1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 drbd.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 12 from Logicworks, Inc. for making SDP replication support possible. 13 14 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/jiffies.h> 21 #include <linux/drbd.h> 22 #include <linux/uaccess.h> 23 #include <asm/types.h> 24 #include <net/sock.h> 25 #include <linux/ctype.h> 26 #include <linux/mutex.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/proc_fs.h> 30 #include <linux/init.h> 31 #include <linux/mm.h> 32 #include <linux/memcontrol.h> 33 #include <linux/mm_inline.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/reboot.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/workqueue.h> 40 #include <linux/unistd.h> 41 #include <linux/vmalloc.h> 42 #include <linux/sched/signal.h> 43 44 #include <linux/drbd_limits.h> 45 #include "drbd_int.h" 46 #include "drbd_protocol.h" 47 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 48 #include "drbd_vli.h" 49 #include "drbd_debugfs.h" 50 51 static DEFINE_MUTEX(drbd_main_mutex); 52 static int drbd_open(struct gendisk *disk, blk_mode_t mode); 53 static void drbd_release(struct gendisk *gd); 54 static void md_sync_timer_fn(struct timer_list *t); 55 static int w_bitmap_io(struct drbd_work *w, int unused); 56 57 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 58 "Lars Ellenberg <lars@linbit.com>"); 59 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 60 MODULE_VERSION(REL_VERSION); 61 MODULE_LICENSE("GPL"); 62 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 63 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 64 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 65 66 #include <linux/moduleparam.h> 67 /* thanks to these macros, if compiled into the kernel (not-module), 68 * these become boot parameters (e.g., drbd.minor_count) */ 69 70 #ifdef CONFIG_DRBD_FAULT_INJECTION 71 int drbd_enable_faults; 72 int drbd_fault_rate; 73 static int drbd_fault_count; 74 static int drbd_fault_devs; 75 /* bitmap of enabled faults */ 76 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 77 /* fault rate % value - applies to all enabled faults */ 78 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 79 /* count of faults inserted */ 80 module_param_named(fault_count, drbd_fault_count, int, 0664); 81 /* bitmap of devices to insert faults on */ 82 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 83 #endif 84 85 /* module parameters we can keep static */ 86 static bool drbd_allow_oos; /* allow_open_on_secondary */ 87 static bool drbd_disable_sendpage; 88 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 89 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 90 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 91 92 /* module parameters we share */ 93 int drbd_proc_details; /* Detail level in proc drbd*/ 94 module_param_named(proc_details, drbd_proc_details, int, 0644); 95 /* module parameters shared with defaults */ 96 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 97 /* Module parameter for setting the user mode helper program 98 * to run. Default is /sbin/drbdadm */ 99 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 100 module_param_named(minor_count, drbd_minor_count, uint, 0444); 101 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 102 103 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 104 * as member "struct gendisk *vdisk;" 105 */ 106 struct idr drbd_devices; 107 struct list_head drbd_resources; 108 struct mutex resources_mutex; 109 110 struct kmem_cache *drbd_request_cache; 111 struct kmem_cache *drbd_ee_cache; /* peer requests */ 112 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 113 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 114 mempool_t drbd_request_mempool; 115 mempool_t drbd_ee_mempool; 116 mempool_t drbd_md_io_page_pool; 117 struct bio_set drbd_md_io_bio_set; 118 struct bio_set drbd_io_bio_set; 119 120 /* I do not use a standard mempool, because: 121 1) I want to hand out the pre-allocated objects first. 122 2) I want to be able to interrupt sleeping allocation with a signal. 123 Note: This is a single linked list, the next pointer is the private 124 member of struct page. 125 */ 126 struct page *drbd_pp_pool; 127 DEFINE_SPINLOCK(drbd_pp_lock); 128 int drbd_pp_vacant; 129 wait_queue_head_t drbd_pp_wait; 130 131 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 132 133 static const struct block_device_operations drbd_ops = { 134 .owner = THIS_MODULE, 135 .submit_bio = drbd_submit_bio, 136 .open = drbd_open, 137 .release = drbd_release, 138 }; 139 140 #ifdef __CHECKER__ 141 /* When checking with sparse, and this is an inline function, sparse will 142 give tons of false positives. When this is a real functions sparse works. 143 */ 144 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 145 { 146 int io_allowed; 147 148 atomic_inc(&device->local_cnt); 149 io_allowed = (device->state.disk >= mins); 150 if (!io_allowed) { 151 if (atomic_dec_and_test(&device->local_cnt)) 152 wake_up(&device->misc_wait); 153 } 154 return io_allowed; 155 } 156 157 #endif 158 159 /** 160 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 161 * @connection: DRBD connection. 162 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 163 * @set_size: Expected number of requests before that barrier. 164 * 165 * In case the passed barrier_nr or set_size does not match the oldest 166 * epoch of not yet barrier-acked requests, this function will cause a 167 * termination of the connection. 168 */ 169 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 170 unsigned int set_size) 171 { 172 struct drbd_request *r; 173 struct drbd_request *req = NULL, *tmp = NULL; 174 int expect_epoch = 0; 175 int expect_size = 0; 176 177 spin_lock_irq(&connection->resource->req_lock); 178 179 /* find oldest not yet barrier-acked write request, 180 * count writes in its epoch. */ 181 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 182 const unsigned s = r->rq_state; 183 if (!req) { 184 if (!(s & RQ_WRITE)) 185 continue; 186 if (!(s & RQ_NET_MASK)) 187 continue; 188 if (s & RQ_NET_DONE) 189 continue; 190 req = r; 191 expect_epoch = req->epoch; 192 expect_size ++; 193 } else { 194 if (r->epoch != expect_epoch) 195 break; 196 if (!(s & RQ_WRITE)) 197 continue; 198 /* if (s & RQ_DONE): not expected */ 199 /* if (!(s & RQ_NET_MASK)): not expected */ 200 expect_size++; 201 } 202 } 203 204 /* first some paranoia code */ 205 if (req == NULL) { 206 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 207 barrier_nr); 208 goto bail; 209 } 210 if (expect_epoch != barrier_nr) { 211 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 212 barrier_nr, expect_epoch); 213 goto bail; 214 } 215 216 if (expect_size != set_size) { 217 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 218 barrier_nr, set_size, expect_size); 219 goto bail; 220 } 221 222 /* Clean up list of requests processed during current epoch. */ 223 /* this extra list walk restart is paranoia, 224 * to catch requests being barrier-acked "unexpectedly". 225 * It usually should find the same req again, or some READ preceding it. */ 226 list_for_each_entry(req, &connection->transfer_log, tl_requests) 227 if (req->epoch == expect_epoch) { 228 tmp = req; 229 break; 230 } 231 req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests); 232 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 233 struct drbd_peer_device *peer_device; 234 if (req->epoch != expect_epoch) 235 break; 236 peer_device = conn_peer_device(connection, req->device->vnr); 237 _req_mod(req, BARRIER_ACKED, peer_device); 238 } 239 spin_unlock_irq(&connection->resource->req_lock); 240 241 return; 242 243 bail: 244 spin_unlock_irq(&connection->resource->req_lock); 245 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 246 } 247 248 249 /** 250 * _tl_restart() - Walks the transfer log, and applies an action to all requests 251 * @connection: DRBD connection to operate on. 252 * @what: The action/event to perform with all request objects 253 * 254 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 255 * RESTART_FROZEN_DISK_IO. 256 */ 257 /* must hold resource->req_lock */ 258 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 259 { 260 struct drbd_peer_device *peer_device; 261 struct drbd_request *req, *r; 262 263 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 264 peer_device = conn_peer_device(connection, req->device->vnr); 265 _req_mod(req, what, peer_device); 266 } 267 } 268 269 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 270 { 271 spin_lock_irq(&connection->resource->req_lock); 272 _tl_restart(connection, what); 273 spin_unlock_irq(&connection->resource->req_lock); 274 } 275 276 /** 277 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 278 * @connection: DRBD connection. 279 * 280 * This is called after the connection to the peer was lost. The storage covered 281 * by the requests on the transfer gets marked as our of sync. Called from the 282 * receiver thread and the worker thread. 283 */ 284 void tl_clear(struct drbd_connection *connection) 285 { 286 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 287 } 288 289 /** 290 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 291 * @device: DRBD device. 292 */ 293 void tl_abort_disk_io(struct drbd_device *device) 294 { 295 struct drbd_connection *connection = first_peer_device(device)->connection; 296 struct drbd_request *req, *r; 297 298 spin_lock_irq(&connection->resource->req_lock); 299 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 300 if (!(req->rq_state & RQ_LOCAL_PENDING)) 301 continue; 302 if (req->device != device) 303 continue; 304 _req_mod(req, ABORT_DISK_IO, NULL); 305 } 306 spin_unlock_irq(&connection->resource->req_lock); 307 } 308 309 static int drbd_thread_setup(void *arg) 310 { 311 struct drbd_thread *thi = (struct drbd_thread *) arg; 312 struct drbd_resource *resource = thi->resource; 313 unsigned long flags; 314 int retval; 315 316 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 317 thi->name[0], 318 resource->name); 319 320 allow_kernel_signal(DRBD_SIGKILL); 321 allow_kernel_signal(SIGXCPU); 322 restart: 323 retval = thi->function(thi); 324 325 spin_lock_irqsave(&thi->t_lock, flags); 326 327 /* if the receiver has been "EXITING", the last thing it did 328 * was set the conn state to "StandAlone", 329 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 330 * and receiver thread will be "started". 331 * drbd_thread_start needs to set "RESTARTING" in that case. 332 * t_state check and assignment needs to be within the same spinlock, 333 * so either thread_start sees EXITING, and can remap to RESTARTING, 334 * or thread_start see NONE, and can proceed as normal. 335 */ 336 337 if (thi->t_state == RESTARTING) { 338 drbd_info(resource, "Restarting %s thread\n", thi->name); 339 thi->t_state = RUNNING; 340 spin_unlock_irqrestore(&thi->t_lock, flags); 341 goto restart; 342 } 343 344 thi->task = NULL; 345 thi->t_state = NONE; 346 smp_mb(); 347 complete_all(&thi->stop); 348 spin_unlock_irqrestore(&thi->t_lock, flags); 349 350 drbd_info(resource, "Terminating %s\n", current->comm); 351 352 /* Release mod reference taken when thread was started */ 353 354 if (thi->connection) 355 kref_put(&thi->connection->kref, drbd_destroy_connection); 356 kref_put(&resource->kref, drbd_destroy_resource); 357 module_put(THIS_MODULE); 358 return retval; 359 } 360 361 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 362 int (*func) (struct drbd_thread *), const char *name) 363 { 364 spin_lock_init(&thi->t_lock); 365 thi->task = NULL; 366 thi->t_state = NONE; 367 thi->function = func; 368 thi->resource = resource; 369 thi->connection = NULL; 370 thi->name = name; 371 } 372 373 int drbd_thread_start(struct drbd_thread *thi) 374 { 375 struct drbd_resource *resource = thi->resource; 376 struct task_struct *nt; 377 unsigned long flags; 378 379 /* is used from state engine doing drbd_thread_stop_nowait, 380 * while holding the req lock irqsave */ 381 spin_lock_irqsave(&thi->t_lock, flags); 382 383 switch (thi->t_state) { 384 case NONE: 385 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 386 thi->name, current->comm, current->pid); 387 388 /* Get ref on module for thread - this is released when thread exits */ 389 if (!try_module_get(THIS_MODULE)) { 390 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 391 spin_unlock_irqrestore(&thi->t_lock, flags); 392 return false; 393 } 394 395 kref_get(&resource->kref); 396 if (thi->connection) 397 kref_get(&thi->connection->kref); 398 399 init_completion(&thi->stop); 400 thi->reset_cpu_mask = 1; 401 thi->t_state = RUNNING; 402 spin_unlock_irqrestore(&thi->t_lock, flags); 403 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 404 405 nt = kthread_create(drbd_thread_setup, (void *) thi, 406 "drbd_%c_%s", thi->name[0], thi->resource->name); 407 408 if (IS_ERR(nt)) { 409 drbd_err(resource, "Couldn't start thread\n"); 410 411 if (thi->connection) 412 kref_put(&thi->connection->kref, drbd_destroy_connection); 413 kref_put(&resource->kref, drbd_destroy_resource); 414 module_put(THIS_MODULE); 415 return false; 416 } 417 spin_lock_irqsave(&thi->t_lock, flags); 418 thi->task = nt; 419 thi->t_state = RUNNING; 420 spin_unlock_irqrestore(&thi->t_lock, flags); 421 wake_up_process(nt); 422 break; 423 case EXITING: 424 thi->t_state = RESTARTING; 425 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 426 thi->name, current->comm, current->pid); 427 fallthrough; 428 case RUNNING: 429 case RESTARTING: 430 default: 431 spin_unlock_irqrestore(&thi->t_lock, flags); 432 break; 433 } 434 435 return true; 436 } 437 438 439 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 440 { 441 unsigned long flags; 442 443 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 444 445 /* may be called from state engine, holding the req lock irqsave */ 446 spin_lock_irqsave(&thi->t_lock, flags); 447 448 if (thi->t_state == NONE) { 449 spin_unlock_irqrestore(&thi->t_lock, flags); 450 if (restart) 451 drbd_thread_start(thi); 452 return; 453 } 454 455 if (thi->t_state != ns) { 456 if (thi->task == NULL) { 457 spin_unlock_irqrestore(&thi->t_lock, flags); 458 return; 459 } 460 461 thi->t_state = ns; 462 smp_mb(); 463 init_completion(&thi->stop); 464 if (thi->task != current) 465 send_sig(DRBD_SIGKILL, thi->task, 1); 466 } 467 468 spin_unlock_irqrestore(&thi->t_lock, flags); 469 470 if (wait) 471 wait_for_completion(&thi->stop); 472 } 473 474 #ifdef CONFIG_SMP 475 /* 476 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 477 * 478 * Forces all threads of a resource onto the same CPU. This is beneficial for 479 * DRBD's performance. May be overwritten by user's configuration. 