xref: /linux/drivers/block/drbd/drbd_main.c (revision 6beeaf48db6c548fcfc2ad32739d33af2fef3a5b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13 
14 
15  */
16 
17 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44 
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51 
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57 
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 	      "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66 
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70 
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85 
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92 
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103 
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110 
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;	/* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120 
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125 	 member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 DEFINE_SPINLOCK(drbd_pp_lock);
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131 
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133 
134 static const struct block_device_operations drbd_ops = {
135 	.owner		= THIS_MODULE,
136 	.submit_bio	= drbd_submit_bio,
137 	.open		= drbd_open,
138 	.release	= drbd_release,
139 };
140 
141 #ifdef __CHECKER__
142 /* When checking with sparse, and this is an inline function, sparse will
143    give tons of false positives. When this is a real functions sparse works.
144  */
145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
146 {
147 	int io_allowed;
148 
149 	atomic_inc(&device->local_cnt);
150 	io_allowed = (device->state.disk >= mins);
151 	if (!io_allowed) {
152 		if (atomic_dec_and_test(&device->local_cnt))
153 			wake_up(&device->misc_wait);
154 	}
155 	return io_allowed;
156 }
157 
158 #endif
159 
160 /**
161  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
162  * @connection:	DRBD connection.
163  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
164  * @set_size:	Expected number of requests before that barrier.
165  *
166  * In case the passed barrier_nr or set_size does not match the oldest
167  * epoch of not yet barrier-acked requests, this function will cause a
168  * termination of the connection.
169  */
170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
171 		unsigned int set_size)
172 {
173 	struct drbd_request *r;
174 	struct drbd_request *req = NULL;
175 	int expect_epoch = 0;
176 	int expect_size = 0;
177 
178 	spin_lock_irq(&connection->resource->req_lock);
179 
180 	/* find oldest not yet barrier-acked write request,
181 	 * count writes in its epoch. */
182 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
183 		const unsigned s = r->rq_state;
184 		if (!req) {
185 			if (!(s & RQ_WRITE))
186 				continue;
187 			if (!(s & RQ_NET_MASK))
188 				continue;
189 			if (s & RQ_NET_DONE)
190 				continue;
191 			req = r;
192 			expect_epoch = req->epoch;
193 			expect_size ++;
194 		} else {
195 			if (r->epoch != expect_epoch)
196 				break;
197 			if (!(s & RQ_WRITE))
198 				continue;
199 			/* if (s & RQ_DONE): not expected */
200 			/* if (!(s & RQ_NET_MASK)): not expected */
201 			expect_size++;
202 		}
203 	}
204 
205 	/* first some paranoia code */
206 	if (req == NULL) {
207 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
208 			 barrier_nr);
209 		goto bail;
210 	}
211 	if (expect_epoch != barrier_nr) {
212 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
213 			 barrier_nr, expect_epoch);
214 		goto bail;
215 	}
216 
217 	if (expect_size != set_size) {
218 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
219 			 barrier_nr, set_size, expect_size);
220 		goto bail;
221 	}
222 
223 	/* Clean up list of requests processed during current epoch. */
224 	/* this extra list walk restart is paranoia,
225 	 * to catch requests being barrier-acked "unexpectedly".
226 	 * It usually should find the same req again, or some READ preceding it. */
227 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
228 		if (req->epoch == expect_epoch)
229 			break;
230 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
231 		if (req->epoch != expect_epoch)
232 			break;
233 		_req_mod(req, BARRIER_ACKED);
234 	}
235 	spin_unlock_irq(&connection->resource->req_lock);
236 
237 	return;
238 
239 bail:
240 	spin_unlock_irq(&connection->resource->req_lock);
241 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
242 }
243 
244 
245 /**
246  * _tl_restart() - Walks the transfer log, and applies an action to all requests
247  * @connection:	DRBD connection to operate on.
248  * @what:       The action/event to perform with all request objects
249  *
250  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
251  * RESTART_FROZEN_DISK_IO.
252  */
253 /* must hold resource->req_lock */
254 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
255 {
256 	struct drbd_request *req, *r;
257 
258 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
259 		_req_mod(req, what);
260 }
261 
262 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
263 {
264 	spin_lock_irq(&connection->resource->req_lock);
265 	_tl_restart(connection, what);
266 	spin_unlock_irq(&connection->resource->req_lock);
267 }
268 
269 /**
270  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
271  * @connection:	DRBD connection.
272  *
273  * This is called after the connection to the peer was lost. The storage covered
274  * by the requests on the transfer gets marked as our of sync. Called from the
275  * receiver thread and the worker thread.
276  */
277 void tl_clear(struct drbd_connection *connection)
278 {
279 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
280 }
281 
282 /**
283  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
284  * @device:	DRBD device.
285  */
286 void tl_abort_disk_io(struct drbd_device *device)
287 {
288 	struct drbd_connection *connection = first_peer_device(device)->connection;
289 	struct drbd_request *req, *r;
290 
291 	spin_lock_irq(&connection->resource->req_lock);
292 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
293 		if (!(req->rq_state & RQ_LOCAL_PENDING))
294 			continue;
295 		if (req->device != device)
296 			continue;
297 		_req_mod(req, ABORT_DISK_IO);
298 	}
299 	spin_unlock_irq(&connection->resource->req_lock);
300 }
301 
302 static int drbd_thread_setup(void *arg)
303 {
304 	struct drbd_thread *thi = (struct drbd_thread *) arg;
305 	struct drbd_resource *resource = thi->resource;
306 	unsigned long flags;
307 	int retval;
308 
309 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
310 		 thi->name[0],
311 		 resource->name);
312 
313 	allow_kernel_signal(DRBD_SIGKILL);
314 	allow_kernel_signal(SIGXCPU);
315 restart:
316 	retval = thi->function(thi);
317 
318 	spin_lock_irqsave(&thi->t_lock, flags);
319 
320 	/* if the receiver has been "EXITING", the last thing it did
321 	 * was set the conn state to "StandAlone",
322 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
323 	 * and receiver thread will be "started".
324 	 * drbd_thread_start needs to set "RESTARTING" in that case.
325 	 * t_state check and assignment needs to be within the same spinlock,
326 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
327 	 * or thread_start see NONE, and can proceed as normal.
328 	 */
329 
330 	if (thi->t_state == RESTARTING) {
331 		drbd_info(resource, "Restarting %s thread\n", thi->name);
332 		thi->t_state = RUNNING;
333 		spin_unlock_irqrestore(&thi->t_lock, flags);
334 		goto restart;
335 	}
336 
337 	thi->task = NULL;
338 	thi->t_state = NONE;
339 	smp_mb();
340 	complete_all(&thi->stop);
341 	spin_unlock_irqrestore(&thi->t_lock, flags);
342 
343 	drbd_info(resource, "Terminating %s\n", current->comm);
344 
345 	/* Release mod reference taken when thread was started */
346 
347 	if (thi->connection)
348 		kref_put(&thi->connection->kref, drbd_destroy_connection);
349 	kref_put(&resource->kref, drbd_destroy_resource);
350 	module_put(THIS_MODULE);
351 	return retval;
352 }
353 
354 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
355 			     int (*func) (struct drbd_thread *), const char *name)
356 {
357 	spin_lock_init(&thi->t_lock);
358 	thi->task    = NULL;
359 	thi->t_state = NONE;
360 	thi->function = func;
361 	thi->resource = resource;
362 	thi->connection = NULL;
363 	thi->name = name;
364 }
365 
366 int drbd_thread_start(struct drbd_thread *thi)
367 {
368 	struct drbd_resource *resource = thi->resource;
369 	struct task_struct *nt;
370 	unsigned long flags;
371 
372 	/* is used from state engine doing drbd_thread_stop_nowait,
373 	 * while holding the req lock irqsave */
374 	spin_lock_irqsave(&thi->t_lock, flags);
375 
376 	switch (thi->t_state) {
377 	case NONE:
378 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
379 			 thi->name, current->comm, current->pid);
380 
381 		/* Get ref on module for thread - this is released when thread exits */
382 		if (!try_module_get(THIS_MODULE)) {
383 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
384 			spin_unlock_irqrestore(&thi->t_lock, flags);
385 			return false;
386 		}
387 
388 		kref_get(&resource->kref);
389 		if (thi->connection)
390 			kref_get(&thi->connection->kref);
391 
392 		init_completion(&thi->stop);
393 		thi->reset_cpu_mask = 1;
394 		thi->t_state = RUNNING;
395 		spin_unlock_irqrestore(&thi->t_lock, flags);
396 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
397 
398 		nt = kthread_create(drbd_thread_setup, (void *) thi,
399 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
400 
401 		if (IS_ERR(nt)) {
402 			drbd_err(resource, "Couldn't start thread\n");
403 
404 			if (thi->connection)
405 				kref_put(&thi->connection->kref, drbd_destroy_connection);
406 			kref_put(&resource->kref, drbd_destroy_resource);
407 			module_put(THIS_MODULE);
408 			return false;
409 		}
410 		spin_lock_irqsave(&thi->t_lock, flags);
411 		thi->task = nt;
412 		thi->t_state = RUNNING;
413 		spin_unlock_irqrestore(&thi->t_lock, flags);
414 		wake_up_process(nt);
415 		break;
416 	case EXITING:
417 		thi->t_state = RESTARTING;
418 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
419 				thi->name, current->comm, current->pid);
420 		fallthrough;
421 	case RUNNING:
422 	case RESTARTING:
423 	default:
424 		spin_unlock_irqrestore(&thi->t_lock, flags);
425 		break;
426 	}
427 
428 	return true;
429 }
430 
431 
432 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
433 {
434 	unsigned long flags;
435 
436 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
437 
438 	/* may be called from state engine, holding the req lock irqsave */
439 	spin_lock_irqsave(&thi->t_lock, flags);
440 
441 	if (thi->t_state == NONE) {
442 		spin_unlock_irqrestore(&thi->t_lock, flags);
443 		if (restart)
444 			drbd_thread_start(thi);
445 		return;
446 	}
447 
448 	if (thi->t_state != ns) {
449 		if (thi->task == NULL) {
450 			spin_unlock_irqrestore(&thi->t_lock, flags);
451 			return;
452 		}
453 
454 		thi->t_state = ns;
455 		smp_mb();
456 		init_completion(&thi->stop);
457 		if (thi->task != current)
458 			send_sig(DRBD_SIGKILL, thi->task, 1);
459 	}
460 
461 	spin_unlock_irqrestore(&thi->t_lock, flags);
462 
463 	if (wait)
464 		wait_for_completion(&thi->stop);
465 }
466 
467 int conn_lowest_minor(struct drbd_connection *connection)
468 {
469 	struct drbd_peer_device *peer_device;
470 	int vnr = 0, minor = -1;
471 
472 	rcu_read_lock();
473 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
474 	if (peer_device)
475 		minor = device_to_minor(peer_device->device);
476 	rcu_read_unlock();
477 
478 	return minor;
479 }
480 
481 #ifdef CONFIG_SMP
482 /*
483  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
484  *
485  * Forces all threads of a resource onto the same CPU. This is beneficial for
486  * DRBD's performance. May be overwritten by user's configuration.
487  */
488 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
489 {
490 	unsigned int *resources_per_cpu, min_index = ~0;
491 
492 	resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
493 				    GFP_KERNEL);
494 	if (resources_per_cpu) {
495 		struct drbd_resource *resource;
496 		unsigned int cpu, min = ~0;
497 
498 		rcu_read_lock();
499 		for_each_resource_rcu(resource, &drbd_resources) {
500 			for_each_cpu(cpu, resource->cpu_mask)
501 				resources_per_cpu[cpu]++;
502 		}
503 		rcu_read_unlock();
504 		for_each_online_cpu(cpu) {
505 			if (resources_per_cpu[cpu] < min) {
506 				min = resources_per_cpu[cpu];
507 				min_index = cpu;
508 			}
509 		}
510 		kfree(resources_per_cpu);
511 	}
512 	if (min_index == ~0) {
513 		cpumask_setall(*cpu_mask);
514 		return;
515 	}
516 	cpumask_set_cpu(min_index, *cpu_mask);
517 }
518 
519 /**
520  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
521  * @thi:	drbd_thread object
522  *
523  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
524  * prematurely.
525  */
526 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
527 {
528 	struct drbd_resource *resource = thi->resource;
529 	struct task_struct *p = current;
530 
531 	if (!thi->reset_cpu_mask)
532 		return;
533 	thi->reset_cpu_mask = 0;
534 	set_cpus_allowed_ptr(p, resource->cpu_mask);
535 }
536 #else
537 #define drbd_calc_cpu_mask(A) ({})
538 #endif
539 
540 /*
541  * drbd_header_size  -  size of a packet header
542  *
543  * The header size is a multiple of 8, so any payload following the header is
544  * word aligned on 64-bit architectures.  (The bitmap send and receive code
545  * relies on this.)
546  */
547 unsigned int drbd_header_size(struct drbd_connection *connection)
548 {
549 	if (connection->agreed_pro_version >= 100) {
550 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
551 		return sizeof(struct p_header100);
552 	} else {
553 		BUILD_BUG_ON(sizeof(struct p_header80) !=
554 			     sizeof(struct p_header95));
555 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
556 		return sizeof(struct p_header80);
557 	}
558 }
559 
560 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
561 {
562 	h->magic   = cpu_to_be32(DRBD_MAGIC);
563 	h->command = cpu_to_be16(cmd);
564 	h->length  = cpu_to_be16(size);
565 	return sizeof(struct p_header80);
566 }
567 
568 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
569 {
570 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
571 	h->command = cpu_to_be16(cmd);
572 	h->length = cpu_to_be32(size);
573 	return sizeof(struct p_header95);
574 }
575 
576 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
577 				      int size, int vnr)
578 {
579 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
580 	h->volume = cpu_to_be16(vnr);
581 	h->command = cpu_to_be16(cmd);
582 	h->length = cpu_to_be32(size);
583 	h->pad = 0;
584 	return sizeof(struct p_header100);
585 }
586 
587 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
588 				   void *buffer, enum drbd_packet cmd, int size)
589 {
590 	if (connection->agreed_pro_version >= 100)
591 		return prepare_header100(buffer, cmd, size, vnr);
592 	else if (connection->agreed_pro_version >= 95 &&
593 		 size > DRBD_MAX_SIZE_H80_PACKET)
594 		return prepare_header95(buffer, cmd, size);
595 	else
596 		return prepare_header80(buffer, cmd, size);
597 }
598 
599 static void *__conn_prepare_command(struct drbd_connection *connection,
600 				    struct drbd_socket *sock)
601 {
602 	if (!sock->socket)
603 		return NULL;
604 	return sock->sbuf + drbd_header_size(connection);
605 }
606 
607 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
608 {
609 	void *p;
610 
611 	mutex_lock(&sock->mutex);
612 	p = __conn_prepare_command(connection, sock);
613 	if (!p)
614 		mutex_unlock(&sock->mutex);
615 
616 	return p;
617 }
618 
619 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
620 {
621 	return conn_prepare_command(peer_device->connection, sock);
622 }
623 
624 static int __send_command(struct drbd_connection *connection, int vnr,
625 			  struct drbd_socket *sock, enum drbd_packet cmd,
626 			  unsigned int header_size, void *data,
627 			  unsigned int size)
628 {
629 	int msg_flags;
630 	int err;
631 
632 	/*
633 	 * Called with @data == NULL and the size of the data blocks in @size
634 	 * for commands that send data blocks.  For those commands, omit the
635 	 * MSG_MORE flag: this will increase the likelihood that data blocks
636 	 * which are page aligned on the sender will end up page aligned on the
637 	 * receiver.
