 2408 2409 struct drbd_resource *drbd_find_resource(const char *name) 2410 { 2411 struct drbd_resource *resource; 2412 2413 if (!name || !name[0]) 2414 return NULL; 2415 2416 rcu_read_lock(); 2417 for_each_resource_rcu(resource, &drbd_resources) { 2418 if (!strcmp(resource->name, name)) { 2419 kref_get(&resource->kref); 2420 goto found; 2421 } 2422 } 2423 resource = NULL; 2424 found: 2425 rcu_read_unlock(); 2426 return resource; 2427 } 2428 2429 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2430 void *peer_addr, int peer_addr_len) 2431 { 2432 struct drbd_resource *resource; 2433 struct drbd_connection *connection; 2434 2435 rcu_read_lock(); 2436 for_each_resource_rcu(resource, &drbd_resources) { 2437 for_each_connection_rcu(connection, resource) { 2438 if (connection->my_addr_len == my_addr_len && 2439 connection->peer_addr_len == peer_addr_len && 2440 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2441 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2442 kref_get(&connection->kref); 2443 goto found; 2444 } 2445 } 2446 } 2447 connection = NULL; 2448 found: 2449 rcu_read_unlock(); 2450 return connection; 2451 } 2452 2453 static int drbd_alloc_socket(struct drbd_socket *socket) 2454 { 2455 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2456 if (!socket->rbuf) 2457 return -ENOMEM; 2458 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2459 if (!socket->sbuf) 2460 return -ENOMEM; 2461 return 0; 2462 } 2463 2464 static void drbd_free_socket(struct drbd_socket *socket) 2465 { 2466 free_page((unsigned long) socket->sbuf); 2467 free_page((unsigned long) socket->rbuf); 2468 } 2469 2470 void conn_free_crypto(struct drbd_connection *connection) 2471 { 2472 drbd_free_sock(connection); 2473 2474 crypto_free_shash(connection->csums_tfm); 2475 crypto_free_shash(connection->verify_tfm); 2476 crypto_free_shash(connection->cram_hmac_tfm); 2477 crypto_free_shash(connection->integrity_tfm); 2478 crypto_free_shash(connection->peer_integrity_tfm); 2479 kfree(connection->int_dig_in); 2480 kfree(connection->int_dig_vv); 2481 2482 connection->csums_tfm = NULL; 2483 connection->verify_tfm = NULL; 2484 connection->cram_hmac_tfm = NULL; 2485 connection->integrity_tfm = NULL; 2486 connection->peer_integrity_tfm = NULL; 2487 connection->int_dig_in = NULL; 2488 connection->int_dig_vv = NULL; 2489 } 2490 2491 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2492 { 2493 struct drbd_connection *connection; 2494 cpumask_var_t new_cpu_mask; 2495 int err; 2496 2497 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2498 return -ENOMEM; 2499 2500 /* silently ignore cpu mask on UP kernel */ 2501 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2502 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2503 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2504 if (err == -EOVERFLOW) { 2505 /* So what. mask it out. */ 2506 cpumask_var_t tmp_cpu_mask; 2507 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2508 cpumask_setall(tmp_cpu_mask); 2509 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2510 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2511 res_opts->cpu_mask, 2512 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2513 nr_cpu_ids); 2514 free_cpumask_var(tmp_cpu_mask); 2515 err = 0; 2516 } 2517 } 2518 if (err) { 2519 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2520 /* retcode = ERR_CPU_MASK_PARSE; */ 2521 goto fail; 2522 } 2523 } 2524 resource->res_opts = *res_opts; 2525 if (cpumask_empty(new_cpu_mask)) 2526 drbd_calc_cpu_mask(&new_cpu_mask); 2527 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2528 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2529 for_each_connection_rcu(connection, resource) { 2530 connection->receiver.reset_cpu_mask = 1; 2531 connection->ack_receiver.reset_cpu_mask = 1; 2532 connection->worker.reset_cpu_mask = 1; 2533 } 2534 } 2535 err = 0; 2536 2537 fail: 2538 free_cpumask_var(new_cpu_mask); 2539 return err; 2540 2541 } 2542 2543 struct drbd_resource *drbd_create_resource(const char *name) 2544 { 2545 struct drbd_resource *resource; 2546 2547 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2548 if (!resource) 2549 goto fail; 2550 resource->name = kstrdup(name, GFP_KERNEL); 2551 if (!resource->name) 2552 goto fail_free_resource; 2553 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2554 goto fail_free_name; 2555 kref_init(&resource->kref); 2556 idr_init(&resource->devices); 2557 INIT_LIST_HEAD(&resource->connections); 2558 resource->write_ordering = WO_BDEV_FLUSH; 2559 list_add_tail_rcu(&resource->resources, &drbd_resources); 2560 mutex_init(&resource->conf_update); 2561 mutex_init(&resource->adm_mutex); 2562 spin_lock_init(&resource->req_lock); 2563 drbd_debugfs_resource_add(resource); 2564 return resource; 2565 2566 fail_free_name: 2567 kfree(resource->name); 2568 fail_free_resource: 2569 kfree(resource); 2570 fail: 2571 return NULL; 2572 } 2573 2574 /* caller must be under adm_mutex */ 2575 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2576 { 2577 struct drbd_resource *resource; 2578 struct drbd_connection *connection; 2579 2580 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2581 if (!connection) 2582 return NULL; 2583 2584 if (drbd_alloc_socket(&connection->data)) 2585 goto fail; 2586 if (drbd_alloc_socket(&connection->meta)) 2587 goto fail; 2588 2589 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2590 if (!connection->current_epoch) 