480 */ 481 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 482 { 483 unsigned int *resources_per_cpu, min_index = ~0; 484 485 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 486 GFP_KERNEL); 487 if (resources_per_cpu) { 488 struct drbd_resource *resource; 489 unsigned int cpu, min = ~0; 490 491 rcu_read_lock(); 492 for_each_resource_rcu(resource, &drbd_resources) { 493 for_each_cpu(cpu, resource->cpu_mask) 494 resources_per_cpu[cpu]++; 495 } 496 rcu_read_unlock(); 497 for_each_online_cpu(cpu) { 498 if (resources_per_cpu[cpu] < min) { 499 min = resources_per_cpu[cpu]; 500 min_index = cpu; 501 } 502 } 503 kfree(resources_per_cpu); 504 } 505 if (min_index == ~0) { 506 cpumask_setall(*cpu_mask); 507 return; 508 } 509 cpumask_set_cpu(min_index, *cpu_mask); 510 } 511 512 /** 513 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 514 * @thi: drbd_thread object 515 * 516 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 517 * prematurely. 518 */ 519 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 520 { 521 struct drbd_resource *resource = thi->resource; 522 struct task_struct *p = current; 523 524 if (!thi->reset_cpu_mask) 525 return; 526 thi->reset_cpu_mask = 0; 527 set_cpus_allowed_ptr(p, resource->cpu_mask); 528 } 529 #else 530 #define drbd_calc_cpu_mask(A) ({}) 531 #endif 532 533 /* 534 * drbd_header_size - size of a packet header 535 * 536 * The header size is a multiple of 8, so any payload following the header is 537 * word aligned on 64-bit architectures. (The bitmap send and receive code 538 * relies on this.) 539 */ 540 unsigned int drbd_header_size(struct drbd_connection *connection) 541 { 542 if (connection->agreed_pro_version >= 100) { 543 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 544 return sizeof(struct p_header100); 545 } else { 546 BUILD_BUG_ON(sizeof(struct p_header80) != 547 sizeof(struct p_header95)); 548 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 549 return sizeof(struct p_header80); 550 } 551 } 552 553 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 554 { 555 h->magic = cpu_to_be32(DRBD_MAGIC); 556 h->command = cpu_to_be16(cmd); 557 h->length = cpu_to_be16(size); 558 return sizeof(struct p_header80); 559 } 560 561 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 562 { 563 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 564 h->command = cpu_to_be16(cmd); 565 h->length = cpu_to_be32(size); 566 return sizeof(struct p_header95); 567 } 568 569 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 570 int size, int vnr) 571 { 572 h->magic = cpu_to_be32(DRBD_MAGIC_100); 573 h->volume = cpu_to_be16(vnr); 574 h->command = cpu_to_be16(cmd); 575 h->length = cpu_to_be32(size); 576 h->pad = 0; 577 return sizeof(struct p_header100); 578 } 579 580 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 581 void *buffer, enum drbd_packet cmd, int size) 582 { 583 if (connection->agreed_pro_version >= 100) 584 return prepare_header100(buffer, cmd, size, vnr); 585 else if (connection->agreed_pro_version >= 95 && 586 size > DRBD_MAX_SIZE_H80_PACKET) 587 return prepare_header95(buffer, cmd, size); 588 else 589 return prepare_header80(buffer, cmd, size); 590 } 591 592 static void *__conn_prepare_command(struct drbd_connection *connection, 593 struct drbd_socket *sock) 594 { 595 if (!sock->socket) 596 return NULL; 597 return sock->sbuf + drbd_header_size(connection); 598 } 599 600 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 601 { 602 void *p; 603 604 mutex_lock(&sock->mutex); 605 p = __conn_prepare_command(connection, sock); 606 if (!p) 607 mutex_unlock(&sock->mutex); 608 609 return p; 610 } 611 612 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 613 { 614 return conn_prepare_command(peer_device->connection, sock); 615 } 616 617 static int __send_command(struct drbd_connection *connection, int vnr, 618 struct drbd_socket *sock, enum drbd_packet cmd, 619 unsigned int header_size, void *data, 620 unsigned int size) 621 { 622 int msg_flags; 623 int err; 624 625 /* 626 * Called with @data == NULL and the size of the data blocks in @size 627 * for commands that send data blocks. For those commands, omit the 628 * MSG_MORE flag: this will increase the likelihood that data blocks 629 * which are page aligned on the sender will end up page aligned on the 630 * receiver. 631 */ 632 msg_flags = data ? MSG_MORE : 0; 633 634 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 635 header_size + size); 636 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 637 msg_flags); 638 if (data && !err) 639 err = drbd_send_all(connection, sock->socket, data, size, 0); 640 /* DRBD protocol "pings" are latency critical. 641 * This is supposed to trigger tcp_push_pending_frames() */ 642 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 643 tcp_sock_set_nodelay(sock->socket->sk); 644 645 return err; 646 } 647 648 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 649 enum drbd_packet cmd, unsigned int header_size, 650 void *data, unsigned int size) 651 { 652 return __send_command(connection, 0, sock, cmd, header_size, data, size); 653 } 654 655 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 656 enum drbd_packet cmd, unsigned int header_size, 657 void *data, unsigned int size) 658 { 659 int err; 660 661 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 662 mutex_unlock(&sock->mutex); 663 return err; 664 } 665 666 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 667 enum drbd_packet cmd, unsigned int header_size, 668 void *data, unsigned int size) 669 { 670 int err; 671 672 err = __send_command(peer_device->connection, peer_device->device->vnr, 673 sock, cmd, header_size, data, size); 674 mutex_unlock(&sock->mutex); 675 return err; 676 } 677 678 int drbd_send_ping(struct drbd_connection *connection) 679 { 680 struct drbd_socket *sock; 681 682 sock = &connection->meta; 683 if (!conn_prepare_command(connection, sock)) 684 return -EIO; 685 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 686 } 687 688 int drbd_send_ping_ack(struct drbd_connection *connection) 689 { 690 struct drbd_socket *sock; 691 692 sock = &connection->meta; 693 if (!conn_prepare_command(connection, sock)) 694 return -EIO; 695 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 696 } 697 698 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 699 { 700 struct drbd_socket *sock; 701 struct p_rs_param_95 *p; 702 int size; 703 const int apv = peer_device->connection->agreed_pro_version; 704 enum drbd_packet cmd; 705 struct net_conf *nc; 706 struct disk_conf *dc; 707 708 sock = &peer_device->connection->data; 709 p = drbd_prepare_command(peer_device, sock); 710 if (!p) 711 return -EIO; 712 713 rcu_read_lock(); 714 nc = rcu_dereference(peer_device->connection->net_conf); 715 716 size = apv <= 87 ? sizeof(struct p_rs_param) 717 : apv == 88 ? sizeof(struct p_rs_param) 718 + strlen(nc->verify_alg) + 1 719 : apv <= 94 ? sizeof(struct p_rs_param_89) 720 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 721 722 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 723 724 /* initialize verify_alg and csums_alg */ 725 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); 726 memset(&p->algs, 0, sizeof(p->algs)); 727 728 if (get_ldev(peer_device->device)) { 729 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 730 p->resync_rate = cpu_to_be32(dc->resync_rate); 731 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 732 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 733 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 734 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 735 put_ldev(peer_device->device); 736 } else { 737 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 738 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 739 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 740 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 741 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 742 } 743 744 if (apv >= 88) 745 strcpy(p->verify_alg, nc->verify_alg); 746 if (apv >= 89) 747 strcpy(p->csums_alg, nc->csums_alg); 748 rcu_read_unlock(); 749 750 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 751 } 752 753 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 754 { 755 struct drbd_socket *sock; 756 struct p_protocol *p; 757 struct net_conf *nc; 758 int size, cf; 759 760 sock = &connection->data; 761 p = __conn_prepare_command(connection, sock); 762 if (!p) 763 return -EIO; 764 765 rcu_read_lock(); 766 nc = rcu_dereference(connection->net_conf); 767 768 if (nc->tentative && connection->agreed_pro_version < 92) { 769 rcu_read_unlock(); 770 drbd_err(connection, "--dry-run is not supported by peer"); 771 return -EOPNOTSUPP; 772 } 773 774 size = sizeof(*p); 775 if (connection->agreed_pro_version >= 87) 776 size += strlen(nc->integrity_alg) + 1; 777 778 p->protocol = cpu_to_be32(nc->wire_protocol); 779 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 780 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 781 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 782 p->two_primaries = cpu_to_be32(nc->two_primaries); 783 cf = 0; 784 if (nc->discard_my_data) 785 cf |= CF_DISCARD_MY_DATA; 786 if (nc->tentative) 787 cf |= CF_DRY_RUN; 788 p->conn_flags = cpu_to_be32(cf); 789 790 if (connection->agreed_pro_version >= 87) 791 strcpy(p->integrity_alg, nc->integrity_alg); 792 rcu_read_unlock(); 793 794 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 795 } 796 797 int drbd_send_protocol(struct drbd_connection *connection) 798 { 799 int err; 800 801 mutex_lock(&connection->data.mutex); 802 err = __drbd_send_protocol(connection, P_PROTOCOL); 803 mutex_unlock(&connection->data.mutex); 804 805 return err; 806 } 807 808 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 809 { 810 struct drbd_device *device = peer_device->device; 811 struct drbd_socket *sock; 812 struct p_uuids *p; 813 int i; 814 815 if (!get_ldev_if_state(device, D_NEGOTIATING)) 816 return 0; 817 818 sock = &peer_device->connection->data; 819 p = drbd_prepare_command(peer_device, sock); 820 if (!p) { 821 put_ldev(device); 822 return -EIO; 823 } 824 spin_lock_irq(&device->ldev->md.uuid_lock); 825 for (i = UI_CURRENT; i < UI_SIZE; i++) 826 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 827 spin_unlock_irq(&device->ldev->md.uuid_lock); 828 829 device->comm_bm_set = drbd_bm_total_weight(device); 830 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 831 rcu_read_lock(); 832 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 833 rcu_read_unlock(); 834 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 835 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 836 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 837 838 put_ldev(device); 839 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 840 } 841 842 int drbd_send_uuids(struct drbd_peer_device *peer_device) 843 { 844 return _drbd_send_uuids(peer_device, 0); 845 } 846 847 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 848 { 849 return _drbd_send_uuids(peer_device, 8); 850 } 851 852 void drbd_print_uuids(struct drbd_device *device, const char *text) 853 { 854 if (get_ldev_if_state(device, D_NEGOTIATING)) { 855 u64 *uuid = device->ldev->md.uuid; 856 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 857 text, 858 (unsigned long long)uuid[UI_CURRENT], 859 (unsigned long long)uuid[UI_BITMAP], 860 (unsigned long long)uuid[UI_HISTORY_START], 861 (unsigned long long)uuid[UI_HISTORY_END]); 862 put_ldev(device); 863 } else { 864 drbd_info(device, "%s effective data uuid: %016llX\n", 865 text, 866 (unsigned long long)device->ed_uuid); 867 } 868 } 869 870 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 871 { 872 struct drbd_device *device = peer_device->device; 873 struct drbd_socket *sock; 874 struct p_rs_uuid *p; 875 u64 uuid; 876 877 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 878 879 uuid = device->ldev->md.uuid[UI_BITMAP]; 880 if (uuid && uuid != UUID_JUST_CREATED) 881 uuid = uuid + UUID_NEW_BM_OFFSET; 882 else 883 get_random_bytes(&uuid, sizeof(u64)); 884 drbd_uuid_set(device, UI_BITMAP, uuid); 885 drbd_print_uuids(device, "updated sync UUID"); 886 drbd_md_sync(device); 887 888 sock = &peer_device->connection->data; 889 p = drbd_prepare_command(peer_device, sock); 890 if (p) { 891 p->uuid = cpu_to_be64(uuid); 892 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 893 } 894 } 895 896 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 897 { 898 struct drbd_device *device = peer_device->device; 899 struct drbd_socket *sock; 900 struct p_sizes *p; 901 sector_t d_size, u_size; 902 int q_order_type; 903 unsigned int max_bio_size; 904 unsigned int packet_size; 905 906 sock = &peer_device->connection->data; 907 p = drbd_prepare_command(peer_device, sock); 908 if (!p) 909 return -EIO; 910 911 packet_size = sizeof(*p); 912 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 913 packet_size += sizeof(p->qlim[0]); 914 915 memset(p, 0, packet_size); 916 if (get_ldev_if_state(device, D_NEGOTIATING)) { 917 struct block_device *bdev = device->ldev->backing_bdev; 918 struct request_queue *q = bdev_get_queue(bdev); 919 920 d_size = drbd_get_max_capacity(device->ldev); 921 rcu_read_lock(); 922 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 923 rcu_read_unlock(); 924 q_order_type = drbd_queue_order_type(device); 925 max_bio_size = queue_max_hw_sectors(q) << 9; 926 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 927 p->qlim->physical_block_size = 928 cpu_to_be32(bdev_physical_block_size(bdev)); 929 p->qlim->logical_block_size = 930 cpu_to_be32(bdev_logical_block_size(bdev)); 931 p->qlim->alignment_offset = 932 cpu_to_be32(bdev_alignment_offset(bdev)); 933 p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev)); 934 p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev)); 935 p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev); 936 put_ldev(device); 937 } else { 938 struct request_queue *q = device->rq_queue; 939 940 p->qlim->physical_block_size = 941 cpu_to_be32(queue_physical_block_size(q)); 942 p->qlim->logical_block_size = 943 cpu_to_be32(queue_logical_block_size(q)); 944 p->qlim->alignment_offset = 0; 945 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 946 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 947 p->qlim->discard_enabled = 0; 948 949 d_size = 0; 950 u_size = 0; 951 q_order_type = QUEUE_ORDERED_NONE; 952 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 953 } 954 955 if (peer_device->connection->agreed_pro_version <= 94) 956 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 957 else if (peer_device->connection->agreed_pro_version < 100) 958 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 959 960 p->d_size = cpu_to_be64(d_size); 961 p->u_size = cpu_to_be64(u_size); 962 if (trigger_reply) 963 p->c_size = 0; 964 else 965 p->c_size = cpu_to_be64(get_capacity(device->vdisk)); 966 p->max_bio_size = cpu_to_be32(max_bio_size); 967 p->queue_order_type = cpu_to_be16(q_order_type); 968 p->dds_flags = cpu_to_be16(flags); 969 970 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 971 } 972 973 /** 974 * drbd_send_current_state() - Sends the drbd state to the peer 975 * @peer_device: DRBD peer device. 