638 	 */
639 	msg_flags = data ? MSG_MORE : 0;
640 
641 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
642 				      header_size + size);
643 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
644 			    msg_flags);
645 	if (data && !err)
646 		err = drbd_send_all(connection, sock->socket, data, size, 0);
647 	/* DRBD protocol "pings" are latency critical.
648 	 * This is supposed to trigger tcp_push_pending_frames() */
649 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
650 		tcp_sock_set_nodelay(sock->socket->sk);
651 
652 	return err;
653 }
654 
655 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
656 			       enum drbd_packet cmd, unsigned int header_size,
657 			       void *data, unsigned int size)
658 {
659 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
660 }
661 
662 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
663 		      enum drbd_packet cmd, unsigned int header_size,
664 		      void *data, unsigned int size)
665 {
666 	int err;
667 
668 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
669 	mutex_unlock(&sock->mutex);
670 	return err;
671 }
672 
673 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
674 		      enum drbd_packet cmd, unsigned int header_size,
675 		      void *data, unsigned int size)
676 {
677 	int err;
678 
679 	err = __send_command(peer_device->connection, peer_device->device->vnr,
680 			     sock, cmd, header_size, data, size);
681 	mutex_unlock(&sock->mutex);
682 	return err;
683 }
684 
685 int drbd_send_ping(struct drbd_connection *connection)
686 {
687 	struct drbd_socket *sock;
688 
689 	sock = &connection->meta;
690 	if (!conn_prepare_command(connection, sock))
691 		return -EIO;
692 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
693 }
694 
695 int drbd_send_ping_ack(struct drbd_connection *connection)
696 {
697 	struct drbd_socket *sock;
698 
699 	sock = &connection->meta;
700 	if (!conn_prepare_command(connection, sock))
701 		return -EIO;
702 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
703 }
704 
705 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
706 {
707 	struct drbd_socket *sock;
708 	struct p_rs_param_95 *p;
709 	int size;
710 	const int apv = peer_device->connection->agreed_pro_version;
711 	enum drbd_packet cmd;
712 	struct net_conf *nc;
713 	struct disk_conf *dc;
714 
715 	sock = &peer_device->connection->data;
716 	p = drbd_prepare_command(peer_device, sock);
717 	if (!p)
718 		return -EIO;
719 
720 	rcu_read_lock();
721 	nc = rcu_dereference(peer_device->connection->net_conf);
722 
723 	size = apv <= 87 ? sizeof(struct p_rs_param)
724 		: apv == 88 ? sizeof(struct p_rs_param)
725 			+ strlen(nc->verify_alg) + 1
726 		: apv <= 94 ? sizeof(struct p_rs_param_89)
727 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
728 
729 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
730 
731 	/* initialize verify_alg and csums_alg */
732 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
733 
734 	if (get_ldev(peer_device->device)) {
735 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
736 		p->resync_rate = cpu_to_be32(dc->resync_rate);
737 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
738 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
739 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
740 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
741 		put_ldev(peer_device->device);
742 	} else {
743 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
744 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
745 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
746 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
747 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
748 	}
749 
750 	if (apv >= 88)
751 		strcpy(p->verify_alg, nc->verify_alg);
752 	if (apv >= 89)
753 		strcpy(p->csums_alg, nc->csums_alg);
754 	rcu_read_unlock();
755 
756 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
757 }
758 
759 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
760 {
761 	struct drbd_socket *sock;
762 	struct p_protocol *p;
763 	struct net_conf *nc;
764 	int size, cf;
765 
766 	sock = &connection->data;
767 	p = __conn_prepare_command(connection, sock);
768 	if (!p)
769 		return -EIO;
770 
771 	rcu_read_lock();
772 	nc = rcu_dereference(connection->net_conf);
773 
774 	if (nc->tentative && connection->agreed_pro_version < 92) {
775 		rcu_read_unlock();
776 		drbd_err(connection, "--dry-run is not supported by peer");
777 		return -EOPNOTSUPP;
778 	}
779 
780 	size = sizeof(*p);
781 	if (connection->agreed_pro_version >= 87)
782 		size += strlen(nc->integrity_alg) + 1;
783 
784 	p->protocol      = cpu_to_be32(nc->wire_protocol);
785 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
786 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
787 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
788 	p->two_primaries = cpu_to_be32(nc->two_primaries);
789 	cf = 0;
790 	if (nc->discard_my_data)
791 		cf |= CF_DISCARD_MY_DATA;
792 	if (nc->tentative)
793 		cf |= CF_DRY_RUN;
794 	p->conn_flags    = cpu_to_be32(cf);
795 
796 	if (connection->agreed_pro_version >= 87)
797 		strcpy(p->integrity_alg, nc->integrity_alg);
798 	rcu_read_unlock();
799 
800 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
801 }
802 
803 int drbd_send_protocol(struct drbd_connection *connection)
804 {
805 	int err;
806 
807 	mutex_lock(&connection->data.mutex);
808 	err = __drbd_send_protocol(connection, P_PROTOCOL);
809 	mutex_unlock(&connection->data.mutex);
810 
811 	return err;
812 }
813 
814 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
815 {
816 	struct drbd_device *device = peer_device->device;
817 	struct drbd_socket *sock;
818 	struct p_uuids *p;
819 	int i;
820 
821 	if (!get_ldev_if_state(device, D_NEGOTIATING))
822 		return 0;
823 
824 	sock = &peer_device->connection->data;
825 	p = drbd_prepare_command(peer_device, sock);
826 	if (!p) {
827 		put_ldev(device);
828 		return -EIO;
829 	}
830 	spin_lock_irq(&device->ldev->md.uuid_lock);
831 	for (i = UI_CURRENT; i < UI_SIZE; i++)
832 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
833 	spin_unlock_irq(&device->ldev->md.uuid_lock);
834 
835 	device->comm_bm_set = drbd_bm_total_weight(device);
836 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
837 	rcu_read_lock();
838 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
839 	rcu_read_unlock();
840 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
841 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
842 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
843 
844 	put_ldev(device);
845 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
846 }
847 
848 int drbd_send_uuids(struct drbd_peer_device *peer_device)
849 {
850 	return _drbd_send_uuids(peer_device, 0);
851 }
852 
853 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
854 {
855 	return _drbd_send_uuids(peer_device, 8);
856 }
857 
858 void drbd_print_uuids(struct drbd_device *device, const char *text)
859 {
860 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
861 		u64 *uuid = device->ldev->md.uuid;
862 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
863 		     text,
864 		     (unsigned long long)uuid[UI_CURRENT],
865 		     (unsigned long long)uuid[UI_BITMAP],
866 		     (unsigned long long)uuid[UI_HISTORY_START],
867 		     (unsigned long long)uuid[UI_HISTORY_END]);
868 		put_ldev(device);
869 	} else {
870 		drbd_info(device, "%s effective data uuid: %016llX\n",
871 				text,
872 				(unsigned long long)device->ed_uuid);
873 	}
874 }
875 
876 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
877 {
878 	struct drbd_device *device = peer_device->device;
879 	struct drbd_socket *sock;
880 	struct p_rs_uuid *p;
881 	u64 uuid;
882 
883 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
884 
885 	uuid = device->ldev->md.uuid[UI_BITMAP];
886 	if (uuid && uuid != UUID_JUST_CREATED)
887 		uuid = uuid + UUID_NEW_BM_OFFSET;
888 	else
889 		get_random_bytes(&uuid, sizeof(u64));
890 	drbd_uuid_set(device, UI_BITMAP, uuid);
891 	drbd_print_uuids(device, "updated sync UUID");
892 	drbd_md_sync(device);
893 
894 	sock = &peer_device->connection->data;
895 	p = drbd_prepare_command(peer_device, sock);
896 	if (p) {
897 		p->uuid = cpu_to_be64(uuid);
898 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
899 	}
900 }
901 
902 /* communicated if (agreed_features & DRBD_FF_WSAME) */
903 static void
904 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
905 					struct request_queue *q)
906 {
907 	if (q) {
908 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
909 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
910 		p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
911 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
912 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
913 		p->qlim->discard_enabled = blk_queue_discard(q);
914 		p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
915 	} else {
916 		q = device->rq_queue;
917 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
918 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
919 		p->qlim->alignment_offset = 0;
920 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
921 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
922 		p->qlim->discard_enabled = 0;
923 		p->qlim->write_same_capable = 0;
924 	}
925 }
926 
927 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
928 {
929 	struct drbd_device *device = peer_device->device;
930 	struct drbd_socket *sock;
931 	struct p_sizes *p;
932 	sector_t d_size, u_size;
933 	int q_order_type;
934 	unsigned int max_bio_size;
935 	unsigned int packet_size;
936 
937 	sock = &peer_device->connection->data;
938 	p = drbd_prepare_command(peer_device, sock);
939 	if (!p)
940 		return -EIO;
941 
942 	packet_size = sizeof(*p);
943 	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
944 		packet_size += sizeof(p->qlim[0]);
945 
946 	memset(p, 0, packet_size);
947 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
948 		struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
949 		d_size = drbd_get_max_capacity(device->ldev);
950 		rcu_read_lock();
951 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
952 		rcu_read_unlock();
953 		q_order_type = drbd_queue_order_type(device);
954 		max_bio_size = queue_max_hw_sectors(q) << 9;
955 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
956 		assign_p_sizes_qlim(device, p, q);
957 		put_ldev(device);
958 	} else {
959 		d_size = 0;
960 		u_size = 0;
961 		q_order_type = QUEUE_ORDERED_NONE;
962 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
963 		assign_p_sizes_qlim(device, p, NULL);
964 	}
965 
966 	if (peer_device->connection->agreed_pro_version <= 94)
967 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
968 	else if (peer_device->connection->agreed_pro_version < 100)
969 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
970 
971 	p->d_size = cpu_to_be64(d_size);
972 	p->u_size = cpu_to_be64(u_size);
973 	if (trigger_reply)
974 		p->c_size = 0;
975 	else
976 		p->c_size = cpu_to_be64(get_capacity(device->vdisk));
977 	p->max_bio_size = cpu_to_be32(max_bio_size);
978 	p->queue_order_type = cpu_to_be16(q_order_type);
979 	p->dds_flags = cpu_to_be16(flags);
980 
981 	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
982 }
983 
984 /**
985  * drbd_send_current_state() - Sends the drbd state to the peer
986  * @peer_device:	DRBD peer device.
987  */
988 int drbd_send_current_state(struct drbd_peer_device *peer_device)
989 {
990 	struct drbd_socket *sock;
991 	struct p_state *p;
992 
993 	sock = &peer_device->connection->data;
994 	p = drbd_prepare_command(peer_device, sock);
995 	if (!p)
996 		return -EIO;
997 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
998 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
999 }
1000 
1001 /**
1002  * drbd_send_state() - After a state change, sends the new state to the peer
1003  * @peer_device:      DRBD peer device.
1004  * @state:     the state to send, not necessarily the current state.
1005  *
1006  * Each state change queues an "after_state_ch" work, which will eventually
1007  * send the resulting new state to the peer. If more state changes happen
1008  * between queuing and processing of the after_state_ch work, we still
1009  * want to send each intermediary state in the order it occurred.
1010  */
1011 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1012 {
1013 	struct drbd_socket *sock;
1014 	struct p_state *p;
1015 
1016 	sock = &peer_device->connection->data;
1017 	p = drbd_prepare_command(peer_device, sock);
1018 	if (!p)
1019 		return -EIO;
1020 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1021 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1022 }
1023 
1024 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1025 {
1026 	struct drbd_socket *sock;
1027 	struct p_req_state *p;
1028 
1029 	sock = &peer_device->connection->data;
1030 	p = drbd_prepare_command(peer_device, sock);
1031 	if (!p)
1032 		return -EIO;
1033 	p->mask = cpu_to_be32(mask.i);
1034 	p->val = cpu_to_be32(val.i);
1035 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1036 }
1037 
1038 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1039 {
1040 	enum drbd_packet cmd;
1041 	struct drbd_socket *sock;
1042 	struct p_req_state *p;
1043 
1044 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1045 	sock = &connection->data;
1046 	p = conn_prepare_command(connection, sock);
1047 	if (!p)
1048 		return -EIO;
1049 	p->mask = cpu_to_be32(mask.i);
1050 	p->val = cpu_to_be32(val.i);
1051 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1052 }
1053 
1054 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1055 {
1056 	struct drbd_socket *sock;
1057 	struct p_req_state_reply *p;
1058 
1059 	sock = &peer_device->connection->meta;
1060 	p = drbd_prepare_command(peer_device, sock);
1061 	if (p) {
1062 		p->retcode = cpu_to_be32(retcode);
1063 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1064 	}
1065 }
1066 
1067 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1068 {
1069 	struct drbd_socket *sock;
1070 	struct p_req_state_reply *p;
1071 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1072 
1073 	sock = &connection->meta;
1074 	p = conn_prepare_command(connection, sock);
1075 	if (p) {
1076 		p->retcode = cpu_to_be32(retcode);
1077 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1078 	}
1079 }
1080 
1081 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1082 {
1083 	BUG_ON(code & ~0xf);
1084 	p->encoding = (p->encoding & ~0xf) | code;
1085 }
1086 
1087 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1088 {
1089 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1090 }
1091 
1092 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1093 {
1094 	BUG_ON(n & ~0x7);
1095 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1096 }
1097 
1098 static int fill_bitmap_rle_bits(struct drbd_device *device,
1099 			 struct p_compressed_bm *p,
1100 			 unsigned int size,
1101 			 struct bm_xfer_ctx *c)
1102 {
1103 	struct bitstream bs;
1104 	unsigned long plain_bits;
1105 	unsigned long tmp;
1106 	unsigned long rl;
1107 	unsigned len;
1108 	unsigned toggle;
1109 	int bits, use_rle;
1110 
1111 	/* may we use this feature? */
1112 	rcu_read_lock();
1113 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1114 	rcu_read_unlock();
1115 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1116 		return 0;
1117 
1118 	if (c->bit_offset >= c->bm_bits)
1119 		return 0; /* nothing to do. */
1120 
1121 	/* use at most thus many bytes */
1122 	bitstream_init(&bs, p->code, size, 0);
1123 	memset(p->code, 0, size);
1124 	/* plain bits covered in this code string */
1125 	plain_bits = 0;
1126 
1127 	/* p->encoding & 0x80 stores whether the first run length is set.