2591 goto fail; 2592 2593 INIT_LIST_HEAD(&connection->transfer_log); 2594 2595 INIT_LIST_HEAD(&connection->current_epoch->list); 2596 connection->epochs = 1; 2597 spin_lock_init(&connection->epoch_lock); 2598 2599 connection->send.seen_any_write_yet = false; 2600 connection->send.current_epoch_nr = 0; 2601 connection->send.current_epoch_writes = 0; 2602 2603 resource = drbd_create_resource(name); 2604 if (!resource) 2605 goto fail; 2606 2607 connection->cstate = C_STANDALONE; 2608 mutex_init(&connection->cstate_mutex); 2609 init_waitqueue_head(&connection->ping_wait); 2610 idr_init(&connection->peer_devices); 2611 2612 drbd_init_workqueue(&connection->sender_work); 2613 mutex_init(&connection->data.mutex); 2614 mutex_init(&connection->meta.mutex); 2615 2616 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2617 connection->receiver.connection = connection; 2618 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2619 connection->worker.connection = connection; 2620 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2621 connection->ack_receiver.connection = connection; 2622 2623 kref_init(&connection->kref); 2624 2625 connection->resource = resource; 2626 2627 if (set_resource_options(resource, res_opts)) 2628 goto fail_resource; 2629 2630 kref_get(&resource->kref); 2631 list_add_tail_rcu(&connection->connections, &resource->connections); 2632 drbd_debugfs_connection_add(connection); 2633 return connection; 2634 2635 fail_resource: 2636 list_del(&resource->resources); 2637 drbd_free_resource(resource); 2638 fail: 2639 kfree(connection->current_epoch); 2640 drbd_free_socket(&connection->meta); 2641 drbd_free_socket(&connection->data); 2642 kfree(connection); 2643 return NULL; 2644 } 2645 2646 void drbd_destroy_connection(struct kref *kref) 2647 { 2648 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2649 struct drbd_resource *resource = connection->resource; 2650 2651 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2652 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2653 kfree(connection->current_epoch); 2654 2655 idr_destroy(&connection->peer_devices); 2656 2657 drbd_free_socket(&connection->meta); 2658 drbd_free_socket(&connection->data); 2659 kfree(connection->int_dig_in); 2660 kfree(connection->int_dig_vv); 2661 kfree(connection); 2662 kref_put(&resource->kref, drbd_destroy_resource); 2663 } 2664 2665 static int init_submitter(struct drbd_device *device) 2666 { 2667 /* opencoded create_singlethread_workqueue(), 2668 * to be able to say "drbd%d", ..., minor */ 2669 device->submit.wq = 2670 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2671 if (!device->submit.wq) 2672 return -ENOMEM; 2673 2674 INIT_WORK(&device->submit.worker, do_submit); 2675 INIT_LIST_HEAD(&device->submit.writes); 2676 return 0; 2677 } 2678 2679 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2680 { 2681 struct drbd_resource *resource = adm_ctx->resource; 2682 struct drbd_connection *connection, *n; 2683 struct drbd_device *device; 2684 struct drbd_peer_device *peer_device, *tmp_peer_device; 2685 struct gendisk *disk; 2686 int id; 2687 int vnr = adm_ctx->volume; 2688 enum drbd_ret_code err = ERR_NOMEM; 2689 2690 device = minor_to_device(minor); 2691 if (device) 2692 return ERR_MINOR_OR_VOLUME_EXISTS; 2693 2694 /* GFP_KERNEL, we are outside of all write-out paths */ 2695 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2696 if (!device) 2697 return ERR_NOMEM; 2698 kref_init(&device->kref); 2699 2700 kref_get(&resource->kref); 2701 device->resource = resource; 2702 device->minor = minor; 2703 device->vnr = vnr; 2704 2705 drbd_init_set_defaults(device); 2706 2707 disk = blk_alloc_disk(NUMA_NO_NODE); 2708 if (!disk) 2709 goto out_no_disk; 2710 2711 device->vdisk = disk; 2712 device->rq_queue = disk->queue; 2713 2714 set_disk_ro(disk, true); 2715 2716 disk->major = DRBD_MAJOR; 2717 disk->first_minor = minor; 2718 disk->minors = 1; 2719 disk->fops = &drbd_ops; 2720 disk->flags |= GENHD_FL_NO_PART; 2721 sprintf(disk->disk_name, "drbd%d", minor); 2722 disk->private_data = device; 2723 2724 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, disk->queue); 2725 blk_queue_write_cache(disk->queue, true, true); 2726 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2727 This triggers a max_bio_size message upon first attach or connect */ 2728 blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2729 2730 device->md_io.page = alloc_page(GFP_KERNEL); 2731 if (!device->md_io.page) 2732 goto out_no_io_page; 2733 2734 if (drbd_bm_init(device)) 2735 goto out_no_bitmap; 2736 device->read_requests = RB_ROOT; 2737 device->write_requests = RB_ROOT; 2738 2739 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2740 if (id < 0) { 2741 if (id == -ENOSPC) 2742 err = ERR_MINOR_OR_VOLUME_EXISTS; 2743 goto out_no_minor_idr; 2744 } 2745 kref_get(&device->kref); 2746 2747 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2748 if (id < 0) { 2749 if (id == -ENOSPC) 2750 err = ERR_MINOR_OR_VOLUME_EXISTS; 2751 goto out_idr_remove_minor; 2752 } 2753 kref_get(&device->kref); 2754 2755 INIT_LIST_HEAD(&device->peer_devices); 2756 INIT_LIST_HEAD(&device->pending_bitmap_io); 2757 for_each_connection(connection, resource) { 2758 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2759 if (!peer_device) 2760 goto out_idr_remove_from_resource; 2761 peer_device->connection = connection; 2762 peer_device->device = device; 2763 2764 