976 */ 977 int drbd_send_current_state(struct drbd_peer_device *peer_device) 978 { 979 struct drbd_socket *sock; 980 struct p_state *p; 981 982 sock = &peer_device->connection->data; 983 p = drbd_prepare_command(peer_device, sock); 984 if (!p) 985 return -EIO; 986 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 987 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 988 } 989 990 /** 991 * drbd_send_state() - After a state change, sends the new state to the peer 992 * @peer_device: DRBD peer device. 993 * @state: the state to send, not necessarily the current state. 994 * 995 * Each state change queues an "after_state_ch" work, which will eventually 996 * send the resulting new state to the peer. If more state changes happen 997 * between queuing and processing of the after_state_ch work, we still 998 * want to send each intermediary state in the order it occurred. 999 */ 1000 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1001 { 1002 struct drbd_socket *sock; 1003 struct p_state *p; 1004 1005 sock = &peer_device->connection->data; 1006 p = drbd_prepare_command(peer_device, sock); 1007 if (!p) 1008 return -EIO; 1009 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1010 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1011 } 1012 1013 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1014 { 1015 struct drbd_socket *sock; 1016 struct p_req_state *p; 1017 1018 sock = &peer_device->connection->data; 1019 p = drbd_prepare_command(peer_device, sock); 1020 if (!p) 1021 return -EIO; 1022 p->mask = cpu_to_be32(mask.i); 1023 p->val = cpu_to_be32(val.i); 1024 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1025 } 1026 1027 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1028 { 1029 enum drbd_packet cmd; 1030 struct drbd_socket *sock; 1031 struct p_req_state *p; 1032 1033 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1034 sock = &connection->data; 1035 p = conn_prepare_command(connection, sock); 1036 if (!p) 1037 return -EIO; 1038 p->mask = cpu_to_be32(mask.i); 1039 p->val = cpu_to_be32(val.i); 1040 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1041 } 1042 1043 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1044 { 1045 struct drbd_socket *sock; 1046 struct p_req_state_reply *p; 1047 1048 sock = &peer_device->connection->meta; 1049 p = drbd_prepare_command(peer_device, sock); 1050 if (p) { 1051 p->retcode = cpu_to_be32(retcode); 1052 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1053 } 1054 } 1055 1056 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1057 { 1058 struct drbd_socket *sock; 1059 struct p_req_state_reply *p; 1060 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1061 1062 sock = &connection->meta; 1063 p = conn_prepare_command(connection, sock); 1064 if (p) { 1065 p->retcode = cpu_to_be32(retcode); 1066 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1067 } 1068 } 1069 1070 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1071 { 1072 BUG_ON(code & ~0xf); 1073 p->encoding = (p->encoding & ~0xf) | code; 1074 } 1075 1076 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1077 { 1078 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1079 } 1080 1081 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1082 { 1083 BUG_ON(n & ~0x7); 1084 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1085 } 1086 1087 static int fill_bitmap_rle_bits(struct drbd_device *device, 1088 struct p_compressed_bm *p, 1089 unsigned int size, 1090 struct bm_xfer_ctx *c) 1091 { 1092 struct bitstream bs; 1093 unsigned long plain_bits; 1094 unsigned long tmp; 1095 unsigned long rl; 1096 unsigned len; 1097 unsigned toggle; 1098 int bits, use_rle; 1099 1100 /* may we use this feature? */ 1101 rcu_read_lock(); 1102 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1103 rcu_read_unlock(); 1104 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1105 return 0; 1106 1107 if (c->bit_offset >= c->bm_bits) 1108 return 0; /* nothing to do. */ 1109 1110 /* use at most thus many bytes */ 1111 bitstream_init(&bs, p->code, size, 0); 1112 memset(p->code, 0, size); 1113 /* plain bits covered in this code string */ 1114 plain_bits = 0; 1115 1116 /* p->encoding & 0x80 stores whether the first run length is set. 1117 * bit offset is implicit. 1118 * start with toggle == 2 to be able to tell the first iteration */ 1119 toggle = 2; 1120 1121 /* see how much plain bits we can stuff into one packet 1122 * using RLE and VLI. */ 1123 do { 1124 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1125 : _drbd_bm_find_next(device, c->bit_offset); 1126 if (tmp == -1UL) 1127 tmp = c->bm_bits; 1128 rl = tmp - c->bit_offset; 1129 1130 if (toggle == 2) { /* first iteration */ 1131 if (rl == 0) { 1132 /* the first checked bit was set, 1133 * store start value, */ 1134 dcbp_set_start(p, 1); 1135 /* but skip encoding of zero run length */ 1136 toggle = !toggle; 1137 continue; 1138 } 1139 dcbp_set_start(p, 0); 1140 } 1141 1142 /* paranoia: catch zero runlength. 1143 * can only happen if bitmap is modified while we scan it. */ 1144 if (rl == 0) { 1145 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1146 "t:%u bo:%lu\n", toggle, c->bit_offset); 1147 return -1; 1148 } 1149 1150 bits = vli_encode_bits(&bs, rl); 1151 if (bits == -ENOBUFS) /* buffer full */ 1152 break; 1153 if (bits <= 0) { 1154 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1155 return 0; 1156 } 1157 1158 toggle = !toggle; 1159 plain_bits += rl; 1160 c->bit_offset = tmp; 1161 } while (c->bit_offset < c->bm_bits); 1162 1163 len = bs.cur.b - p->code + !!bs.cur.bit; 1164 1165 if (plain_bits < (len << 3)) { 1166 /* incompressible with this method. 1167 * we need to rewind both word and bit position. */ 1168 c->bit_offset -= plain_bits; 1169 bm_xfer_ctx_bit_to_word_offset(c); 1170 c->bit_offset = c->word_offset * BITS_PER_LONG; 1171 return 0; 1172 } 1173 1174 /* RLE + VLI was able to compress it just fine. 1175 * update c->word_offset. */ 1176 bm_xfer_ctx_bit_to_word_offset(c); 1177 1178 /* store pad_bits */ 1179 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1180 1181 return len; 1182 } 1183 1184 /* 1185 * send_bitmap_rle_or_plain 1186 * 1187 * Return 0 when done, 1 when another iteration is needed, and a negative error 1188 * code upon failure. 1189 */ 1190 static int 1191 send_bitmap_rle_or_plain(struct drbd_peer_device *peer_device, struct bm_xfer_ctx *c) 1192 { 1193 struct drbd_device *device = peer_device->device; 1194 struct drbd_socket *sock = &peer_device->connection->data; 1195 unsigned int header_size = drbd_header_size(peer_device->connection); 1196 struct p_compressed_bm *p = sock->sbuf + header_size; 1197 int len, err; 1198 1199 len = fill_bitmap_rle_bits(device, p, 1200 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1201 if (len < 0) 1202 return -EIO; 1203 1204 if (len) { 1205 dcbp_set_code(p, RLE_VLI_Bits); 1206 err = __send_command(peer_device->connection, device->vnr, sock, 1207 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1208 NULL, 0); 1209 c->packets[0]++; 1210 c->bytes[0] += header_size + sizeof(*p) + len; 1211 1212 if (c->bit_offset >= c->bm_bits) 1213 len = 0; /* DONE */ 1214 } else { 1215 /* was not compressible. 1216 * send a buffer full of plain text bits instead. */ 1217 unsigned int data_size; 1218 unsigned long num_words; 1219 unsigned long *p = sock->sbuf + header_size; 1220 1221 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1222 num_words = min_t(size_t, data_size / sizeof(*p), 1223 c->bm_words - c->word_offset); 1224 len = num_words * sizeof(*p); 1225 if (len) 1226 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1227 err = __send_command(peer_device->connection, device->vnr, sock, P_BITMAP, 1228 len, NULL, 0); 1229 c->word_offset += num_words; 1230 c->bit_offset = c->word_offset * BITS_PER_LONG; 1231 1232 c->packets[1]++; 1233 c->bytes[1] += header_size + len; 1234 1235 if (c->bit_offset > c->bm_bits) 1236 c->bit_offset = c->bm_bits; 1237 } 1238 if (!err) { 1239 if (len == 0) { 1240 INFO_bm_xfer_stats(peer_device, "send", c); 1241 return 0; 1242 } else 1243 return 1; 1244 } 1245 return -EIO; 1246 } 1247 1248 /* See the comment at receive_bitmap() */ 1249 static int _drbd_send_bitmap(struct drbd_device *device, 1250 struct drbd_peer_device *peer_device) 1251 { 1252 struct bm_xfer_ctx c; 1253 int err; 1254 1255 if (!expect(device, device->bitmap)) 1256 return false; 1257 1258 if (get_ldev(device)) { 1259 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1260 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1261 drbd_bm_set_all(device); 1262 if (drbd_bm_write(device, peer_device)) { 1263 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1264 * but otherwise process as per normal - need to tell other 1265 * side that a full resync is required! */ 1266 drbd_err(device, "Failed to write bitmap to disk!\n"); 1267 } else { 1268 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1269 drbd_md_sync(device); 1270 } 1271 } 1272 put_ldev(device); 1273 } 1274 1275 c = (struct bm_xfer_ctx) { 1276 .bm_bits = drbd_bm_bits(device), 1277 .bm_words = drbd_bm_words(device), 1278 }; 1279 1280 do { 1281 err = send_bitmap_rle_or_plain(peer_device, &c); 1282 } while (err > 0); 1283 1284 return err == 0; 1285 } 1286 1287 int drbd_send_bitmap(struct drbd_device *device, struct drbd_peer_device *peer_device) 1288 { 1289 struct drbd_socket *sock = &peer_device->connection->data; 1290 int err = -1; 1291 1292 mutex_lock(&sock->mutex); 1293 if (sock->socket) 1294 err = !_drbd_send_bitmap(device, peer_device); 1295 mutex_unlock(&sock->mutex); 1296 return err; 1297 } 1298 1299 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1300 { 1301 struct drbd_socket *sock; 1302 struct p_barrier_ack *p; 1303 1304 if (connection->cstate < C_WF_REPORT_PARAMS) 1305 return; 1306 1307 sock = &connection->meta; 1308 p = conn_prepare_command(connection, sock); 1309 if (!p) 1310 return; 1311 p->barrier = barrier_nr; 1312 p->set_size = cpu_to_be32(set_size); 1313 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1314 } 1315 1316 /** 1317 * _drbd_send_ack() - Sends an ack packet 1318 * @peer_device: DRBD peer device. 1319 * @cmd: Packet command code. 1320 * @sector: sector, needs to be in big endian byte order 1321 * @blksize: size in byte, needs to be in big endian byte order 1322 * @block_id: Id, big endian byte order 1323 */ 1324 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1325 u64 sector, u32 blksize, u64 block_id) 1326 { 1327 struct drbd_socket *sock; 1328 struct p_block_ack *p; 1329 1330 if (peer_device->device->state.conn < C_CONNECTED) 1331 return -EIO; 1332 1333 sock = &peer_device->connection->meta; 1334 p = drbd_prepare_command(peer_device, sock); 1335 if (!p) 1336 return -EIO; 1337 p->sector = sector; 1338 p->block_id = block_id; 1339 p->blksize = blksize; 1340 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1341 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1342 } 1343 1344 /* dp->sector and dp->block_id already/still in network byte order, 1345 * data_size is payload size according to dp->head, 1346 * and may need to be corrected for digest size. */ 1347 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1348 struct p_data *dp, int data_size) 1349 { 1350 if (peer_device->connection->peer_integrity_tfm) 1351 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1352 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1353 dp->block_id); 1354 } 1355 1356 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1357 struct p_block_req *rp) 1358 { 1359 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1360 } 1361 1362 /** 1363 * drbd_send_ack() - Sends an ack packet 1364 * @peer_device: DRBD peer device 1365 * @cmd: packet command code 1366 * @peer_req: peer request 1367 */ 1368 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1369 struct drbd_peer_request *peer_req) 1370 { 1371 return _drbd_send_ack(peer_device, cmd, 1372 cpu_to_be64(peer_req->i.sector), 1373 cpu_to_be32(peer_req->i.size), 1374 peer_req->block_id); 1375 } 1376 1377 /* This function misuses the block_id field to signal if the blocks 1378 * are is sync or not. */ 1379 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1380 sector_t sector, int blksize, u64 block_id) 1381 { 1382 return _drbd_send_ack(peer_device, cmd, 1383 cpu_to_be64(sector), 1384 cpu_to_be32(blksize), 1385 cpu_to_be64(block_id)); 1386 } 1387 1388 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1389 struct drbd_peer_request *peer_req) 1390 { 1391 struct drbd_socket *sock; 1392 struct p_block_desc *p; 1393 1394 sock = &peer_device->connection->data; 1395 p = drbd_prepare_command(peer_device, sock); 1396 if (!p) 1397 return -EIO; 1398 p->sector = cpu_to_be64(peer_req->i.sector); 1399 p->blksize = cpu_to_be32(peer_req->i.size); 1400 p->pad = 0; 1401 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1402 } 1403 1404 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1405 sector_t sector, int size, u64 block_id) 1406 { 1407 struct drbd_socket *sock; 1408 struct p_block_req *p; 1409 1410 sock = &peer_device->connection->data; 1411 p = drbd_prepare_command(peer_device, sock); 1412 if (!p) 1413 return -EIO; 1414 p->sector = cpu_to_be64(sector); 1415 p->block_id = block_id; 1416 p->blksize = cpu_to_be32(size); 1417 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1418 } 1419 1420 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1421 void *digest, int digest_size, enum drbd_packet cmd) 1422 { 1423 struct drbd_socket *sock; 1424 struct p_block_req *p; 1425 1426 /* FIXME: Put the digest into the preallocated socket buffer. */ 1427 1428 sock = &peer_device->connection->data; 1429 p = drbd_prepare_command(peer_device, sock); 1430 if (!p) 1431 return -EIO; 1432 p->sector = cpu_to_be64(sector); 1433 p->block_id = ID_SYNCER /* unused */; 1434 p->blksize = cpu_to_be32(size); 1435 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1436 } 1437 1438 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1439 { 1440 struct drbd_socket *sock; 1441 struct p_block_req *p; 1442 1443 sock = &peer_device->connection->data; 1444 p = drbd_prepare_command(peer_device, sock); 1445 if (!p) 1446 return -EIO; 1447 p->sector = cpu_to_be64(sector); 1448 p->block_id = ID_SYNCER /* unused */; 1449 p->blksize = cpu_to_be32(size); 1450 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1451 } 1452 1453 /* called on sndtimeo 1454 * returns false if we should retry, 1455 * true if we think connection is dead 1456 */ 1457 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1458 { 1459 int drop_it; 1460 /* long elapsed = (long)(jiffies - device->last_received); */ 1461 1462 drop_it = connection->meta.socket == sock 1463 || !connection->ack_receiver.task 1464 || get_t_state(&connection->ack_receiver) != RUNNING 1465 || connection->cstate < C_WF_REPORT_PARAMS; 1466 1467 if (drop_it) 1468 return true; 1469 1470 drop_it = !