1128 	 * bit offset is implicit.
1129 	 * start with toggle == 2 to be able to tell the first iteration */
1130 	toggle = 2;
1131 
1132 	/* see how much plain bits we can stuff into one packet
1133 	 * using RLE and VLI. */
1134 	do {
1135 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1136 				    : _drbd_bm_find_next(device, c->bit_offset);
1137 		if (tmp == -1UL)
1138 			tmp = c->bm_bits;
1139 		rl = tmp - c->bit_offset;
1140 
1141 		if (toggle == 2) { /* first iteration */
1142 			if (rl == 0) {
1143 				/* the first checked bit was set,
1144 				 * store start value, */
1145 				dcbp_set_start(p, 1);
1146 				/* but skip encoding of zero run length */
1147 				toggle = !toggle;
1148 				continue;
1149 			}
1150 			dcbp_set_start(p, 0);
1151 		}
1152 
1153 		/* paranoia: catch zero runlength.
1154 		 * can only happen if bitmap is modified while we scan it. */
1155 		if (rl == 0) {
1156 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1157 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1158 			return -1;
1159 		}
1160 
1161 		bits = vli_encode_bits(&bs, rl);
1162 		if (bits == -ENOBUFS) /* buffer full */
1163 			break;
1164 		if (bits <= 0) {
1165 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1166 			return 0;
1167 		}
1168 
1169 		toggle = !toggle;
1170 		plain_bits += rl;
1171 		c->bit_offset = tmp;
1172 	} while (c->bit_offset < c->bm_bits);
1173 
1174 	len = bs.cur.b - p->code + !!bs.cur.bit;
1175 
1176 	if (plain_bits < (len << 3)) {
1177 		/* incompressible with this method.
1178 		 * we need to rewind both word and bit position. */
1179 		c->bit_offset -= plain_bits;
1180 		bm_xfer_ctx_bit_to_word_offset(c);
1181 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1182 		return 0;
1183 	}
1184 
1185 	/* RLE + VLI was able to compress it just fine.
1186 	 * update c->word_offset. */
1187 	bm_xfer_ctx_bit_to_word_offset(c);
1188 
1189 	/* store pad_bits */
1190 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1191 
1192 	return len;
1193 }
1194 
1195 /*
1196  * send_bitmap_rle_or_plain
1197  *
1198  * Return 0 when done, 1 when another iteration is needed, and a negative error
1199  * code upon failure.
1200  */
1201 static int
1202 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1203 {
1204 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1205 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1206 	struct p_compressed_bm *p = sock->sbuf + header_size;
1207 	int len, err;
1208 
1209 	len = fill_bitmap_rle_bits(device, p,
1210 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1211 	if (len < 0)
1212 		return -EIO;
1213 
1214 	if (len) {
1215 		dcbp_set_code(p, RLE_VLI_Bits);
1216 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1217 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1218 				     NULL, 0);
1219 		c->packets[0]++;
1220 		c->bytes[0] += header_size + sizeof(*p) + len;
1221 
1222 		if (c->bit_offset >= c->bm_bits)
1223 			len = 0; /* DONE */
1224 	} else {
1225 		/* was not compressible.
1226 		 * send a buffer full of plain text bits instead. */
1227 		unsigned int data_size;
1228 		unsigned long num_words;
1229 		unsigned long *p = sock->sbuf + header_size;
1230 
1231 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1232 		num_words = min_t(size_t, data_size / sizeof(*p),
1233 				  c->bm_words - c->word_offset);
1234 		len = num_words * sizeof(*p);
1235 		if (len)
1236 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1237 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1238 		c->word_offset += num_words;
1239 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1240 
1241 		c->packets[1]++;
1242 		c->bytes[1] += header_size + len;
1243 
1244 		if (c->bit_offset > c->bm_bits)
1245 			c->bit_offset = c->bm_bits;
1246 	}
1247 	if (!err) {
1248 		if (len == 0) {
1249 			INFO_bm_xfer_stats(device, "send", c);
1250 			return 0;
1251 		} else
1252 			return 1;
1253 	}
1254 	return -EIO;
1255 }
1256 
1257 /* See the comment at receive_bitmap() */
1258 static int _drbd_send_bitmap(struct drbd_device *device)
1259 {
1260 	struct bm_xfer_ctx c;
1261 	int err;
1262 
1263 	if (!expect(device->bitmap))
1264 		return false;
1265 
1266 	if (get_ldev(device)) {
1267 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1268 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1269 			drbd_bm_set_all(device);
1270 			if (drbd_bm_write(device)) {
1271 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1272 				 * but otherwise process as per normal - need to tell other
1273 				 * side that a full resync is required! */
1274 				drbd_err(device, "Failed to write bitmap to disk!\n");
1275 			} else {
1276 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1277 				drbd_md_sync(device);
1278 			}
1279 		}
1280 		put_ldev(device);
1281 	}
1282 
1283 	c = (struct bm_xfer_ctx) {
1284 		.bm_bits = drbd_bm_bits(device),
1285 		.bm_words = drbd_bm_words(device),
1286 	};
1287 
1288 	do {
1289 		err = send_bitmap_rle_or_plain(device, &c);
1290 	} while (err > 0);
1291 
1292 	return err == 0;
1293 }
1294 
1295 int drbd_send_bitmap(struct drbd_device *device)
1296 {
1297 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1298 	int err = -1;
1299 
1300 	mutex_lock(&sock->mutex);
1301 	if (sock->socket)
1302 		err = !_drbd_send_bitmap(device);
1303 	mutex_unlock(&sock->mutex);
1304 	return err;
1305 }
1306 
1307 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1308 {
1309 	struct drbd_socket *sock;
1310 	struct p_barrier_ack *p;
1311 
1312 	if (connection->cstate < C_WF_REPORT_PARAMS)
1313 		return;
1314 
1315 	sock = &connection->meta;
1316 	p = conn_prepare_command(connection, sock);
1317 	if (!p)
1318 		return;
1319 	p->barrier = barrier_nr;
1320 	p->set_size = cpu_to_be32(set_size);
1321 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1322 }
1323 
1324 /**
1325  * _drbd_send_ack() - Sends an ack packet
1326  * @peer_device:	DRBD peer device.
1327  * @cmd:		Packet command code.
1328  * @sector:		sector, needs to be in big endian byte order
1329  * @blksize:		size in byte, needs to be in big endian byte order
1330  * @block_id:		Id, big endian byte order
1331  */
1332 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1333 			  u64 sector, u32 blksize, u64 block_id)
1334 {
1335 	struct drbd_socket *sock;
1336 	struct p_block_ack *p;
1337 
1338 	if (peer_device->device->state.conn < C_CONNECTED)
1339 		return -EIO;
1340 
1341 	sock = &peer_device->connection->meta;
1342 	p = drbd_prepare_command(peer_device, sock);
1343 	if (!p)
1344 		return -EIO;
1345 	p->sector = sector;
1346 	p->block_id = block_id;
1347 	p->blksize = blksize;
1348 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1349 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1350 }
1351 
1352 /* dp->sector and dp->block_id already/still in network byte order,
1353  * data_size is payload size according to dp->head,
1354  * and may need to be corrected for digest size. */
1355 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1356 		      struct p_data *dp, int data_size)
1357 {
1358 	if (peer_device->connection->peer_integrity_tfm)
1359 		data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1360 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1361 		       dp->block_id);
1362 }
1363 
1364 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1365 		      struct p_block_req *rp)
1366 {
1367 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1368 }
1369 
1370 /**
1371  * drbd_send_ack() - Sends an ack packet
1372  * @peer_device:	DRBD peer device
1373  * @cmd:		packet command code
1374  * @peer_req:		peer request
1375  */
1376 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1377 		  struct drbd_peer_request *peer_req)
1378 {
1379 	return _drbd_send_ack(peer_device, cmd,
1380 			      cpu_to_be64(peer_req->i.sector),
1381 			      cpu_to_be32(peer_req->i.size),
1382 			      peer_req->block_id);
1383 }
1384 
1385 /* This function misuses the block_id field to signal if the blocks
1386  * are is sync or not. */
1387 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1388 		     sector_t sector, int blksize, u64 block_id)
1389 {
1390 	return _drbd_send_ack(peer_device, cmd,
1391 			      cpu_to_be64(sector),
1392 			      cpu_to_be32(blksize),
1393 			      cpu_to_be64(block_id));
1394 }
1395 
1396 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1397 			     struct drbd_peer_request *peer_req)
1398 {
1399 	struct drbd_socket *sock;
1400 	struct p_block_desc *p;
1401 
1402 	sock = &peer_device->connection->data;
1403 	p = drbd_prepare_command(peer_device, sock);
1404 	if (!p)
1405 		return -EIO;
1406 	p->sector = cpu_to_be64(peer_req->i.sector);
1407 	p->blksize = cpu_to_be32(peer_req->i.size);
1408 	p->pad = 0;
1409 	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1410 }
1411 
1412 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1413 		       sector_t sector, int size, u64 block_id)
1414 {
1415 	struct drbd_socket *sock;
1416 	struct p_block_req *p;
1417 
1418 	sock = &peer_device->connection->data;
1419 	p = drbd_prepare_command(peer_device, sock);
1420 	if (!p)
1421 		return -EIO;
1422 	p->sector = cpu_to_be64(sector);
1423 	p->block_id = block_id;
1424 	p->blksize = cpu_to_be32(size);
1425 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1426 }
1427 
1428 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1429 			    void *digest, int digest_size, enum drbd_packet cmd)
1430 {
1431 	struct drbd_socket *sock;
1432 	struct p_block_req *p;
1433 
1434 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1435 
1436 	sock = &peer_device->connection->data;
1437 	p = drbd_prepare_command(peer_device, sock);
1438 	if (!p)
1439 		return -EIO;
1440 	p->sector = cpu_to_be64(sector);
1441 	p->block_id = ID_SYNCER /* unused */;
1442 	p->blksize = cpu_to_be32(size);
1443 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1444 }
1445 
1446 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1447 {
1448 	struct drbd_socket *sock;
1449 	struct p_block_req *p;
1450 
1451 	sock = &peer_device->connection->data;
1452 	p = drbd_prepare_command(peer_device, sock);
1453 	if (!p)
1454 		return -EIO;
1455 	p->sector = cpu_to_be64(sector);
1456 	p->block_id = ID_SYNCER /* unused */;
1457 	p->blksize = cpu_to_be32(size);
1458 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1459 }
1460 
1461 /* called on sndtimeo
1462  * returns false if we should retry,
1463  * true if we think connection is dead
1464  */
1465 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1466 {
1467 	int drop_it;
1468 	/* long elapsed = (long)(jiffies - device->last_received); */
1469 
1470 	drop_it =   connection->meta.socket == sock
1471 		|| !connection->ack_receiver.task
1472 		|| get_t_state(&connection->ack_receiver) != RUNNING
1473 		|| connection->cstate < C_WF_REPORT_PARAMS;
1474 
1475 	if (drop_it)
1476 		return true;
1477 
1478 	drop_it = !--connection->ko_count;
1479 	if (!drop_it) {
1480 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1481 			 current->comm, current->pid, connection->ko_count);
1482 		request_ping(connection);
1483 	}
1484 
1485 	return drop_it; /* && (device->state == R_PRIMARY) */;
1486 }
1487 
1488 static void drbd_update_congested(struct drbd_connection *connection)
1489 {
1490 	struct sock *sk = connection->data.socket->sk;
1491 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1492 		set_bit(NET_CONGESTED, &connection->flags);
1493 }
1494 
1495 /* The idea of sendpage seems to be to put some kind of reference
1496  * to the page into the skb, and to hand it over to the NIC. In
1497  * this process get_page() gets called.
1498  *
1499  * As soon as the page was really sent over the network put_page()
1500  * gets called by some part of the network layer. [ NIC driver? ]
1501  *
1502  * [ get_page() / put_page() increment/decrement the count. If count
1503  *   reaches 0 the page will be freed. ]
1504  *
1505  * This works nicely with pages from FSs.
1506  * But this means that in protocol A we might signal IO completion too early!
1507  *
1508  * In order not to corrupt data during a resync we must make sure
1509  * that we do not reuse our own buffer pages (EEs) to early, therefore
1510  * we have the net_ee list.
1511  *
1512  * XFS seems to have problems, still, it submits pages with page_count == 0!
1513  * As a workaround, we disable sendpage on pages
1514  * with page_count == 0 or PageSlab.
1515  */
1516 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1517 			      int offset, size_t size, unsigned msg_flags)
1518 {
1519 	struct socket *socket;
1520 	void *addr;
1521 	int err;
1522 
1523 	socket = peer_device->connection->data.socket;
1524 	addr = kmap(page) + offset;
1525 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1526 	kunmap(page);
1527 	if (!err)
1528 		peer_device->device->send_cnt += size >> 9;
1529 	return err;
1530 }
1531 
1532 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1533 		    int offset, size_t size, unsigned msg_flags)
1534 {
1535 	struct socket *socket = peer_device->connection->data.socket;
1536 	int len = size;
1537 	int err = -EIO;
1538 
1539 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1540 	 * page_count of 0 and/or have PageSlab() set.