list_add(&peer_device->peer_devices, &device->peer_devices); 2765 kref_get(&device->kref); 2766 2767 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2768 if (id < 0) { 2769 if (id == -ENOSPC) 2770 err = ERR_INVALID_REQUEST; 2771 goto out_idr_remove_from_resource; 2772 } 2773 kref_get(&connection->kref); 2774 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2775 } 2776 2777 if (init_submitter(device)) { 2778 err = ERR_NOMEM; 2779 goto out_idr_remove_from_resource; 2780 } 2781 2782 err = add_disk(disk); 2783 if (err) 2784 goto out_destroy_workqueue; 2785 2786 /* inherit the connection state */ 2787 device->state.conn = first_connection(resource)->cstate; 2788 if (device->state.conn == C_WF_REPORT_PARAMS) { 2789 for_each_peer_device(peer_device, device) 2790 drbd_connected(peer_device); 2791 } 2792 /* move to create_peer_device() */ 2793 for_each_peer_device(peer_device, device) 2794 drbd_debugfs_peer_device_add(peer_device); 2795 drbd_debugfs_device_add(device); 2796 return NO_ERROR; 2797 2798 out_destroy_workqueue: 2799 destroy_workqueue(device->submit.wq); 2800 out_idr_remove_from_resource: 2801 for_each_connection_safe(connection, n, resource) { 2802 peer_device = idr_remove(&connection->peer_devices, vnr); 2803 if (peer_device) 2804 kref_put(&connection->kref, drbd_destroy_connection); 2805 } 2806 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2807 list_del(&peer_device->peer_devices); 2808 kfree(peer_device); 2809 } 2810 idr_remove(&resource->devices, vnr); 2811 out_idr_remove_minor: 2812 idr_remove(&drbd_devices, minor); 2813 synchronize_rcu(); 2814 out_no_minor_idr: 2815 drbd_bm_cleanup(device); 2816 out_no_bitmap: 2817 __free_page(device->md_io.page); 2818 out_no_io_page: 2819 put_disk(disk); 2820 out_no_disk: 2821 kref_put(&resource->kref, drbd_destroy_resource); 2822 kfree(device); 2823 return err; 2824 } 2825 2826 void drbd_delete_device(struct drbd_device *device) 2827 { 2828 struct drbd_resource *resource = device->resource; 2829 struct drbd_connection *connection; 2830 struct drbd_peer_device *peer_device; 2831 2832 /* move to free_peer_device() */ 2833 for_each_peer_device(peer_device, device) 2834 drbd_debugfs_peer_device_cleanup(peer_device); 2835 drbd_debugfs_device_cleanup(device); 2836 for_each_connection(connection, resource) { 2837 idr_remove(&connection->peer_devices, device->vnr); 2838 kref_put(&device->kref, drbd_destroy_device); 2839 } 2840 idr_remove(&resource->devices, device->vnr); 2841 kref_put(&device->kref, drbd_destroy_device); 2842 idr_remove(&drbd_devices, device_to_minor(device)); 2843 kref_put(&device->kref, drbd_destroy_device); 2844 del_gendisk(device->vdisk); 2845 synchronize_rcu(); 2846 kref_put(&device->kref, drbd_destroy_device); 2847 } 2848 2849 static int __init drbd_init(void) 2850 { 2851 int err; 2852 2853 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2854 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2855 #ifdef MODULE 2856 return -EINVAL; 2857 #else 2858 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2859 #endif 2860 } 2861 2862 err = register_blkdev(DRBD_MAJOR, "drbd"); 2863 if (err) { 2864 pr_err("unable to register block device major %d\n", 2865 DRBD_MAJOR); 2866 return err; 2867 } 2868 2869 /* 2870 * allocate all necessary structs 2871 */ 2872 init_waitqueue_head(&drbd_pp_wait); 2873 2874 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2875 idr_init(&drbd_devices); 2876 2877 mutex_init(&resources_mutex); 2878 INIT_LIST_HEAD(&drbd_resources); 2879 2880 err = drbd_genl_register(); 2881 if (err) { 2882 pr_err("unable to register generic netlink family\n"); 2883 goto fail; 2884 } 2885 2886 err = drbd_create_mempools(); 2887 if (err) 2888 goto fail; 2889 2890 err = -ENOMEM; 2891 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 2892 if (!drbd_proc) { 2893 pr_err("unable to register proc file\n"); 2894 goto fail; 2895 } 2896 2897 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2898 if (!retry.wq) { 2899 pr_err("unable to create retry workqueue\n"); 2900 goto fail; 2901 } 2902 INIT_WORK(&retry.worker, do_retry); 2903 spin_lock_init(&retry.lock); 2904 INIT_LIST_HEAD(&retry.writes); 2905 2906 drbd_debugfs_init(); 2907 2908 pr_info("initialized. " 2909 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 2910 GENL_MAGIC_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 2911 pr_info("%s\n", drbd_buildtag()); 2912 pr_info("registered as block device major %d\n", DRBD_MAJOR); 2913 return 0; /* Success! */ 2914 2915 fail: 2916 drbd_cleanup(); 2917 if (err == -ENOMEM) 2918 pr_err("ran out of memory\n"); 2919 else 2920 pr_err("initialization failure\n"); 2921 return err; 2922 } 2923 2924 static void drbd_free_one_sock(struct drbd_socket *ds) 2925 { 2926 struct socket *s; 2927 mutex_lock(&ds->mutex); 2928 s = ds->socket; 2929 ds->socket = NULL; 2930 mutex_unlock(&ds->mutex); 2931 if (s) { 2932 /* so debugfs does not need to mutex_lock() */ 2933 synchronize_rcu(); 2934 kernel_sock_shutdown(s, SHUT_RDWR); 2935 sock_release(s); 2936 } 2937 } 2938 2939 void drbd_free_sock(struct drbd_connection *connection) 2940 { 2941 if (connection->data.socket) 2942 drbd_free_one_sock(&connection->data); 2943 if (connection->meta.socket) 2944 drbd_free_one_sock(&connection->meta); 2945 } 2946 2947 /* meta data management */ 2948 2949 void conn_md_sync(struct drbd_connection *connection) 2950 { 2951 struct drbd_peer_device *peer_device; 2952 int vnr; 2953 2954 rcu_read_lock(); 