--connection->ko_count; 1471 if (!drop_it) { 1472 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1473 current->comm, current->pid, connection->ko_count); 1474 request_ping(connection); 1475 } 1476 1477 return drop_it; /* && (device->state == R_PRIMARY) */; 1478 } 1479 1480 static void drbd_update_congested(struct drbd_connection *connection) 1481 { 1482 struct sock *sk = connection->data.socket->sk; 1483 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1484 set_bit(NET_CONGESTED, &connection->flags); 1485 } 1486 1487 /* The idea of sendpage seems to be to put some kind of reference 1488 * to the page into the skb, and to hand it over to the NIC. In 1489 * this process get_page() gets called. 1490 * 1491 * As soon as the page was really sent over the network put_page() 1492 * gets called by some part of the network layer. [ NIC driver? ] 1493 * 1494 * [ get_page() / put_page() increment/decrement the count. If count 1495 * reaches 0 the page will be freed. ] 1496 * 1497 * This works nicely with pages from FSs. 1498 * But this means that in protocol A we might signal IO completion too early! 1499 * 1500 * In order not to corrupt data during a resync we must make sure 1501 * that we do not reuse our own buffer pages (EEs) to early, therefore 1502 * we have the net_ee list. 1503 * 1504 * XFS seems to have problems, still, it submits pages with page_count == 0! 1505 * As a workaround, we disable sendpage on pages 1506 * with page_count == 0 or PageSlab. 1507 */ 1508 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1509 int offset, size_t size, unsigned msg_flags) 1510 { 1511 struct socket *socket; 1512 void *addr; 1513 int err; 1514 1515 socket = peer_device->connection->data.socket; 1516 addr = kmap(page) + offset; 1517 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1518 kunmap(page); 1519 if (!err) 1520 peer_device->device->send_cnt += size >> 9; 1521 return err; 1522 } 1523 1524 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1525 int offset, size_t size, unsigned msg_flags) 1526 { 1527 struct socket *socket = peer_device->connection->data.socket; 1528 struct msghdr msg = { .msg_flags = msg_flags, }; 1529 struct bio_vec bvec; 1530 int len = size; 1531 int err = -EIO; 1532 1533 /* e.g. XFS meta- & log-data is in slab pages, which have a 1534 * page_count of 0 and/or have PageSlab() set. 1535 * we cannot use send_page for those, as that does get_page(); 1536 * put_page(); and would cause either a VM_BUG directly, or 1537 * __page_cache_release a page that would actually still be referenced 1538 * by someone, leading to some obscure delayed Oops somewhere else. */ 1539 if (!drbd_disable_sendpage && sendpages_ok(page, len, offset)) 1540 msg.msg_flags |= MSG_NOSIGNAL | MSG_SPLICE_PAGES; 1541 1542 drbd_update_congested(peer_device->connection); 1543 do { 1544 int sent; 1545 1546 bvec_set_page(&bvec, page, len, offset); 1547 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1548 1549 sent = sock_sendmsg(socket, &msg); 1550 if (sent <= 0) { 1551 if (sent == -EAGAIN) { 1552 if (we_should_drop_the_connection(peer_device->connection, socket)) 1553 break; 1554 continue; 1555 } 1556 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1557 __func__, (int)size, len, sent); 1558 if (sent < 0) 1559 err = sent; 1560 break; 1561 } 1562 len -= sent; 1563 offset += sent; 1564 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1565 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1566 1567 if (len == 0) { 1568 err = 0; 1569 peer_device->device->send_cnt += size >> 9; 1570 } 1571 return err; 1572 } 1573 1574 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1575 { 1576 struct bio_vec bvec; 1577 struct bvec_iter iter; 1578 1579 /* hint all but last page with MSG_MORE */ 1580 bio_for_each_segment(bvec, bio, iter) { 1581 int err; 1582 1583 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1584 bvec.bv_offset, bvec.bv_len, 1585 bio_iter_last(bvec, iter) 1586 ? 0 : MSG_MORE); 1587 if (err) 1588 return err; 1589 } 1590 return 0; 1591 } 1592 1593 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1594 { 1595 struct bio_vec bvec; 1596 struct bvec_iter iter; 1597 1598 /* hint all but last page with MSG_MORE */ 1599 bio_for_each_segment(bvec, bio, iter) { 1600 int err; 1601 1602 err = _drbd_send_page(peer_device, bvec.bv_page, 1603 bvec.bv_offset, bvec.bv_len, 1604 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1605 if (err) 1606 return err; 1607 } 1608 return 0; 1609 } 1610 1611 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1612 struct drbd_peer_request *peer_req) 1613 { 1614 struct page *page = peer_req->pages; 1615 unsigned len = peer_req->i.size; 1616 int err; 1617 1618 /* hint all but last page with MSG_MORE */ 1619 page_chain_for_each(page) { 1620 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1621 1622 err = _drbd_send_page(peer_device, page, 0, l, 1623 page_chain_next(page) ? MSG_MORE : 0); 1624 if (err) 1625 return err; 1626 len -= l; 1627 } 1628 return 0; 1629 } 1630 1631 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1632 struct bio *bio) 1633 { 1634 if (connection->agreed_pro_version >= 95) 1635 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1636 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1637 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1638 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1639 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? 1640 ((connection->agreed_features & DRBD_FF_WZEROES) ? 1641 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0)) 1642 : DP_DISCARD) 1643 : 0); 1644 else 1645 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1646 } 1647 1648 /* Used to send write or TRIM aka REQ_OP_DISCARD requests 1649 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1650 */ 1651 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1652 { 1653 struct drbd_device *device = peer_device->device; 1654 struct drbd_socket *sock; 1655 struct p_data *p; 1656 void *digest_out; 1657 unsigned int dp_flags = 0; 1658 int digest_size; 1659 int err; 1660 1661 sock = &peer_device->connection->data; 1662 p = drbd_prepare_command(peer_device, sock); 1663 digest_size = peer_device->connection->integrity_tfm ? 1664 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1665 1666 if (!p) 1667 return -EIO; 1668 p->sector = cpu_to_be64(req->i.sector); 1669 p->block_id = (unsigned long)req; 1670 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1671 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1672 if (device->state.conn >= C_SYNC_SOURCE && 1673 device->state.conn <= C_PAUSED_SYNC_T) 1674 dp_flags |= DP_MAY_SET_IN_SYNC; 1675 if (peer_device->connection->agreed_pro_version >= 100) { 1676 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1677 dp_flags |= DP_SEND_RECEIVE_ACK; 1678 /* During resync, request an explicit write ack, 1679 * even in protocol != C */ 1680 if (req->rq_state & RQ_EXP_WRITE_ACK 1681 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1682 dp_flags |= DP_SEND_WRITE_ACK; 1683 } 1684 p->dp_flags = cpu_to_be32(dp_flags); 1685 1686 if (dp_flags & (DP_DISCARD|DP_ZEROES)) { 1687 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM; 1688 struct p_trim *t = (struct p_trim*)p; 1689 t->size = cpu_to_be32(req->i.size); 1690 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0); 1691 goto out; 1692 } 1693 digest_out = p + 1; 1694 1695 /* our digest is still only over the payload. 1696 * TRIM does not carry any payload. */ 1697 if (digest_size) 1698 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1699 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1700 sizeof(*p) + digest_size, NULL, req->i.size); 1701 if (!err) { 1702 /* For protocol A, we have to memcpy the payload into 1703 * socket buffers, as we may complete right away 1704 * as soon as we handed it over to tcp, at which point the data 1705 * pages may become invalid. 1706 * 1707 * For data-integrity enabled, we copy it as well, so we can be 1708 * sure that even if the bio pages may still be modified, it 1709 * won't change the data on the wire, thus if the digest checks 1710 * out ok after sending on this side, but does not fit on the 1711 * receiving side, we sure have detected corruption elsewhere. 1712 */ 1713 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1714 err = _drbd_send_bio(peer_device, req->master_bio); 1715 else 1716 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1717 1718 /* double check digest, sometimes buffers have been modified in flight. */ 1719 if (digest_size > 0 && digest_size <= 64) { 1720 /* 64 byte, 512 bit, is the largest digest size 1721 * currently supported in kernel crypto. */ 1722 unsigned char digest[64]; 1723 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1724 if (memcmp(p + 1, digest, digest_size)) { 1725 drbd_warn(device, 1726 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1727 (unsigned long long)req->i.sector, req->i.size); 1728 } 1729 } /* else if (digest_size > 64) { 1730 ... Be noisy about digest too large ... 1731 } */ 1732 } 1733 out: 1734 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1735 1736 return err; 1737 } 1738 1739 /* answer packet, used to send data back for read requests: 1740 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1741 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1742 */ 1743 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1744 struct drbd_peer_request *peer_req) 1745 { 1746 struct drbd_device *device = peer_device->device; 1747 struct drbd_socket *sock; 1748 struct p_data *p; 1749 int err; 1750 int digest_size; 1751 1752 sock = &peer_device->connection->data; 1753 p = drbd_prepare_command(peer_device, sock); 1754 1755 digest_size = peer_device->connection->integrity_tfm ? 1756 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1757 1758 if (!p) 1759 return -EIO; 1760 p->sector = cpu_to_be64(peer_req->i.sector); 1761 p->block_id = peer_req->block_id; 1762 p->seq_num = 0; /* unused */ 1763 p->dp_flags = 0; 1764 if (digest_size) 1765 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1766 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1767 if (!err) 1768 err = _drbd_send_zc_ee(peer_device, peer_req); 1769 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1770 1771 return err; 1772 } 1773 1774 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1775 { 1776 struct drbd_socket *sock; 1777 struct p_block_desc *p; 1778 1779 sock = &peer_device->connection->data; 1780 p = drbd_prepare_command(peer_device, sock); 1781 if (!p) 1782 return -EIO; 1783 p->sector = cpu_to_be64(req->i.sector); 1784 p->blksize = cpu_to_be32(req->i.size); 1785 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1786 } 1787 1788 /* 1789 drbd_send distinguishes two cases: 1790 1791 Packets sent via the data socket "sock" 1792 and packets sent via the meta data socket "msock" 1793 1794 sock msock 1795 -----------------+-------------------------+------------------------------ 1796 timeout conf.timeout / 2 conf.timeout / 2 1797 timeout action send a ping via msock Abort communication 1798 and close all sockets 1799 */ 1800 1801 /* 1802 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1803 */ 1804 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1805 void *buf, size_t size, unsigned msg_flags) 1806 { 1807 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1808 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1809 int rv, sent = 0; 1810 1811 if (!sock) 1812 return -EBADR; 1813 1814 /* THINK if (signal_pending) return ... ? */ 1815 1816 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &iov, 1, size); 1817 1818 if (sock == connection->data.socket) { 1819 rcu_read_lock(); 1820 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1821 rcu_read_unlock(); 1822 drbd_update_congested(connection); 1823 } 1824 do { 1825 rv = sock_sendmsg(sock, &msg); 1826 if (rv == -EAGAIN) { 1827 if (we_should_drop_the_connection(connection, sock)) 1828 break; 1829 else 1830 continue; 1831 } 1832 if (rv == -EINTR) { 1833 flush_signals(current); 1834 rv = 0; 1835 } 1836 if (rv < 0) 1837 break; 1838 sent += rv; 1839 } while (sent < size); 1840 1841 if (sock == connection->data.socket) 1842 clear_bit(NET_CONGESTED, &connection->flags); 1843 1844 if (rv <= 0) { 1845 if (rv != -EAGAIN) { 1846 drbd_err(connection, "%s_sendmsg returned %d\n", 1847 sock == connection->meta.socket ? "msock" : "sock", 1848 rv); 1849 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1850 } else 1851 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1852 } 1853 1854 return sent; 1855 } 1856 1857 /* 1858 * drbd_send_all - Send an entire buffer 1859 * 1860 * Returns 0 upon success and a negative error value otherwise. 