1541 	 * we cannot use send_page for those, as that does get_page();
1542 	 * put_page(); and would cause either a VM_BUG directly, or
1543 	 * __page_cache_release a page that would actually still be referenced
1544 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1545 	if (drbd_disable_sendpage || !sendpage_ok(page))
1546 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1547 
1548 	msg_flags |= MSG_NOSIGNAL;
1549 	drbd_update_congested(peer_device->connection);
1550 	do {
1551 		int sent;
1552 
1553 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1554 		if (sent <= 0) {
1555 			if (sent == -EAGAIN) {
1556 				if (we_should_drop_the_connection(peer_device->connection, socket))
1557 					break;
1558 				continue;
1559 			}
1560 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1561 			     __func__, (int)size, len, sent);
1562 			if (sent < 0)
1563 				err = sent;
1564 			break;
1565 		}
1566 		len    -= sent;
1567 		offset += sent;
1568 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1569 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1570 
1571 	if (len == 0) {
1572 		err = 0;
1573 		peer_device->device->send_cnt += size >> 9;
1574 	}
1575 	return err;
1576 }
1577 
1578 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1579 {
1580 	struct bio_vec bvec;
1581 	struct bvec_iter iter;
1582 
1583 	/* hint all but last page with MSG_MORE */
1584 	bio_for_each_segment(bvec, bio, iter) {
1585 		int err;
1586 
1587 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1588 					 bvec.bv_offset, bvec.bv_len,
1589 					 bio_iter_last(bvec, iter)
1590 					 ? 0 : MSG_MORE);
1591 		if (err)
1592 			return err;
1593 		/* REQ_OP_WRITE_SAME has only one segment */
1594 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1595 			break;
1596 	}
1597 	return 0;
1598 }
1599 
1600 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1601 {
1602 	struct bio_vec bvec;
1603 	struct bvec_iter iter;
1604 
1605 	/* hint all but last page with MSG_MORE */
1606 	bio_for_each_segment(bvec, bio, iter) {
1607 		int err;
1608 
1609 		err = _drbd_send_page(peer_device, bvec.bv_page,
1610 				      bvec.bv_offset, bvec.bv_len,
1611 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1612 		if (err)
1613 			return err;
1614 		/* REQ_OP_WRITE_SAME has only one segment */
1615 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1616 			break;
1617 	}
1618 	return 0;
1619 }
1620 
1621 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1622 			    struct drbd_peer_request *peer_req)
1623 {
1624 	struct page *page = peer_req->pages;
1625 	unsigned len = peer_req->i.size;
1626 	int err;
1627 
1628 	/* hint all but last page with MSG_MORE */
1629 	page_chain_for_each(page) {
1630 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1631 
1632 		err = _drbd_send_page(peer_device, page, 0, l,
1633 				      page_chain_next(page) ? MSG_MORE : 0);
1634 		if (err)
1635 			return err;
1636 		len -= l;
1637 	}
1638 	return 0;
1639 }
1640 
1641 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1642 			     struct bio *bio)
1643 {
1644 	if (connection->agreed_pro_version >= 95)
1645 		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1646 			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1647 			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1648 			(bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1649 			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1650 			(bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1651 			  ((connection->agreed_features & DRBD_FF_WZEROES) ?
1652 			   (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1653 			   : DP_DISCARD)
1654 			: 0);
1655 	else
1656 		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1657 }
1658 
1659 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1660  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1661  */
1662 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1663 {
1664 	struct drbd_device *device = peer_device->device;
1665 	struct drbd_socket *sock;
1666 	struct p_data *p;
1667 	struct p_wsame *wsame = NULL;
1668 	void *digest_out;
1669 	unsigned int dp_flags = 0;
1670 	int digest_size;
1671 	int err;
1672 
1673 	sock = &peer_device->connection->data;
1674 	p = drbd_prepare_command(peer_device, sock);
1675 	digest_size = peer_device->connection->integrity_tfm ?
1676 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1677 
1678 	if (!p)
1679 		return -EIO;
1680 	p->sector = cpu_to_be64(req->i.sector);
1681 	p->block_id = (unsigned long)req;
1682 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1683 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1684 	if (device->state.conn >= C_SYNC_SOURCE &&
1685 	    device->state.conn <= C_PAUSED_SYNC_T)
1686 		dp_flags |= DP_MAY_SET_IN_SYNC;
1687 	if (peer_device->connection->agreed_pro_version >= 100) {
1688 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1689 			dp_flags |= DP_SEND_RECEIVE_ACK;
1690 		/* During resync, request an explicit write ack,
1691 		 * even in protocol != C */
1692 		if (req->rq_state & RQ_EXP_WRITE_ACK
1693 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1694 			dp_flags |= DP_SEND_WRITE_ACK;
1695 	}
1696 	p->dp_flags = cpu_to_be32(dp_flags);
1697 
1698 	if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1699 		enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1700 		struct p_trim *t = (struct p_trim*)p;
1701 		t->size = cpu_to_be32(req->i.size);
1702 		err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1703 		goto out;
1704 	}
1705 	if (dp_flags & DP_WSAME) {
1706 		/* this will only work if DRBD_FF_WSAME is set AND the
1707 		 * handshake agreed that all nodes and backend devices are
1708 		 * WRITE_SAME capable and agree on logical_block_size */
1709 		wsame = (struct p_wsame*)p;
1710 		digest_out = wsame + 1;
1711 		wsame->size = cpu_to_be32(req->i.size);
1712 	} else
1713 		digest_out = p + 1;
1714 
1715 	/* our digest is still only over the payload.
1716 	 * TRIM does not carry any payload. */
1717 	if (digest_size)
1718 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1719 	if (wsame) {
1720 		err =
1721 		    __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1722 				   sizeof(*wsame) + digest_size, NULL,
1723 				   bio_iovec(req->master_bio).bv_len);
1724 	} else
1725 		err =
1726 		    __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1727 				   sizeof(*p) + digest_size, NULL, req->i.size);
1728 	if (!err) {
1729 		/* For protocol A, we have to memcpy the payload into
1730 		 * socket buffers, as we may complete right away
1731 		 * as soon as we handed it over to tcp, at which point the data
1732 		 * pages may become invalid.
1733 		 *
1734 		 * For data-integrity enabled, we copy it as well, so we can be
1735 		 * sure that even if the bio pages may still be modified, it
1736 		 * won't change the data on the wire, thus if the digest checks
1737 		 * out ok after sending on this side, but does not fit on the
1738 		 * receiving side, we sure have detected corruption elsewhere.
1739 		 */
1740 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1741 			err = _drbd_send_bio(peer_device, req->master_bio);
1742 		else
1743 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1744 
1745 		/* double check digest, sometimes buffers have been modified in flight. */
1746 		if (digest_size > 0 && digest_size <= 64) {
1747 			/* 64 byte, 512 bit, is the largest digest size
1748 			 * currently supported in kernel crypto. */
1749 			unsigned char digest[64];
1750 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1751 			if (memcmp(p + 1, digest, digest_size)) {
1752 				drbd_warn(device,
1753 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1754 					(unsigned long long)req->i.sector, req->i.size);
1755 			}
1756 		} /* else if (digest_size > 64) {
1757 		     ... Be noisy about digest too large ...
1758 		} */
1759 	}
1760 out:
1761 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1762 
1763 	return err;
1764 }
1765 
1766 /* answer packet, used to send data back for read requests:
1767  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1768  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1769  */
1770 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1771 		    struct drbd_peer_request *peer_req)
1772 {
1773 	struct drbd_device *device = peer_device->device;
1774 	struct drbd_socket *sock;
1775 	struct p_data *p;
1776 	int err;
1777 	int digest_size;
1778 
1779 	sock = &peer_device->connection->data;
1780 	p = drbd_prepare_command(peer_device, sock);
1781 
1782 	digest_size = peer_device->connection->integrity_tfm ?
1783 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1784 
1785 	if (!p)
1786 		return -EIO;
1787 	p->sector = cpu_to_be64(peer_req->i.sector);
1788 	p->block_id = peer_req->block_id;
1789 	p->seq_num = 0;  /* unused */
1790 	p->dp_flags = 0;
1791 	if (digest_size)
1792 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1793 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1794 	if (!err)
1795 		err = _drbd_send_zc_ee(peer_device, peer_req);
1796 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1797 
1798 	return err;
1799 }
1800 
1801 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1802 {
1803 	struct drbd_socket *sock;
1804 	struct p_block_desc *p;
1805 
1806 	sock = &peer_device->connection->data;
1807 	p = drbd_prepare_command(peer_device, sock);
1808 	if (!p)
1809 		return -EIO;
1810 	p->sector = cpu_to_be64(req->i.sector);
1811 	p->blksize = cpu_to_be32(req->i.size);
1812 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1813 }
1814 
1815 /*
1816   drbd_send distinguishes two cases:
1817 
1818   Packets sent via the data socket "sock"
1819   and packets sent via the meta data socket "msock"
1820 
1821 		    sock                      msock
1822   -----------------+-------------------------+------------------------------
1823   timeout           conf.timeout / 2          conf.timeout / 2
1824   timeout action    send a ping via msock     Abort communication
1825 					      and close all sockets
1826 */
1827 
1828 /*
1829  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1830  */
1831 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1832 	      void *buf, size_t size, unsigned msg_flags)
1833 {
1834 	struct kvec iov = {.iov_base = buf, .iov_len = size};
1835 	struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1836 	int rv, sent = 0;
1837 
1838 	if (!sock)
1839 		return -EBADR;
1840 
1841 	/* THINK  if (signal_pending) return ... ? */
1842 
1843 	iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1844 
1845 	if (sock == connection->data.socket) {
1846 		rcu_read_lock();
1847 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1848 		rcu_read_unlock();
1849 		drbd_update_congested(connection);
1850 	}
1851 	do {
1852 		rv = sock_sendmsg(sock, &msg);
1853 		if (rv == -EAGAIN) {
1854 			if (we_should_drop_the_connection(connection, sock))
1855 				break;
1856 			else
1857 				continue;
1858 		}
1859 		if (rv == -EINTR) {
1860 			flush_signals(current);
1861 			rv = 0;
1862 		}
1863 		if (rv < 0)
1864 			break;
1865 		sent += rv;
1866 	} while (sent < size);
1867 
1868 	if (sock == connection->data.socket)
1869 		clear_bit(NET_CONGESTED, &connection->flags);
1870 
1871 	if (rv <= 0) {
1872 		if (rv != -EAGAIN) {
1873 			drbd_err(connection, "%s_sendmsg returned %d\n",
1874 				 sock == connection->meta.socket ? "msock" : "sock",
1875 				 rv);
1876 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1877 		} else
1878 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1879 	}
1880 
1881 	return sent;
1882 }
1883 
1884 /*
1885  * drbd_send_all  -  Send an entire buffer
1886  *
1887  * Returns 0 upon success and a negative error value otherwise.
1888  */
1889 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1890 		  size_t size, unsigned msg_flags)
1891 {
1892 	int err;
1893 
1894 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1895 	if (err < 0)
1896 		return err;
1897 	if (err != size)
1898 		return -EIO;
1899 	return 0;
1900 }
1901 
1902 static int drbd_open(struct block_device *bdev, fmode_t mode)
1903 {
1904 	struct drbd_device *device = bdev->bd_disk->private_data;
1905 	unsigned long flags;
1906 	int rv = 0;
1907 
1908 	mutex_lock(&drbd_main_mutex);
1909 	spin_lock_irqsave(&device->resource->req_lock, flags);
1910 	/* to have a stable device->state.role
1911 	 * and no race with updating open_cnt */
1912 
1913 	if (device->state.role != R_PRIMARY) {
1914 		if (mode & FMODE_WRITE)
1915 			rv = -EROFS;
1916 		else if (!drbd_allow_oos)
1917 			rv = -EMEDIUMTYPE;
1918 	}
1919 
1920 	if (!rv)
1921 		device->open_cnt++;
1922 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1923 	mutex_unlock(&drbd_main_mutex);
1924 
1925 	return rv;
1926 }
1927 
1928 static void drbd_release(struct gendisk *gd, fmode_t mode)
1929 {
1930 	struct drbd_device *device = gd->private_data;
1931 	mutex_lock(&drbd_main_mutex);
1932 	device->open_cnt--;
1933 	mutex_unlock(&drbd_main_mutex);
1934 }
1935 
1936 /* need to hold resource->req_lock */
1937 void drbd_queue_unplug(struct drbd_device *device)
1938 {
1939 	if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1940 		D_ASSERT(device, device->state.role == R_PRIMARY);
1941 		if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1942 			drbd_queue_work_if_unqueued(
1943 				&first_peer_device(device)->connection->sender_work,
1944 				&device->unplug_work);
1945 		}
1946 	}
1947 }
1948 
1949 static void drbd_set_defaults(struct drbd_device *device)
1950 {
1951 	/* Beware! The actual layout differs
1952 	 * between big endian and little endian */
1953 	device->state = (union drbd_dev_state) {
1954 		{ .role = R_SECONDARY,
1955 		  .peer = R_UNKNOWN,
1956 		  .conn = C_STANDALONE,
1957 		  .disk = D_DISKLESS,
1958 		  .pdsk = D_UNKNOWN,
1959 		} };
1960 }
1961 
1962 void drbd_init_set_defaults(struct drbd_device *device)
1963 {
1964 	/* the memset(,0,) did most of this.