2955 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2956 struct drbd_device *device = peer_device->device; 2957 2958 kref_get(&device->kref); 2959 rcu_read_unlock(); 2960 drbd_md_sync(device); 2961 kref_put(&device->kref, drbd_destroy_device); 2962 rcu_read_lock(); 2963 } 2964 rcu_read_unlock(); 2965 } 2966 2967 /* aligned 4kByte */ 2968 struct meta_data_on_disk { 2969 u64 la_size_sect; /* last agreed size. */ 2970 u64 uuid[UI_SIZE]; /* UUIDs. */ 2971 u64 device_uuid; 2972 u64 reserved_u64_1; 2973 u32 flags; /* MDF */ 2974 u32 magic; 2975 u32 md_size_sect; 2976 u32 al_offset; /* offset to this block */ 2977 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 2978 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 2979 u32 bm_offset; /* offset to the bitmap, from here */ 2980 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 2981 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 2982 2983 /* see al_tr_number_to_on_disk_sector() */ 2984 u32 al_stripes; 2985 u32 al_stripe_size_4k; 2986 2987 u8 reserved_u8[4096 - (7*8 + 10*4)]; 2988 } __packed; 2989 2990 2991 2992 void drbd_md_write(struct drbd_device *device, void *b) 2993 { 2994 struct meta_data_on_disk *buffer = b; 2995 sector_t sector; 2996 int i; 2997 2998 memset(buffer, 0, sizeof(*buffer)); 2999 3000 buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk)); 3001 for (i = UI_CURRENT; i < UI_SIZE; i++) 3002 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3003 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3004 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3005 3006 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3007 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3008 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3009 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3010 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3011 3012 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3013 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3014 3015 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3016 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3017 3018 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3019 sector = device->ldev->md.md_offset; 3020 3021 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3022 /* this was a try anyways ... */ 3023 drbd_err(device, "meta data update failed!\n"); 3024 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3025 } 3026 } 3027 3028 /** 3029 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3030 * @device: DRBD device. 3031 */ 3032 void drbd_md_sync(struct drbd_device *device) 3033 { 3034 struct meta_data_on_disk *buffer; 3035 3036 /* Don't accidentally change the DRBD meta data layout. */ 3037 BUILD_BUG_ON(UI_SIZE != 4); 3038 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3039 3040 del_timer(&device->md_sync_timer); 3041 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3042 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3043 return; 3044 3045 /* We use here D_FAILED and not D_ATTACHING because we try to write 3046 * metadata even if we detach due to a disk failure! */ 3047 if (!get_ldev_if_state(device, D_FAILED)) 3048 return; 3049 3050 buffer = drbd_md_get_buffer(device, __func__); 3051 if (!buffer) 3052 goto out; 3053 3054 drbd_md_write(device, buffer); 3055 3056 /* Update device->ldev->md.la_size_sect, 3057 * since we updated it on metadata. */ 3058 device->ldev->md.la_size_sect = get_capacity(device->vdisk); 3059 3060 drbd_md_put_buffer(device); 3061 out: 3062 put_ldev(device); 3063 } 3064 3065 static int check_activity_log_stripe_size(struct drbd_device *device, 3066 struct meta_data_on_disk *on_disk, 3067 struct drbd_md *in_core) 3068 { 3069 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3070 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3071 u64 al_size_4k; 3072 3073 /* both not set: default to old fixed size activity log */ 3074 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3075 al_stripes = 1; 3076 al_stripe_size_4k = MD_32kB_SECT/8; 3077 } 3078 3079 /* some paranoia plausibility checks */ 3080 3081 /* we need both values to be set */ 3082 if (al_stripes == 0 || al_stripe_size_4k == 0) 3083 goto err; 3084 3085 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3086 3087 /* Upper limit of activity log area, to avoid potential overflow 3088 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3089 * than 72 * 4k blocks total only increases the amount of history, 3090 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3091 if (al_size_4k > (16 * 1024 * 1024/4)) 3092 goto err; 3093 3094 /* Lower limit: we need at least 8 transaction slots (32kB) 3095 * to not break existing setups */ 3096 if (al_size_4k < MD_32kB_SECT/8) 3097 goto err; 3098 3099 in_core->al_stripe_size_4k = al_stripe_size_4k; 3100 in_core->al_stripes = al_stripes; 3101 in_core->al_size_4k = al_size_4k; 3102 3103 return 0; 3104 err: 3105 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3106 al_stripes, al_stripe_size_4k); 3107 return -EINVAL; 3108 } 3109 3110 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3111 { 3112 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3113 struct drbd_md *in_core = &bdev->md; 3114 s32 on_disk_al_sect; 3115 s32 on_disk_bm_sect; 3116 3117 /* The on-disk size of the activity log, calculated from offsets, and 3118 * the size of the activity log calculated from the stripe settings, 3119 * should match. 