1861 */ 1862 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1863 size_t size, unsigned msg_flags) 1864 { 1865 int err; 1866 1867 err = drbd_send(connection, sock, buffer, size, msg_flags); 1868 if (err < 0) 1869 return err; 1870 if (err != size) 1871 return -EIO; 1872 return 0; 1873 } 1874 1875 static int drbd_open(struct gendisk *disk, blk_mode_t mode) 1876 { 1877 struct drbd_device *device = disk->private_data; 1878 unsigned long flags; 1879 int rv = 0; 1880 1881 mutex_lock(&drbd_main_mutex); 1882 spin_lock_irqsave(&device->resource->req_lock, flags); 1883 /* to have a stable device->state.role 1884 * and no race with updating open_cnt */ 1885 1886 if (device->state.role != R_PRIMARY) { 1887 if (mode & BLK_OPEN_WRITE) 1888 rv = -EROFS; 1889 else if (!drbd_allow_oos) 1890 rv = -EMEDIUMTYPE; 1891 } 1892 1893 if (!rv) 1894 device->open_cnt++; 1895 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1896 mutex_unlock(&drbd_main_mutex); 1897 1898 return rv; 1899 } 1900 1901 static void drbd_release(struct gendisk *gd) 1902 { 1903 struct drbd_device *device = gd->private_data; 1904 1905 mutex_lock(&drbd_main_mutex); 1906 device->open_cnt--; 1907 mutex_unlock(&drbd_main_mutex); 1908 } 1909 1910 /* need to hold resource->req_lock */ 1911 void drbd_queue_unplug(struct drbd_device *device) 1912 { 1913 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1914 D_ASSERT(device, device->state.role == R_PRIMARY); 1915 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1916 drbd_queue_work_if_unqueued( 1917 &first_peer_device(device)->connection->sender_work, 1918 &device->unplug_work); 1919 } 1920 } 1921 } 1922 1923 static void drbd_set_defaults(struct drbd_device *device) 1924 { 1925 /* Beware! The actual layout differs 1926 * between big endian and little endian */ 1927 device->state = (union drbd_dev_state) { 1928 { .role = R_SECONDARY, 1929 .peer = R_UNKNOWN, 1930 .conn = C_STANDALONE, 1931 .disk = D_DISKLESS, 1932 .pdsk = D_UNKNOWN, 1933 } }; 1934 } 1935 1936 void drbd_init_set_defaults(struct drbd_device *device) 1937 { 1938 /* the memset(,0,) did most of this. 1939 * note: only assignments, no allocation in here */ 1940 1941 drbd_set_defaults(device); 1942 1943 atomic_set(&device->ap_bio_cnt, 0); 1944 atomic_set(&device->ap_actlog_cnt, 0); 1945 atomic_set(&device->ap_pending_cnt, 0); 1946 atomic_set(&device->rs_pending_cnt, 0); 1947 atomic_set(&device->unacked_cnt, 0); 1948 atomic_set(&device->local_cnt, 0); 1949 atomic_set(&device->pp_in_use_by_net, 0); 1950 atomic_set(&device->rs_sect_in, 0); 1951 atomic_set(&device->rs_sect_ev, 0); 1952 atomic_set(&device->ap_in_flight, 0); 1953 atomic_set(&device->md_io.in_use, 0); 1954 1955 mutex_init(&device->own_state_mutex); 1956 device->state_mutex = &device->own_state_mutex; 1957 1958 spin_lock_init(&device->al_lock); 1959 spin_lock_init(&device->peer_seq_lock); 1960 1961 INIT_LIST_HEAD(&device->active_ee); 1962 INIT_LIST_HEAD(&device->sync_ee); 1963 INIT_LIST_HEAD(&device->done_ee); 1964 INIT_LIST_HEAD(&device->read_ee); 1965 INIT_LIST_HEAD(&device->net_ee); 1966 INIT_LIST_HEAD(&device->resync_reads); 1967 INIT_LIST_HEAD(&device->resync_work.list); 1968 INIT_LIST_HEAD(&device->unplug_work.list); 1969 INIT_LIST_HEAD(&device->bm_io_work.w.list); 1970 INIT_LIST_HEAD(&device->pending_master_completion[0]); 1971 INIT_LIST_HEAD(&device->pending_master_completion[1]); 1972 INIT_LIST_HEAD(&device->pending_completion[0]); 1973 INIT_LIST_HEAD(&device->pending_completion[1]); 1974 1975 device->resync_work.cb = w_resync_timer; 1976 device->unplug_work.cb = w_send_write_hint; 1977 device->bm_io_work.w.cb = w_bitmap_io; 1978 1979 timer_setup(&device->resync_timer, resync_timer_fn, 0); 1980 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 1981 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 1982 timer_setup(&device->request_timer, request_timer_fn, 0); 1983 1984 init_waitqueue_head(&device->misc_wait); 1985 init_waitqueue_head(&device->state_wait); 1986 init_waitqueue_head(&device->ee_wait); 1987 init_waitqueue_head(&device->al_wait); 1988 init_waitqueue_head(&device->seq_wait); 1989 1990 device->resync_wenr = LC_FREE; 1991 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1992 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1993 } 1994 1995 void drbd_set_my_capacity(struct drbd_device *device, sector_t size) 1996 { 1997 char ppb[10]; 1998 1999 set_capacity_and_notify(device->vdisk, size); 2000 2001 drbd_info(device, "size = %s (%llu KB)\n", 2002 ppsize(ppb, size>>1), (unsigned long long)size>>1); 2003 } 2004 2005 void drbd_device_cleanup(struct drbd_device *device) 2006 { 2007 int i; 2008 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2009 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2010 first_peer_device(device)->connection->receiver.t_state); 2011 2012 device->al_writ_cnt = 2013 device->bm_writ_cnt = 2014 device->read_cnt = 2015 device->recv_cnt = 2016 device->send_cnt = 2017 device->writ_cnt = 2018 device->p_size = 2019 device->rs_start = 2020 device->rs_total = 2021 device->rs_failed = 0; 2022 device->rs_last_events = 0; 2023 device->rs_last_sect_ev = 0; 2024 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2025 device->rs_mark_left[i] = 0; 2026 device->rs_mark_time[i] = 0; 2027 } 2028 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2029 2030 set_capacity_and_notify(device->vdisk, 0); 2031 if (device->bitmap) { 2032 /* maybe never allocated. */ 2033 drbd_bm_resize(device, 0, 1); 2034 drbd_bm_cleanup(device); 2035 } 2036 2037 drbd_backing_dev_free(device, device->ldev); 2038 device->ldev = NULL; 2039 2040 clear_bit(AL_SUSPENDED, &device->flags); 2041 2042 D_ASSERT(device, list_empty(&device->active_ee)); 2043 D_ASSERT(device, list_empty(&device->sync_ee)); 2044 D_ASSERT(device, list_empty(&device->done_ee)); 2045 D_ASSERT(device, list_empty(&device->read_ee)); 2046 D_ASSERT(device, list_empty(&device->net_ee)); 2047 D_ASSERT(device, list_empty(&device->resync_reads)); 2048 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2049 D_ASSERT(device, list_empty(&device->resync_work.list)); 2050 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2051 2052 drbd_set_defaults(device); 2053 } 2054 2055 2056 static void drbd_destroy_mempools(void) 2057 { 2058 struct page *page; 2059 2060 while (drbd_pp_pool) { 2061 page = drbd_pp_pool; 2062 drbd_pp_pool = (struct page *)page_private(page); 2063 __free_page(page); 2064 drbd_pp_vacant--; 2065 } 2066 2067 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2068 2069 bioset_exit(&drbd_io_bio_set); 2070 bioset_exit(&drbd_md_io_bio_set); 2071 mempool_exit(&drbd_md_io_page_pool); 2072 mempool_exit(&drbd_ee_mempool); 2073 mempool_exit(&drbd_request_mempool); 2074 kmem_cache_destroy(drbd_ee_cache); 2075 kmem_cache_destroy(drbd_request_cache); 2076 kmem_cache_destroy(drbd_bm_ext_cache); 2077 kmem_cache_destroy(drbd_al_ext_cache); 2078 2079 drbd_ee_cache = NULL; 2080 drbd_request_cache = NULL; 2081 drbd_bm_ext_cache = NULL; 2082 drbd_al_ext_cache = NULL; 2083 2084 return; 2085 } 2086 2087 static int drbd_create_mempools(void) 2088 { 2089 struct page *page; 2090 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2091 int i, ret; 2092 2093 /* caches */ 2094 drbd_request_cache = kmem_cache_create( 2095 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2096 if (drbd_request_cache == NULL) 2097 goto Enomem; 2098 2099 drbd_ee_cache = kmem_cache_create( 2100 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2101 if (drbd_ee_cache == NULL) 2102 goto Enomem; 2103 2104 drbd_bm_ext_cache = kmem_cache_create( 2105 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2106 if (drbd_bm_ext_cache == NULL) 2107 goto Enomem; 2108 2109 drbd_al_ext_cache = kmem_cache_create( 2110 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2111 if (drbd_al_ext_cache == NULL) 2112 goto Enomem; 2113 2114 /* mempools */ 2115 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2116 if (ret) 2117 goto Enomem; 2118 2119 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2120 BIOSET_NEED_BVECS); 2121 if (ret) 2122 goto Enomem; 2123 2124 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2125 if (ret) 2126 goto Enomem; 2127 2128 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2129 drbd_request_cache); 2130 if (ret) 2131 goto Enomem; 2132 2133 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2134 if (ret) 2135 goto Enomem; 2136 2137 for (i = 0; i < number; i++) { 2138 page = alloc_page(GFP_HIGHUSER); 2139 if (!page) 2140 goto Enomem; 2141 set_page_private(page, (unsigned long)drbd_pp_pool); 2142 drbd_pp_pool = page; 2143 } 2144 drbd_pp_vacant = number; 2145 2146 return 0; 2147 2148 Enomem: 2149 drbd_destroy_mempools(); /* in case we allocated some */ 2150 return -ENOMEM; 2151 } 2152 2153 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2154 { 2155 int rr; 2156 2157 rr = drbd_free_peer_reqs(device, &device->active_ee); 2158 if (rr) 2159 drbd_err(device, "%d EEs in active list found!\n", rr); 2160 2161 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2162 if (rr) 2163 drbd_err(device, "%d EEs in sync list found!\n", rr); 2164 2165 rr = drbd_free_peer_reqs(device, &device->read_ee); 2166 if (rr) 2167 drbd_err(device, "%d EEs in read list found!\n", rr); 2168 2169 rr = drbd_free_peer_reqs(device, &device->done_ee); 2170 if (rr) 2171 drbd_err(device, "%d EEs in done list found!\n", rr); 2172 2173 rr = drbd_free_peer_reqs(device, &device->net_ee); 2174 if (rr) 2175 drbd_err(device, "%d EEs in net list found!\n", rr); 2176 } 2177 2178 /* caution. no locking. */ 2179 void drbd_destroy_device(struct kref *kref) 2180 { 2181 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2182 struct drbd_resource *resource = device->resource; 2183 struct drbd_peer_device *peer_device, *tmp_peer_device; 2184 2185 timer_shutdown_sync(&device->request_timer); 2186 2187 /* paranoia asserts */ 2188 D_ASSERT(device, device->open_cnt == 0); 2189 /* end paranoia asserts */ 2190 2191 /* cleanup stuff that may have been allocated during 2192 * device (re-)configuration or state changes */ 2193 2194 drbd_backing_dev_free(device, device->ldev); 2195 device->ldev = NULL; 2196 2197 drbd_release_all_peer_reqs(device); 2198 2199 lc_destroy(device->act_log); 2200 lc_destroy(device->resync); 2201 2202 kfree(device->p_uuid); 2203 /* device->p_uuid = NULL; */ 2204 2205 if (device->bitmap) /* should no longer be there. */ 2206 drbd_bm_cleanup(device); 2207 __free_page(device->md_io.page); 2208 put_disk(device->vdisk); 2209 kfree(device->rs_plan_s); 2210 2211 /* not for_each_connection(connection, resource): 2212 * those may have been cleaned up and disassociated already. 2213 */ 2214 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2215 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2216 kfree(peer_device); 2217 } 2218 if (device->submit.wq) 2219 destroy_workqueue(device->submit.wq); 2220 kfree(device); 2221 kref_put(&resource->kref, drbd_destroy_resource); 2222 } 2223 2224 /* One global retry thread, if we need to push back some bio and have it 2225 * reinserted through our make request function. 2226 */ 2227 static struct retry_worker { 2228 struct workqueue_struct *wq; 2229 struct work_struct worker; 2230 2231 spinlock_t lock; 2232 struct list_head writes; 2233 } retry; 2234 2235 static void do_retry(struct work_struct *ws) 2236 { 2237 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2238 LIST_HEAD(writes); 2239 struct drbd_request *req, *tmp; 2240 2241 spin_lock_irq(&retry->lock); 2242 list_splice_init(&retry->writes, &writes); 2243 spin_unlock_irq(&retry->lock); 2244 2245 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2246 struct drbd_device *device = req->device; 2247 struct bio *bio = req->master_bio; 2248 bool expected; 2249 2250 expected = 2251 expect(device, atomic_read(&req->completion_ref) == 0) && 2252 expect(device, req->rq_state & RQ_POSTPONED) && 2253 expect(device, (req->rq_state & RQ_LOCAL_PENDING) == 0 || 2254 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2255 2256 if (!expected) 2257 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2258 req, atomic_read(&req->completion_ref), 2259 req->rq_state); 2260 2261 /* We still need to put one kref associated with the 2262 * "completion_ref" going zero in the code path that queued it 2263 * here. The request object may still be referenced by a 2264 * frozen local req->private_bio, in case we force-detached. 2265 */ 2266 kref_put(&req->kref, drbd_req_destroy); 2267 2268 /* A single suspended or otherwise blocking device may stall 2269 * all others as well. Fortunately, this code path is to 2270 * recover from a situation that "should not happen": 2271 * concurrent writes in multi-primary setup. 2272 * In a "normal" lifecycle, this workqueue is supposed to be 2273 * destroyed without ever doing anything. 2274 * If it turns out to be an issue anyways, we can do per 2275 * resource (replication group) or per device (minor) retry 2276 * workqueues instead. 2277 */ 2278 2279 /* We are not just doing submit_bio_noacct(), 2280 * as we want to keep the start_time information. */ 2281 inc_ap_bio(device); 2282 __drbd_make_request(device, bio); 2283 } 2284 } 2285 2286 /* called via drbd_req_put_completion_ref(), 2287 * holds resource->req_lock */ 2288 void drbd_restart_request(struct drbd_request *req) 2289 { 2290 unsigned long flags; 2291 spin_lock_irqsave(&retry.lock, flags); 2292 list_move_tail(&req->tl_requests, &retry.writes); 2293 spin_unlock_irqrestore(&retry.lock, flags); 2294 2295 /* Drop the extra reference that would otherwise 2296 * have been dropped by complete_master_bio. 2297 * do_retry() needs to grab a new one. */ 2298 dec_ap_bio(req->device); 2299 2300 queue_work(retry.wq, &retry.worker); 2301 } 2302 2303 void drbd_destroy_resource(struct kref *kref) 2304 { 2305 struct drbd_resource *resource = 2306 container_of(kref, struct drbd_resource, kref); 2307 2308 idr_destroy(&resource->devices); 2309 free_cpumask_var(resource->cpu_mask); 2310 kfree(resource->name); 2311 kfree(resource); 2312 } 2313 2314 void drbd_free_resource(struct drbd_resource *resource) 2315 { 2316 struct drbd_connection *connection, *tmp; 2317 2318 for_each_connection_safe(connection, tmp, resource) { 2319 list_del(&connection->connections); 2320 drbd_debugfs_connection_cleanup(connection); 2321 kref_put(&connection->kref, drbd_destroy_connection); 2322 } 2323 drbd_debugfs_resource_cleanup(resource); 2324 kref_put(&resource->kref, drbd_destroy_resource); 2325 } 2326 2327 static void drbd_cleanup(void) 2328 { 2329 unsigned int i; 2330 struct drbd_device *device; 2331 struct drbd_resource *resource, *tmp; 2332 2333 /* first remove proc, 2334 * drbdsetup uses it's presence to detect 2335 * whether DRBD is loaded. 2336 * If we would get stuck in proc removal, 2337 * but have netlink already deregistered, 2338 * some drbdsetup commands may wait forever 2339 * for an answer. 2340 */ 2341 if (drbd_proc) 2342 remove_proc_entry("drbd", NULL); 2343 2344 if (retry.wq) 2345 destroy_workqueue(retry.wq); 2346 2347 drbd_genl_unregister(); 2348 2349 idr_for_each_entry(&drbd_devices, device, i) 2350 drbd_delete_device(device); 2351 2352 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2353 for_each_resource_safe(resource, tmp, &drbd_resources) { 2354 list_del(&resource->resources); 2355 drbd_free_resource(resource); 2356 } 2357 2358 drbd_debugfs_cleanup(); 2359 2360 drbd_destroy_mempools(); 2361 unregister_blkdev(DRBD_MAJOR, "drbd"); 2362 2363 idr_destroy(&drbd_devices); 2364 2365 pr_info("module cleanup done.