1965 	 * note: only assignments, no allocation in here */
1966 
1967 	drbd_set_defaults(device);
1968 
1969 	atomic_set(&device->ap_bio_cnt, 0);
1970 	atomic_set(&device->ap_actlog_cnt, 0);
1971 	atomic_set(&device->ap_pending_cnt, 0);
1972 	atomic_set(&device->rs_pending_cnt, 0);
1973 	atomic_set(&device->unacked_cnt, 0);
1974 	atomic_set(&device->local_cnt, 0);
1975 	atomic_set(&device->pp_in_use_by_net, 0);
1976 	atomic_set(&device->rs_sect_in, 0);
1977 	atomic_set(&device->rs_sect_ev, 0);
1978 	atomic_set(&device->ap_in_flight, 0);
1979 	atomic_set(&device->md_io.in_use, 0);
1980 
1981 	mutex_init(&device->own_state_mutex);
1982 	device->state_mutex = &device->own_state_mutex;
1983 
1984 	spin_lock_init(&device->al_lock);
1985 	spin_lock_init(&device->peer_seq_lock);
1986 
1987 	INIT_LIST_HEAD(&device->active_ee);
1988 	INIT_LIST_HEAD(&device->sync_ee);
1989 	INIT_LIST_HEAD(&device->done_ee);
1990 	INIT_LIST_HEAD(&device->read_ee);
1991 	INIT_LIST_HEAD(&device->net_ee);
1992 	INIT_LIST_HEAD(&device->resync_reads);
1993 	INIT_LIST_HEAD(&device->resync_work.list);
1994 	INIT_LIST_HEAD(&device->unplug_work.list);
1995 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
1996 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
1997 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
1998 	INIT_LIST_HEAD(&device->pending_completion[0]);
1999 	INIT_LIST_HEAD(&device->pending_completion[1]);
2000 
2001 	device->resync_work.cb  = w_resync_timer;
2002 	device->unplug_work.cb  = w_send_write_hint;
2003 	device->bm_io_work.w.cb = w_bitmap_io;
2004 
2005 	timer_setup(&device->resync_timer, resync_timer_fn, 0);
2006 	timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2007 	timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2008 	timer_setup(&device->request_timer, request_timer_fn, 0);
2009 
2010 	init_waitqueue_head(&device->misc_wait);
2011 	init_waitqueue_head(&device->state_wait);
2012 	init_waitqueue_head(&device->ee_wait);
2013 	init_waitqueue_head(&device->al_wait);
2014 	init_waitqueue_head(&device->seq_wait);
2015 
2016 	device->resync_wenr = LC_FREE;
2017 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2018 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2019 }
2020 
2021 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2022 {
2023 	char ppb[10];
2024 
2025 	set_capacity_and_notify(device->vdisk, size);
2026 
2027 	drbd_info(device, "size = %s (%llu KB)\n",
2028 		ppsize(ppb, size>>1), (unsigned long long)size>>1);
2029 }
2030 
2031 void drbd_device_cleanup(struct drbd_device *device)
2032 {
2033 	int i;
2034 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2035 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2036 				first_peer_device(device)->connection->receiver.t_state);
2037 
2038 	device->al_writ_cnt  =
2039 	device->bm_writ_cnt  =
2040 	device->read_cnt     =
2041 	device->recv_cnt     =
2042 	device->send_cnt     =
2043 	device->writ_cnt     =
2044 	device->p_size       =
2045 	device->rs_start     =
2046 	device->rs_total     =
2047 	device->rs_failed    = 0;
2048 	device->rs_last_events = 0;
2049 	device->rs_last_sect_ev = 0;
2050 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2051 		device->rs_mark_left[i] = 0;
2052 		device->rs_mark_time[i] = 0;
2053 	}
2054 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2055 
2056 	set_capacity_and_notify(device->vdisk, 0);
2057 	if (device->bitmap) {
2058 		/* maybe never allocated. */
2059 		drbd_bm_resize(device, 0, 1);
2060 		drbd_bm_cleanup(device);
2061 	}
2062 
2063 	drbd_backing_dev_free(device, device->ldev);
2064 	device->ldev = NULL;
2065 
2066 	clear_bit(AL_SUSPENDED, &device->flags);
2067 
2068 	D_ASSERT(device, list_empty(&device->active_ee));
2069 	D_ASSERT(device, list_empty(&device->sync_ee));
2070 	D_ASSERT(device, list_empty(&device->done_ee));
2071 	D_ASSERT(device, list_empty(&device->read_ee));
2072 	D_ASSERT(device, list_empty(&device->net_ee));
2073 	D_ASSERT(device, list_empty(&device->resync_reads));
2074 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2075 	D_ASSERT(device, list_empty(&device->resync_work.list));
2076 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2077 
2078 	drbd_set_defaults(device);
2079 }
2080 
2081 
2082 static void drbd_destroy_mempools(void)
2083 {
2084 	struct page *page;
2085 
2086 	while (drbd_pp_pool) {
2087 		page = drbd_pp_pool;
2088 		drbd_pp_pool = (struct page *)page_private(page);
2089 		__free_page(page);
2090 		drbd_pp_vacant--;
2091 	}
2092 
2093 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2094 
2095 	bioset_exit(&drbd_io_bio_set);
2096 	bioset_exit(&drbd_md_io_bio_set);
2097 	mempool_exit(&drbd_md_io_page_pool);
2098 	mempool_exit(&drbd_ee_mempool);
2099 	mempool_exit(&drbd_request_mempool);
2100 	kmem_cache_destroy(drbd_ee_cache);
2101 	kmem_cache_destroy(drbd_request_cache);
2102 	kmem_cache_destroy(drbd_bm_ext_cache);
2103 	kmem_cache_destroy(drbd_al_ext_cache);
2104 
2105 	drbd_ee_cache        = NULL;
2106 	drbd_request_cache   = NULL;
2107 	drbd_bm_ext_cache    = NULL;
2108 	drbd_al_ext_cache    = NULL;
2109 
2110 	return;
2111 }
2112 
2113 static int drbd_create_mempools(void)
2114 {
2115 	struct page *page;
2116 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2117 	int i, ret;
2118 
2119 	/* caches */
2120 	drbd_request_cache = kmem_cache_create(
2121 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2122 	if (drbd_request_cache == NULL)
2123 		goto Enomem;
2124 
2125 	drbd_ee_cache = kmem_cache_create(
2126 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2127 	if (drbd_ee_cache == NULL)
2128 		goto Enomem;
2129 
2130 	drbd_bm_ext_cache = kmem_cache_create(
2131 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2132 	if (drbd_bm_ext_cache == NULL)
2133 		goto Enomem;
2134 
2135 	drbd_al_ext_cache = kmem_cache_create(
2136 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2137 	if (drbd_al_ext_cache == NULL)
2138 		goto Enomem;
2139 
2140 	/* mempools */
2141 	ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2142 	if (ret)
2143 		goto Enomem;
2144 
2145 	ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2146 			  BIOSET_NEED_BVECS);
2147 	if (ret)
2148 		goto Enomem;
2149 
2150 	ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2151 	if (ret)
2152 		goto Enomem;
2153 
2154 	ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2155 				     drbd_request_cache);
2156 	if (ret)
2157 		goto Enomem;
2158 
2159 	ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2160 	if (ret)
2161 		goto Enomem;
2162 
2163 	for (i = 0; i < number; i++) {
2164 		page = alloc_page(GFP_HIGHUSER);
2165 		if (!page)
2166 			goto Enomem;
2167 		set_page_private(page, (unsigned long)drbd_pp_pool);
2168 		drbd_pp_pool = page;
2169 	}
2170 	drbd_pp_vacant = number;
2171 
2172 	return 0;
2173 
2174 Enomem:
2175 	drbd_destroy_mempools(); /* in case we allocated some */
2176 	return -ENOMEM;
2177 }
2178 
2179 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2180 {
2181 	int rr;
2182 
2183 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2184 	if (rr)
2185 		drbd_err(device, "%d EEs in active list found!\n", rr);
2186 
2187 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2188 	if (rr)
2189 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2190 
2191 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2192 	if (rr)
2193 		drbd_err(device, "%d EEs in read list found!\n", rr);
2194 
2195 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2196 	if (rr)
2197 		drbd_err(device, "%d EEs in done list found!\n", rr);
2198 
2199 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2200 	if (rr)
2201 		drbd_err(device, "%d EEs in net list found!\n", rr);
2202 }
2203 
2204 /* caution. no locking. */
2205 void drbd_destroy_device(struct kref *kref)
2206 {
2207 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2208 	struct drbd_resource *resource = device->resource;
2209 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2210 
2211 	del_timer_sync(&device->request_timer);
2212 
2213 	/* paranoia asserts */
2214 	D_ASSERT(device, device->open_cnt == 0);
2215 	/* end paranoia asserts */
2216 
2217 	/* cleanup stuff that may have been allocated during
2218 	 * device (re-)configuration or state changes */
2219 
2220 	drbd_backing_dev_free(device, device->ldev);
2221 	device->ldev = NULL;
2222 
2223 	drbd_release_all_peer_reqs(device);
2224 
2225 	lc_destroy(device->act_log);
2226 	lc_destroy(device->resync);
2227 
2228 	kfree(device->p_uuid);
2229 	/* device->p_uuid = NULL; */
2230 
2231 	if (device->bitmap) /* should no longer be there. */
2232 		drbd_bm_cleanup(device);
2233 	__free_page(device->md_io.page);
2234 	blk_cleanup_disk(device->vdisk);
2235 	kfree(device->rs_plan_s);
2236 
2237 	/* not for_each_connection(connection, resource):
2238 	 * those may have been cleaned up and disassociated already.
2239 	 */
2240 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2241 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2242 		kfree(peer_device);
2243 	}
2244 	memset(device, 0xfd, sizeof(*device));
2245 	kfree(device);
2246 	kref_put(&resource->kref, drbd_destroy_resource);
2247 }
2248 
2249 /* One global retry thread, if we need to push back some bio and have it
2250  * reinserted through our make request function.
2251  */
2252 static struct retry_worker {
2253 	struct workqueue_struct *wq;
2254 	struct work_struct worker;
2255 
2256 	spinlock_t lock;
2257 	struct list_head writes;
2258 } retry;
2259 
2260 static void do_retry(struct work_struct *ws)
2261 {
2262 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2263 	LIST_HEAD(writes);
2264 	struct drbd_request *req, *tmp;
2265 
2266 	spin_lock_irq(&retry->lock);
2267 	list_splice_init(&retry->writes, &writes);
2268 	spin_unlock_irq(&retry->lock);
2269 
2270 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2271 		struct drbd_device *device = req->device;
2272 		struct bio *bio = req->master_bio;
2273 		bool expected;
2274 
2275 		expected =
2276 			expect(atomic_read(&req->completion_ref) == 0) &&
2277 			expect(req->rq_state & RQ_POSTPONED) &&
2278 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2279 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2280 
2281 		if (!expected)
2282 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2283 				req, atomic_read(&req->completion_ref),
2284 				req->rq_state);
2285 
2286 		/* We still need to put one kref associated with the
2287 		 * "completion_ref" going zero in the code path that queued it
2288 		 * here.  The request object may still be referenced by a
2289 		 * frozen local req->private_bio, in case we force-detached.
2290 		 */
2291 		kref_put(&req->kref, drbd_req_destroy);
2292 
2293 		/* A single suspended or otherwise blocking device may stall
2294 		 * all others as well.  Fortunately, this code path is to
2295 		 * recover from a situation that "should not happen":
2296 		 * concurrent writes in multi-primary setup.
2297 		 * In a "normal" lifecycle, this workqueue is supposed to be
2298 		 * destroyed without ever doing anything.
2299 		 * If it turns out to be an issue anyways, we can do per
2300 		 * resource (replication group) or per device (minor) retry
2301 		 * workqueues instead.
2302 		 */
2303 
2304 		/* We are not just doing submit_bio_noacct(),
2305 		 * as we want to keep the start_time information. */
2306 		inc_ap_bio(device);
2307 		__drbd_make_request(device, bio);
2308 	}
2309 }
2310 
2311 /* called via drbd_req_put_completion_ref(),
2312  * holds resource->req_lock */
2313 void drbd_restart_request(struct drbd_request *req)
2314 {
2315 	unsigned long flags;
2316 	spin_lock_irqsave(&retry.lock, flags);
2317 	list_move_tail(&req->tl_requests, &retry.writes);
2318 	spin_unlock_irqrestore(&retry.lock, flags);
2319 
2320 	/* Drop the extra reference that would otherwise
2321 	 * have been dropped by complete_master_bio.
2322 	 * do_retry() needs to grab a new one. */
2323 	dec_ap_bio(req->device);
2324 
2325 	queue_work(retry.wq, &retry.worker);
2326 }
2327 
2328 void drbd_destroy_resource(struct kref *kref)
2329 {
2330 	struct drbd_resource *resource =
2331 		container_of(kref, struct drbd_resource, kref);
2332 
2333 	idr_destroy(&resource->devices);
2334 	free_cpumask_var(resource->cpu_mask);
2335 	kfree(resource->name);
2336 	memset(resource, 0xf2, sizeof(*resource));
2337 	kfree(resource);
2338 }
2339 
2340 void drbd_free_resource(struct drbd_resource *resource)
2341 {
2342 	struct drbd_connection *connection, *tmp;
2343 
2344 	for_each_connection_safe(connection, tmp, resource) {
2345 		list_del(&connection->connections);
2346 		drbd_debugfs_connection_cleanup(connection);
2347 		kref_put(&connection->kref, drbd_destroy_connection);
2348 	}
2349 	drbd_debugfs_resource_cleanup(resource);
2350 	kref_put(&resource->kref, drbd_destroy_resource);
2351 }
2352 
2353 static void drbd_cleanup(void)
2354 {
2355 	unsigned int i;
2356 	struct drbd_device *device;
2357 	struct drbd_resource *resource, *tmp;
2358 
2359 	/* first remove proc,
2360 	 * drbdsetup uses it's presence to detect
2361 	 * whether DRBD is loaded.
2362 	 * If we would get stuck in proc removal,
2363 	 * but have netlink already deregistered,
2364 	 * some drbdsetup commands may wait forever
2365 	 * for an answer.