3120 * Though we could relax this a bit: it is ok, if the striped activity log 3121 * fits in the available on-disk activity log size. 3122 * Right now, that would break how resize is implemented. 3123 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3124 * of possible unused padding space in the on disk layout. */ 3125 if (in_core->al_offset < 0) { 3126 if (in_core->bm_offset > in_core->al_offset) 3127 goto err; 3128 on_disk_al_sect = -in_core->al_offset; 3129 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3130 } else { 3131 if (in_core->al_offset != MD_4kB_SECT) 3132 goto err; 3133 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3134 goto err; 3135 3136 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3137 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3138 } 3139 3140 /* old fixed size meta data is exactly that: fixed. */ 3141 if (in_core->meta_dev_idx >= 0) { 3142 if (in_core->md_size_sect != MD_128MB_SECT 3143 || in_core->al_offset != MD_4kB_SECT 3144 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3145 || in_core->al_stripes != 1 3146 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3147 goto err; 3148 } 3149 3150 if (capacity < in_core->md_size_sect) 3151 goto err; 3152 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3153 goto err; 3154 3155 /* should be aligned, and at least 32k */ 3156 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3157 goto err; 3158 3159 /* should fit (for now: exactly) into the available on-disk space; 3160 * overflow prevention is in check_activity_log_stripe_size() above. */ 3161 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3162 goto err; 3163 3164 /* again, should be aligned */ 3165 if (in_core->bm_offset & 7) 3166 goto err; 3167 3168 /* FIXME check for device grow with flex external meta data? */ 3169 3170 /* can the available bitmap space cover the last agreed device size? */ 3171 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3172 goto err; 3173 3174 return 0; 3175 3176 err: 3177 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3178 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3179 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3180 in_core->meta_dev_idx, 3181 in_core->al_stripes, in_core->al_stripe_size_4k, 3182 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3183 (unsigned long long)in_core->la_size_sect, 3184 (unsigned long long)capacity); 3185 3186 return -EINVAL; 3187 } 3188 3189 3190 /** 3191 * drbd_md_read() - Reads in the meta data super block 3192 * @device: DRBD device. 3193 * @bdev: Device from which the meta data should be read in. 3194 * 3195 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3196 * something goes wrong. 3197 * 3198 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3199 * even before @bdev is assigned to @device->ldev. 3200 */ 3201 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3202 { 3203 struct meta_data_on_disk *buffer; 3204 u32 magic, flags; 3205 int i, rv = NO_ERROR; 3206 3207 if (device->state.disk != D_DISKLESS) 3208 return ERR_DISK_CONFIGURED; 3209 3210 buffer = drbd_md_get_buffer(device, __func__); 3211 if (!buffer) 3212 return ERR_NOMEM; 3213 3214 /* First, figure out where our meta data superblock is located, 3215 * and read it. */ 3216 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3217 bdev->md.md_offset = drbd_md_ss(bdev); 3218 /* Even for (flexible or indexed) external meta data, 3219 * initially restrict us to the 4k superblock for now. 3220 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3221 bdev->md.md_size_sect = 8; 3222 3223 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3224 REQ_OP_READ)) { 3225 /* NOTE: can't do normal error processing here as this is 3226 called BEFORE disk is attached */ 3227 drbd_err(device, "Error while reading metadata.\n"); 3228 rv = ERR_IO_MD_DISK; 3229 goto err; 3230 } 3231 3232 magic = be32_to_cpu(buffer->magic); 3233 flags = be32_to_cpu(buffer->flags); 3234 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3235 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3236 /* btw: that's Activity Log clean, not "all" clean. */ 3237 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3238 rv = ERR_MD_UNCLEAN; 3239 goto err; 3240 } 3241 3242 rv = ERR_MD_INVALID; 3243 if (magic != DRBD_MD_MAGIC_08) { 3244 if (magic == DRBD_MD_MAGIC_07) 3245 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3246 else 3247 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3248 goto err; 3249 } 3250 3251 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3252 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3253 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3254 goto err; 3255 } 3256 3257 3258 /* convert to in_core endian */ 3259 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3260 for (i = UI_CURRENT; i < UI_SIZE; i++) 3261 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3262 bdev->md.flags = be32_to_cpu(buffer->flags); 3263 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3264 3265 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3266 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3267 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3268 3269 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3270 goto err; 3271 if (check_offsets_and_sizes(device, bdev)) 3272 goto err; 3273 3274 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3275 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3276 