\n"); 2366 } 2367 2368 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2369 { 2370 spin_lock_init(&wq->q_lock); 2371 INIT_LIST_HEAD(&wq->q); 2372 init_waitqueue_head(&wq->q_wait); 2373 } 2374 2375 struct completion_work { 2376 struct drbd_work w; 2377 struct completion done; 2378 }; 2379 2380 static int w_complete(struct drbd_work *w, int cancel) 2381 { 2382 struct completion_work *completion_work = 2383 container_of(w, struct completion_work, w); 2384 2385 complete(&completion_work->done); 2386 return 0; 2387 } 2388 2389 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2390 { 2391 struct completion_work completion_work; 2392 2393 completion_work.w.cb = w_complete; 2394 init_completion(&completion_work.done); 2395 drbd_queue_work(work_queue, &completion_work.w); 2396 wait_for_completion(&completion_work.done); 2397 } 2398 2399 struct drbd_resource *drbd_find_resource(const char *name) 2400 { 2401 struct drbd_resource *resource; 2402 2403 if (!name || !name[0]) 2404 return NULL; 2405 2406 rcu_read_lock(); 2407 for_each_resource_rcu(resource, &drbd_resources) { 2408 if (!strcmp(resource->name, name)) { 2409 kref_get(&resource->kref); 2410 goto found; 2411 } 2412 } 2413 resource = NULL; 2414 found: 2415 rcu_read_unlock(); 2416 return resource; 2417 } 2418 2419 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2420 void *peer_addr, int peer_addr_len) 2421 { 2422 struct drbd_resource *resource; 2423 struct drbd_connection *connection; 2424 2425 rcu_read_lock(); 2426 for_each_resource_rcu(resource, &drbd_resources) { 2427 for_each_connection_rcu(connection, resource) { 2428 if (connection->my_addr_len == my_addr_len && 2429 connection->peer_addr_len == peer_addr_len && 2430 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2431 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2432 kref_get(&connection->kref); 2433 goto found; 2434 } 2435 } 2436 } 2437 connection = NULL; 2438 found: 2439 rcu_read_unlock(); 2440 return connection; 2441 } 2442 2443 static int drbd_alloc_socket(struct drbd_socket *socket) 2444 { 2445 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2446 if (!socket->rbuf) 2447 return -ENOMEM; 2448 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2449 if (!socket->sbuf) 2450 return -ENOMEM; 2451 return 0; 2452 } 2453 2454 static void drbd_free_socket(struct drbd_socket *socket) 2455 { 2456 free_page((unsigned long) socket->sbuf); 2457 free_page((unsigned long) socket->rbuf); 2458 } 2459 2460 void conn_free_crypto(struct drbd_connection *connection) 2461 { 2462 drbd_free_sock(connection); 2463 2464 crypto_free_shash(connection->csums_tfm); 2465 crypto_free_shash(connection->verify_tfm); 2466 crypto_free_shash(connection->cram_hmac_tfm); 2467 crypto_free_shash(connection->integrity_tfm); 2468 crypto_free_shash(connection->peer_integrity_tfm); 2469 kfree(connection->int_dig_in); 2470 kfree(connection->int_dig_vv); 2471 2472 connection->csums_tfm = NULL; 2473 connection->verify_tfm = NULL; 2474 connection->cram_hmac_tfm = NULL; 2475 connection->integrity_tfm = NULL; 2476 connection->peer_integrity_tfm = NULL; 2477 connection->int_dig_in = NULL; 2478 connection->int_dig_vv = NULL; 2479 } 2480 2481 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2482 { 2483 struct drbd_connection *connection; 2484 cpumask_var_t new_cpu_mask; 2485 int err; 2486 2487 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2488 return -ENOMEM; 2489 2490 /* silently ignore cpu mask on UP kernel */ 2491 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2492 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2493 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2494 if (err == -EOVERFLOW) { 2495 /* So what. mask it out. */ 2496 cpumask_var_t tmp_cpu_mask; 2497 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2498 cpumask_setall(tmp_cpu_mask); 2499 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2500 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2501 res_opts->cpu_mask, 2502 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2503 nr_cpu_ids); 2504 free_cpumask_var(tmp_cpu_mask); 2505 err = 0; 2506 } 2507 } 2508 if (err) { 2509 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2510 /* retcode = ERR_CPU_MASK_PARSE; */ 2511 goto fail; 2512 } 2513 } 2514 resource->res_opts = *res_opts; 2515 if (cpumask_empty(new_cpu_mask)) 2516 drbd_calc_cpu_mask(&new_cpu_mask); 2517 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2518 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2519 for_each_connection_rcu(connection, resource) { 2520 connection->receiver.reset_cpu_mask = 1; 2521 connection->ack_receiver.reset_cpu_mask = 1; 2522 connection->worker.reset_cpu_mask = 1; 2523 } 2524 } 2525 err = 0; 2526 2527 fail: 2528 free_cpumask_var(new_cpu_mask); 2529 return err; 2530 2531 } 2532 2533 struct drbd_resource *drbd_create_resource(const char *name) 2534 { 2535 struct drbd_resource *resource; 2536 2537 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2538 if (!resource) 2539 goto fail; 2540 resource->name = kstrdup(name, GFP_KERNEL); 2541 if (!resource->name) 2542 goto fail_free_resource; 2543 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2544 goto fail_free_name; 2545 kref_init(&resource->kref); 2546 idr_init(&resource->devices); 2547 INIT_LIST_HEAD(&resource->connections); 2548 resource->write_ordering = WO_BDEV_FLUSH; 2549 list_add_tail_rcu(&resource->resources, &drbd_resources); 2550 mutex_init(&resource->conf_update); 2551 mutex_init(&resource->adm_mutex); 2552 spin_lock_init(&resource->req_lock); 2553 drbd_debugfs_resource_add(resource); 2554 return resource; 2555 2556 fail_free_name: 2557 kfree(resource->name); 2558 fail_free_resource: 2559 kfree(resource); 2560 fail: 2561 return NULL; 2562 } 2563 2564 /* caller must be under adm_mutex */ 2565 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2566 { 2567 struct drbd_resource *resource; 2568 struct drbd_connection *connection; 2569 2570 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2571 if (!connection) 2572 return NULL; 2573 2574 if (drbd_alloc_socket(&connection->data)) 2575 goto fail; 2576 if (drbd_alloc_socket(&connection->meta)) 2577 goto fail; 2578 2579 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2580 if (!connection->current_epoch) 2581 goto fail; 2582 2583 INIT_LIST_HEAD(&connection->transfer_log); 2584 2585 INIT_LIST_HEAD(&connection->current_epoch->list); 2586 connection->epochs = 1; 2587 spin_lock_init(&connection->epoch_lock); 2588 2589 connection->send.seen_any_write_yet = false; 2590 connection->send.current_epoch_nr = 0; 2591 connection->send.current_epoch_writes = 0; 2592 2593 resource = drbd_create_resource(name); 2594 if (!resource) 2595 goto fail; 2596 2597 connection->cstate = C_STANDALONE; 2598 mutex_init(&connection->cstate_mutex); 2599 init_waitqueue_head(&connection->ping_wait); 2600 idr_init(&connection->peer_devices); 2601 2602 drbd_init_workqueue(&connection->sender_work); 2603 mutex_init(&connection->data.mutex); 2604 mutex_init(&connection->meta.mutex); 2605 2606 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2607 connection->receiver.connection = connection; 2608 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2609 connection->worker.connection = connection; 2610 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2611 connection->ack_receiver.connection = connection; 2612 2613 kref_init(&connection->kref); 2614 2615 connection->resource = resource; 2616 2617 if (set_resource_options(resource, res_opts)) 2618 goto fail_resource; 2619 2620 kref_get(&resource->kref); 2621 list_add_tail_rcu(&connection->connections, &resource->connections); 2622 drbd_debugfs_connection_add(connection); 2623 return connection; 2624 2625 fail_resource: 2626 list_del(&resource->resources); 2627 drbd_free_resource(resource); 2628 fail: 2629 kfree(connection->current_epoch); 2630 drbd_free_socket(&connection->meta); 2631 drbd_free_socket(&connection->data); 2632 kfree(connection); 2633 return NULL; 2634 } 2635 2636 void drbd_destroy_connection(struct kref *kref) 2637 { 2638 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2639 struct drbd_resource *resource = connection->resource; 2640 2641 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2642 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2643 kfree(connection->current_epoch); 2644 2645 idr_destroy(&connection->peer_devices); 2646 2647 drbd_free_socket(&connection->meta); 2648 drbd_free_socket(&connection->data); 2649 kfree(connection->int_dig_in); 2650 kfree(connection->int_dig_vv); 2651 kfree(connection); 2652 kref_put(&resource->kref, drbd_destroy_resource); 2653 } 2654 2655 static int init_submitter(struct drbd_device *device) 2656 { 2657 /* opencoded create_singlethread_workqueue(), 2658 * to be able to say "drbd%d", ..., minor */ 2659 device->submit.wq = 2660 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2661 if (!device->submit.wq) 2662 return -ENOMEM; 2663 2664 INIT_WORK(&device->submit.worker, do_submit); 2665 INIT_LIST_HEAD(&device->submit.writes); 2666 return 0; 2667 } 2668 2669 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2670 { 2671 struct drbd_resource *resource = adm_ctx->resource; 2672 struct drbd_connection *connection, *n; 2673 struct drbd_device *device; 2674 struct drbd_peer_device *peer_device, *tmp_peer_device; 2675 struct gendisk *disk; 2676 int id; 2677 int vnr = adm_ctx->volume; 2678 enum drbd_ret_code err = ERR_NOMEM; 2679 struct queue_limits lim = { 2680 /* 2681 * Setting the max_hw_sectors to an odd value of 8kibyte here. 2682 * This triggers a max_bio_size message upon first attach or 2683 * connect. 2684 */ 2685 .max_hw_sectors = DRBD_MAX_BIO_SIZE_SAFE >> 8, 2686 .features = BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | 2687 BLK_FEAT_ROTATIONAL | 2688 BLK_FEAT_STABLE_WRITES, 2689 }; 2690 2691 device = minor_to_device(minor); 2692 if (device) 2693 return ERR_MINOR_OR_VOLUME_EXISTS; 2694 2695 /* GFP_KERNEL, we are outside of all write-out paths */ 2696 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2697 if (!device) 2698 return ERR_NOMEM; 2699 kref_init(&device->kref); 2700 2701 kref_get(&resource->kref); 2702 device->resource = resource; 2703 device->minor = minor; 2704 device->vnr = vnr; 2705 2706 drbd_init_set_defaults(device); 2707 2708 disk = blk_alloc_disk(&lim, NUMA_NO_NODE); 2709 if (IS_ERR(disk)) { 2710 err = PTR_ERR(disk); 2711 goto out_no_disk; 2712 } 2713 2714 device->vdisk = disk; 2715 device->rq_queue = disk->queue; 2716 2717 set_disk_ro(disk, true); 2718 2719 disk->major = DRBD_MAJOR; 2720 disk->first_minor = minor; 2721 disk->minors = 1; 2722 disk->fops = &drbd_ops; 2723 disk->flags |= GENHD_FL_NO_PART; 2724 sprintf(disk->disk_name, "drbd%d", minor); 2725 disk->private_data = device; 2726 2727 device->md_io.page = alloc_page(GFP_KERNEL); 2728 if (!device->md_io.page) 2729 goto out_no_io_page; 2730 2731 if (drbd_bm_init(device)) 2732 goto out_no_bitmap; 2733 device->read_requests = RB_ROOT; 2734 device->write_requests = RB_ROOT; 2735 2736 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2737 if (id < 0) { 2738 if (id == -ENOSPC) 2739 err = ERR_MINOR_OR_VOLUME_EXISTS; 2740 goto out_no_minor_idr; 2741 } 2742 kref_get(&device->kref); 2743 2744 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2745 if (id < 0) { 2746 if (id == -ENOSPC) 2747 err = ERR_MINOR_OR_VOLUME_EXISTS; 2748 goto out_idr_remove_minor; 2749 } 2750 kref_get(&device->kref); 2751 2752 INIT_LIST_HEAD(&device->peer_devices); 2753 INIT_LIST_HEAD(&device->pending_bitmap_io); 2754 for_each_connection(connection, resource) { 2755 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2756 if (!peer_device) 2757 goto out_idr_remove_from_resource; 2758 peer_device->connection = connection; 2759 peer_device->device = device; 2760 2761 list_add(&peer_device->peer_devices, &device->peer_devices); 2762 kref_get(&device->kref); 2763 2764 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2765 if (id < 0) { 2766 if (id == -ENOSPC) 2767 err = ERR_INVALID_REQUEST; 2768 goto out_idr_remove_from_resource; 2769 } 2770 kref_get(&connection->kref); 2771 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2772 } 2773 2774 if (init_submitter(device)) { 2775 err = ERR_NOMEM; 2776 goto out_idr_remove_from_resource; 2777 } 2778 2779 err = add_disk(disk); 2780 if (err) 2781 goto out_destroy_workqueue; 2782 2783 /* inherit the connection state */ 2784 device->state.conn = first_connection(resource)->cstate; 2785 if (device->state.conn == C_WF_REPORT_PARAMS) { 2786 for_each_peer_device(peer_device, device) 2787 drbd_connected(peer_device); 2788 } 2789 /* move to create_peer_device() */ 2790 for_each_peer_device(peer_device, device) 2791 drbd_debugfs_peer_device_add(peer_device); 2792 drbd_debugfs_device_add(device); 2793 return NO_ERROR; 2794 2795 out_destroy_workqueue: 2796 destroy_workqueue(device->submit.wq); 2797 out_idr_remove_from_resource: 2798 for_each_connection_safe(connection, n, resource) { 2799 peer_device = idr_remove(&connection->peer_devices, vnr); 2800 if (peer_device) 2801 kref_put(&connection->kref, drbd_destroy_connection); 2802 } 2803 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2804 list_del(&peer_device->peer_devices); 2805 kfree(peer_device); 2806 } 2807 idr_remove(&resource->devices, vnr); 2808 out_idr_remove_minor: 2809 idr_remove(&drbd_devices, minor); 2810 synchronize_rcu(); 2811 out_no_minor_idr: 2812 drbd_bm_cleanup(device); 2813 out_no_bitmap: 2814 __free_page(device->md_io.page); 2815 out_no_io_page: 2816 put_disk(disk); 2817 out_no_disk: 2818 kref_put(&resource->kref, drbd_destroy_resource); 2819 kfree(device); 2820 return err; 2821 } 2822 2823 void drbd_delete_device(struct drbd_device *device) 2824 { 2825 struct drbd_resource *resource = device->resource; 2826 struct drbd_connection *connection; 2827 struct drbd_peer_device *peer_device; 2828 2829 /* move to free_peer_device() */ 2830 for_each_peer_device(peer_device, device) 2831 drbd_debugfs_peer_device_cleanup(peer_device); 2832 drbd_debugfs_device_cleanup(device); 2833 for_each_connection(connection, resource) { 2834 idr_remove(&connection->peer_devices, device->vnr); 2835 kref_put(&device->kref, drbd_destroy_device); 2836 } 2837 idr_remove(&resource->devices, device->vnr); 2838 kref_put(&device->kref, drbd_destroy_device); 2839 idr_remove(&drbd_devices, device_to_minor(device)); 2840 kref_put(&device->kref, drbd_destroy_device); 2841 del_gendisk(device->vdisk); 2842 synchronize_rcu(); 2843 kref_put(&device->kref, drbd_destroy_device); 2844 } 2845 2846 static int __init drbd_init(void) 2847 { 2848 int err; 2849 2850 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2851 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2852 #ifdef MODULE 2853 return -EINVAL; 2854 #else 2855 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2856 #endif 2857 } 2858 2859 err = register_blkdev(DRBD_MAJOR, "drbd"); 2860 if (err) { 2861 pr_err("unable to register block device major %d\n", 2862 DRBD_MAJOR); 2863 return err; 2864 } 2865 2866 /* 2867 * allocate all necessary structs 2868 */ 2869 init_waitqueue_head(&drbd_pp_wait); 2870 2871 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2872 idr_init(&drbd_devices); 2873 2874 