2366 	 */
2367 	if (drbd_proc)
2368 		remove_proc_entry("drbd", NULL);
2369 
2370 	if (retry.wq)
2371 		destroy_workqueue(retry.wq);
2372 
2373 	drbd_genl_unregister();
2374 
2375 	idr_for_each_entry(&drbd_devices, device, i)
2376 		drbd_delete_device(device);
2377 
2378 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2379 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2380 		list_del(&resource->resources);
2381 		drbd_free_resource(resource);
2382 	}
2383 
2384 	drbd_debugfs_cleanup();
2385 
2386 	drbd_destroy_mempools();
2387 	unregister_blkdev(DRBD_MAJOR, "drbd");
2388 
2389 	idr_destroy(&drbd_devices);
2390 
2391 	pr_info("module cleanup done.\n");
2392 }
2393 
2394 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2395 {
2396 	spin_lock_init(&wq->q_lock);
2397 	INIT_LIST_HEAD(&wq->q);
2398 	init_waitqueue_head(&wq->q_wait);
2399 }
2400 
2401 struct completion_work {
2402 	struct drbd_work w;
2403 	struct completion done;
2404 };
2405 
2406 static int w_complete(struct drbd_work *w, int cancel)
2407 {
2408 	struct completion_work *completion_work =
2409 		container_of(w, struct completion_work, w);
2410 
2411 	complete(&completion_work->done);
2412 	return 0;
2413 }
2414 
2415 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2416 {
2417 	struct completion_work completion_work;
2418 
2419 	completion_work.w.cb = w_complete;
2420 	init_completion(&completion_work.done);
2421 	drbd_queue_work(work_queue, &completion_work.w);
2422 	wait_for_completion(&completion_work.done);
2423 }
2424 
2425 struct drbd_resource *drbd_find_resource(const char *name)
2426 {
2427 	struct drbd_resource *resource;
2428 
2429 	if (!name || !name[0])
2430 		return NULL;
2431 
2432 	rcu_read_lock();
2433 	for_each_resource_rcu(resource, &drbd_resources) {
2434 		if (!strcmp(resource->name, name)) {
2435 			kref_get(&resource->kref);
2436 			goto found;
2437 		}
2438 	}
2439 	resource = NULL;
2440 found:
2441 	rcu_read_unlock();
2442 	return resource;
2443 }
2444 
2445 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2446 				     void *peer_addr, int peer_addr_len)
2447 {
2448 	struct drbd_resource *resource;
2449 	struct drbd_connection *connection;
2450 
2451 	rcu_read_lock();
2452 	for_each_resource_rcu(resource, &drbd_resources) {
2453 		for_each_connection_rcu(connection, resource) {
2454 			if (connection->my_addr_len == my_addr_len &&
2455 			    connection->peer_addr_len == peer_addr_len &&
2456 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2457 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2458 				kref_get(&connection->kref);
2459 				goto found;
2460 			}
2461 		}
2462 	}
2463 	connection = NULL;
2464 found:
2465 	rcu_read_unlock();
2466 	return connection;
2467 }
2468 
2469 static int drbd_alloc_socket(struct drbd_socket *socket)
2470 {
2471 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2472 	if (!socket->rbuf)
2473 		return -ENOMEM;
2474 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2475 	if (!socket->sbuf)
2476 		return -ENOMEM;
2477 	return 0;
2478 }
2479 
2480 static void drbd_free_socket(struct drbd_socket *socket)
2481 {
2482 	free_page((unsigned long) socket->sbuf);
2483 	free_page((unsigned long) socket->rbuf);
2484 }
2485 
2486 void conn_free_crypto(struct drbd_connection *connection)
2487 {
2488 	drbd_free_sock(connection);
2489 
2490 	crypto_free_shash(connection->csums_tfm);
2491 	crypto_free_shash(connection->verify_tfm);
2492 	crypto_free_shash(connection->cram_hmac_tfm);
2493 	crypto_free_shash(connection->integrity_tfm);
2494 	crypto_free_shash(connection->peer_integrity_tfm);
2495 	kfree(connection->int_dig_in);
2496 	kfree(connection->int_dig_vv);
2497 
2498 	connection->csums_tfm = NULL;
2499 	connection->verify_tfm = NULL;
2500 	connection->cram_hmac_tfm = NULL;
2501 	connection->integrity_tfm = NULL;
2502 	connection->peer_integrity_tfm = NULL;
2503 	connection->int_dig_in = NULL;
2504 	connection->int_dig_vv = NULL;
2505 }
2506 
2507 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2508 {
2509 	struct drbd_connection *connection;
2510 	cpumask_var_t new_cpu_mask;
2511 	int err;
2512 
2513 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2514 		return -ENOMEM;
2515 
2516 	/* silently ignore cpu mask on UP kernel */
2517 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2518 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2519 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2520 		if (err == -EOVERFLOW) {
2521 			/* So what. mask it out. */
2522 			cpumask_var_t tmp_cpu_mask;
2523 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2524 				cpumask_setall(tmp_cpu_mask);
2525 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2526 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2527 					res_opts->cpu_mask,
2528 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2529 					nr_cpu_ids);
2530 				free_cpumask_var(tmp_cpu_mask);
2531 				err = 0;
2532 			}
2533 		}
2534 		if (err) {
2535 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2536 			/* retcode = ERR_CPU_MASK_PARSE; */
2537 			goto fail;
2538 		}
2539 	}
2540 	resource->res_opts = *res_opts;
2541 	if (cpumask_empty(new_cpu_mask))
2542 		drbd_calc_cpu_mask(&new_cpu_mask);
2543 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2544 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2545 		for_each_connection_rcu(connection, resource) {
2546 			connection->receiver.reset_cpu_mask = 1;
2547 			connection->ack_receiver.reset_cpu_mask = 1;
2548 			connection->worker.reset_cpu_mask = 1;
2549 		}
2550 	}
2551 	err = 0;
2552 
2553 fail:
2554 	free_cpumask_var(new_cpu_mask);
2555 	return err;
2556 
2557 }
2558 
2559 struct drbd_resource *drbd_create_resource(const char *name)
2560 {
2561 	struct drbd_resource *resource;
2562 
2563 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2564 	if (!resource)
2565 		goto fail;
2566 	resource->name = kstrdup(name, GFP_KERNEL);
2567 	if (!resource->name)
2568 		goto fail_free_resource;
2569 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2570 		goto fail_free_name;
2571 	kref_init(&resource->kref);
2572 	idr_init(&resource->devices);
2573 	INIT_LIST_HEAD(&resource->connections);
2574 	resource->write_ordering = WO_BDEV_FLUSH;
2575 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2576 	mutex_init(&resource->conf_update);
2577 	mutex_init(&resource->adm_mutex);
2578 	spin_lock_init(&resource->req_lock);
2579 	drbd_debugfs_resource_add(resource);
2580 	return resource;
2581 
2582 fail_free_name:
2583 	kfree(resource->name);
2584 fail_free_resource:
2585 	kfree(resource);
2586 fail:
2587 	return NULL;
2588 }
2589 
2590 /* caller must be under adm_mutex */
2591 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2592 {
2593 	struct drbd_resource *resource;
2594 	struct drbd_connection *connection;
2595 
2596 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2597 	if (!connection)
2598 		return NULL;
2599 
2600 	if (drbd_alloc_socket(&connection->data))
2601 		goto fail;
2602 	if (drbd_alloc_socket(&connection->meta))
2603 		goto fail;
2604 
2605 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2606 	if (!connection->current_epoch)
2607 		goto fail;
2608 
2609 	INIT_LIST_HEAD(&connection->transfer_log);
2610 
2611 	INIT_LIST_HEAD(&connection->current_epoch->list);
2612 	connection->epochs = 1;
2613 	spin_lock_init(&connection->epoch_lock);
2614 
2615 	connection->send.seen_any_write_yet = false;
2616 	connection->send.current_epoch_nr = 0;
2617 	connection->send.current_epoch_writes = 0;
2618 
2619 	resource = drbd_create_resource(name);
2620 	if (!resource)
2621 		goto fail;
2622 
2623 	connection->cstate = C_STANDALONE;
2624 	mutex_init(&connection->cstate_mutex);
2625 	init_waitqueue_head(&connection->ping_wait);
2626 	idr_init(&connection->peer_devices);
2627 
2628 	drbd_init_workqueue(&connection->sender_work);
2629 	mutex_init(&connection->data.mutex);
2630 	mutex_init(&connection->meta.mutex);
2631 
2632 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2633 	connection->receiver.connection = connection;
2634 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2635 	connection->worker.connection = connection;
2636 	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2637 	connection->ack_receiver.connection = connection;
2638 
2639 	kref_init(&connection->kref);
2640 
2641 	connection->resource = resource;
2642 
2643 	if (set_resource_options(resource, res_opts))
2644 		goto fail_resource;
2645 
2646 	kref_get(&resource->kref);
2647 	list_add_tail_rcu(&connection->connections, &resource->connections);
2648 	drbd_debugfs_connection_add(connection);
2649 	return connection;
2650 
2651 fail_resource:
2652 	list_del(&resource->resources);
2653 	drbd_free_resource(resource);
2654 fail:
2655 	kfree(connection->current_epoch);
2656 	drbd_free_socket(&connection->meta);
2657 	drbd_free_socket(&connection->data);
2658 	kfree(connection);
2659 	return NULL;
2660 }
2661 
2662 void drbd_destroy_connection(struct kref *kref)
2663 {
2664 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2665 	struct drbd_resource *resource = connection->resource;
2666 
2667 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2668 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2669 	kfree(connection->current_epoch);
2670 
2671 	idr_destroy(&connection->peer_devices);
2672 
2673 	drbd_free_socket(&connection->meta);
2674 	drbd_free_socket(&connection->data);
2675 	kfree(connection->int_dig_in);
2676 	kfree(connection->int_dig_vv);
2677 	memset(connection, 0xfc, sizeof(*connection));
2678 	kfree(connection);
2679 	kref_put(&resource->kref, drbd_destroy_resource);
2680 }
2681 
2682 static int init_submitter(struct drbd_device *device)
2683 {
2684 	/* opencoded create_singlethread_workqueue(),
2685 	 * to be able to say "drbd%d", ..., minor */
2686 	device->submit.wq =
2687 		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2688 	if (!device->submit.wq)
2689 		return -ENOMEM;
2690 
2691 	INIT_WORK(&device->submit.worker, do_submit);
2692 	INIT_LIST_HEAD(&device->submit.writes);
2693 	return 0;
2694 }
2695 
2696 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2697 {
2698 	struct drbd_resource *resource = adm_ctx->resource;
2699 	struct drbd_connection *connection;
2700 	struct drbd_device *device;
2701 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2702 	struct gendisk *disk;
2703 	int id;
2704 	int vnr = adm_ctx->volume;
2705 	enum drbd_ret_code err = ERR_NOMEM;
2706 
2707 	device = minor_to_device(minor);
2708 	if (device)
2709 		return ERR_MINOR_OR_VOLUME_EXISTS;
2710 
2711 	/* GFP_KERNEL, we are outside of all write-out paths */
2712 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2713 	if (!device)
2714 		return ERR_NOMEM;
2715 	kref_init(&device->kref);
2716 
2717 	kref_get(&resource->kref);
2718 	device->resource = resource;
2719 	device->minor = minor;
2720 	device->vnr = vnr;
2721 
2722 	drbd_init_set_defaults(device);
2723 
2724 	disk = blk_alloc_disk(NUMA_NO_NODE);
2725 	if (!disk)
2726 		goto out_no_disk;
2727 
2728 	device->vdisk = disk;
2729 	device->rq_queue = disk->queue;
2730 
2731 	set_disk_ro(disk, true);
2732 
2733 	disk->major = DRBD_MAJOR;
2734 	disk->first_minor = minor;
2735 	disk->minors = 1;
2736 	disk->fops = &drbd_ops;
2737 	sprintf(disk->disk_name, "drbd%d", minor);
2738 	disk->private_data = device;
2739 
2740 	blk_queue_write_cache(disk->queue, true, true);
2741 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2742 	   This triggers a max_bio_size message upon first attach or connect */
2743 	blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2744 
2745 	device->md_io.page = alloc_page(GFP_KERNEL);
2746 	if (!device->md_io.page)
2747 		goto out_no_io_page;
2748 
2749 	if (drbd_bm_init(device))
2750 		goto out_no_bitmap;
2751 	device->read_requests = RB_ROOT;
2752 	device->write_requests = RB_ROOT;
2753 
2754 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2755 	if (id < 0) {
2756 		if (id == -ENOSPC)
2757 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2758 		goto out_no_minor_idr;
2759 	}
2760 	kref_get(&device->kref);
2761 
2762 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2763 	if (id < 0) {
2764 		if (id == -ENOSPC)
2765 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2766 		goto out_idr_remove_minor;
2767 	}
2768 	kref_get(&device->kref);
2769 
2770 	INIT_LIST_HEAD(&device->peer_devices);
2771 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2772 	for_each_connection(connection, resource) {
2773 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2774 		if (!peer_device)
2775 			goto out_idr_remove_from_resource;
2776 		peer_device->connection = connection;
2777 		peer_device->device = device;
2778 
2779 		list_add(&peer_device->peer_devices, &device->peer_devices);
2780 		kref_get(&device->kref);
2781 
2782 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2783 		if (id < 0) {
2784 			if (id == -ENOSPC)
2785 				err = ERR_INVALID_REQUEST;
2786 			goto out_idr_remove_from_resource;
2787 		}
2788 		kref_get(&connection->kref);
2789 		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2790 	}
2791 
2792 	if (init_submitter(device)) {
2793 		err = ERR_NOMEM;
2794 		goto out_idr_remove_vol;
2795 	}
2796 
2797 	add_disk(disk);
2798 
2799 	/* inherit the connection state */
2800 	device->state.conn = first_connection(resource)->cstate;
2801 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2802 		for_each_peer_device(peer_device, device)
2803 			drbd_connected(peer_device);
2804 	}
2805 	/* move to create_peer_device() */
2806 	for_each_peer_device(peer_device, device)
2807 		drbd_debugfs_peer_device_add(peer_device);
2808 	drbd_debugfs_device_add(device);
2809 	return NO_ERROR;
2810 
2811 out_idr_remove_vol:
2812 	idr_remove(&connection->peer_devices, vnr);
2813 out_idr_remove_from_resource:
2814 	for_each_connection(connection, resource) {
2815 		peer_device = idr_remove(&connection->peer_devices, vnr);
2816 		if (peer_device)
2817 			kref_put(&connection->kref, drbd_destroy_connection);
2818 	}
2819 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2820 		list_del(&peer_device->peer_devices);
2821 		kfree(peer_device);
2822 	}
2823 	idr_remove(&resource->devices, vnr);
2824 out_idr_remove_minor:
2825 	idr_remove(&drbd_devices, minor);
2826 	synchronize_rcu();
2827 out_no_minor_idr:
2828 	drbd_bm_cleanup(device);
2829 out_no_bitmap:
2830 	__free_page(device->md_io.page);
2831 out_no_io_page:
2832 	blk_cleanup_disk(disk);
2833 out_no_disk:
2834 	kref_put(&resource->kref, drbd_destroy_resource);
2835 	kfree(device);
2836 	return err;
2837 }
2838 
2839 void drbd_delete_device(struct drbd_device *device)
2840 {
2841 	struct drbd_resource *resource = device->resource;
2842 	struct drbd_connection *connection;
2843 	struct drbd_peer_device *peer_device;
2844 
2845 	/* move to free_peer_device() */
2846 	for_each_peer_device(peer_device, device)
2847 		drbd_debugfs_peer_device_cleanup(peer_device);
2848 	drbd_debugfs_device_cleanup(device);
2849 	for_each_connection(connection, resource) {
2850 		idr_remove(&connection->peer_devices, device->vnr);
2851 		kref_put(&device->kref, drbd_destroy_device);
2852 	}
2853 	idr_remove(&resource->devices, device->vnr);
2854 	kref_put(&device->kref, drbd_destroy_device);
2855 	idr_remove(&drbd_devices, device_to_minor(device));
2856 	kref_put(&device->kref, drbd_destroy_device);
2857 	del_gendisk(device->vdisk);
2858 	synchronize_rcu();
2859 	kref_put(&device->kref, drbd_destroy_device);
2860 }
2861 
2862 static int __init drbd_init(void)
2863 {
2864 	int err;
2865 
2866 	if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2867 		pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2868 #ifdef MODULE
2869 		return -EINVAL;
2870 #else
2871 		drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2872 #endif
2873 	}
2874 
2875 	err = register_blkdev(DRBD_MAJOR, "drbd");
2876 	if (err) {
2877 		pr_err("unable to register block device major %d\n",
2878 		       DRBD_MAJOR);
2879 		return err;
2880 	}
2881 
2882 	/*
2883 	 * allocate all necessary structs
