1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 drbd.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 12 from Logicworks, Inc. for making SDP replication support possible. 13 14 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/jiffies.h> 21 #include <linux/drbd.h> 22 #include <linux/uaccess.h> 23 #include <asm/types.h> 24 #include <net/sock.h> 25 #include <linux/ctype.h> 26 #include <linux/mutex.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/proc_fs.h> 30 #include <linux/init.h> 31 #include <linux/mm.h> 32 #include <linux/memcontrol.h> 33 #include <linux/mm_inline.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/reboot.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/workqueue.h> 40 #include <linux/unistd.h> 41 #include <linux/vmalloc.h> 42 #include <linux/sched/signal.h> 43 44 #include <linux/drbd_limits.h> 45 #include "drbd_int.h" 46 #include "drbd_protocol.h" 47 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 48 #include "drbd_vli.h" 49 #include "drbd_debugfs.h" 50 51 static DEFINE_MUTEX(drbd_main_mutex); 52 static int drbd_open(struct gendisk *disk, blk_mode_t mode); 53 static void drbd_release(struct gendisk *gd); 54 static void md_sync_timer_fn(struct timer_list *t); 55 static int w_bitmap_io(struct drbd_work *w, int unused); 56 57 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 58 "Lars Ellenberg <lars@linbit.com>"); 59 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 60 MODULE_VERSION(REL_VERSION); 61 MODULE_LICENSE("GPL"); 62 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 63 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 64 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 65 66 #include <linux/moduleparam.h> 67 /* thanks to these macros, if compiled into the kernel (not-module), 68 * these become boot parameters (e.g., drbd.minor_count) */ 69 70 #ifdef CONFIG_DRBD_FAULT_INJECTION 71 int drbd_enable_faults; 72 int drbd_fault_rate; 73 static int drbd_fault_count; 74 static int drbd_fault_devs; 75 /* bitmap of enabled faults */ 76 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 77 /* fault rate % value - applies to all enabled faults */ 78 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 79 /* count of faults inserted */ 80 module_param_named(fault_count, drbd_fault_count, int, 0664); 81 /* bitmap of devices to insert faults on */ 82 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 83 #endif 84 85 /* module parameters we can keep static */ 86 static bool drbd_allow_oos; /* allow_open_on_secondary */ 87 static bool drbd_disable_sendpage; 88 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 89 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 90 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 91 92 /* module parameters we share */ 93 int drbd_proc_details; /* Detail level in proc drbd*/ 94 module_param_named(proc_details, drbd_proc_details, int, 0644); 95 /* module parameters shared with defaults */ 96 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 97 /* Module parameter for setting the user mode helper program 98 * to run. Default is /sbin/drbdadm */ 99 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 100 module_param_named(minor_count, drbd_minor_count, uint, 0444); 101 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 102 103 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 104 * as member "struct gendisk *vdisk;" 105 */ 106 struct idr drbd_devices; 107 struct list_head drbd_resources; 108 struct mutex resources_mutex; 109 110 struct kmem_cache *drbd_request_cache; 111 struct kmem_cache *drbd_ee_cache; /* peer requests */ 112 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 113 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 114 mempool_t drbd_request_mempool; 115 mempool_t drbd_ee_mempool; 116 mempool_t drbd_md_io_page_pool; 117 struct bio_set drbd_md_io_bio_set; 118 struct bio_set drbd_io_bio_set; 119 120 /* I do not use a standard mempool, because: 121 1) I want to hand out the pre-allocated objects first. 122 2) I want to be able to interrupt sleeping allocation with a signal. 123 Note: This is a single linked list, the next pointer is the private 124 member of struct page. 125 */ 126 struct page *drbd_pp_pool; 127 DEFINE_SPINLOCK(drbd_pp_lock); 128 int drbd_pp_vacant; 129 wait_queue_head_t drbd_pp_wait; 130 131 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 132 133 static const struct block_device_operations drbd_ops = { 134 .owner = THIS_MODULE, 135 .submit_bio = drbd_submit_bio, 136 .open = drbd_open, 137 .release = drbd_release, 138 }; 139 140 #ifdef __CHECKER__ 141 /* When checking with sparse, and this is an inline function, sparse will 142 give tons of false positives. When this is a real functions sparse works. 143 */ 144 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 145 { 146 int io_allowed; 147 148 atomic_inc(&device->local_cnt); 149 io_allowed = (device->state.disk >= mins); 150 if (!io_allowed) { 151 if (atomic_dec_and_test(&device->local_cnt)) 152 wake_up(&device->misc_wait); 153 } 154 return io_allowed; 155 } 156 157 #endif 158 159 /** 160 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 161 * @connection: DRBD connection. 162 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 163 * @set_size: Expected number of requests before that barrier. 164 * 165 * In case the passed barrier_nr or set_size does not match the oldest 166 * epoch of not yet barrier-acked requests, this function will cause a 167 * termination of the connection. 168 */ 169 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 170 unsigned int set_size) 171 { 172 struct drbd_request *r; 173 struct drbd_request *req = NULL, *tmp = NULL; 174 int expect_epoch = 0; 175 int expect_size = 0; 176 177 spin_lock_irq(&connection->resource->req_lock); 178 179 /* find oldest not yet barrier-acked write request, 180 * count writes in its epoch. */ 181 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 182 const unsigned s = r->rq_state; 183 if (!req) { 184 if (!(s & RQ_WRITE)) 185 continue; 186 if (!(s & RQ_NET_MASK)) 187 continue; 188 if (s & RQ_NET_DONE) 189 continue; 190 req = r; 191 expect_epoch = req->epoch; 192 expect_size ++; 193 } else { 194 if (r->epoch != expect_epoch) 195 break; 196 if (!(s & RQ_WRITE)) 197 continue; 198 /* if (s & RQ_DONE): not expected */ 199 /* if (!(s & RQ_NET_MASK)): not expected */ 200 expect_size++; 201 } 202 } 203 204 /* first some paranoia code */ 205 if (req == NULL) { 206 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 207 barrier_nr); 208 goto bail; 209 } 210 if (expect_epoch != barrier_nr) { 211 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 212 barrier_nr, expect_epoch); 213 goto bail; 214 } 215 216 if (expect_size != set_size) { 217 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 218 barrier_nr, set_size, expect_size); 219 goto bail; 220 } 221 222 /* Clean up list of requests processed during current epoch. */ 223 /* this extra list walk restart is paranoia, 224 * to catch requests being barrier-acked "unexpectedly". 225 * It usually should find the same req again, or some READ preceding it. */ 226 list_for_each_entry(req, &connection->transfer_log, tl_requests) 227 if (req->epoch == expect_epoch) { 228 tmp = req; 229 break; 230 } 231 req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests); 232 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 233 struct drbd_peer_device *peer_device; 234 if (req->epoch != expect_epoch) 235 break; 236 peer_device = conn_peer_device(connection, req->device->vnr); 237 _req_mod(req, BARRIER_ACKED, peer_device); 238 } 239 spin_unlock_irq(&connection->resource->req_lock); 240 241 return; 242 243 bail: 244 spin_unlock_irq(&connection->resource->req_lock); 245 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 246 } 247 248 249 /** 250 * _tl_restart() - Walks the transfer log, and applies an action to all requests 251 * @connection: DRBD connection to operate on. 252 * @what: The action/event to perform with all request objects 253 * 254 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 255 * RESTART_FROZEN_DISK_IO. 256 */ 257 /* must hold resource->req_lock */ 258 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 259 { 260 struct drbd_peer_device *peer_device; 261 struct drbd_request *req, *r; 262 263 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 264 peer_device = conn_peer_device(connection, req->device->vnr); 265 _req_mod(req, what, peer_device); 266 } 267 } 268 269 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 270 { 271 spin_lock_irq(&connection->resource->req_lock); 272 _tl_restart(connection, what); 273 spin_unlock_irq(&connection->resource->req_lock); 274 } 275 276 /** 277 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 278 * @connection: DRBD connection. 279 * 280 * This is called after the connection to the peer was lost. The storage covered 281 * by the requests on the transfer gets marked as our of sync. Called from the 282 * receiver thread and the worker thread. 283 */ 284 void tl_clear(struct drbd_connection *connection) 285 { 286 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 287 } 288 289 /** 290 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 291 * @device: DRBD device. 292 */ 293 void tl_abort_disk_io(struct drbd_device *device) 294 { 295 struct drbd_connection *connection = first_peer_device(device)->connection; 296 struct drbd_request *req, *r; 297 298 spin_lock_irq(&connection->resource->req_lock); 299 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 300 if (!(req->rq_state & RQ_LOCAL_PENDING)) 301 continue; 302 if (req->device != device) 303 continue; 304 _req_mod(req, ABORT_DISK_IO, NULL); 305 } 306 spin_unlock_irq(&connection->resource->req_lock); 307 } 308 309 static int drbd_thread_setup(void *arg) 310 { 311 struct drbd_thread *thi = (struct drbd_thread *) arg; 312 struct drbd_resource *resource = thi->resource; 313 unsigned long flags; 314 int retval; 315 316 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 317 thi->name[0], 318 resource->name); 319 320 allow_kernel_signal(DRBD_SIGKILL); 321 allow_kernel_signal(SIGXCPU); 322 restart: 323 retval = thi->function(thi); 324 325 spin_lock_irqsave(&thi->t_lock, flags); 326 327 /* if the receiver has been "EXITING", the last thing it did 328 * was set the conn state to "StandAlone", 329 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 330 * and receiver thread will be "started". 331 * drbd_thread_start needs to set "RESTARTING" in that case. 332 * t_state check and assignment needs to be within the same spinlock, 333 * so either thread_start sees EXITING, and can remap to RESTARTING, 334 * or thread_start see NONE, and can proceed as normal. 