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3277 goto err; 3278 } 3279 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3280 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3281 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3282 goto err; 3283 } 3284 3285 rv = NO_ERROR; 3286 3287 spin_lock_irq(&device->resource->req_lock); 3288 if (device->state.conn < C_CONNECTED) { 3289 unsigned int peer; 3290 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3291 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3292 device->peer_max_bio_size = peer; 3293 } 3294 spin_unlock_irq(&device->resource->req_lock); 3295 3296 err: 3297 drbd_md_put_buffer(device); 3298 3299 return rv; 3300 } 3301 3302 /** 3303 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3304 * @device: DRBD device. 3305 * 3306 * Call this function if you change anything that should be written to 3307 * the meta-data super block. This function sets MD_DIRTY, and starts a 3308 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3309 */ 3310 void drbd_md_mark_dirty(struct drbd_device *device) 3311 { 3312 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3313 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3314 } 3315 3316 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3317 { 3318 int i; 3319 3320 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3321 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3322 } 3323 3324 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3325 { 3326 if (idx == UI_CURRENT) { 3327 if (device->state.role == R_PRIMARY) 3328 val |= 1; 3329 else 3330 val &= ~((u64)1); 3331 3332 drbd_set_ed_uuid(device, val); 3333 } 3334 3335 device->ldev->md.uuid[idx] = val; 3336 drbd_md_mark_dirty(device); 3337 } 3338 3339 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3340 { 3341 unsigned long flags; 3342 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3343 __drbd_uuid_set(device, idx, val); 3344 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3345 } 3346 3347 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3348 { 3349 unsigned long flags; 3350 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3351 if (device->ldev->md.uuid[idx]) { 3352 drbd_uuid_move_history(device); 3353 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3354 } 3355 __drbd_uuid_set(device, idx, val); 3356 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3357 } 3358 3359 /** 3360 * drbd_uuid_new_current() - Creates a new current UUID 3361 * @device: DRBD device. 3362 * 3363 * Creates a new current UUID, and rotates the old current UUID into 3364 * the bitmap slot. Causes an incremental resync upon next connect. 3365 */ 3366 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3367 { 3368 u64 val; 3369 unsigned long long bm_uuid; 3370 3371 get_random_bytes(&val, sizeof(u64)); 3372 3373 spin_lock_irq(&device->ldev->md.uuid_lock); 3374 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3375 3376 if (bm_uuid) 3377 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3378 3379 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3380 __drbd_uuid_set(device, UI_CURRENT, val); 3381 spin_unlock_irq(&device->ldev->md.uuid_lock); 3382 3383 drbd_print_uuids(device, "new current UUID"); 3384 /* get it to stable storage _now_ */ 3385 drbd_md_sync(device); 3386 } 3387 3388 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3389 { 3390 unsigned long flags; 3391 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3392 return; 3393 3394 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3395 if (val == 0) { 3396 drbd_uuid_move_history(device); 3397 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3398 device->ldev->md.uuid[UI_BITMAP] = 0; 3399 } else { 3400 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3401 if (bm_uuid) 3402 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3403 3404 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3405 } 3406 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3407 3408 drbd_md_mark_dirty(device); 3409 } 3410 3411 /** 3412 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3413 * @device: DRBD device. 3414 * 3415 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3416 */ 3417 int drbd_bmio_set_n_write(struct drbd_device *device, 3418 struct drbd_peer_device *peer_device) __must_hold(local) 3419 3420 { 3421 int rv = -EIO; 3422 3423 drbd_md_set_flag(device, MDF_FULL_SYNC); 3424 drbd_md_sync(device); 3425 drbd_bm_set_all(device); 3426 3427 rv = drbd_bm_write(device, peer_device); 3428 3429 if (!rv) { 3430 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3431 drbd_md_sync(device); 3432 } 3433 3434 return rv; 3435 } 3436 3437 /** 3438 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3439 * @device: DRBD device. 