2884 	 */
2885 	init_waitqueue_head(&drbd_pp_wait);
2886 
2887 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2888 	idr_init(&drbd_devices);
2889 
2890 	mutex_init(&resources_mutex);
2891 	INIT_LIST_HEAD(&drbd_resources);
2892 
2893 	err = drbd_genl_register();
2894 	if (err) {
2895 		pr_err("unable to register generic netlink family\n");
2896 		goto fail;
2897 	}
2898 
2899 	err = drbd_create_mempools();
2900 	if (err)
2901 		goto fail;
2902 
2903 	err = -ENOMEM;
2904 	drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2905 	if (!drbd_proc)	{
2906 		pr_err("unable to register proc file\n");
2907 		goto fail;
2908 	}
2909 
2910 	retry.wq = create_singlethread_workqueue("drbd-reissue");
2911 	if (!retry.wq) {
2912 		pr_err("unable to create retry workqueue\n");
2913 		goto fail;
2914 	}
2915 	INIT_WORK(&retry.worker, do_retry);
2916 	spin_lock_init(&retry.lock);
2917 	INIT_LIST_HEAD(&retry.writes);
2918 
2919 	drbd_debugfs_init();
2920 
2921 	pr_info("initialized. "
2922 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2923 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2924 	pr_info("%s\n", drbd_buildtag());
2925 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
2926 	return 0; /* Success! */
2927 
2928 fail:
2929 	drbd_cleanup();
2930 	if (err == -ENOMEM)
2931 		pr_err("ran out of memory\n");
2932 	else
2933 		pr_err("initialization failure\n");
2934 	return err;
2935 }
2936 
2937 static void drbd_free_one_sock(struct drbd_socket *ds)
2938 {
2939 	struct socket *s;
2940 	mutex_lock(&ds->mutex);
2941 	s = ds->socket;
2942 	ds->socket = NULL;
2943 	mutex_unlock(&ds->mutex);
2944 	if (s) {
2945 		/* so debugfs does not need to mutex_lock() */
2946 		synchronize_rcu();
2947 		kernel_sock_shutdown(s, SHUT_RDWR);
2948 		sock_release(s);
2949 	}
2950 }
2951 
2952 void drbd_free_sock(struct drbd_connection *connection)
2953 {
2954 	if (connection->data.socket)
2955 		drbd_free_one_sock(&connection->data);
2956 	if (connection->meta.socket)
2957 		drbd_free_one_sock(&connection->meta);
2958 }
2959 
2960 /* meta data management */
2961 
2962 void conn_md_sync(struct drbd_connection *connection)
2963 {
2964 	struct drbd_peer_device *peer_device;
2965 	int vnr;
2966 
2967 	rcu_read_lock();
2968 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2969 		struct drbd_device *device = peer_device->device;
2970 
2971 		kref_get(&device->kref);
2972 		rcu_read_unlock();
2973 		drbd_md_sync(device);
2974 		kref_put(&device->kref, drbd_destroy_device);
2975 		rcu_read_lock();
2976 	}
2977 	rcu_read_unlock();
2978 }
2979 
2980 /* aligned 4kByte */
2981 struct meta_data_on_disk {
2982 	u64 la_size_sect;      /* last agreed size. */
2983 	u64 uuid[UI_SIZE];   /* UUIDs. */
2984 	u64 device_uuid;
2985 	u64 reserved_u64_1;
2986 	u32 flags;             /* MDF */
2987 	u32 magic;
2988 	u32 md_size_sect;
2989 	u32 al_offset;         /* offset to this block */
2990 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
2991 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2992 	u32 bm_offset;         /* offset to the bitmap, from here */
2993 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
2994 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
2995 
2996 	/* see al_tr_number_to_on_disk_sector() */
2997 	u32 al_stripes;
2998 	u32 al_stripe_size_4k;
2999 
3000 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3001 } __packed;
3002 
3003 
3004 
3005 void drbd_md_write(struct drbd_device *device, void *b)
3006 {
3007 	struct meta_data_on_disk *buffer = b;
3008 	sector_t sector;
3009 	int i;
3010 
3011 	memset(buffer, 0, sizeof(*buffer));
3012 
3013 	buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3014 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3015 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3016 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3017 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3018 
3019 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3020 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3021 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3022 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3023 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3024 
3025 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3026 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3027 
3028 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3029 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3030 
3031 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3032 	sector = device->ldev->md.md_offset;
3033 
3034 	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3035 		/* this was a try anyways ... */
3036 		drbd_err(device, "meta data update failed!\n");
3037 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3038 	}
3039 }
3040 
3041 /**
3042  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3043  * @device:	DRBD device.
3044  */
3045 void drbd_md_sync(struct drbd_device *device)
3046 {
3047 	struct meta_data_on_disk *buffer;
3048 
3049 	/* Don't accidentally change the DRBD meta data layout. */
3050 	BUILD_BUG_ON(UI_SIZE != 4);
3051 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3052 
3053 	del_timer(&device->md_sync_timer);
3054 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3055 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3056 		return;
3057 
3058 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3059 	 * metadata even if we detach due to a disk failure! */
3060 	if (!get_ldev_if_state(device, D_FAILED))
3061 		return;
3062 
3063 	buffer = drbd_md_get_buffer(device, __func__);
3064 	if (!buffer)
3065 		goto out;
3066 
3067 	drbd_md_write(device, buffer);
3068 
3069 	/* Update device->ldev->md.la_size_sect,
3070 	 * since we updated it on metadata. */
3071 	device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3072 
3073 	drbd_md_put_buffer(device);
3074 out:
3075 	put_ldev(device);
3076 }
3077 
3078 static int check_activity_log_stripe_size(struct drbd_device *device,
3079 		struct meta_data_on_disk *on_disk,
3080 		struct drbd_md *in_core)
3081 {
3082 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3083 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3084 	u64 al_size_4k;
3085 
3086 	/* both not set: default to old fixed size activity log */
3087 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3088 		al_stripes = 1;
3089 		al_stripe_size_4k = MD_32kB_SECT/8;
3090 	}
3091 
3092 	/* some paranoia plausibility checks */
3093 
3094 	/* we need both values to be set */
3095 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3096 		goto err;
3097 
3098 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3099 
3100 	/* Upper limit of activity log area, to avoid potential overflow
3101 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3102 	 * than 72 * 4k blocks total only increases the amount of history,
3103 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3104 	if (al_size_4k > (16 * 1024 * 1024/4))
3105 		goto err;
3106 
3107 	/* Lower limit: we need at least 8 transaction slots (32kB)
3108 	 * to not break existing setups */
3109 	if (al_size_4k < MD_32kB_SECT/8)
3110 		goto err;
3111 
3112 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3113 	in_core->al_stripes = al_stripes;
3114 	in_core->al_size_4k = al_size_4k;
3115 
3116 	return 0;
3117 err:
3118 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3119 			al_stripes, al_stripe_size_4k);
3120 	return -EINVAL;
3121 }
3122 
3123 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3124 {
3125 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3126 	struct drbd_md *in_core = &bdev->md;
3127 	s32 on_disk_al_sect;
3128 	s32 on_disk_bm_sect;
3129 
3130 	/* The on-disk size of the activity log, calculated from offsets, and
3131 	 * the size of the activity log calculated from the stripe settings,
3132 	 * should match.
3133 	 * Though we could relax this a bit: it is ok, if the striped activity log
3134 	 * fits in the available on-disk activity log size.
3135 	 * Right now, that would break how resize is implemented.
3136 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3137 	 * of possible unused padding space in the on disk layout. */
3138 	if (in_core->al_offset < 0) {
3139 		if (in_core->bm_offset > in_core->al_offset)
3140 			goto err;
3141 		on_disk_al_sect = -in_core->al_offset;
3142 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3143 	} else {
3144 		if (in_core->al_offset != MD_4kB_SECT)
3145 			goto err;
3146 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3147 			goto err;
3148 
3149 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3150 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3151 	}
3152 
3153 	/* old fixed size meta data is exactly that: fixed. */
3154 	if (in_core->meta_dev_idx >= 0) {
3155 		if (in_core->md_size_sect != MD_128MB_SECT
3156 		||  in_core->al_offset != MD_4kB_SECT
3157 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3158 		||  in_core->al_stripes != 1
3159 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3160 			goto err;
3161 	}
3162 
3163 	if (capacity < in_core->md_size_sect)
3164 		goto err;
3165 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3166 		goto err;
3167 
3168 	/* should be aligned, and at least 32k */
3169 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3170 		goto err;
3171 
3172 	/* should fit (for now: exactly) into the available on-disk space;
3173 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3174 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3175 		goto err;
3176 
3177 	/* again, should be aligned */
3178 	if (in_core->bm_offset & 7)
3179 		goto err;
3180 
3181 	/* FIXME check for device grow with flex external meta data? */
3182 
3183 	/* can the available bitmap space cover the last agreed device size? */
3184 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3185 		goto err;
3186 
3187 	return 0;
3188 
3189 err:
3190 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3191 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3192 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3193 			in_core->meta_dev_idx,
3194 			in_core->al_stripes, in_core->al_stripe_size_4k,
3195 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3196 			(unsigned long long)in_core->la_size_sect,
3197 			(unsigned long long)capacity);
3198 
3199 	return -EINVAL;
3200 }
3201 
3202 
3203 /**
3204  * drbd_md_read() - Reads in the meta data super block
3205  * @device:	DRBD device.
3206  * @bdev:	Device from which the meta data should be read in.
3207  *
3208  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3209  * something goes wrong.
3210  *
3211  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3212  * even before @bdev is assigned to @device->ldev.
3213  */
3214 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3215 {
3216 	struct meta_data_on_disk *buffer;
3217 	u32 magic, flags;
3218 	int i, rv = NO_ERROR;
3219 
3220 	if (device->state.disk != D_DISKLESS)
3221 		return ERR_DISK_CONFIGURED;
3222 
3223 	buffer = drbd_md_get_buffer(device, __func__);
3224 	if (!buffer)
3225 		return ERR_NOMEM;
3226 
3227 	/* First, figure out where our meta data superblock is located,
3228 	 * and read it. */
3229 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3230 	bdev->md.md_offset = drbd_md_ss(bdev);
3231 	/* Even for (flexible or indexed) external meta data,
3232 	 * initially restrict us to the 4k superblock for now.
3233 	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3234 	bdev->md.md_size_sect = 8;
3235 
3236 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3237 				 REQ_OP_READ)) {
3238 		/* NOTE: can't do normal error processing here as this is
3239 		   called BEFORE disk is attached */
3240 		drbd_err(device, "Error while reading metadata.\n");
3241 		rv = ERR_IO_MD_DISK;
3242 		goto err;
3243 	}
3244 
3245 	magic = be32_to_cpu(buffer->magic);
3246 	flags = be32_to_cpu(buffer->flags);
3247 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3248 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3249 			/* btw: that's Activity Log clean, not "all" clean. */
3250 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3251 		rv = ERR_MD_UNCLEAN;
3252 		goto err;
3253 	}
3254 
3255 	rv = ERR_MD_INVALID;
3256 	if (magic != DRBD_MD_MAGIC_08) {
3257 		if (magic == DRBD_MD_MAGIC_07)
3258 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3259 		else
3260 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3261 		goto err;
3262 	}
3263 
3264 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3265 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3266 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3267 		goto err;
3268 	}
3269 
3270 
3271 	/* convert to in_core endian */
3272 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3273 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3274 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3275 	bdev->md.flags = be32_to_cpu(buffer->flags);
3276 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3277 
3278 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3279 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3280 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3281 
3282 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3283 		goto err;
3284 	if (check_offsets_and_sizes(device, bdev))
3285 		goto err;
3286 
3287 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3288 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3289 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3290 		goto err;
3291 	}
3292 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3293 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3294 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3295 		goto err;
3296 	}
3297 
3298 	rv = NO_ERROR;
3299 
3300 	spin_lock_irq(&device->resource->req_lock);
3301 	if (device->state.conn < C_CONNECTED) {
3302 		unsigned int peer;
3303 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3304 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3305 		device->peer_max_bio_size = peer;
3306 	}
3307 	spin_unlock_irq(&device->resource->req_lock);
3308 
3309  err:
3310 	drbd_md_put_buffer(device);
3311 
3312 	return rv;
3313 }
3314 
3315 /**
3316  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3317  * @device:	DRBD device.
3318  *
3319  * Call this function if you change anything that should be written to
3320  * the meta-data super block. This function sets MD_DIRTY, and starts a
3321  * timer that ensures that within five seconds you have to call drbd_md_sync().
3322  */
3323 void drbd_md_mark_dirty(struct drbd_device *device)
3324 {
3325 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3326 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3327 }
3328 
3329 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3330 {
3331 	int i;
3332 
3333 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3334 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3335 }
3336 
3337 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3338 {
3339 	if (idx == UI_CURRENT) {
3340 		if (device->state.role == R_PRIMARY)
3341 			val |= 1;
3342 		else
3343 			val &= ~((u64)1);
3344 
3345 		drbd_set_ed_uuid(device, val);
3346 	}
3347 
3348 	device->ldev->md.uuid[idx] = val;
3349 	drbd_md_mark_dirty(device);
3350 }
3351 
3352 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3353 {
3354 	unsigned long flags;
3355 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3356 	__drbd_uuid_set(device, idx, val);
3357 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3358 }
3359 
3360 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3361 {
3362 	unsigned long flags;
3363 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3364 	if (device->ldev->md.uuid[idx]) {
3365 		drbd_uuid_move_history(device);
3366 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3367 	}
3368 	__drbd_uuid_set(device, idx, val);
3369 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3370 }
3371 
3372 /**
3373  * drbd_uuid_new_current() - Creates a new current UUID
3374  * @device:	DRBD device.