335 */ 336 337 if (thi->t_state == RESTARTING) { 338 drbd_info(resource, "Restarting %s thread\n", thi->name); 339 thi->t_state = RUNNING; 340 spin_unlock_irqrestore(&thi->t_lock, flags); 341 goto restart; 342 } 343 344 thi->task = NULL; 345 thi->t_state = NONE; 346 smp_mb(); 347 complete_all(&thi->stop); 348 spin_unlock_irqrestore(&thi->t_lock, flags); 349 350 drbd_info(resource, "Terminating %s\n", current->comm); 351 352 /* Release mod reference taken when thread was started */ 353 354 if (thi->connection) 355 kref_put(&thi->connection->kref, drbd_destroy_connection); 356 kref_put(&resource->kref, drbd_destroy_resource); 357 module_put(THIS_MODULE); 358 return retval; 359 } 360 361 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 362 int (*func) (struct drbd_thread *), const char *name) 363 { 364 spin_lock_init(&thi->t_lock); 365 thi->task = NULL; 366 thi->t_state = NONE; 367 thi->function = func; 368 thi->resource = resource; 369 thi->connection = NULL; 370 thi->name = name; 371 } 372 373 int drbd_thread_start(struct drbd_thread *thi) 374 { 375 struct drbd_resource *resource = thi->resource; 376 struct task_struct *nt; 377 unsigned long flags; 378 379 /* is used from state engine doing drbd_thread_stop_nowait, 380 * while holding the req lock irqsave */ 381 spin_lock_irqsave(&thi->t_lock, flags); 382 383 switch (thi->t_state) { 384 case NONE: 385 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 386 thi->name, current->comm, current->pid); 387 388 /* Get ref on module for thread - this is released when thread exits */ 389 if (!try_module_get(THIS_MODULE)) { 390 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 391 spin_unlock_irqrestore(&thi->t_lock, flags); 392 return false; 393 } 394 395 kref_get(&resource->kref); 396 if (thi->connection) 397 kref_get(&thi->connection->kref); 398 399 init_completion(&thi->stop); 400 thi->reset_cpu_mask = 1; 401 thi->t_state = RUNNING; 402 spin_unlock_irqrestore(&thi->t_lock, flags); 403 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 404 405 nt = kthread_create(drbd_thread_setup, (void *) thi, 406 "drbd_%c_%s", thi->name[0], thi->resource->name); 407 408 if (IS_ERR(nt)) { 409 drbd_err(resource, "Couldn't start thread\n"); 410 411 if (thi->connection) 412 kref_put(&thi->connection->kref, drbd_destroy_connection); 413 kref_put(&resource->kref, drbd_destroy_resource); 414 module_put(THIS_MODULE); 415 return false; 416 } 417 spin_lock_irqsave(&thi->t_lock, flags); 418 thi->task = nt; 419 thi->t_state = RUNNING; 420 spin_unlock_irqrestore(&thi->t_lock, flags); 421 wake_up_process(nt); 422 break; 423 case EXITING: 424 thi->t_state = RESTARTING; 425 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 426 thi->name, current->comm, current->pid); 427 fallthrough; 428 case RUNNING: 429 case RESTARTING: 430 default: 431 spin_unlock_irqrestore(&thi->t_lock, flags); 432 break; 433 } 434 435 return true; 436 } 437 438 439 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 440 { 441 unsigned long flags; 442 443 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 444 445 /* may be called from state engine, holding the req lock irqsave */ 446 spin_lock_irqsave(&thi->t_lock, flags); 447 448 if (thi->t_state == NONE) { 449 spin_unlock_irqrestore(&thi->t_lock, flags); 450 if (restart) 451 drbd_thread_start(thi); 452 return; 453 } 454 455 if (thi->t_state != ns) { 456 if (thi->task == NULL) { 457 spin_unlock_irqrestore(&thi->t_lock, flags); 458 return; 459 } 460 461 thi->t_state = ns; 462 smp_mb(); 463 init_completion(&thi->stop); 464 if (thi->task != current) 465 send_sig(DRBD_SIGKILL, thi->task, 1); 466 } 467 468 spin_unlock_irqrestore(&thi->t_lock, flags); 469 470 if (wait) 471 wait_for_completion(&thi->stop); 472 } 473 474 int conn_lowest_minor(struct drbd_connection *connection) 475 { 476 struct drbd_peer_device *peer_device; 477 int vnr = 0, minor = -1; 478 479 rcu_read_lock(); 480 peer_device = idr_get_next(&connection->peer_devices, &vnr); 481 if (peer_device) 482 minor = device_to_minor(peer_device->device); 483 rcu_read_unlock(); 484 485 return minor; 486 } 487 488 #ifdef CONFIG_SMP 489 /* 490 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 491 * 492 * Forces all threads of a resource onto the same CPU. This is beneficial for 493 * DRBD's performance. May be overwritten by user's configuration. 494 */ 495 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 496 { 497 unsigned int *resources_per_cpu, min_index = ~0; 498 499 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 500 GFP_KERNEL); 501 if (resources_per_cpu) { 502 struct drbd_resource *resource; 503 unsigned int cpu, min = ~0; 504 505 rcu_read_lock(); 506 for_each_resource_rcu(resource, &drbd_resources) { 507 for_each_cpu(cpu, resource->cpu_mask) 508 resources_per_cpu[cpu]++; 509 } 510 rcu_read_unlock(); 511 for_each_online_cpu(cpu) { 512 if (resources_per_cpu[cpu] < min) { 513 min = resources_per_cpu[cpu]; 514 min_index = cpu; 515 } 516 } 517 kfree(resources_per_cpu); 518 } 519 if (min_index == ~0) { 520 cpumask_setall(*cpu_mask); 521 return; 522 } 523 cpumask_set_cpu(min_index, *cpu_mask); 524 } 525 526 /** 527 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 528 * @thi: drbd_thread object 529 * 530 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 531 * prematurely. 532 */ 533 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 534 { 535 struct drbd_resource *resource = thi->resource; 536 struct task_struct *p = current; 537 538 if (!thi->reset_cpu_mask) 539 return; 540 thi->reset_cpu_mask = 0; 541 set_cpus_allowed_ptr(p, resource->cpu_mask); 542 } 543 #else 544 #define drbd_calc_cpu_mask(A) ({}) 545 #endif 546 547 /* 548 * drbd_header_size - size of a packet header 549 * 550 * The header size is a multiple of 8, so any payload following the header is 551 * word aligned on 64-bit architectures. (The bitmap send and receive code 552 * relies on this.) 553 */ 554 unsigned int drbd_header_size(struct drbd_connection *connection) 555 { 556 if (connection->agreed_pro_version >= 100) { 557 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 558 return sizeof(struct p_header100); 559 } else { 560 BUILD_BUG_ON(sizeof(struct p_header80) != 561 sizeof(struct p_header95)); 562 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 563 return sizeof(struct p_header80); 564 } 565 } 566 567 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 568 { 569 h->magic = cpu_to_be32(DRBD_MAGIC); 570 h->command = cpu_to_be16(cmd); 571 h->length = cpu_to_be16(size); 572 return sizeof(struct p_header80); 573 } 574 575 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 576 { 577 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 578 h->command = cpu_to_be16(cmd); 579 h->length = cpu_to_be32(size); 580 return sizeof(struct p_header95); 581 } 582 583 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 584 int size, int vnr) 585 { 586 h->magic = cpu_to_be32(DRBD_MAGIC_100); 587 h->volume = cpu_to_be16(vnr); 588 h->command = cpu_to_be16(cmd); 589 h->length = cpu_to_be32(size); 590 h->pad = 0; 591 return sizeof(struct p_header100); 592 } 593 594 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 595 void *buffer, enum drbd_packet cmd, int size) 596 { 597 if (connection->agreed_pro_version >= 100) 598 return prepare_header100(buffer, cmd, size, vnr); 599 else if (connection->agreed_pro_version >= 95 && 600 size > DRBD_MAX_SIZE_H80_PACKET) 601 return prepare_header95(buffer, cmd, size); 602 else 603 return prepare_header80(buffer, cmd, size); 604 } 605 606 static void *__conn_prepare_command(struct drbd_connection *connection, 607 struct drbd_socket *sock) 608 { 609 if (!sock->socket) 610 return NULL; 611 return sock->sbuf + drbd_header_size(connection); 612 } 613 614 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 615 { 616 void *p; 617 618 mutex_lock(&sock->mutex); 619 p = __conn_prepare_command(connection, sock); 620 if (!p) 621 mutex_unlock(&sock->mutex); 622 623 return p; 624 } 625 626 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 627 { 628 return conn_prepare_command(peer_device->connection, sock); 629 } 630 631 static int __send_command(struct drbd_connection *connection, int vnr, 632 struct drbd_socket *sock, enum drbd_packet cmd, 633 unsigned int header_size, void *data, 634 unsigned int size) 635 { 636 int msg_flags; 637 int err; 638 639 /* 640 * Called with @data == NULL and the size of the data blocks in @size 641 * for commands that send data blocks. For those commands, omit the 642 * MSG_MORE flag: this will increase the likelihood that data blocks 643 * which are page aligned on the sender will end up page aligned on the 644 * receiver. 645 */ 646 msg_flags = data ? MSG_MORE : 0; 647 648 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 649 header_size + size); 650 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 651 msg_flags); 652 if (data && !err) 653 err = drbd_send_all(connection, sock->socket, data, size, 0); 654 /* DRBD protocol "pings" are latency critical. 655 * This is supposed to trigger tcp_push_pending_frames() */ 656 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 657 tcp_sock_set_nodelay(sock->socket->sk); 658 659 return err; 660 } 661 662 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 663 enum drbd_packet cmd, unsigned int header_size, 664 void *data, unsigned int size) 665 { 666 return __send_command(connection, 0, sock, cmd, header_size, data, size); 667 } 668 669 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 670 enum drbd_packet cmd, unsigned int header_size, 671 void *data, unsigned int size) 672 { 673 int err; 674 675 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 676 mutex_unlock(&sock->mutex); 677 return err; 678 } 679 680 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 681 enum drbd_packet cmd, unsigned int header_size, 682 void *data, unsigned int size) 683 { 684 int err; 685 686 err = __send_command(peer_device->connection, peer_device->device->vnr, 687 sock, cmd, header_size, data, size); 688 mutex_unlock(&sock->mutex); 689 return err; 690 } 691 692 int drbd_send_ping(struct drbd_connection *connection) 693 { 694 struct drbd_socket *sock; 695 696 sock = &connection->meta; 697 if (!conn_prepare_command(connection, sock)) 698 return -EIO; 699 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 700 } 701 702 int drbd_send_ping_ack(struct drbd_connection *connection) 703 { 704 struct drbd_socket *sock; 705 706 sock = &connection->meta; 707 if (!conn_prepare_command(connection, sock)) 708 return -EIO; 709 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 710 } 711 712 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 713 { 714 struct drbd_socket *sock; 715 struct p_rs_param_95 *p; 716 int size; 717 const int apv = peer_device->connection->agreed_pro_version; 718 enum drbd_packet cmd; 719 struct net_conf *nc; 720 struct disk_conf *dc; 721 722 sock = &peer_device->connection->data; 723 p = drbd_prepare_command(peer_device, sock); 724 if (!p) 725 return -EIO; 726 727 rcu_read_lock(); 728 nc = rcu_dereference(peer_device->connection->net_conf); 729 730 size = apv <= 87 ? sizeof(struct p_rs_param) 731 : apv == 88 ? sizeof(struct p_rs_param) 732 + strlen(nc->verify_alg) + 1 733 : apv <= 94 ? sizeof(struct p_rs_param_89) 734 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 735 736 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 737 738 /* initialize verify_alg and csums_alg */ 739 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); 740 memset(&p->algs, 0, sizeof(p->algs)); 741 742 if (get_ldev(peer_device->device)) { 743 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 744 p->resync_rate = cpu_to_be32(dc->resync_rate); 745 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 746 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 747 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 748 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 749 put_ldev(peer_device->device); 750 } else { 751 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 752 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 753 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 754 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 755 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 756 } 757 758 if (apv >= 88) 759 strcpy(p->verify_alg, nc->verify_alg); 760 if (apv >= 89) 761 strcpy(p->csums_alg, nc->csums_alg); 762 rcu_read_unlock(); 763 764 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 765 } 766 767 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 768 { 769 struct drbd_socket *sock; 770 struct p_protocol *p; 771 struct net_conf *nc; 772 int size, cf; 773 774 sock = &connection->data; 775 p = __conn_prepare_command(connection, sock); 776 if (!p) 777 return -EIO; 778 779 rcu_read_lock(); 780 nc = rcu_dereference(connection->net_conf); 781 782 if (nc->tentative && connection->agreed_pro_version < 92) { 783 rcu_read_unlock(); 784 drbd_err(connection, "--dry-run is not supported by peer"); 785 return -EOPNOTSUPP; 786 } 787 788 size = sizeof(*p); 789 if (connection->agreed_pro_version >= 87) 790 size += strlen(nc->integrity_alg) + 1; 791 792 p->protocol = cpu_to_be32(nc->wire_protocol); 793 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 794 