3440 * 3441 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3442 */ 3443 int drbd_bmio_clear_n_write(struct drbd_device *device, 3444 struct drbd_peer_device *peer_device) __must_hold(local) 3445 3446 { 3447 drbd_resume_al(device); 3448 drbd_bm_clear_all(device); 3449 return drbd_bm_write(device, peer_device); 3450 } 3451 3452 static int w_bitmap_io(struct drbd_work *w, int unused) 3453 { 3454 struct drbd_device *device = 3455 container_of(w, struct drbd_device, bm_io_work.w); 3456 struct bm_io_work *work = &device->bm_io_work; 3457 int rv = -EIO; 3458 3459 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3460 int cnt = atomic_read(&device->ap_bio_cnt); 3461 if (cnt) 3462 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3463 cnt, work->why); 3464 } 3465 3466 if (get_ldev(device)) { 3467 drbd_bm_lock(device, work->why, work->flags); 3468 rv = work->io_fn(device, work->peer_device); 3469 drbd_bm_unlock(device); 3470 put_ldev(device); 3471 } 3472 3473 clear_bit_unlock(BITMAP_IO, &device->flags); 3474 wake_up(&device->misc_wait); 3475 3476 if (work->done) 3477 work->done(device, rv); 3478 3479 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3480 work->why = NULL; 3481 work->flags = 0; 3482 3483 return 0; 3484 } 3485 3486 /** 3487 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3488 * @device: DRBD device. 3489 * @io_fn: IO callback to be called when bitmap IO is possible 3490 * @done: callback to be called after the bitmap IO was performed 3491 * @why: Descriptive text of the reason for doing the IO 3492 * @flags: Bitmap flags 3493 * 3494 * While IO on the bitmap happens we freeze application IO thus we ensure 3495 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3496 * called from worker context. It MUST NOT be used while a previous such 3497 * work is still pending! 3498 * 3499 * Its worker function encloses the call of io_fn() by get_ldev() and 3500 * put_ldev(). 3501 */ 3502 void drbd_queue_bitmap_io(struct drbd_device *device, 3503 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *), 3504 void (*done)(struct drbd_device *, int), 3505 char *why, enum bm_flag flags, 3506 struct drbd_peer_device *peer_device) 3507 { 3508 D_ASSERT(device, current == peer_device->connection->worker.task); 3509 3510 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3511 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3512 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3513 if (device->bm_io_work.why) 3514 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3515 why, device->bm_io_work.why); 3516 3517 device->bm_io_work.peer_device = peer_device; 3518 device->bm_io_work.io_fn = io_fn; 3519 device->bm_io_work.done = done; 3520 device->bm_io_work.why = why; 3521 device->bm_io_work.flags = flags; 3522 3523 spin_lock_irq(&device->resource->req_lock); 3524 set_bit(BITMAP_IO, &device->flags); 3525 /* don't wait for pending application IO if the caller indicates that 3526 * application IO does not conflict anyways. */ 3527 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3528 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3529 drbd_queue_work(&peer_device->connection->sender_work, 3530 &device->bm_io_work.w); 3531 } 3532 spin_unlock_irq(&device->resource->req_lock); 3533 } 3534 3535 /** 3536 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3537 * @device: DRBD device. 3538 * @io_fn: IO callback to be called when bitmap IO is possible 3539 * @why: Descriptive text of the reason for doing the IO 3540 * @flags: Bitmap flags 3541 * 3542 * freezes application IO while that the actual IO operations runs. This 3543 * functions MAY NOT be called from worker context. 3544 */ 3545 int drbd_bitmap_io(struct drbd_device *device, 3546 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *), 3547 char *why, enum bm_flag flags, 3548 struct drbd_peer_device *peer_device) 3549 { 3550 /* Only suspend io, if some operation is supposed to be locked out */ 3551 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3552 int rv; 3553 3554 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3555 3556 if (do_suspend_io) 3557 drbd_suspend_io(device); 3558 3559 drbd_bm_lock(device, why, flags); 3560 rv = io_fn(device, peer_device); 3561 drbd_bm_unlock(device); 3562 3563 if (do_suspend_io) 3564 drbd_resume_io(device); 3565 3566 return rv; 3567 } 3568 3569 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3570 { 3571 if ((device->ldev->md.flags & flag) != flag) { 3572 drbd_md_mark_dirty(device); 3573 device->ldev->md.flags |= flag; 3574 } 3575 } 3576 3577 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3578 { 3579 if ((device->ldev->md.flags & flag) != 0) { 3580 drbd_md_mark_dirty(device); 3581 device->ldev->md.flags &= ~flag; 3582 } 3583 } 3584 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3585 { 3586 return (bdev->md.flags & flag) != 0; 3587 } 3588 3589 static void md_sync_timer_fn(struct timer_list *t) 3590 { 3591 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3592 drbd_device_post_work(device, MD_SYNC); 3593 } 3594 3595 const char *cmdname(enum drbd_packet cmd) 3596 { 3597 /* THINK may need to become several global tables 3598 * when we want to support more than 3599 * one PRO_VERSION */ 3600 static const char *cmdnames[] = { 3601 3602 [P_DATA] = "Data", 3603 [P_DATA_REPLY] = "DataReply", 3604 [P_RS_DATA_REPLY] = "RSDataReply", 3605 [P_BARRIER] = "Barrier", 3606 [P_BITMAP] = "ReportBitMap", 3607 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3608 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3609 [P_UNPLUG_REMOTE] = "UnplugRemote", 3610 [P_DATA_REQUEST] = "DataRequest", 3611 [P_RS_DATA_REQUEST] = "RSDataRequest", 3612 [P_SYNC_PARAM] = "SyncParam", 3613 [P_PROTOCOL] = "ReportProtocol", 3614 [P_UUIDS] = "ReportUUIDs", 3615 [P_SIZES] = "ReportSizes", 3616 [P_STATE] = "ReportState", 3617 [P_SYNC_UUID] = "ReportSyncUUID", 3618 [P_AUTH_CHALLENGE] = "AuthChallenge", 3619 [P_AUTH_RESPONSE] = "AuthResponse", 3620 [P_STATE_CHG_REQ] = "StateChgRequest", 3621 [P_PING] = "Ping", 3622 [P_PING_ACK] = "PingAck", 3623 [P_RECV_ACK] = "RecvAck", 