3375  *
3376  * Creates a new current UUID, and rotates the old current UUID into
3377  * the bitmap slot. Causes an incremental resync upon next connect.
3378  */
3379 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3380 {
3381 	u64 val;
3382 	unsigned long long bm_uuid;
3383 
3384 	get_random_bytes(&val, sizeof(u64));
3385 
3386 	spin_lock_irq(&device->ldev->md.uuid_lock);
3387 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3388 
3389 	if (bm_uuid)
3390 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3391 
3392 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3393 	__drbd_uuid_set(device, UI_CURRENT, val);
3394 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3395 
3396 	drbd_print_uuids(device, "new current UUID");
3397 	/* get it to stable storage _now_ */
3398 	drbd_md_sync(device);
3399 }
3400 
3401 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3402 {
3403 	unsigned long flags;
3404 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3405 		return;
3406 
3407 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3408 	if (val == 0) {
3409 		drbd_uuid_move_history(device);
3410 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3411 		device->ldev->md.uuid[UI_BITMAP] = 0;
3412 	} else {
3413 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3414 		if (bm_uuid)
3415 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3416 
3417 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3418 	}
3419 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3420 
3421 	drbd_md_mark_dirty(device);
3422 }
3423 
3424 /**
3425  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3426  * @device:	DRBD device.
3427  *
3428  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3429  */
3430 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3431 {
3432 	int rv = -EIO;
3433 
3434 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3435 	drbd_md_sync(device);
3436 	drbd_bm_set_all(device);
3437 
3438 	rv = drbd_bm_write(device);
3439 
3440 	if (!rv) {
3441 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3442 		drbd_md_sync(device);
3443 	}
3444 
3445 	return rv;
3446 }
3447 
3448 /**
3449  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3450  * @device:	DRBD device.
3451  *
3452  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3453  */
3454 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3455 {
3456 	drbd_resume_al(device);
3457 	drbd_bm_clear_all(device);
3458 	return drbd_bm_write(device);
3459 }
3460 
3461 static int w_bitmap_io(struct drbd_work *w, int unused)
3462 {
3463 	struct drbd_device *device =
3464 		container_of(w, struct drbd_device, bm_io_work.w);
3465 	struct bm_io_work *work = &device->bm_io_work;
3466 	int rv = -EIO;
3467 
3468 	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3469 		int cnt = atomic_read(&device->ap_bio_cnt);
3470 		if (cnt)
3471 			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3472 					cnt, work->why);
3473 	}
3474 
3475 	if (get_ldev(device)) {
3476 		drbd_bm_lock(device, work->why, work->flags);
3477 		rv = work->io_fn(device);
3478 		drbd_bm_unlock(device);
3479 		put_ldev(device);
3480 	}
3481 
3482 	clear_bit_unlock(BITMAP_IO, &device->flags);
3483 	wake_up(&device->misc_wait);
3484 
3485 	if (work->done)
3486 		work->done(device, rv);
3487 
3488 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3489 	work->why = NULL;
3490 	work->flags = 0;
3491 
3492 	return 0;
3493 }
3494 
3495 /**
3496  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3497  * @device:	DRBD device.
3498  * @io_fn:	IO callback to be called when bitmap IO is possible
3499  * @done:	callback to be called after the bitmap IO was performed
3500  * @why:	Descriptive text of the reason for doing the IO
3501  * @flags:	Bitmap flags
3502  *
3503  * While IO on the bitmap happens we freeze application IO thus we ensure
3504  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3505  * called from worker context. It MUST NOT be used while a previous such
3506  * work is still pending!
3507  *
3508  * Its worker function encloses the call of io_fn() by get_ldev() and
3509  * put_ldev().
3510  */
3511 void drbd_queue_bitmap_io(struct drbd_device *device,
3512 			  int (*io_fn)(struct drbd_device *),
3513 			  void (*done)(struct drbd_device *, int),
3514 			  char *why, enum bm_flag flags)
3515 {
3516 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3517 
3518 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3519 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3520 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3521 	if (device->bm_io_work.why)
3522 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3523 			why, device->bm_io_work.why);
3524 
3525 	device->bm_io_work.io_fn = io_fn;
3526 	device->bm_io_work.done = done;
3527 	device->bm_io_work.why = why;
3528 	device->bm_io_work.flags = flags;
3529 
3530 	spin_lock_irq(&device->resource->req_lock);
3531 	set_bit(BITMAP_IO, &device->flags);
3532 	/* don't wait for pending application IO if the caller indicates that
3533 	 * application IO does not conflict anyways. */
3534 	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3535 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3536 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3537 					&device->bm_io_work.w);
3538 	}
3539 	spin_unlock_irq(&device->resource->req_lock);
3540 }
3541 
3542 /**
3543  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3544  * @device:	DRBD device.
3545  * @io_fn:	IO callback to be called when bitmap IO is possible
3546  * @why:	Descriptive text of the reason for doing the IO
3547  * @flags:	Bitmap flags
3548  *
3549  * freezes application IO while that the actual IO operations runs. This
3550  * functions MAY NOT be called from worker context.
3551  */
3552 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3553 		char *why, enum bm_flag flags)
3554 {
3555 	/* Only suspend io, if some operation is supposed to be locked out */
3556 	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3557 	int rv;
3558 
3559 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3560 
3561 	if (do_suspend_io)
3562 		drbd_suspend_io(device);
3563 
3564 	drbd_bm_lock(device, why, flags);
3565 	rv = io_fn(device);
3566 	drbd_bm_unlock(device);
3567 
3568 	if (do_suspend_io)
3569 		drbd_resume_io(device);
3570 
3571 	return rv;
3572 }
3573 
3574 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3575 {
3576 	if ((device->ldev->md.flags & flag) != flag) {
3577 		drbd_md_mark_dirty(device);
3578 		device->ldev->md.flags |= flag;
3579 	}
3580 }
3581 
3582 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3583 {
3584 	if ((device->ldev->md.flags & flag) != 0) {
3585 		drbd_md_mark_dirty(device);
3586 		device->ldev->md.flags &= ~flag;
3587 	}
3588 }
3589 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3590 {
3591 	return (bdev->md.flags & flag) != 0;
3592 }
3593 
3594 static void md_sync_timer_fn(struct timer_list *t)
3595 {
3596 	struct drbd_device *device = from_timer(device, t, md_sync_timer);
3597 	drbd_device_post_work(device, MD_SYNC);
3598 }
3599 
3600 const char *cmdname(enum drbd_packet cmd)
3601 {
3602 	/* THINK may need to become several global tables
3603 	 * when we want to support more than
3604 	 * one PRO_VERSION */
3605 	static const char *cmdnames[] = {
3606 		[P_DATA]	        = "Data",
3607 		[P_WSAME]	        = "WriteSame",
3608 		[P_TRIM]	        = "Trim",
3609 		[P_DATA_REPLY]	        = "DataReply",
3610 		[P_RS_DATA_REPLY]	= "RSDataReply",
3611 		[P_BARRIER]	        = "Barrier",
3612 		[P_BITMAP]	        = "ReportBitMap",
3613 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3614 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3615 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3616 		[P_DATA_REQUEST]	= "DataRequest",
3617 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3618 		[P_SYNC_PARAM]	        = "SyncParam",
3619 		[P_SYNC_PARAM89]	= "SyncParam89",
3620 		[P_PROTOCOL]            = "ReportProtocol",
3621 		[P_UUIDS]	        = "ReportUUIDs",
3622 		[P_SIZES]	        = "ReportSizes",
3623 		[P_STATE]	        = "ReportState",
3624 		[P_SYNC_UUID]           = "ReportSyncUUID",
3625 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3626 		[P_AUTH_RESPONSE]	= "AuthResponse",
3627 		[P_PING]		= "Ping",
3628 		[P_PING_ACK]	        = "PingAck",
3629 		[P_RECV_ACK]	        = "RecvAck",
3630 		[P_WRITE_ACK]	        = "WriteAck",
3631 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3632 		[P_SUPERSEDED]          = "Superseded",
3633 		[P_NEG_ACK]	        = "NegAck",
3634 		[P_NEG_DREPLY]	        = "NegDReply",
3635 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3636 		[P_BARRIER_ACK]	        = "BarrierAck",
3637 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3638 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3639 		[P_OV_REQUEST]          = "OVRequest",
3640 		[P_OV_REPLY]            = "OVReply",
3641 		[P_OV_RESULT]           = "OVResult",
3642 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3643 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3644 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3645 		[P_DELAY_PROBE]         = "DelayProbe",
3646 		[P_OUT_OF_SYNC]		= "OutOfSync",
3647 		[P_RETRY_WRITE]		= "RetryWrite",
3648 		[P_RS_CANCEL]		= "RSCancel",
3649 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3650 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3651 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3652 		[P_RS_THIN_REQ]         = "rs_thin_req",
3653 		[P_RS_DEALLOCATED]      = "rs_deallocated",
3654 
3655 		/* enum drbd_packet, but not commands - obsoleted flags:
3656 		 *	P_MAY_IGNORE
3657 		 *	P_MAX_OPT_CMD
3658 		 */
3659 	};
3660 
3661 	/* too big for the array: 0xfffX */
3662 	if (cmd == P_INITIAL_META)
3663 		return "InitialMeta";
3664 	if (cmd == P_INITIAL_DATA)
3665 		return "InitialData";
3666 	if (cmd == P_CONNECTION_FEATURES)
3667 		return "ConnectionFeatures";
3668 	if (cmd >= ARRAY_SIZE(cmdnames))
3669 		return "Unknown";
3670 	return cmdnames[cmd];
3671 }
3672 
3673 /**
3674  * drbd_wait_misc  -  wait for a request to make progress
3675  * @device:	device associated with the request
3676  * @i:		the struct drbd_interval embedded in struct drbd_request or
3677  *		struct drbd_peer_request
3678  */
3679 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3680 {
3681 	struct net_conf *nc;
3682 	DEFINE_WAIT(wait);
3683 	long timeout;
3684 
3685 	rcu_read_lock();
3686 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3687 	if (!nc) {
3688 		rcu_read_unlock();
3689 		return -ETIMEDOUT;
3690 	}
3691 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3692 	rcu_read_unlock();
3693 
3694 	/* Indicate to wake up device->misc_wait on progress.  */
3695 	i->waiting = true;
3696 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3697 	spin_unlock_irq(&device->resource->req_lock);
3698 	timeout = schedule_timeout(timeout);
3699 	finish_wait(&device->misc_wait, &wait);
3700 	spin_lock_irq(&device->resource->req_lock);
3701 	if (!timeout || device->state.conn < C_CONNECTED)
3702 		return -ETIMEDOUT;
3703 	if (signal_pending(current))
3704 		return -ERESTARTSYS;
3705 	return 0;
3706 }
3707 
3708 void lock_all_resources(void)
3709 {
3710 	struct drbd_resource *resource;
3711 	int __maybe_unused i = 0;
3712 
3713 	mutex_lock(&resources_mutex);
3714 	local_irq_disable();
3715 	for_each_resource(resource, &drbd_resources)
3716 		spin_lock_nested(&resource->req_lock, i++);
3717 }
3718 
3719 void unlock_all_resources(void)
3720 {
3721 	struct drbd_resource *resource;
3722 
3723 	for_each_resource(resource, &drbd_resources)
3724 		spin_unlock(&resource->req_lock);
3725 	local_irq_enable();
3726 	mutex_unlock(&resources_mutex);
3727 }
3728 
3729 #ifdef CONFIG_DRBD_FAULT_INJECTION
3730 /* Fault insertion support including random number generator shamelessly
3731  * stolen from kernel/rcutorture.c */
3732 struct fault_random_state {
3733 	unsigned long state;
3734 	unsigned long count;
3735 };
3736 
3737 #define FAULT_RANDOM_MULT 39916801  /* prime */
3738 #define FAULT_RANDOM_ADD	479001701 /* prime */
3739 #define FAULT_RANDOM_REFRESH 10000
3740 
3741 /*
3742  * Crude but fast random-number generator.  Uses a linear congruential
3743  * generator, with occasional help from get_random_bytes().
3744  */
3745 static unsigned long
3746 _drbd_fault_random(struct fault_random_state *rsp)
3747 {
3748 	long refresh;
3749 
3750 	if (!rsp->count--) {
3751 		get_random_bytes(&refresh, sizeof(refresh));
3752 		rsp->state += refresh;
3753 		rsp->count = FAULT_RANDOM_REFRESH;
3754 	}
3755 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3756 	return swahw32(rsp->state);
3757 }
3758 
3759 static char *
3760 _drbd_fault_str(unsigned int type) {
3761 	static char *_faults[] = {
3762 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3763 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3764 		[DRBD_FAULT_RS_WR] = "Resync write",
3765 		[DRBD_FAULT_RS_RD] = "Resync read",
3766 		[DRBD_FAULT_DT_WR] = "Data write",
3767 		[DRBD_FAULT_DT_RD] = "Data read",
3768 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3769 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3770 		[DRBD_FAULT_AL_EE] = "EE allocation",
3771 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3772 	};
3773 
3774 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3775 }
3776 
3777 unsigned int
3778 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3779 {
3780 	static struct fault_random_state rrs = {0, 0};
3781 
3782 	unsigned int ret = (
3783 		(drbd_fault_devs == 0 ||
3784 			((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3785 		(((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3786 
3787 	if (ret) {
3788 		drbd_fault_count++;
3789 
3790 		if (__ratelimit(&drbd_ratelimit_state))
3791 			drbd_warn(device, "***Simulating %s failure\n",
3792 				_drbd_fault_str(type));
3793 	}
3794 
3795 	return ret;
3796 }
3797 #endif
3798 
3799 const char *drbd_buildtag(void)
3800 {
3801 	/* DRBD built from external sources has here a reference to the
3802 	   git hash of the source code. */
3803 
3804 	static char buildtag[38] = "\0uilt-in";
3805 
3806 	if (buildtag[0] == 0) {
3807 #ifdef MODULE
3808 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3809 #else
3810 		buildtag[0] = 'b';
3811 #endif
3812 	}
3813 
3814 	return buildtag;
3815 }
3816 
3817 module_init(drbd_init)
3818 module_exit(drbd_cleanup)
3819 
3820 EXPORT_SYMBOL(drbd_conn_str);
3821 EXPORT_SYMBOL(drbd_role_str);
3822 EXPORT_SYMBOL(drbd_disk_str);
3823 EXPORT_SYMBOL(drbd_set_st_err_str);
3824