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 795 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 796 p->two_primaries = cpu_to_be32(nc->two_primaries); 797 cf = 0; 798 if (nc->discard_my_data) 799 cf |= CF_DISCARD_MY_DATA; 800 if (nc->tentative) 801 cf |= CF_DRY_RUN; 802 p->conn_flags = cpu_to_be32(cf); 803 804 if (connection->agreed_pro_version >= 87) 805 strcpy(p->integrity_alg, nc->integrity_alg); 806 rcu_read_unlock(); 807 808 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 809 } 810 811 int drbd_send_protocol(struct drbd_connection *connection) 812 { 813 int err; 814 815 mutex_lock(&connection->data.mutex); 816 err = __drbd_send_protocol(connection, P_PROTOCOL); 817 mutex_unlock(&connection->data.mutex); 818 819 return err; 820 } 821 822 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 823 { 824 struct drbd_device *device = peer_device->device; 825 struct drbd_socket *sock; 826 struct p_uuids *p; 827 int i; 828 829 if (!get_ldev_if_state(device, D_NEGOTIATING)) 830 return 0; 831 832 sock = &peer_device->connection->data; 833 p = drbd_prepare_command(peer_device, sock); 834 if (!p) { 835 put_ldev(device); 836 return -EIO; 837 } 838 spin_lock_irq(&device->ldev->md.uuid_lock); 839 for (i = UI_CURRENT; i < UI_SIZE; i++) 840 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 841 spin_unlock_irq(&device->ldev->md.uuid_lock); 842 843 device->comm_bm_set = drbd_bm_total_weight(device); 844 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 845 rcu_read_lock(); 846 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 847 rcu_read_unlock(); 848 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 849 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 850 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 851 852 put_ldev(device); 853 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 854 } 855 856 int drbd_send_uuids(struct drbd_peer_device *peer_device) 857 { 858 return _drbd_send_uuids(peer_device, 0); 859 } 860 861 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 862 { 863 return _drbd_send_uuids(peer_device, 8); 864 } 865 866 void drbd_print_uuids(struct drbd_device *device, const char *text) 867 { 868 if (get_ldev_if_state(device, D_NEGOTIATING)) { 869 u64 *uuid = device->ldev->md.uuid; 870 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 871 text, 872 (unsigned long long)uuid[UI_CURRENT], 873 (unsigned long long)uuid[UI_BITMAP], 874 (unsigned long long)uuid[UI_HISTORY_START], 875 (unsigned long long)uuid[UI_HISTORY_END]); 876 put_ldev(device); 877 } else { 878 drbd_info(device, "%s effective data uuid: %016llX\n", 879 text, 880 (unsigned long long)device->ed_uuid); 881 } 882 } 883 884 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 885 { 886 struct drbd_device *device = peer_device->device; 887 struct drbd_socket *sock; 888 struct p_rs_uuid *p; 889 u64 uuid; 890 891 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 892 893 uuid = device->ldev->md.uuid[UI_BITMAP]; 894 if (uuid && uuid != UUID_JUST_CREATED) 895 uuid = uuid + UUID_NEW_BM_OFFSET; 896 else 897 get_random_bytes(&uuid, sizeof(u64)); 898 drbd_uuid_set(device, UI_BITMAP, uuid); 899 drbd_print_uuids(device, "updated sync UUID"); 900 drbd_md_sync(device); 901 902 sock = &peer_device->connection->data; 903 p = drbd_prepare_command(peer_device, sock); 904 if (p) { 905 p->uuid = cpu_to_be64(uuid); 906 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 907 } 908 } 909 910 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 911 { 912 struct drbd_device *device = peer_device->device; 913 struct drbd_socket *sock; 914 struct p_sizes *p; 915 sector_t d_size, u_size; 916 int q_order_type; 917 unsigned int max_bio_size; 918 unsigned int packet_size; 919 920 sock = &peer_device->connection->data; 921 p = drbd_prepare_command(peer_device, sock); 922 if (!p) 923 return -EIO; 924 925 packet_size = sizeof(*p); 926 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 927 packet_size += sizeof(p->qlim[0]); 928 929 memset(p, 0, packet_size); 930 if (get_ldev_if_state(device, D_NEGOTIATING)) { 931 struct block_device *bdev = device->ldev->backing_bdev; 932 struct request_queue *q = bdev_get_queue(bdev); 933 934 d_size = drbd_get_max_capacity(device->ldev); 935 rcu_read_lock(); 936 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 937 rcu_read_unlock(); 938 q_order_type = drbd_queue_order_type(device); 939 max_bio_size = queue_max_hw_sectors(q) << 9; 940 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 941 p->qlim->physical_block_size = 942 cpu_to_be32(bdev_physical_block_size(bdev)); 943 p->qlim->logical_block_size = 944 cpu_to_be32(bdev_logical_block_size(bdev)); 945 p->qlim->alignment_offset = 946 cpu_to_be32(bdev_alignment_offset(bdev)); 947 p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev)); 948 p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev)); 949 p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev); 950 put_ldev(device); 951 } else { 952 struct request_queue *q = device->rq_queue; 953 954 p->qlim->physical_block_size = 955 cpu_to_be32(queue_physical_block_size(q)); 956 p->qlim->logical_block_size = 957 cpu_to_be32(queue_logical_block_size(q)); 958 p->qlim->alignment_offset = 0; 959 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 960 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 961 p->qlim->discard_enabled = 0; 962 963 d_size = 0; 964 u_size = 0; 965 q_order_type = QUEUE_ORDERED_NONE; 966 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 967 } 968 969 if (peer_device->connection->agreed_pro_version <= 94) 970 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 971 else if (peer_device->connection->agreed_pro_version < 100) 972 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 973 974 p->d_size = cpu_to_be64(d_size); 975 p->u_size = cpu_to_be64(u_size); 976 if (trigger_reply) 977 p->c_size = 0; 978 else 979 p->c_size = cpu_to_be64(get_capacity(device->vdisk)); 980 p->max_bio_size = cpu_to_be32(max_bio_size); 981 p->queue_order_type = cpu_to_be16(q_order_type); 982 p->dds_flags = cpu_to_be16(flags); 983 984 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 985 } 986 987 /** 988 * drbd_send_current_state() - Sends the drbd state to the peer 989 * @peer_device: DRBD peer device. 990 */ 991 int drbd_send_current_state(struct drbd_peer_device *peer_device) 992 { 993 struct drbd_socket *sock; 994 struct p_state *p; 995 996 sock = &peer_device->connection->data; 997 p = drbd_prepare_command(peer_device, sock); 998 if (!p) 999 return -EIO; 1000 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1001 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1002 } 1003 1004 /** 1005 * drbd_send_state() - After a state change, sends the new state to the peer 1006 * @peer_device: DRBD peer device. 1007 * @state: the state to send, not necessarily the current state. 1008 * 1009 * Each state change queues an "after_state_ch" work, which will eventually 1010 * send the resulting new state to the peer. If more state changes happen 1011 * between queuing and processing of the after_state_ch work, we still 1012 * want to send each intermediary state in the order it occurred. 1013 */ 1014 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1015 { 1016 struct drbd_socket *sock; 1017 struct p_state *p; 1018 1019 sock = &peer_device->connection->data; 1020 p = drbd_prepare_command(peer_device, sock); 1021 if (!p) 1022 return -EIO; 1023 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1024 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1025 } 1026 1027 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1028 { 1029 struct drbd_socket *sock; 1030 struct p_req_state *p; 1031 1032 sock = &peer_device->connection->data; 1033 p = drbd_prepare_command(peer_device, sock); 1034 if (!p) 1035 return -EIO; 1036 p->mask = cpu_to_be32(mask.i); 1037 p->val = cpu_to_be32(val.i); 1038 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1039 } 1040 1041 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1042 { 1043 enum drbd_packet cmd; 1044 struct drbd_socket *sock; 1045 struct p_req_state *p; 1046 1047 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1048 sock = &connection->data; 1049 p = conn_prepare_command(connection, sock); 1050 if (!p) 1051 return -EIO; 1052 p->mask = cpu_to_be32(mask.i); 1053 p->val = cpu_to_be32(val.i); 1054 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1055 } 1056 1057 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1058 { 1059 struct drbd_socket *sock; 1060 struct p_req_state_reply *p; 1061 1062 sock = &peer_device->connection->meta; 1063 p = drbd_prepare_command(peer_device, sock); 1064 if (p) { 1065 p->retcode = cpu_to_be32(retcode); 1066 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1067 } 1068 } 1069 1070 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1071 { 1072 struct drbd_socket *sock; 1073 struct p_req_state_reply *p; 1074 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1075 1076 sock = &connection->meta; 1077 p = conn_prepare_command(connection, sock); 1078 if (p) { 1079 p->retcode = cpu_to_be32(retcode); 1080 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1081 } 1082 } 1083 1084 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1085 { 1086 BUG_ON(code & ~0xf); 1087 p->encoding = (p->encoding & ~0xf) | code; 1088 } 1089 1090 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1091 { 1092 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1093 } 1094 1095 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1096 { 1097 BUG_ON(n & ~0x7); 1098 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1099 } 1100 1101 static int fill_bitmap_rle_bits(struct drbd_device *device, 1102 struct p_compressed_bm *p, 1103 unsigned int size, 1104 struct bm_xfer_ctx *c) 1105 { 1106 struct bitstream bs; 1107 unsigned long plain_bits; 1108 unsigned long tmp; 1109 unsigned long rl; 1110 unsigned len; 1111 unsigned toggle; 1112 int bits, use_rle; 1113 1114 /* may we use this feature? */ 1115 rcu_read_lock(); 1116 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1117 rcu_read_unlock(); 1118 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1119 return 0; 1120 1121 if (c->bit_offset >= c->bm_bits) 1122 return 0; /* nothing to do. */ 1123 1124 /* use at most thus many bytes */ 1125 bitstream_init(&bs, p->code, size, 0); 1126 memset(p->code, 0, size); 1127 /* plain bits covered in this code string */ 1128 plain_bits = 0; 1129 1130 /* p->encoding & 0x80 stores whether the first run length is set. 1131 * bit offset is implicit. 1132 * start with toggle == 2 to be able to tell the first iteration */ 1133 toggle = 2; 1134 1135 /* see how much plain bits we can stuff into one packet 1136 * using RLE and VLI. */ 1137 do { 1138 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1139 : _drbd_bm_find_next(device, c->bit_offset); 1140 if (tmp == -1UL) 1141 tmp = c->bm_bits; 1142 rl = tmp - c->bit_offset; 1143 1144 if (toggle == 2) { /* first iteration */ 1145 if (rl == 0) { 1146 /* the first checked bit was set, 1147 * store start value, */ 1148 dcbp_set_start(p, 1); 1149 /* but skip encoding of zero run length */ 1150 toggle = !toggle; 1151 continue; 1152 } 1153 dcbp_set_start(p, 0); 1154 } 1155 1156 /* paranoia: catch zero runlength. 1157 * can only happen if bitmap is modified while we scan it. */ 1158 if (rl == 0) { 1159 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1160 "t:%u bo:%lu\n", toggle, c->bit_offset); 1161 return -1; 1162 } 1163 1164 bits = vli_encode_bits(&bs, rl); 1165 if (bits == -ENOBUFS) /* buffer full */ 1166 break; 1167 if (bits <= 0) { 1168 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1169 return 0; 1170 } 1171 1172 toggle = !toggle; 1173 plain_bits += rl; 1174 c->bit_offset = tmp; 1175 } while (c->bit_offset < c->bm_bits); 1176 1177 len = bs.cur.b - p->code + !!bs.cur.bit; 1178 1179 if (plain_bits < (len << 3)) { 1180 /* incompressible with this method. 