mutex_init(&resources_mutex); 2875 INIT_LIST_HEAD(&drbd_resources); 2876 2877 err = drbd_genl_register(); 2878 if (err) { 2879 pr_err("unable to register generic netlink family\n"); 2880 goto fail; 2881 } 2882 2883 err = drbd_create_mempools(); 2884 if (err) 2885 goto fail; 2886 2887 err = -ENOMEM; 2888 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 2889 if (!drbd_proc) { 2890 pr_err("unable to register proc file\n"); 2891 goto fail; 2892 } 2893 2894 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2895 if (!retry.wq) { 2896 pr_err("unable to create retry workqueue\n"); 2897 goto fail; 2898 } 2899 INIT_WORK(&retry.worker, do_retry); 2900 spin_lock_init(&retry.lock); 2901 INIT_LIST_HEAD(&retry.writes); 2902 2903 drbd_debugfs_init(); 2904 2905 pr_info("initialized. " 2906 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 2907 GENL_MAGIC_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 2908 pr_info("%s\n", drbd_buildtag()); 2909 pr_info("registered as block device major %d\n", DRBD_MAJOR); 2910 return 0; /* Success! */ 2911 2912 fail: 2913 drbd_cleanup(); 2914 if (err == -ENOMEM) 2915 pr_err("ran out of memory\n"); 2916 else 2917 pr_err("initialization failure\n"); 2918 return err; 2919 } 2920 2921 static void drbd_free_one_sock(struct drbd_socket *ds) 2922 { 2923 struct socket *s; 2924 mutex_lock(&ds->mutex); 2925 s = ds->socket; 2926 ds->socket = NULL; 2927 mutex_unlock(&ds->mutex); 2928 if (s) { 2929 /* so debugfs does not need to mutex_lock() */ 2930 synchronize_rcu(); 2931 kernel_sock_shutdown(s, SHUT_RDWR); 2932 sock_release(s); 2933 } 2934 } 2935 2936 void drbd_free_sock(struct drbd_connection *connection) 2937 { 2938 if (connection->data.socket) 2939 drbd_free_one_sock(&connection->data); 2940 if (connection->meta.socket) 2941 drbd_free_one_sock(&connection->meta); 2942 } 2943 2944 /* meta data management */ 2945 2946 void conn_md_sync(struct drbd_connection *connection) 2947 { 2948 struct drbd_peer_device *peer_device; 2949 int vnr; 2950 2951 rcu_read_lock(); 2952 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2953 struct drbd_device *device = peer_device->device; 2954 2955 kref_get(&device->kref); 2956 rcu_read_unlock(); 2957 drbd_md_sync(device); 2958 kref_put(&device->kref, drbd_destroy_device); 2959 rcu_read_lock(); 2960 } 2961 rcu_read_unlock(); 2962 } 2963 2964 /* aligned 4kByte */ 2965 struct meta_data_on_disk { 2966 u64 la_size_sect; /* last agreed size. */ 2967 u64 uuid[UI_SIZE]; /* UUIDs. */ 2968 u64 device_uuid; 2969 u64 reserved_u64_1; 2970 u32 flags; /* MDF */ 2971 u32 magic; 2972 u32 md_size_sect; 2973 u32 al_offset; /* offset to this block */ 2974 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 2975 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 2976 u32 bm_offset; /* offset to the bitmap, from here */ 2977 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 2978 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 2979 2980 /* see al_tr_number_to_on_disk_sector() */ 2981 u32 al_stripes; 2982 u32 al_stripe_size_4k; 2983 2984 u8 reserved_u8[4096 - (7*8 + 10*4)]; 2985 } __packed; 2986 2987 2988 2989 void drbd_md_write(struct drbd_device *device, void *b) 2990 { 2991 struct meta_data_on_disk *buffer = b; 2992 sector_t sector; 2993 int i; 2994 2995 memset(buffer, 0, sizeof(*buffer)); 2996 2997 buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk)); 2998 for (i = UI_CURRENT; i < UI_SIZE; i++) 2999 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3000 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3001 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3002 3003 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3004 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3005 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3006 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3007 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3008 3009 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3010 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3011 3012 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3013 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3014 3015 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3016 sector = device->ldev->md.md_offset; 3017 3018 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3019 /* this was a try anyways ... */ 3020 drbd_err(device, "meta data update failed!\n"); 3021 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3022 } 3023 } 3024 3025 /** 3026 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3027 * @device: DRBD device. 3028 */ 3029 void drbd_md_sync(struct drbd_device *device) 3030 { 3031 struct meta_data_on_disk *buffer; 3032 3033 /* Don't accidentally change the DRBD meta data layout. */ 3034 BUILD_BUG_ON(UI_SIZE != 4); 3035 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3036 3037 del_timer(&device->md_sync_timer); 3038 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3039 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3040 return; 3041 3042 /* We use here D_FAILED and not D_ATTACHING because we try to write 3043 * metadata even if we detach due to a disk failure! */ 3044 if (!get_ldev_if_state(device, D_FAILED)) 3045 return; 3046 3047 buffer = drbd_md_get_buffer(device, __func__); 3048 if (!buffer) 3049 goto out; 3050 3051 drbd_md_write(device, buffer); 3052 3053 /* Update device->ldev->md.la_size_sect, 3054 * since we updated it on metadata. */ 3055 device->ldev->md.la_size_sect = get_capacity(device->vdisk); 3056 3057 drbd_md_put_buffer(device); 3058 out: 3059 put_ldev(device); 3060 } 3061 3062 static int check_activity_log_stripe_size(struct drbd_device *device, 3063 struct meta_data_on_disk *on_disk, 3064 struct drbd_md *in_core) 3065 { 3066 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3067 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3068 u64 al_size_4k; 3069 3070 /* both not set: default to old fixed size activity log */ 3071 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3072 al_stripes = 1; 3073 al_stripe_size_4k = MD_32kB_SECT/8; 3074 } 3075 3076 /* some paranoia plausibility checks */ 3077 3078 /* we need both values to be set */ 3079 if (al_stripes == 0 || al_stripe_size_4k == 0) 3080 goto err; 3081 3082 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3083 3084 /* Upper limit of activity log area, to avoid potential overflow 3085 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3086 * than 72 * 4k blocks total only increases the amount of history, 3087 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3088 if (al_size_4k > (16 * 1024 * 1024/4)) 3089 goto err; 3090 3091 /* Lower limit: we need at least 8 transaction slots (32kB) 3092 * to not break existing setups */ 3093 if (al_size_4k < MD_32kB_SECT/8) 3094 goto err; 3095 3096 in_core->al_stripe_size_4k = al_stripe_size_4k; 3097 in_core->al_stripes = al_stripes; 3098 in_core->al_size_4k = al_size_4k; 3099 3100 return 0; 3101 err: 3102 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3103 al_stripes, al_stripe_size_4k); 3104 return -EINVAL; 3105 } 3106 3107 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3108 { 3109 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3110 struct drbd_md *in_core = &bdev->md; 3111 s32 on_disk_al_sect; 3112 s32 on_disk_bm_sect; 3113 3114 /* The on-disk size of the activity log, calculated from offsets, and 3115 * the size of the activity log calculated from the stripe settings, 3116 * should match. 3117 * Though we could relax this a bit: it is ok, if the striped activity log 3118 * fits in the available on-disk activity log size. 3119 * Right now, that would break how resize is implemented. 3120 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3121 * of possible unused padding space in the on disk layout. */ 3122 if (in_core->al_offset < 0) { 3123 if (in_core->bm_offset > in_core->al_offset) 3124 goto err; 3125 on_disk_al_sect = -in_core->al_offset; 3126 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3127 } else { 3128 if (in_core->al_offset != MD_4kB_SECT) 3129 goto err; 3130 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3131 goto err; 3132 3133 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3134 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3135 } 3136 3137 /* old fixed size meta data is exactly that: fixed. */ 3138 if (in_core->meta_dev_idx >= 0) { 3139 if (in_core->md_size_sect != MD_128MB_SECT 3140 || in_core->al_offset != MD_4kB_SECT 3141 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3142 || in_core->al_stripes != 1 3143 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3144 goto err; 3145 } 3146 3147 if (capacity < in_core->md_size_sect) 3148 goto err; 3149 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3150 goto err; 3151 3152 /* should be aligned, and at least 32k */ 3153 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3154 goto err; 3155 3156 /* should fit (for now: exactly) into the available on-disk space; 3157 * overflow prevention is in check_activity_log_stripe_size() above. */ 3158 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3159 goto err; 3160 3161 /* again, should be aligned */ 3162 if (in_core->bm_offset & 7) 3163 goto err; 3164 3165 /* FIXME check for device grow with flex external meta data? */ 3166 3167 /* can the available bitmap space cover the last agreed device size? */ 3168 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3169 goto err; 3170 3171 return 0; 3172 3173 err: 3174 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3175 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3176 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3177 in_core->meta_dev_idx, 3178 in_core->al_stripes, in_core->al_stripe_size_4k, 3179 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3180 (unsigned long long)in_core->la_size_sect, 3181 (unsigned long long)capacity); 3182 3183 return -EINVAL; 3184 } 3185 3186 3187 /** 3188 * drbd_md_read() - Reads in the meta data super block 3189 * @device: DRBD device. 3190 * @bdev: Device from which the meta data should be read in. 3191 * 3192 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3193 * something goes wrong. 3194 * 3195 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3196 * even before @bdev is assigned to @device->ldev. 3197 */ 3198 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3199 { 3200 struct meta_data_on_disk *buffer; 3201 u32 magic, flags; 3202 int i, rv = NO_ERROR; 3203 3204 if (device->state.disk != D_DISKLESS) 3205 return ERR_DISK_CONFIGURED; 3206 3207 buffer = drbd_md_get_buffer(device, __func__); 3208 if (!buffer) 3209 return ERR_NOMEM; 3210 3211 /* First, figure out where our meta data superblock is located, 3212 * and read it. */ 3213 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3214 bdev->md.md_offset = drbd_md_ss(bdev); 3215 /* Even for (flexible or indexed) external meta data, 3216 * initially restrict us to the 4k superblock for now. 3217 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3218 bdev->md.md_size_sect = 8; 3219 3220 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3221 REQ_OP_READ)) { 3222 /* NOTE: can't do normal error processing here as this is 3223 called BEFORE disk is attached */ 3224 drbd_err(device, "Error while reading metadata.\n"); 3225 rv = ERR_IO_MD_DISK; 3226 goto err; 3227 } 3228 3229 magic = be32_to_cpu(buffer->magic); 3230 flags = be32_to_cpu(buffer->flags); 3231 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3232 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3233 /* btw: that's Activity Log clean, not "all" clean. */ 3234 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3235 rv = ERR_MD_UNCLEAN; 3236 goto err; 3237 } 3238 3239 rv = ERR_MD_INVALID; 3240 if (magic != DRBD_MD_MAGIC_08) { 3241 if (magic == DRBD_MD_MAGIC_07) 3242 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3243 else 3244 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3245 goto err; 3246 } 3247 3248 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3249 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3250 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3251 goto err; 3252 } 3253 3254 3255 /* convert to in_core endian */ 3256 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3257 for (i = UI_CURRENT; i < UI_SIZE; i++) 3258 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3259 bdev->md.flags = be32_to_cpu(buffer->flags); 3260 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3261 3262 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3263 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3264 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3265 3266 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3267 goto err; 3268 if (check_offsets_and_sizes(device, bdev)) 3269 goto err; 3270 3271 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3272 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3273 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3274 goto err; 3275 } 3276 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3277 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3278 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3279 goto err; 3280 } 3281 3282 rv = NO_ERROR; 3283 3284 spin_lock_irq(&device->resource->req_lock); 3285 if (device->state.conn < C_CONNECTED) { 3286 unsigned int peer; 3287 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3288 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3289 device->peer_max_bio_size = peer; 3290 } 3291 spin_unlock_irq(&device->resource->req_lock); 3292 3293 err: 3294 drbd_md_put_buffer(device); 3295 3296 return rv; 3297 } 3298 3299 /** 3300 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3301 * @device: DRBD device. 3302 * 3303 * Call this function if you change anything that should be written to 3304 * the meta-data super block. This function sets MD_DIRTY, and starts a 3305 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3306 */ 3307 void drbd_md_mark_dirty(struct drbd_device *device) 3308 { 3309 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3310 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3311 } 3312 3313 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3314 { 3315 int i; 3316 3317 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3318 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3319 } 3320 3321 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3322 { 3323 if (idx == UI_CURRENT) { 3324 if (device->state.role == R_PRIMARY) 3325 val |= 1; 3326 else 3327 val &= ~((u64)1); 3328 3329 drbd_set_ed_uuid(device, val); 3330 } 3331 3332 device->ldev->md.uuid[idx] = val; 3333 drbd_md_mark_dirty(device); 3334 } 3335 3336 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3337 { 3338 unsigned long flags; 3339 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3340 __drbd_uuid_set(device, idx, val); 3341 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3342 } 3343 3344 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3345 { 3346 unsigned long flags; 3347 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3348 if (device->ldev->md.uuid[idx]) { 3349 drbd_uuid_move_history(device); 3350 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3351 } 3352 __drbd_uuid_set(device, idx, val); 3353 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3354 } 3355 3356 /** 3357 * drbd_uuid_new_current() - Creates a new current UUID 3358 * @device: DRBD device. 