3624 [P_WRITE_ACK] = "WriteAck", 3625 [P_RS_WRITE_ACK] = "RSWriteAck", 3626 [P_SUPERSEDED] = "Superseded", 3627 [P_NEG_ACK] = "NegAck", 3628 [P_NEG_DREPLY] = "NegDReply", 3629 [P_NEG_RS_DREPLY] = "NegRSDReply", 3630 [P_BARRIER_ACK] = "BarrierAck", 3631 [P_STATE_CHG_REPLY] = "StateChgReply", 3632 [P_OV_REQUEST] = "OVRequest", 3633 [P_OV_REPLY] = "OVReply", 3634 [P_OV_RESULT] = "OVResult", 3635 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3636 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3637 [P_SYNC_PARAM89] = "SyncParam89", 3638 [P_COMPRESSED_BITMAP] = "CBitmap", 3639 [P_DELAY_PROBE] = "DelayProbe", 3640 [P_OUT_OF_SYNC] = "OutOfSync", 3641 [P_RS_CANCEL] = "RSCancel", 3642 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3643 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3644 [P_PROTOCOL_UPDATE] = "protocol_update", 3645 [P_TRIM] = "Trim", 3646 [P_RS_THIN_REQ] = "rs_thin_req", 3647 [P_RS_DEALLOCATED] = "rs_deallocated", 3648 [P_WSAME] = "WriteSame", 3649 [P_ZEROES] = "Zeroes", 3650 3651 /* enum drbd_packet, but not commands - obsoleted flags: 3652 * P_MAY_IGNORE 3653 * P_MAX_OPT_CMD 3654 */ 3655 }; 3656 3657 /* too big for the array: 0xfffX */ 3658 if (cmd == P_INITIAL_META) 3659 return "InitialMeta"; 3660 if (cmd == P_INITIAL_DATA) 3661 return "InitialData"; 3662 if (cmd == P_CONNECTION_FEATURES) 3663 return "ConnectionFeatures"; 3664 if (cmd >= ARRAY_SIZE(cmdnames)) 3665 return "Unknown"; 3666 return cmdnames[cmd]; 3667 } 3668 3669 /** 3670 * drbd_wait_misc - wait for a request to make progress 3671 * @device: device associated with the request 3672 * @i: the struct drbd_interval embedded in struct drbd_request or 3673 * struct drbd_peer_request 3674 */ 3675 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3676 { 3677 struct net_conf *nc; 3678 DEFINE_WAIT(wait); 3679 long timeout; 3680 3681 rcu_read_lock(); 3682 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3683 if (!nc) { 3684 rcu_read_unlock(); 3685 return -ETIMEDOUT; 3686 } 3687 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3688 rcu_read_unlock(); 3689 3690 /* Indicate to wake up device->misc_wait on progress. */ 3691 i->waiting = true; 3692 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3693 spin_unlock_irq(&device->resource->req_lock); 3694 timeout = schedule_timeout(timeout); 3695 finish_wait(&device->misc_wait, &wait); 3696 spin_lock_irq(&device->resource->req_lock); 3697 if (!timeout || device->state.conn < C_CONNECTED) 3698 return -ETIMEDOUT; 3699 if (signal_pending(current)) 3700 return -ERESTARTSYS; 3701 return 0; 3702 } 3703 3704 void lock_all_resources(void) 3705 { 3706 struct drbd_resource *resource; 3707 int __maybe_unused i = 0; 3708 3709 mutex_lock(&resources_mutex); 3710 local_irq_disable(); 3711 for_each_resource(resource, &drbd_resources) 3712 spin_lock_nested(&resource->req_lock, i++); 3713 } 3714 3715 void unlock_all_resources(void) 3716 { 3717 struct drbd_resource *resource; 3718 3719 for_each_resource(resource, &drbd_resources) 3720 spin_unlock(&resource->req_lock); 3721 local_irq_enable(); 3722 mutex_unlock(&resources_mutex); 3723 } 3724 3725 #ifdef CONFIG_DRBD_FAULT_INJECTION 3726 /* Fault insertion support including random number generator shamelessly 3727 * stolen from kernel/rcutorture.c */ 3728 struct fault_random_state { 3729 unsigned long state; 3730 unsigned long count; 3731 }; 3732 3733 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3734 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3735 #define FAULT_RANDOM_REFRESH 10000 3736 3737 /* 3738 * Crude but fast random-number generator. Uses a linear congruential 3739 * generator, with occasional help from get_random_bytes(). 3740 */ 3741 static unsigned long 3742 _drbd_fault_random(struct fault_random_state *rsp) 3743 { 3744 long refresh; 3745 3746 if (!rsp->count--) { 3747 get_random_bytes(&refresh, sizeof(refresh)); 3748 rsp->state += refresh; 3749 rsp->count = FAULT_RANDOM_REFRESH; 3750 } 3751 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3752 return swahw32(rsp->state); 3753 } 3754 3755 static char * 3756 _drbd_fault_str(unsigned int type) { 3757 static char *_faults[] = { 3758 [DRBD_FAULT_MD_WR] = "Meta-data write", 3759 [DRBD_FAULT_MD_RD] = "Meta-data read", 3760 [DRBD_FAULT_RS_WR] = "Resync write", 3761 [DRBD_FAULT_RS_RD] = "Resync read", 3762 [DRBD_FAULT_DT_WR] = "Data write", 3763 [DRBD_FAULT_DT_RD] = "Data read", 3764 [DRBD_FAULT_DT_RA] = "Data read ahead", 3765 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3766 [DRBD_FAULT_AL_EE] = "EE allocation", 3767 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3768 }; 3769 3770 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3771 } 3772 3773 unsigned int 3774 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3775 { 3776 static struct fault_random_state rrs = {0, 0}; 3777 3778 unsigned int ret = ( 3779 (drbd_fault_devs == 0 || 3780 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3781 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3782 3783 if (ret) { 3784 drbd_fault_count++; 3785 3786 if (drbd_ratelimit()) 3787 drbd_warn(device, "***Simulating %s failure\n", 3788 _drbd_fault_str(type)); 3789 } 3790 3791 return ret; 3792 } 3793 #endif 3794 3795 module_init(drbd_init) 3796 module_exit(drbd_cleanup) 3797 3798 EXPORT_SYMBOL(drbd_conn_str); 3799 EXPORT_SYMBOL(drbd_role_str); 3800 EXPORT_SYMBOL(drbd_disk_str); 3801 EXPORT_SYMBOL(drbd_set_st_err_str); 3802