1181 * we need to rewind both word and bit position. */ 1182 c->bit_offset -= plain_bits; 1183 bm_xfer_ctx_bit_to_word_offset(c); 1184 c->bit_offset = c->word_offset * BITS_PER_LONG; 1185 return 0; 1186 } 1187 1188 /* RLE + VLI was able to compress it just fine. 1189 * update c->word_offset. */ 1190 bm_xfer_ctx_bit_to_word_offset(c); 1191 1192 /* store pad_bits */ 1193 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1194 1195 return len; 1196 } 1197 1198 /* 1199 * send_bitmap_rle_or_plain 1200 * 1201 * Return 0 when done, 1 when another iteration is needed, and a negative error 1202 * code upon failure. 1203 */ 1204 static int 1205 send_bitmap_rle_or_plain(struct drbd_peer_device *peer_device, struct bm_xfer_ctx *c) 1206 { 1207 struct drbd_device *device = peer_device->device; 1208 struct drbd_socket *sock = &peer_device->connection->data; 1209 unsigned int header_size = drbd_header_size(peer_device->connection); 1210 struct p_compressed_bm *p = sock->sbuf + header_size; 1211 int len, err; 1212 1213 len = fill_bitmap_rle_bits(device, p, 1214 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1215 if (len < 0) 1216 return -EIO; 1217 1218 if (len) { 1219 dcbp_set_code(p, RLE_VLI_Bits); 1220 err = __send_command(peer_device->connection, device->vnr, sock, 1221 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1222 NULL, 0); 1223 c->packets[0]++; 1224 c->bytes[0] += header_size + sizeof(*p) + len; 1225 1226 if (c->bit_offset >= c->bm_bits) 1227 len = 0; /* DONE */ 1228 } else { 1229 /* was not compressible. 1230 * send a buffer full of plain text bits instead. */ 1231 unsigned int data_size; 1232 unsigned long num_words; 1233 unsigned long *p = sock->sbuf + header_size; 1234 1235 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1236 num_words = min_t(size_t, data_size / sizeof(*p), 1237 c->bm_words - c->word_offset); 1238 len = num_words * sizeof(*p); 1239 if (len) 1240 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1241 err = __send_command(peer_device->connection, device->vnr, sock, P_BITMAP, 1242 len, NULL, 0); 1243 c->word_offset += num_words; 1244 c->bit_offset = c->word_offset * BITS_PER_LONG; 1245 1246 c->packets[1]++; 1247 c->bytes[1] += header_size + len; 1248 1249 if (c->bit_offset > c->bm_bits) 1250 c->bit_offset = c->bm_bits; 1251 } 1252 if (!err) { 1253 if (len == 0) { 1254 INFO_bm_xfer_stats(peer_device, "send", c); 1255 return 0; 1256 } else 1257 return 1; 1258 } 1259 return -EIO; 1260 } 1261 1262 /* See the comment at receive_bitmap() */ 1263 static int _drbd_send_bitmap(struct drbd_device *device, 1264 struct drbd_peer_device *peer_device) 1265 { 1266 struct bm_xfer_ctx c; 1267 int err; 1268 1269 if (!expect(device, device->bitmap)) 1270 return false; 1271 1272 if (get_ldev(device)) { 1273 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1274 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1275 drbd_bm_set_all(device); 1276 if (drbd_bm_write(device, peer_device)) { 1277 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1278 * but otherwise process as per normal - need to tell other 1279 * side that a full resync is required! */ 1280 drbd_err(device, "Failed to write bitmap to disk!\n"); 1281 } else { 1282 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1283 drbd_md_sync(device); 1284 } 1285 } 1286 put_ldev(device); 1287 } 1288 1289 c = (struct bm_xfer_ctx) { 1290 .bm_bits = drbd_bm_bits(device), 1291 .bm_words = drbd_bm_words(device), 1292 }; 1293 1294 do { 1295 err = send_bitmap_rle_or_plain(peer_device, &c); 1296 } while (err > 0); 1297 1298 return err == 0; 1299 } 1300 1301 int drbd_send_bitmap(struct drbd_device *device, struct drbd_peer_device *peer_device) 1302 { 1303 struct drbd_socket *sock = &peer_device->connection->data; 1304 int err = -1; 1305 1306 mutex_lock(&sock->mutex); 1307 if (sock->socket) 1308 err = !_drbd_send_bitmap(device, peer_device); 1309 mutex_unlock(&sock->mutex); 1310 return err; 1311 } 1312 1313 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1314 { 1315 struct drbd_socket *sock; 1316 struct p_barrier_ack *p; 1317 1318 if (connection->cstate < C_WF_REPORT_PARAMS) 1319 return; 1320 1321 sock = &connection->meta; 1322 p = conn_prepare_command(connection, sock); 1323 if (!p) 1324 return; 1325 p->barrier = barrier_nr; 1326 p->set_size = cpu_to_be32(set_size); 1327 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1328 } 1329 1330 /** 1331 * _drbd_send_ack() - Sends an ack packet 1332 * @peer_device: DRBD peer device. 1333 * @cmd: Packet command code. 1334 * @sector: sector, needs to be in big endian byte order 1335 * @blksize: size in byte, needs to be in big endian byte order 1336 * @block_id: Id, big endian byte order 1337 */ 1338 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1339 u64 sector, u32 blksize, u64 block_id) 1340 { 1341 struct drbd_socket *sock; 1342 struct p_block_ack *p; 1343 1344 if (peer_device->device->state.conn < C_CONNECTED) 1345 return -EIO; 1346 1347 sock = &peer_device->connection->meta; 1348 p = drbd_prepare_command(peer_device, sock); 1349 if (!p) 1350 return -EIO; 1351 p->sector = sector; 1352 p->block_id = block_id; 1353 p->blksize = blksize; 1354 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1355 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1356 } 1357 1358 /* dp->sector and dp->block_id already/still in network byte order, 1359 * data_size is payload size according to dp->head, 1360 * and may need to be corrected for digest size. */ 1361 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1362 struct p_data *dp, int data_size) 1363 { 1364 if (peer_device->connection->peer_integrity_tfm) 1365 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1366 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1367 dp->block_id); 1368 } 1369 1370 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1371 struct p_block_req *rp) 1372 { 1373 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1374 } 1375 1376 /** 1377 * drbd_send_ack() - Sends an ack packet 1378 * @peer_device: DRBD peer device 1379 * @cmd: packet command code 1380 * @peer_req: peer request 1381 */ 1382 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1383 struct drbd_peer_request *peer_req) 1384 { 1385 return _drbd_send_ack(peer_device, cmd, 1386 cpu_to_be64(peer_req->i.sector), 1387 cpu_to_be32(peer_req->i.size), 1388 peer_req->block_id); 1389 } 1390 1391 /* This function misuses the block_id field to signal if the blocks 1392 * are is sync or not. */ 1393 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1394 sector_t sector, int blksize, u64 block_id) 1395 { 1396 return _drbd_send_ack(peer_device, cmd, 1397 cpu_to_be64(sector), 1398 cpu_to_be32(blksize), 1399 cpu_to_be64(block_id)); 1400 } 1401 1402 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1403 struct drbd_peer_request *peer_req) 1404 { 1405 struct drbd_socket *sock; 1406 struct p_block_desc *p; 1407 1408 sock = &peer_device->connection->data; 1409 p = drbd_prepare_command(peer_device, sock); 1410 if (!p) 1411 return -EIO; 1412 p->sector = cpu_to_be64(peer_req->i.sector); 1413 p->blksize = cpu_to_be32(peer_req->i.size); 1414 p->pad = 0; 1415 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1416 } 1417 1418 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1419 sector_t sector, int size, u64 block_id) 1420 { 1421 struct drbd_socket *sock; 1422 struct p_block_req *p; 1423 1424 sock = &peer_device->connection->data; 1425 p = drbd_prepare_command(peer_device, sock); 1426 if (!p) 1427 return -EIO; 1428 p->sector = cpu_to_be64(sector); 1429 p->block_id = block_id; 1430 p->blksize = cpu_to_be32(size); 1431 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1432 } 1433 1434 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1435 void *digest, int digest_size, enum drbd_packet cmd) 1436 { 1437 struct drbd_socket *sock; 1438 struct p_block_req *p; 1439 1440 /* FIXME: Put the digest into the preallocated socket buffer. */ 1441 1442 sock = &peer_device->connection->data; 1443 p = drbd_prepare_command(peer_device, sock); 1444 if (!p) 1445 return -EIO; 1446 p->sector = cpu_to_be64(sector); 1447 p->block_id = ID_SYNCER /* unused */; 1448 p->blksize = cpu_to_be32(size); 1449 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1450 } 1451 1452 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1453 { 1454 struct drbd_socket *sock; 1455 struct p_block_req *p; 1456 1457 sock = &peer_device->connection->data; 1458 p = drbd_prepare_command(peer_device, sock); 1459 if (!p) 1460 return -EIO; 1461 p->sector = cpu_to_be64(sector); 1462 p->block_id = ID_SYNCER /* unused */; 1463 p->blksize = cpu_to_be32(size); 1464 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1465 } 1466 1467 /* called on sndtimeo 1468 * returns false if we should retry, 1469 * true if we think connection is dead 1470 */ 1471 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1472 { 1473 int drop_it; 1474 /* long elapsed = (long)(jiffies - device->last_received); */ 1475 1476 drop_it = connection->meta.socket == sock 1477 || !connection->ack_receiver.task 1478 || get_t_state(&connection->ack_receiver) != RUNNING 1479 || connection->cstate < C_WF_REPORT_PARAMS; 1480 1481 if (drop_it) 1482 return true; 1483 1484 drop_it = !--connection->ko_count; 1485 if (!drop_it) { 1486 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1487 current->comm, current->pid, connection->ko_count); 1488 request_ping(connection); 1489 } 1490 1491 return drop_it; /* && (device->state == R_PRIMARY) */; 1492 } 1493 1494 static void drbd_update_congested(struct drbd_connection *connection) 1495 { 1496 struct sock *sk = connection->data.socket->sk; 1497 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1498 set_bit(NET_CONGESTED, &connection->flags); 1499 } 1500 1501 /* The idea of sendpage seems to be to put some kind of reference 1502 * to the page into the skb, and to hand it over to the NIC. In 1503 * this process get_page() gets called. 1504 * 1505 * As soon as the page was really sent over the network put_page() 1506 * gets called by some part of the network layer. [ NIC driver? ] 1507 * 1508 * [ get_page() / put_page() increment/decrement the count. If count 1509 * reaches 0 the page will be freed. ] 1510 * 1511 * This works nicely with pages from FSs. 1512 * But this means that in protocol A we might signal IO completion too early! 1513 * 1514 * In order not to corrupt data during a resync we must make sure 1515 * that we do not reuse our own buffer pages (EEs) to early, therefore 1516 * we have the net_ee list. 1517 * 1518 * XFS seems to have problems, still, it submits pages with page_count == 0! 1519 * As a workaround, we disable sendpage on pages 1520 * with page_count == 0 or PageSlab. 1521 */ 1522 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1523 int offset, size_t size, unsigned msg_flags) 1524 { 1525 struct socket *socket; 1526 void *addr; 1527 int err; 1528 1529 socket = peer_device->connection->data.socket; 1530 addr = kmap(page) + offset; 1531 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1532 kunmap(page); 1533 if (!err) 1534 peer_device->device->send_cnt += size >> 9; 1535 return err; 1536 } 1537 1538 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1539 int offset, size_t size, unsigned msg_flags) 1540 { 1541 struct socket *socket = peer_device->connection->data.socket; 1542 struct msghdr msg = { .msg_flags = msg_flags, }; 1543 struct bio_vec bvec; 1544 int len = size; 1545 int err = -EIO; 1546 1547 /* e.g. XFS meta- & log-data is in slab pages, which have a 1548 * page_count of 0 and/or have PageSlab() set. 1549 * we cannot use send_page for those, as that does get_page(); 1550 * put_page(); and would cause either a VM_BUG directly, or 1551 * __page_cache_release a page that would actually still be referenced 1552 * by someone, leading to some obscure delayed Oops somewhere else. */ 1553 if (!drbd_disable_sendpage && sendpage_ok(page)) 1554 msg.msg_flags |= MSG_NOSIGNAL | MSG_SPLICE_PAGES; 1555 1556 drbd_update_congested(peer_device->connection); 1557 do { 1558 int sent; 1559 1560 bvec_set_page(&bvec, page, offset, len); 1561 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1562 1563 sent = sock_sendmsg(socket, &msg); 1564 if (sent <= 0) { 1565 if (sent == -EAGAIN) { 1566 if (we_should_drop_the_connection(peer_device->connection, socket)) 1567 break; 1568 continue; 1569 } 1570 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1571 __func__, (int)size, len, sent); 1572 if (sent < 0) 1573 err = sent; 1574 break; 1575 } 1576 len -= sent; 1577 offset += sent; 1578 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1579 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1580 1581 if (len == 0) { 1582 err = 0; 1583 peer_device->device->send_cnt += size >> 9; 1584 } 1585 return err; 1586 } 1587 1588 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1589 { 1590 struct bio_vec bvec; 1591 struct bvec_iter iter; 1592 1593 /* hint all but last page with MSG_MORE */ 1594 bio_for_each_segment(bvec, bio, iter) { 1595 int err; 1596 1597 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1598 bvec.bv_offset, bvec.bv_len, 1599 bio_iter_last(bvec, iter) 1600 ? 