3359 * 3360 * Creates a new current UUID, and rotates the old current UUID into 3361 * the bitmap slot. Causes an incremental resync upon next connect. 3362 */ 3363 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3364 { 3365 u64 val; 3366 unsigned long long bm_uuid; 3367 3368 get_random_bytes(&val, sizeof(u64)); 3369 3370 spin_lock_irq(&device->ldev->md.uuid_lock); 3371 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3372 3373 if (bm_uuid) 3374 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3375 3376 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3377 __drbd_uuid_set(device, UI_CURRENT, val); 3378 spin_unlock_irq(&device->ldev->md.uuid_lock); 3379 3380 drbd_print_uuids(device, "new current UUID"); 3381 /* get it to stable storage _now_ */ 3382 drbd_md_sync(device); 3383 } 3384 3385 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3386 { 3387 unsigned long flags; 3388 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3389 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) { 3390 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3391 return; 3392 } 3393 3394 if (val == 0) { 3395 drbd_uuid_move_history(device); 3396 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3397 device->ldev->md.uuid[UI_BITMAP] = 0; 3398 } else { 3399 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3400 if (bm_uuid) 3401 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3402 3403 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3404 } 3405 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3406 3407 drbd_md_mark_dirty(device); 3408 } 3409 3410 /** 3411 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3412 * @device: DRBD device. 3413 * @peer_device: Peer DRBD device. 3414 * 3415 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3416 */ 3417 int drbd_bmio_set_n_write(struct drbd_device *device, 3418 struct drbd_peer_device *peer_device) __must_hold(local) 3419 3420 { 3421 int rv = -EIO; 3422 3423 drbd_md_set_flag(device, MDF_FULL_SYNC); 3424 drbd_md_sync(device); 3425 drbd_bm_set_all(device); 3426 3427 rv = drbd_bm_write(device, peer_device); 3428 3429 if (!rv) { 3430 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3431 drbd_md_sync(device); 3432 } 3433 3434 return rv; 3435 } 3436 3437 /** 3438 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3439 * @device: DRBD device. 3440 * @peer_device: Peer DRBD device. 3441 * 3442 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3443 */ 3444 int drbd_bmio_clear_n_write(struct drbd_device *device, 3445 struct drbd_peer_device *peer_device) __must_hold(local) 3446 3447 { 3448 drbd_resume_al(device); 3449 drbd_bm_clear_all(device); 3450 return drbd_bm_write(device, peer_device); 3451 } 3452 3453 static int w_bitmap_io(struct drbd_work *w, int unused) 3454 { 3455 struct drbd_device *device = 3456 container_of(w, struct drbd_device, bm_io_work.w); 3457 struct bm_io_work *work = &device->bm_io_work; 3458 int rv = -EIO; 3459 3460 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3461 int cnt = atomic_read(&device->ap_bio_cnt); 3462 if (cnt) 3463 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3464 cnt, work->why); 3465 } 3466 3467 if (get_ldev(device)) { 3468 drbd_bm_lock(device, work->why, work->flags); 3469 rv = work->io_fn(device, work->peer_device); 3470 drbd_bm_unlock(device); 3471 put_ldev(device); 3472 } 3473 3474 clear_bit_unlock(BITMAP_IO, &device->flags); 3475 wake_up(&device->misc_wait); 3476 3477 if (work->done) 3478 work->done(device, rv); 3479 3480 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3481 work->why = NULL; 3482 work->flags = 0; 3483 3484 return 0; 3485 } 3486 3487 /** 3488 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3489 * @device: DRBD device. 3490 * @io_fn: IO callback to be called when bitmap IO is possible 3491 * @done: callback to be called after the bitmap IO was performed 3492 * @why: Descriptive text of the reason for doing the IO 3493 * @flags: Bitmap flags 3494 * @peer_device: Peer DRBD device. 3495 * 3496 * While IO on the bitmap happens we freeze application IO thus we ensure 3497 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3498 * called from worker context. It MUST NOT be used while a previous such 3499 * work is still pending! 3500 * 3501 * Its worker function encloses the call of io_fn() by get_ldev() and 3502 * put_ldev(). 3503 */ 3504 void drbd_queue_bitmap_io(struct drbd_device *device, 3505 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *), 3506 void (*done)(struct drbd_device *, int), 3507 char *why, enum bm_flag flags, 3508 struct drbd_peer_device *peer_device) 3509 { 3510 D_ASSERT(device, current == peer_device->connection->worker.task); 3511 3512 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3513 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3514 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3515 if (device->bm_io_work.why) 3516 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3517 why, device->bm_io_work.why); 3518 3519 device->bm_io_work.peer_device = peer_device; 3520 device->bm_io_work.io_fn = io_fn; 3521 device->bm_io_work.done = done; 3522 device->bm_io_work.why = why; 3523 device->bm_io_work.flags = flags; 3524 3525 spin_lock_irq(&device->resource->req_lock); 3526 set_bit(BITMAP_IO, &device->flags); 3527 /* don't wait for pending application IO if the caller indicates that 3528 * application IO does not conflict anyways. */ 3529 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3530 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3531 drbd_queue_work(&peer_device->connection->sender_work, 3532 &device->bm_io_work.w); 3533 } 3534 spin_unlock_irq(&device->resource->req_lock); 3535 } 3536 3537 /** 3538 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3539 * @device: DRBD device. 3540 * @io_fn: IO callback to be called when bitmap IO is possible 3541 * @why: Descriptive text of the reason for doing the IO 3542 * @flags: Bitmap flags 3543 * @peer_device: Peer DRBD device. 3544 * 3545 * freezes application IO while that the actual IO operations runs. This 3546 * functions MAY NOT be called from worker context. 3547 */ 3548 int drbd_bitmap_io(struct drbd_device *device, 3549 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *), 3550 char *why, enum bm_flag flags, 3551 struct drbd_peer_device *peer_device) 3552 { 3553 /* Only suspend io, if some operation is supposed to be locked out */ 3554 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3555 int rv; 3556 3557 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3558 3559 if (do_suspend_io) 3560 drbd_suspend_io(device); 3561 3562 drbd_bm_lock(device, why, flags); 3563 rv = io_fn(device, peer_device); 3564 drbd_bm_unlock(device); 3565 3566 if (do_suspend_io) 3567 drbd_resume_io(device); 3568 3569 return rv; 3570 } 3571 3572 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3573 { 3574 if ((device->ldev->md.flags & flag) != flag) { 3575 drbd_md_mark_dirty(device); 3576 device->ldev->md.flags |= flag; 3577 } 3578 } 3579 3580 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3581 { 3582 if ((device->ldev->md.flags & flag) != 0) { 3583 drbd_md_mark_dirty(device); 3584 device->ldev->md.flags &= ~flag; 3585 } 3586 } 3587 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3588 { 3589 return (bdev->md.flags & flag) != 0; 3590 } 3591 3592 static void md_sync_timer_fn(struct timer_list *t) 3593 { 3594 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3595 drbd_device_post_work(device, MD_SYNC); 3596 } 3597 3598 const char *cmdname(enum drbd_packet cmd) 3599 { 3600 /* THINK may need to become several global tables 3601 * when we want to support more than 3602 * one PRO_VERSION */ 3603 static const char *cmdnames[] = { 3604 3605 [P_DATA] = "Data", 3606 [P_DATA_REPLY] = "DataReply", 3607 [P_RS_DATA_REPLY] = "RSDataReply", 3608 [P_BARRIER] = "Barrier", 3609 [P_BITMAP] = "ReportBitMap", 3610 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3611 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3612 [P_UNPLUG_REMOTE] = "UnplugRemote", 3613 [P_DATA_REQUEST] = "DataRequest", 3614 [P_RS_DATA_REQUEST] = "RSDataRequest", 3615 [P_SYNC_PARAM] = "SyncParam", 3616 [P_PROTOCOL] = "ReportProtocol", 3617 [P_UUIDS] = "ReportUUIDs", 3618 [P_SIZES] = "ReportSizes", 3619 [P_STATE] = "ReportState", 3620 [P_SYNC_UUID] = "ReportSyncUUID", 3621 [P_AUTH_CHALLENGE] = "AuthChallenge", 3622 [P_AUTH_RESPONSE] = "AuthResponse", 3623 [P_STATE_CHG_REQ] = "StateChgRequest", 3624 [P_PING] = "Ping", 3625 [P_PING_ACK] = "PingAck", 3626 [P_RECV_ACK] = "RecvAck", 3627 [P_WRITE_ACK] = "WriteAck", 3628 [P_RS_WRITE_ACK] = "RSWriteAck", 3629 [P_SUPERSEDED] = "Superseded", 3630 [P_NEG_ACK] = "NegAck", 3631 [P_NEG_DREPLY] = "NegDReply", 3632 [P_NEG_RS_DREPLY] = "NegRSDReply", 3633 [P_BARRIER_ACK] = "BarrierAck", 3634 [P_STATE_CHG_REPLY] = "StateChgReply", 3635 [P_OV_REQUEST] = "OVRequest", 3636 [P_OV_REPLY] = "OVReply", 3637 [P_OV_RESULT] = "OVResult", 3638 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3639 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3640 [P_SYNC_PARAM89] = "SyncParam89", 3641 [P_COMPRESSED_BITMAP] = "CBitmap", 3642 [P_DELAY_PROBE] = "DelayProbe", 3643 [P_OUT_OF_SYNC] = "OutOfSync", 3644 [P_RS_CANCEL] = "RSCancel", 3645 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3646 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3647 [P_PROTOCOL_UPDATE] = "protocol_update", 3648 [P_TRIM] = "Trim", 3649 [P_RS_THIN_REQ] = "rs_thin_req", 3650 [P_RS_DEALLOCATED] = "rs_deallocated", 3651 [P_WSAME] = "WriteSame", 3652 [P_ZEROES] = "Zeroes", 3653 3654 /* enum drbd_packet, but not commands - obsoleted flags: 3655 * P_MAY_IGNORE 3656 * P_MAX_OPT_CMD 3657 */ 3658 }; 3659 3660 /* too big for the array: 0xfffX */ 3661 if (cmd == P_INITIAL_META) 3662 return "InitialMeta"; 3663 if (cmd == P_INITIAL_DATA) 3664 return "InitialData"; 3665 if (cmd == P_CONNECTION_FEATURES) 3666 return "ConnectionFeatures"; 3667 if (cmd >= ARRAY_SIZE(cmdnames)) 3668 return "Unknown"; 3669 return cmdnames[cmd]; 3670 } 3671 3672 /** 3673 * drbd_wait_misc - wait for a request to make progress 3674 * @device: device associated with the request 3675 * @i: the struct drbd_interval embedded in struct drbd_request or 3676 * struct drbd_peer_request 3677 */ 3678 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3679 { 3680 struct net_conf *nc; 3681 DEFINE_WAIT(wait); 3682 long timeout; 3683 3684 rcu_read_lock(); 3685 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3686 if (!nc) { 3687 rcu_read_unlock(); 3688 return -ETIMEDOUT; 3689 } 3690 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3691 rcu_read_unlock(); 3692 3693 /* Indicate to wake up device->misc_wait on progress. */ 3694 i->waiting = true; 3695 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3696 spin_unlock_irq(&device->resource->req_lock); 3697 timeout = schedule_timeout(timeout); 3698 finish_wait(&device->misc_wait, &wait); 3699 spin_lock_irq(&device->resource->req_lock); 3700 if (!timeout || device->state.conn < C_CONNECTED) 3701 return -ETIMEDOUT; 3702 if (signal_pending(current)) 3703 return -ERESTARTSYS; 3704 return 0; 3705 } 3706 3707 void lock_all_resources(void) 3708 { 3709 struct drbd_resource *resource; 3710 int __maybe_unused i = 0; 3711 3712 mutex_lock(&resources_mutex); 3713 local_irq_disable(); 3714 for_each_resource(resource, &drbd_resources) 3715 spin_lock_nested(&resource->req_lock, i++); 3716 } 3717 3718 void unlock_all_resources(void) 3719 { 3720 struct drbd_resource *resource; 3721 3722 for_each_resource(resource, &drbd_resources) 3723 spin_unlock(&resource->req_lock); 3724 local_irq_enable(); 3725 mutex_unlock(&resources_mutex); 3726 } 3727 3728 #ifdef CONFIG_DRBD_FAULT_INJECTION 3729 /* Fault insertion support including random number generator shamelessly 3730 * stolen from kernel/rcutorture.c */ 3731 struct fault_random_state { 3732 unsigned long state; 3733 unsigned long count; 3734 }; 3735 3736 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3737 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3738 #define FAULT_RANDOM_REFRESH 10000 3739 3740 /* 3741 * Crude but fast random-number generator. Uses a linear congruential 3742 * generator, with occasional help from get_random_bytes(). 3743 */ 3744 static unsigned long 3745 _drbd_fault_random(struct fault_random_state *rsp) 3746 { 3747 long refresh; 3748 3749 if (!rsp->count--) { 3750 get_random_bytes(&refresh, sizeof(refresh)); 3751 rsp->state += refresh; 3752 rsp->count = FAULT_RANDOM_REFRESH; 3753 } 3754 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3755 return swahw32(rsp->state); 3756 } 3757 3758 static char * 3759 _drbd_fault_str(unsigned int type) { 3760 static char *_faults[] = { 3761 [DRBD_FAULT_MD_WR] = "Meta-data write", 3762 [DRBD_FAULT_MD_RD] = "Meta-data read", 3763 [DRBD_FAULT_RS_WR] = "Resync write", 3764 [DRBD_FAULT_RS_RD] = "Resync read", 3765 [DRBD_FAULT_DT_WR] = "Data write", 3766 [DRBD_FAULT_DT_RD] = "Data read", 3767 [DRBD_FAULT_DT_RA] = "Data read ahead", 3768 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3769 [DRBD_FAULT_AL_EE] = "EE allocation", 3770 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3771 }; 3772 3773 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3774 } 3775 3776 unsigned int 3777 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3778 { 3779 static struct fault_random_state rrs = {0, 0}; 3780 3781 unsigned int ret = ( 3782 (drbd_fault_devs == 0 || 3783 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3784 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3785 3786 if (ret) { 3787 drbd_fault_count++; 3788 3789 if (drbd_ratelimit()) 3790 drbd_warn(device, "***Simulating %s failure\n", 3791 _drbd_fault_str(type)); 3792 } 3793 3794 return ret; 3795 } 3796 #endif 3797 3798 module_init(drbd_init) 3799 module_exit(drbd_cleanup) 3800 3801 EXPORT_SYMBOL(drbd_conn_str); 3802 EXPORT_SYMBOL(drbd_role_str); 3803 EXPORT_SYMBOL(drbd_disk_str); 3804 EXPORT_SYMBOL(drbd_set_st_err_str); 3805