0 : MSG_MORE); 1601 if (err) 1602 return err; 1603 } 1604 return 0; 1605 } 1606 1607 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1608 { 1609 struct bio_vec bvec; 1610 struct bvec_iter iter; 1611 1612 /* hint all but last page with MSG_MORE */ 1613 bio_for_each_segment(bvec, bio, iter) { 1614 int err; 1615 1616 err = _drbd_send_page(peer_device, bvec.bv_page, 1617 bvec.bv_offset, bvec.bv_len, 1618 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1619 if (err) 1620 return err; 1621 } 1622 return 0; 1623 } 1624 1625 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1626 struct drbd_peer_request *peer_req) 1627 { 1628 struct page *page = peer_req->pages; 1629 unsigned len = peer_req->i.size; 1630 int err; 1631 1632 /* hint all but last page with MSG_MORE */ 1633 page_chain_for_each(page) { 1634 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1635 1636 err = _drbd_send_page(peer_device, page, 0, l, 1637 page_chain_next(page) ? MSG_MORE : 0); 1638 if (err) 1639 return err; 1640 len -= l; 1641 } 1642 return 0; 1643 } 1644 1645 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1646 struct bio *bio) 1647 { 1648 if (connection->agreed_pro_version >= 95) 1649 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1650 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1651 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1652 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1653 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? 1654 ((connection->agreed_features & DRBD_FF_WZEROES) ? 1655 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0)) 1656 : DP_DISCARD) 1657 : 0); 1658 else 1659 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1660 } 1661 1662 /* Used to send write or TRIM aka REQ_OP_DISCARD requests 1663 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1664 */ 1665 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1666 { 1667 struct drbd_device *device = peer_device->device; 1668 struct drbd_socket *sock; 1669 struct p_data *p; 1670 void *digest_out; 1671 unsigned int dp_flags = 0; 1672 int digest_size; 1673 int err; 1674 1675 sock = &peer_device->connection->data; 1676 p = drbd_prepare_command(peer_device, sock); 1677 digest_size = peer_device->connection->integrity_tfm ? 1678 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1679 1680 if (!p) 1681 return -EIO; 1682 p->sector = cpu_to_be64(req->i.sector); 1683 p->block_id = (unsigned long)req; 1684 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1685 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1686 if (device->state.conn >= C_SYNC_SOURCE && 1687 device->state.conn <= C_PAUSED_SYNC_T) 1688 dp_flags |= DP_MAY_SET_IN_SYNC; 1689 if (peer_device->connection->agreed_pro_version >= 100) { 1690 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1691 dp_flags |= DP_SEND_RECEIVE_ACK; 1692 /* During resync, request an explicit write ack, 1693 * even in protocol != C */ 1694 if (req->rq_state & RQ_EXP_WRITE_ACK 1695 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1696 dp_flags |= DP_SEND_WRITE_ACK; 1697 } 1698 p->dp_flags = cpu_to_be32(dp_flags); 1699 1700 if (dp_flags & (DP_DISCARD|DP_ZEROES)) { 1701 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM; 1702 struct p_trim *t = (struct p_trim*)p; 1703 t->size = cpu_to_be32(req->i.size); 1704 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0); 1705 goto out; 1706 } 1707 digest_out = p + 1; 1708 1709 /* our digest is still only over the payload. 1710 * TRIM does not carry any payload. */ 1711 if (digest_size) 1712 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1713 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1714 sizeof(*p) + digest_size, NULL, req->i.size); 1715 if (!err) { 1716 /* For protocol A, we have to memcpy the payload into 1717 * socket buffers, as we may complete right away 1718 * as soon as we handed it over to tcp, at which point the data 1719 * pages may become invalid. 1720 * 1721 * For data-integrity enabled, we copy it as well, so we can be 1722 * sure that even if the bio pages may still be modified, it 1723 * won't change the data on the wire, thus if the digest checks 1724 * out ok after sending on this side, but does not fit on the 1725 * receiving side, we sure have detected corruption elsewhere. 1726 */ 1727 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1728 err = _drbd_send_bio(peer_device, req->master_bio); 1729 else 1730 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1731 1732 /* double check digest, sometimes buffers have been modified in flight. */ 1733 if (digest_size > 0 && digest_size <= 64) { 1734 /* 64 byte, 512 bit, is the largest digest size 1735 * currently supported in kernel crypto. */ 1736 unsigned char digest[64]; 1737 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1738 if (memcmp(p + 1, digest, digest_size)) { 1739 drbd_warn(device, 1740 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1741 (unsigned long long)req->i.sector, req->i.size); 1742 } 1743 } /* else if (digest_size > 64) { 1744 ... Be noisy about digest too large ... 1745 } */ 1746 } 1747 out: 1748 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1749 1750 return err; 1751 } 1752 1753 /* answer packet, used to send data back for read requests: 1754 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1755 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1756 */ 1757 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1758 struct drbd_peer_request *peer_req) 1759 { 1760 struct drbd_device *device = peer_device->device; 1761 struct drbd_socket *sock; 1762 struct p_data *p; 1763 int err; 1764 int digest_size; 1765 1766 sock = &peer_device->connection->data; 1767 p = drbd_prepare_command(peer_device, sock); 1768 1769 digest_size = peer_device->connection->integrity_tfm ? 1770 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1771 1772 if (!p) 1773 return -EIO; 1774 p->sector = cpu_to_be64(peer_req->i.sector); 1775 p->block_id = peer_req->block_id; 1776 p->seq_num = 0; /* unused */ 1777 p->dp_flags = 0; 1778 if (digest_size) 1779 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1780 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1781 if (!err) 1782 err = _drbd_send_zc_ee(peer_device, peer_req); 1783 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1784 1785 return err; 1786 } 1787 1788 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1789 { 1790 struct drbd_socket *sock; 1791 struct p_block_desc *p; 1792 1793 sock = &peer_device->connection->data; 1794 p = drbd_prepare_command(peer_device, sock); 1795 if (!p) 1796 return -EIO; 1797 p->sector = cpu_to_be64(req->i.sector); 1798 p->blksize = cpu_to_be32(req->i.size); 1799 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1800 } 1801 1802 /* 1803 drbd_send distinguishes two cases: 1804 1805 Packets sent via the data socket "sock" 1806 and packets sent via the meta data socket "msock" 1807 1808 sock msock 1809 -----------------+-------------------------+------------------------------ 1810 timeout conf.timeout / 2 conf.timeout / 2 1811 timeout action send a ping via msock Abort communication 1812 and close all sockets 1813 */ 1814 1815 /* 1816 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1817 */ 1818 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1819 void *buf, size_t size, unsigned msg_flags) 1820 { 1821 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1822 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1823 int rv, sent = 0; 1824 1825 if (!sock) 1826 return -EBADR; 1827 1828 /* THINK if (signal_pending) return ... ? */ 1829 1830 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &iov, 1, size); 1831 1832 if (sock == connection->data.socket) { 1833 rcu_read_lock(); 1834 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1835 rcu_read_unlock(); 1836 drbd_update_congested(connection); 1837 } 1838 do { 1839 rv = sock_sendmsg(sock, &msg); 1840 if (rv == -EAGAIN) { 1841 if (we_should_drop_the_connection(connection, sock)) 1842 break; 1843 else 1844 continue; 1845 } 1846 if (rv == -EINTR) { 1847 flush_signals(current); 1848 rv = 0; 1849 } 1850 if (rv < 0) 1851 break; 1852 sent += rv; 1853 } while (sent < size); 1854 1855 if (sock == connection->data.socket) 1856 clear_bit(NET_CONGESTED, &connection->flags); 1857 1858 if (rv <= 0) { 1859 if (rv != -EAGAIN) { 1860 drbd_err(connection, "%s_sendmsg returned %d\n", 1861 sock == connection->meta.socket ? "msock" : "sock", 1862 rv); 1863 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1864 } else 1865 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1866 } 1867 1868 return sent; 1869 } 1870 1871 /* 1872 * drbd_send_all - Send an entire buffer 1873 * 1874 * Returns 0 upon success and a negative error value otherwise. 1875 */ 1876 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1877 size_t size, unsigned msg_flags) 1878 { 1879 int err; 1880 1881 err = drbd_send(connection, sock, buffer, size, msg_flags); 1882 if (err < 0) 1883 return err; 1884 if (err != size) 1885 return -EIO; 1886 return 0; 1887 } 1888 1889 static int drbd_open(struct gendisk *disk, blk_mode_t mode) 1890 { 1891 struct drbd_device *device = disk->private_data; 1892 unsigned long flags; 1893 int rv = 0; 1894 1895 mutex_lock(&drbd_main_mutex); 1896 spin_lock_irqsave(&device->resource->req_lock, flags); 1897 /* to have a stable device->state.role 1898 * and no race with updating open_cnt */ 1899 1900 if (device->state.role != R_PRIMARY) { 1901 if (mode & BLK_OPEN_WRITE) 1902 rv = -EROFS; 1903 else if (!drbd_allow_oos) 1904 rv = -EMEDIUMTYPE; 1905 } 1906 1907 if (!rv) 1908 device->open_cnt++; 1909 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1910 mutex_unlock(&drbd_main_mutex); 1911 1912 return rv; 1913 } 1914 1915 static void drbd_release(struct gendisk *gd) 1916 { 1917 struct drbd_device *device = gd->private_data; 1918 1919 mutex_lock(&drbd_main_mutex); 1920 device->open_cnt--; 1921 mutex_unlock(&drbd_main_mutex); 1922 } 1923 1924 /* need to hold resource->req_lock */ 1925 void drbd_queue_unplug(struct drbd_device *device) 1926 { 1927 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1928 D_ASSERT(device, device->state.role == R_PRIMARY); 1929 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1930 drbd_queue_work_if_unqueued( 1931 &first_peer_device(device)->connection->sender_work, 1932 &device->unplug_work); 1933 } 1934 } 1935 } 1936 1937 static void drbd_set_defaults(struct drbd_device *device) 1938 { 1939 /* Beware! The actual layout differs 1940 * between big endian and little endian */ 1941 device->state = (union drbd_dev_state) { 1942 { .role = R_SECONDARY, 1943 .peer = R_UNKNOWN, 1944 .conn = C_STANDALONE, 1945 .disk = D_DISKLESS, 1946 .pdsk = D_UNKNOWN, 1947 } }; 1948 } 1949 1950 void drbd_init_set_defaults(struct drbd_device *device) 1951 { 1952 /* the memset(,0,) did most of this. 1953 * note: only assignments, no allocation in here */ 1954 1955 drbd_set_defaults(device); 1956 1957 atomic_set(&device->ap_bio_cnt, 0); 1958 atomic_set(&device->ap_actlog_cnt, 0); 1959 atomic_set(&device->ap_pending_cnt, 0); 1960 atomic_set(&device->rs_pending_cnt, 0); 1961 atomic_set(&device->unacked_cnt, 0); 1962 atomic_set(&device->local_cnt, 0); 1963 atomic_set(&device->pp_in_use_by_net, 0); 1964 atomic_set(&device->rs_sect_in, 0); 1965 atomic_set(&device->rs_sect_ev, 0); 1966 atomic_set(&device->ap_in_flight, 0); 1967 atomic_set(&device->md_io.in_use, 0); 1968 1969 mutex_init(&device->own_state_mutex); 1970 device->state_mutex = &device->own_state_mutex; 1971 1972 spin_lock_init(&device->al_lock); 1973 spin_lock_init(&device->peer_seq_lock); 1974 1975 INIT_LIST_HEAD(&device->active_ee); 1976 INIT_LIST_HEAD(&device->sync_ee); 1977 INIT_LIST_HEAD(&device->done_ee); 1978 INIT_LIST_HEAD(&device->read_ee); 1979 INIT_LIST_HEAD(&device->net_ee); 1980 INIT_LIST_HEAD(&device->resync_reads); 1981 INIT_LIST_HEAD(&device->resync_work.list); 1982 INIT_LIST_HEAD(&device->unplug_work.list); 1983 INIT_LIST_HEAD(&device->bm_io_work.w.list); 1984 INIT_LIST_HEAD(&device->pending_master_completion[0]); 1985 INIT_LIST_HEAD(&device->pending_master_completion[1]); 1986 INIT_LIST_HEAD(&device->pending_completion[0]); 1987 INIT_LIST_HEAD(&device->pending_completion[1]); 1988 1989 device->resync_work.cb = w_resync_timer; 1990 device->unplug_work.cb = w_send_write_hint; 1991 device->bm_io_work.w.cb = w_bitmap_io; 1992 1993 timer_setup(&device->resync_timer, resync_timer_fn, 0); 1994 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 1995 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 1996 timer_setup(&device->request_timer, request_timer_fn, 0); 1997 1998 init_waitqueue_head(&device->misc_wait); 1999 init_waitqueue_head(&device->state_wait); 2000 init_waitqueue_head(&device->ee_wait); 2001 init_waitqueue_head(&device->al_wait); 2002 init_waitqueue_head(&device->seq_wait); 2003 2004 device->resync_wenr = LC_FREE; 2005 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2006 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2007 } 2008 2009 void drbd_set_my_capacity(struct drbd_device *device, sector_t size) 2010 { 2011 char ppb[10]; 2012 2013 set_capacity_and_notify(device->vdisk, size); 2014 2015 drbd_info(device, "size = %s (%llu KB)\n", 2016 ppsize(ppb, size>>1), (unsigned long long)size>>1); 2017 } 2018 2019 void drbd_device_cleanup(struct drbd_device *device) 2020 { 2021 int i; 2022 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2023 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2024 first_peer_device(device)->connection->receiver.t_state); 2025 2026 device->al_writ_cnt = 2027 device->bm_writ_cnt = 2028 device->read_cnt = 2029 device->recv_cnt = 2030 device->send_cnt = 2031 device->writ_cnt = 2032 device->p_size = 2033 device->rs_start = 2034 device->rs_total = 2035 device->rs_failed = 0; 2036 device->rs_last_events = 0; 2037 device->rs_last_sect_ev = 0; 2038 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2039 device->rs_mark_left[i] = 0; 2040 device->rs_mark_time[i] = 0; 2041 } 2042 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2043 2044 set_capacity_and_notify(device->vdisk, 0); 2045 if (device->bitmap) { 2046 /* maybe never allocated. */ 2047 drbd_bm_resize(device, 0, 1); 2048 drbd_bm_cleanup(device); 2049 } 2050 2051 drbd_backing_dev_free(device, device->ldev); 2052 device->ldev = NULL; 2053 2054 clear_bit(AL_SUSPENDED, &device->flags); 2055 2056 D_ASSERT(device, list_empty(&device->active_ee)); 2057 D_ASSERT(device, list_empty(&device->sync_ee)); 2058 D_ASSERT(device, list_empty(&device->done_ee)); 2059 D_ASSERT(device, list_empty(&device->read_ee)); 2060 D_ASSERT(device, list_empty(&device->net_ee)); 2061 D_ASSERT(device, list_empty(&device->resync_reads)); 2062 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2063 D_ASSERT(device, list_empty(&device->resync_work.list)); 2064 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2065 2066 drbd_set_defaults(device); 2067 } 2068 2069 2070 static void drbd_destroy_mempools(void) 2071 { 2072 struct page *page; 2073 2074 while (drbd_pp_pool) { 2075 page = drbd_pp_pool; 2076 drbd_pp_pool = (struct page *)page_private(page); 2077 __free_page(page); 2078 drbd_pp_vacant--; 2079 } 2080 2081 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2082 2083 bioset_exit(&drbd_io_bio_set); 2084 bioset_exit(&drbd_md_io_bio_set); 2085 mempool_exit(&drbd_md_io_page_pool); 2086 mempool_exit(&drbd_ee_mempool); 2087 mempool_exit(&drbd_request_mempool); 2088 kmem_cache_destroy(drbd_ee_cache); 2089 kmem_cache_destroy(drbd_request_cache); 2090 kmem_cache_destroy(drbd_bm_ext_cache); 2091 kmem_cache_destroy(drbd_al_ext_cache); 2092 2093 drbd_ee_cache = NULL; 2094 drbd_request_cache = NULL; 2095 drbd_bm_ext_cache = NULL; 2096 drbd_al_ext_cache = NULL; 2097 2098 return; 2099 } 2100 2101 static int drbd_create_mempools(void) 2102 { 2103 struct page *page; 2104 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2105 int i, ret; 2106 2107 /* caches */ 2108 drbd_request_cache = kmem_cache_create( 2109 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2110 if (drbd_request_cache == NULL) 2111 goto Enomem; 2112 2113 drbd_ee_cache = kmem_cache_create( 2114 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2115 if (drbd_ee_cache == NULL) 2116 goto Enomem; 2117 2118 drbd_bm_ext_cache = kmem_cache_create( 2119 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2120 if (drbd_bm_ext_cache == NULL) 2121 goto Enomem; 2122 2123 drbd_al_ext_cache = kmem_cache_create( 2124 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2125 if (drbd_al_ext_cache == NULL) 2126 goto Enomem; 2127 2128 /* mempools */ 2129 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2130 if (ret) 2131 goto Enomem; 2132 2133 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2134 BIOSET_NEED_BVECS); 2135 if (ret) 2136 goto Enomem; 2137 2138 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2139 if (ret) 2140 goto Enomem; 2141 2142 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2143 drbd_request_cache); 2144 if (ret) 2145 goto Enomem; 2146 2147 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2148 if (ret) 2149 goto Enomem; 2150 2151 for (i = 0; i < number; i++) { 2152 page = alloc_page(GFP_HIGHUSER); 2153 if (!page) 2154 goto Enomem; 2155 set_page_private(page, (unsigned long)drbd_pp_pool); 2156 drbd_pp_pool = page; 2157 } 2158 drbd_pp_vacant = number; 2159 2160 return 0; 2161 2162 Enomem: 2163 drbd_destroy_mempools(); /* in case we allocated some */ 2164 return -ENOMEM; 2165 } 2166 2167 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2168 { 2169 int rr; 2170 2171 rr = drbd_free_peer_reqs(device, &device->active_ee); 2172 if (rr) 2173 drbd_err(device, "%d EEs in active list found!\n", rr); 2174 2175 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2176 if (rr) 2177 drbd_err(device, "%d EEs in sync list found!\n", rr); 2178 2179 rr = drbd_free_peer_reqs(device, &device->read_ee); 2180 if (rr) 2181 drbd_err(device, "%d EEs in read list found!\n", rr); 2182 2183 rr = drbd_free_peer_reqs(device, &device->done_ee); 2184 if (rr) 2185 drbd_err(device, "%d EEs in done list found!\n", rr); 2186 2187 rr = drbd_free_peer_reqs(device, &device->net_ee); 2188 if (rr) 2189 drbd_err(device, "%d EEs in net list found!\n", rr); 2190 } 2191 2192 /* caution. no locking. */ 2193 void drbd_destroy_device(struct kref *kref) 2194 { 2195 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2196 struct drbd_resource *resource = device->resource; 2197 struct drbd_peer_device *peer_device, *tmp_peer_device; 2198 2199 timer_shutdown_sync(&device->request_timer); 2200 2201 /* paranoia asserts */ 2202 D_ASSERT(device, device->open_cnt == 0); 2203 /* end paranoia asserts */ 2204 2205 /* cleanup stuff that may have been allocated during 2206 * device (re-)configuration or state changes */ 2207 2208 drbd_backing_dev_free(device, device->ldev); 2209 device->ldev = NULL; 2210 2211 drbd_release_all_peer_reqs(device); 2212 2213 lc_destroy(device->act_log); 2214 lc_destroy(device->resync); 2215 2216 kfree(device->p_uuid); 2217 /* device->p_uuid = NULL; */ 2218 2219 if (device->bitmap) /* should no longer be there. */ 2220 drbd_bm_cleanup(device); 2221 __free_page(device->md_io.page); 2222 put_disk(device->vdisk); 2223 kfree(device->rs_plan_s); 2224 2225 /* not for_each_connection(connection, resource): 2226 * those may have been cleaned up and disassociated already. 2227 */ 2228 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2229 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2230 kfree(peer_device); 2231 } 2232 if (device->submit.wq) 2233 destroy_workqueue(device->submit.wq); 2234 kfree(device); 2235 kref_put(&resource->kref, drbd_destroy_resource); 2236 } 2237 2238 /* One global retry thread, if we need to push back some bio and have it 2239 * reinserted through our make request function. 2240 */ 2241 static struct retry_worker { 2242 struct workqueue_struct *wq; 2243 struct work_struct worker; 2244 2245 spinlock_t lock; 2246 struct list_head writes; 2247 } retry; 2248 2249 static void do_retry(struct work_struct *ws) 2250 { 2251 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2252 LIST_HEAD(writes); 2253 struct drbd_request *req, *tmp; 2254 2255 spin_lock_irq(&retry->lock); 2256 list_splice_init(&retry->writes, &writes); 2257 spin_unlock_irq(&retry->lock); 2258 2259 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2260 struct drbd_device *device = req->device; 2261 struct bio *bio = req->master_bio; 2262 bool expected; 2263 2264 expected = 2265 expect(device, atomic_read(&req->completion_ref) == 0) && 2266 expect(device, req->rq_state & RQ_POSTPONED) && 2267 expect(device, (req->rq_state & RQ_LOCAL_PENDING) == 0 || 2268 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2269 2270 if (!expected) 2271 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2272 req, atomic_read(&req->completion_ref), 2273 req->rq_state); 2274 2275 /* We still need to put one kref associated with the 2276 * "completion_ref" going zero in the code path that queued it 2277 * here. The request object may still be referenced by a 2278 * frozen local req->private_bio, in case we force-detached. 2279 */ 2280 kref_put(&req->kref, drbd_req_destroy); 2281 2282 /* A single suspended or otherwise blocking device may stall 2283 * all others as well. Fortunately, this code path is to 2284 * recover from a situation that "should not happen": 2285 * concurrent writes in multi-primary setup. 2286 * In a "normal" lifecycle, this workqueue is supposed to be 2287 * destroyed without ever doing anything. 2288 * If it turns out to be an issue anyways, we can do per 2289 * resource (replication group) or per device (minor) retry 2290 * workqueues instead. 2291 */ 2292 2293 /* We are not just doing submit_bio_noacct(), 2294 * as we want to keep the start_time information. */ 2295 inc_ap_bio(device); 2296 __drbd_make_request(device, bio); 2297 } 2298 } 2299 2300 /* called via drbd_req_put_completion_ref(), 2301 * holds resource->req_lock */ 2302 void drbd_restart_request(struct drbd_request *req) 2303 { 2304 unsigned long flags; 2305 spin_lock_irqsave(&retry.lock, flags); 2306 list_move_tail(&req->tl_requests, &retry.writes); 2307 spin_unlock_irqrestore(&retry.lock, flags); 2308 2309 /* Drop the extra reference that would otherwise 2310 * have been dropped by complete_master_bio. 2311 * do_retry() needs to grab a new one. */ 2312 dec_ap_bio(req->device); 2313 2314 queue_work(retry.wq, &retry.worker); 2315 } 2316 2317 void drbd_destroy_resource(struct kref *kref) 2318 { 2319 struct drbd_resource *resource = 2320 container_of(kref, struct drbd_resource, kref); 2321 2322 idr_destroy(&resource->devices); 2323 free_cpumask_var(resource->cpu_mask); 2324 kfree(resource->name); 2325 kfree(resource); 2326 } 2327 2328 void drbd_free_resource(struct drbd_resource *resource) 2329 { 2330 struct drbd_connection *connection, *tmp; 2331 2332 for_each_connection_safe(connection, tmp, resource) { 2333 list_del(&connection->connections); 2334 drbd_debugfs_connection_cleanup(connection); 2335 kref_put(&connection->kref, drbd_destroy_connection); 2336 } 2337 drbd_debugfs_resource_cleanup(resource); 2338 kref_put(&resource->kref, drbd_destroy_resource); 2339 } 2340 2341 static void drbd_cleanup(void) 2342 { 2343 unsigned int i; 2344 struct drbd_device *device; 2345 struct drbd_resource *resource, *tmp; 2346 2347 /* first remove proc, 2348 * drbdsetup uses it's presence to detect 2349 * whether DRBD is loaded. 2350 * If we would get stuck in proc removal, 2351 * but have netlink already deregistered, 2352 * some drbdsetup commands may wait forever 2353 * for an answer. 2354 */ 2355 if (drbd_proc) 2356 remove_proc_entry("drbd", NULL); 2357 2358 if (retry.wq) 2359 destroy_workqueue(retry.wq); 2360 2361 drbd_genl_unregister(); 2362 2363 idr_for_each_entry(&drbd_devices, device, i) 2364 drbd_delete_device(device); 2365 2366 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2367 for_each_resource_safe(resource, tmp, &drbd_resources) { 2368 list_del(&resource->resources); 2369 drbd_free_resource(resource); 2370 } 2371 2372 drbd_debugfs_cleanup(); 2373 2374 drbd_destroy_mempools(); 2375 unregister_blkdev(DRBD_MAJOR, "drbd"); 2376 2377 idr_destroy(&drbd_devices); 2378 2379 pr_info("module cleanup done.\n"); 2380 } 2381 2382 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2383 { 2384 spin_lock_init(&wq->q_lock); 2385 INIT_LIST_HEAD(&wq->q); 2386 init_waitqueue_head(&wq->q_wait); 2387 } 2388 2389 struct completion_work { 2390 struct drbd_work w; 2391 struct completion done; 2392 }; 2393 2394 static int w_complete(struct drbd_work *w, int cancel) 2395 { 2396 struct completion_work *completion_work = 2397 container_of(w, struct completion_work, w); 2398 2399 complete(&completion_work->done); 2400 return 0; 2401 } 2402 2403 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2404 { 2405 struct completion_work completion_work; 2406 2407 completion_work.w.cb = w_complete; 2408 init_completion(&completion_work.done); 2409 drbd_queue_work(work_queue, &completion_work.w); 2410 wait_for_completion(&completion_work.done); 2411 } 2412 2413 struct drbd_resource *drbd_find_resource(const char *name) 2414 { 2415 struct drbd_resource *resource; 2416 2417 if (!name || !name[0]) 2418 return NULL; 2419 2420 rcu_read_lock(); 2421 for_each_resource_rcu(resource, &drbd_resources) { 2422 if (!strcmp(resource->name, name)) { 2423 kref_get(&resource->kref); 2424 goto found; 2425 } 2426 } 2427 resource = NULL; 2428 found: 2429 rcu_read_unlock(); 2430 return resource; 2431 } 2432 2433 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2434 void *peer_addr, int peer_addr_len) 2435 { 2436 struct drbd_resource *resource; 2437 struct drbd_connection *connection; 2438 2439 rcu_read_lock(); 2440 for_each_resource_rcu(resource, &drbd_resources) { 2441 for_each_connection_rcu(connection, resource) { 2442 if (connection->my_addr_len == my_addr_len && 2443 connection->peer_addr_len == peer_addr_len && 2444 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2445 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2446 kref_get(&connection->kref); 2447 goto found; 2448 } 2449 } 2450 } 2451 connection = NULL; 2452 found: 2453 rcu_read_unlock(); 2454 return connection; 2455 } 2456 2457 static int drbd_alloc_socket(struct drbd_socket *socket) 2458 { 2459 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2460 if (!socket->rbuf) 2461 return -ENOMEM; 2462 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2463 if (!socket->sbuf) 2464 return -ENOMEM; 2465 return 0; 2466 } 2467 2468 static void drbd_free_socket(struct drbd_socket *socket) 2469 { 2470 free_page((unsigned long) socket->sbuf); 2471 free_page((unsigned long) socket->rbuf); 2472 } 2473 2474 void conn_free_crypto(struct drbd_connection *connection) 2475 { 2476 drbd_free_sock(connection); 2477 2478 crypto_free_shash(connection->csums_tfm); 2479 crypto_free_shash(connection->verify_tfm); 2480 crypto_free_shash(connection->cram_hmac_tfm); 2481 crypto_free_shash(connection->integrity_tfm); 2482 crypto_free_shash(connection->peer_integrity_tfm); 2483 kfree(connection->int_dig_in); 2484 kfree(connection->int_dig_vv); 2485 2486 connection->csums_tfm = NULL; 2487 connection->verify_tfm = NULL; 2488 connection->cram_hmac_tfm = NULL; 2489 connection->integrity_tfm = NULL; 2490 connection->peer_integrity_tfm = NULL; 2491 connection->int_dig_in = NULL; 2492 connection->int_dig_vv = NULL; 2493 } 2494 2495 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2496 { 2497 struct drbd_connection *connection; 2498 cpumask_var_t new_cpu_mask; 2499 int err; 2500 2501 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2502 return -ENOMEM; 2503 2504 /* silently ignore cpu mask on UP kernel */ 2505 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2506 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2507 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2508 if (err == -EOVERFLOW) { 2509 /* So what. mask it out. */ 2510 cpumask_var_t tmp_cpu_mask; 2511 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2512 cpumask_setall(tmp_cpu_mask); 2513 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2514 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2515 res_opts->cpu_mask, 2516 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2517 nr_cpu_ids); 2518 free_cpumask_var(tmp_cpu_mask); 2519 err = 0; 2520 } 2521 } 2522 if (err) { 2523 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2524 /* retcode = ERR_CPU_MASK_PARSE; */ 2525 goto fail; 2526 } 2527 } 2528 resource->res_opts = *res_opts; 2529 if (cpumask_empty(new_cpu_mask)) 2530 drbd_calc_cpu_mask(&new_cpu_mask); 2531 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2532 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2533 for_each_connection_rcu(connection, resource) { 2534 connection->receiver.reset_cpu_mask = 1; 2535 connection->ack_receiver.reset_cpu_mask = 1; 2536 connection->worker.reset_cpu_mask = 1; 2537 } 2538 } 2539 err = 0; 2540 2541 fail: 2542 free_cpumask_var(new_cpu_mask); 2543 return err; 2544 2545 } 2546 2547 struct drbd_resource *drbd_create_resource(const char *name) 2548 { 2549 struct drbd_resource *resource; 2550 2551 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2552 if (!resource) 2553 goto fail; 2554 resource->name = kstrdup(name, GFP_KERNEL); 2555 if (!resource->name) 2556 goto fail_free_resource; 2557 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2558 goto fail_free_name; 2559 kref_init(&resource->kref); 2560 idr_init(&resource->devices); 2561 INIT_LIST_HEAD(&resource->connections); 2562 resource->write_ordering = WO_BDEV_FLUSH; 2563 list_add_tail_rcu(&resource->resources, &drbd_resources); 2564 mutex_init(&resource->conf_update); 2565 mutex_init(&resource->adm_mutex); 2566 spin_lock_init(&resource->req_lock); 2567 drbd_debugfs_resource_add(resource); 2568 return resource; 2569 2570 fail_free_name: 2571 kfree(resource->name); 2572 fail_free_resource: 2573 kfree(resource); 2574 fail: 2575 return NULL; 2576 } 2577 2578 /* caller must be under adm_mutex */ 2579 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2580 { 2581 struct drbd_resource *resource; 2582 struct drbd_connection *connection; 2583 2584 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2585 if (!connection) 2586 return NULL; 2587 2588 if (drbd_alloc_socket(&connection->data)) 2589 goto fail; 2590 if (drbd_alloc_socket(&connection->meta)) 2591 goto fail; 2592 2593 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2594 if (!connection->current_epoch) 2595 goto fail; 2596 2597 INIT_LIST_HEAD(&connection->transfer_log); 2598 2599 INIT_LIST_HEAD(&connection->current_epoch->list); 2600 connection->epochs = 1; 2601 spin_lock_init(&connection->epoch_lock); 2602 2603 connection->send.seen_any_write_yet = false; 2604 connection->send.current_epoch_nr = 0; 2605 connection->send.current_epoch_writes = 0; 2606 2607 resource = drbd_create_resource(name); 2608 if (!resource) 2609 goto fail; 2610 2611 connection->cstate = C_STANDALONE; 2612 mutex_init(&connection->cstate_mutex); 2613 init_waitqueue_head(&connection->ping_wait); 2614 idr_init(&connection->peer_devices); 2615 2616 drbd_init_workqueue(&connection->sender_work); 2617 mutex_init(&connection->data.mutex); 2618 mutex_init(&connection->meta.mutex); 2619 2620 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2621 connection->receiver.connection = connection; 2622 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2623 connection->worker.connection = connection; 2624 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2625 connection->ack_receiver.connection = connection; 2626 2627 kref_init(&connection->kref); 2628 2629 connection->resource = resource; 2630 2631 if (set_resource_options(resource, res_opts)) 2632 goto fail_resource; 2633 2634 kref_get(&resource->kref); 2635 list_add_tail_rcu(&connection->connections, &resource->connections); 2636 drbd_debugfs_connection_add(connection); 2637 return connection; 2638 2639 fail_resource: 2640 list_del(&resource->resources); 2641 drbd_free_resource(resource); 2642 fail: 2643 kfree(connection->current_epoch); 2644 drbd_free_socket(&connection->meta); 2645 drbd_free_socket(&connection->data); 2646 kfree(connection); 2647 return NULL; 2648 } 2649 2650 void drbd_destroy_connection(struct kref *kref) 2651 { 2652 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2653 struct drbd_resource *resource = connection->resource; 2654 2655 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2656 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2657 kfree(connection->current_epoch); 2658 2659 idr_destroy(&connection->peer_devices); 2660 2661 drbd_free_socket(&connection->meta); 2662 drbd_free_socket(&connection->data); 2663 kfree(connection->int_dig_in); 2664 kfree(connection->int_dig_vv); 2665 kfree(connection); 2666 kref_put(&resource->kref, drbd_destroy_resource); 2667 } 2668 2669 static int init_submitter(struct drbd_device *device) 2670 { 2671 /* opencoded create_singlethread_workqueue(), 2672 * to be able to say "drbd%d", ..., minor */ 2673 device->submit.wq = 2674 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2675 if (!device->submit.wq) 2676 return -ENOMEM; 2677 2678 INIT_WORK(&device->submit.worker, do_submit); 2679 INIT_LIST_HEAD(&device->submit.writes); 2680 return 0; 2681 } 2682 2683 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2684 { 2685 struct drbd_resource *resource = adm_ctx->resource; 2686 struct drbd_connection *connection, *n; 2687 struct drbd_device *device; 2688 struct drbd_peer_device *peer_device, *tmp_peer_device; 2689 struct gendisk *disk; 2690 int id; 2691 int vnr = adm_ctx->volume; 2692 enum drbd_ret_code err = ERR_NOMEM; 2693 2694 device = minor_to_device(minor); 2695 if (device) 2696 return ERR_MINOR_OR_VOLUME_EXISTS; 2697 2698 /* GFP_KERNEL, we are outside of all write-out paths */ 2699 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2700 if (!device) 2701 return ERR_NOMEM; 2702 kref_init(&device->kref); 2703 2704 kref_get(&resource->kref); 2705 device->resource = resource; 2706 device->minor = minor; 2707 device->vnr = vnr; 2708 2709 drbd_init_set_defaults(device); 2710 2711 disk = blk_alloc_disk(NUMA_NO_NODE); 2712 if (!disk) 2713 goto out_no_disk; 2714 2715 device->vdisk = disk; 2716 device->rq_queue = disk->queue; 2717 2718 set_disk_ro(disk, true); 2719 2720 disk->major = DRBD_MAJOR; 2721 disk->first_minor = minor; 2722 disk->minors = 1; 2723 disk->fops = &drbd_ops; 2724 disk->flags |= GENHD_FL_NO_PART; 2725 sprintf(disk->disk_name, "drbd%d", minor); 2726 disk->private_data = device; 2727 2728 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, disk->queue); 2729 blk_queue_write_cache(disk->queue, true, true); 2730 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2731 This triggers a max_bio_size message upon first attach or connect */ 2732 blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2733 2734 device->md_io.page = alloc_page(GFP_KERNEL); 2735 if (!device->md_io.page) 2736 goto out_no_io_page; 2737 2738 if (drbd_bm_init(device)) 2739 goto out_no_bitmap; 2740 device->read_requests = RB_ROOT; 2741 device->write_requests = RB_ROOT; 2742 2743 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2744 if (id < 0) { 2745 if (id == -ENOSPC) 2746 err = ERR_MINOR_OR_VOLUME_EXISTS; 2747 goto out_no_minor_idr; 2748 } 2749 kref_get(&device->kref); 2750 2751 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2752 if (id < 0) { 2753 if (id == -ENOSPC) 2754 err = ERR_MINOR_OR_VOLUME_EXISTS; 2755 goto out_idr_remove_minor; 2756 } 2757 kref_get(&device->kref); 2758 2759 INIT_LIST_HEAD(&device->peer_devices); 2760 INIT_LIST_HEAD(&device->pending_bitmap_io); 2761 for_each_connection(connection, resource) { 2762 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2763 if (!peer_device) 2764 goto out_idr_remove_from_resource; 2765 peer_device->connection = connection; 2766 peer_device->device = device; 2767 2768 list_add(&peer_device->peer_devices, &device->peer_devices); 2769 kref_get(&device->kref); 2770 2771 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2772 if (id < 0) { 2773 if (id == -ENOSPC) 2774 err = ERR_INVALID_REQUEST; 2775 goto out_idr_remove_from_resource; 2776 } 2777 kref_get(&connection->kref); 2778 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2779 } 2780 2781 if (init_submitter(device)) { 2782 err = ERR_NOMEM; 2783 goto out_idr_remove_from_resource; 2784 } 2785 2786 err = add_disk(disk); 2787 if (err) 2788 goto out_destroy_workqueue; 2789 2790 /* inherit the connection state */ 2791 device->state.conn = first_connection(resource)->cstate; 2792 if (device->state.conn == C_WF_REPORT_PARAMS) { 2793 for_each_peer_device(peer_device, device) 2794 drbd_connected(peer_device); 2795 } 2796 /* move to create_peer_device() */ 2797 for_each_peer_device(peer_device, device) 2798 drbd_debugfs_peer_device_add(peer_device); 2799 drbd_debugfs_device_add(device); 2800 return NO_ERROR; 2801 2802 out_destroy_workqueue: 2803 destroy_workqueue(device->submit.wq); 2804 out_idr_remove_from_resource: 2805 for_each_connection_safe(connection, n, resource) { 2806 peer_device = idr_remove(&connection->peer_devices, vnr); 2807 if (peer_device) 2808 kref_put(&connection->kref, drbd_destroy_connection); 2809 } 2810 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2811 list_del(&peer_device->peer_devices); 2812 kfree(peer_device); 2813 } 2814 idr_remove(&resource->devices, vnr); 2815 out_idr_remove_minor: 2816 idr_remove(&drbd_devices, minor); 2817 synchronize_rcu(); 2818 out_no_minor_idr: 2819 drbd_bm_cleanup(device); 2820 out_no_bitmap: 2821 __free_page(device->md_io.page); 2822 out_no_io_page: 2823 put_disk(disk); 2824 out_no_disk: 2825 kref_put(&resource->kref, drbd_destroy_resource); 2826 kfree(device); 2827 return err; 2828 } 2829 2830 void drbd_delete_device(struct drbd_device *device) 2831 { 2832 struct drbd_resource *resource = device->resource; 2833 struct drbd_connection *connection; 2834 struct drbd_peer_device *peer_device; 2835 2836 /* move to free_peer_device() */ 2837 for_each_peer_device(peer_device, device) 2838 drbd_debugfs_peer_device_cleanup(peer_device); 2839 drbd_debugfs_device_cleanup(device); 2840 for_each_connection(connection, resource) { 2841 idr_remove(&connection->peer_devices, device->vnr); 2842 kref_put(&device->kref, drbd_destroy_device); 2843 } 2844 idr_remove(&resource->devices, device->vnr); 2845 kref_put(&device->kref, drbd_destroy_device); 2846 idr_remove(&drbd_devices, device_to_minor(device)); 2847 kref_put(&device->kref, drbd_destroy_device); 2848 del_gendisk(device->vdisk); 2849 synchronize_rcu(); 2850 kref_put(&device->kref, drbd_destroy_device); 2851 } 2852 2853 static int __init drbd_init(void) 2854 { 2855 int err; 2856 2857 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2858 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2859 #ifdef MODULE 2860 return -EINVAL; 2861 #else 2862 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2863 #endif 2864 } 2865 2866 err = register_blkdev(DRBD_MAJOR, "drbd"); 2867 if (err) { 2868 pr_err("unable to register block device major %d\n", 2869 DRBD_MAJOR); 2870 return err; 2871 } 2872 2873 /* 2874 * allocate all necessary structs 2875 */ 2876 init_waitqueue_head(&drbd_pp_wait); 2877 2878 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2879 idr_init(&drbd_devices); 2880 2881 mutex_init(&resources_mutex); 2882 INIT_LIST_HEAD(&drbd_resources); 2883 2884 err = drbd_genl_register(); 2885 if (err) { 2886 pr_err("unable to register generic netlink family\n"); 2887 goto fail; 2888 } 2889 2890 err = drbd_create_mempools(); 2891 if (err) 2892 goto fail; 2893 2894 err = -ENOMEM; 2895 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 2896 if (!drbd_proc) { 2897 pr_err("unable to register proc file\n"); 2898 goto fail; 2899 } 2900 2901 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2902 if (!retry.wq) { 2903 pr_err("unable to create retry workqueue\n"); 2904 goto fail; 2905 } 2906 INIT_WORK(&retry.worker, do_retry); 2907 spin_lock_init(&retry.lock); 2908 INIT_LIST_HEAD(&retry.writes); 2909 2910 drbd_debugfs_init(); 2911 2912 pr_info("initialized. " 2913 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 2914 GENL_MAGIC_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 2915 pr_info("%s\n", drbd_buildtag()); 2916 pr_info("registered as block device major %d\n", DRBD_MAJOR); 2917 return 0; /* Success! */ 2918 2919 fail: 2920 drbd_cleanup(); 2921 if (err == -ENOMEM) 2922 pr_err("ran out of memory\n"); 2923 else 2924 pr_err("initialization failure\n"); 2925 return err; 2926 } 2927 2928 static void drbd_free_one_sock(struct drbd_socket *ds) 2929 { 2930 struct socket *s; 2931 mutex_lock(&ds->mutex); 2932 s = ds->socket; 2933 ds->socket = NULL; 2934 mutex_unlock(&ds->mutex); 2935 if (s) { 2936 /* so debugfs does not need to mutex_lock() */ 2937 synchronize_rcu(); 2938 kernel_sock_shutdown(s, SHUT_RDWR); 2939 sock_release(s); 2940 } 2941 } 2942 2943 void drbd_free_sock(struct drbd_connection *connection) 2944 { 2945 if (connection->data.socket) 2946 drbd_free_one_sock(&connection->data); 2947 if (connection->meta.socket) 2948 drbd_free_one_sock(&connection->meta); 2949 } 2950 2951 /* meta data management */ 2952 2953 void conn_md_sync(struct drbd_connection *connection) 2954 { 2955 struct drbd_peer_device *peer_device; 2956 int vnr; 2957 2958 rcu_read_lock(); 2959 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2960 struct drbd_device *device = peer_device->device; 2961 2962 kref_get(&device->kref); 2963 rcu_read_unlock(); 2964 drbd_md_sync(device); 2965 kref_put(&device->kref, drbd_destroy_device); 2966 rcu_read_lock(); 2967 } 2968 rcu_read_unlock(); 2969 } 2970 2971 /* aligned 4kByte */ 2972 struct meta_data_on_disk { 2973 u64 la_size_sect; /* last agreed size. */ 2974 u64 uuid[UI_SIZE]; /* UUIDs. */ 2975 u64 device_uuid; 2976 u64 reserved_u64_1; 2977 u32 flags; /* MDF */ 2978 u32 magic; 2979 u32 md_size_sect; 2980 u32 al_offset; /* offset to this block */ 2981 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 2982 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 2983 u32 bm_offset; /* offset to the bitmap, from here */ 2984 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 2985 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 2986 2987 /* see al_tr_number_to_on_disk_sector() */ 2988 u32 al_stripes; 2989 u32 al_stripe_size_4k; 2990 2991 u8 reserved_u8[4096 - (7*8 + 10*4)]; 2992 } __packed; 2993 2994 2995 2996 void drbd_md_write(struct drbd_device *device, void *b) 2997 { 2998 struct meta_data_on_disk *buffer = b; 2999 sector_t sector; 3000 int i; 3001 3002 memset(buffer, 0, sizeof(*buffer)); 3003 3004 buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk)); 3005 for (i = UI_CURRENT; i < UI_SIZE; i++) 3006 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3007 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3008 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3009 3010 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3011 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3012 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3013 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3014 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3015 3016 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3017 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3018 3019 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3020 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3021 3022 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3023 sector = device->ldev->md.md_offset; 3024 3025 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3026 /* this was a try anyways ... */ 3027 drbd_err(device, "meta data update failed!\n"); 3028 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3029 } 3030 } 3031 3032 /** 3033 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3034 * @device: DRBD device. 3035 */ 3036 void drbd_md_sync(struct drbd_device *device) 3037 { 3038 struct meta_data_on_disk *buffer; 3039 3040 /* Don't accidentally change the DRBD meta data layout. */ 3041 BUILD_BUG_ON(UI_SIZE != 4); 3042 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3043 3044 del_timer(&device->md_sync_timer); 3045 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3046 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3047 return; 3048 3049 /* We use here D_FAILED and not D_ATTACHING because we try to write 3050 * metadata even if we detach due to a disk failure! */ 3051 if (!get_ldev_if_state(device, D_FAILED)) 3052 return; 3053 3054 buffer = drbd_md_get_buffer(device, __func__); 3055 if (!buffer) 3056 goto out; 3057 3058 drbd_md_write(device, buffer); 3059 3060 /* Update device->ldev->md.la_size_sect, 3061 * since we updated it on metadata. */ 3062 device->ldev->md.la_size_sect = get_capacity(device->vdisk); 3063 3064 drbd_md_put_buffer(device); 3065 out: 3066 put_ldev(device); 3067 } 3068 3069 static int check_activity_log_stripe_size(struct drbd_device *device, 3070 struct meta_data_on_disk *on_disk, 3071 struct drbd_md *in_core) 3072 { 3073 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3074 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3075 u64 al_size_4k; 3076 3077 /* both not set: default to old fixed size activity log */ 3078 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3079 al_stripes = 1; 3080 al_stripe_size_4k = MD_32kB_SECT/8; 3081 } 3082 3083 /* some paranoia plausibility checks */ 3084 3085 /* we need both values to be set */ 3086 if (al_stripes == 0 || al_stripe_size_4k == 0) 3087 goto err; 3088 3089 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3090 3091 /* Upper limit of activity log area, to avoid potential overflow 3092 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3093 * than 72 * 4k blocks total only increases the amount of history, 3094 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3095 if (al_size_4k > (16 * 1024 * 1024/4)) 3096 goto err; 3097 3098 /* Lower limit: we need at least 8 transaction slots (32kB) 3099 * to not break existing setups */ 3100 if (al_size_4k < MD_32kB_SECT/8) 3101 goto err; 3102 3103 in_core->al_stripe_size_4k = al_stripe_size_4k; 3104 in_core->al_stripes = al_stripes; 3105 in_core->al_size_4k = al_size_4k; 3106 3107 return 0; 3108 err: 3109 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3110 al_stripes, al_stripe_size_4k); 3111 return -EINVAL; 3112 } 3113 3114 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3115 { 3116 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3117 struct drbd_md *in_core = &bdev->md; 3118 s32 on_disk_al_sect; 3119 s32 on_disk_bm_sect; 3120 3121 /* The on-disk size of the activity log, calculated from offsets, and 3122 * the size of the activity log calculated from the stripe settings, 3123 * should match. 3124 * Though we could relax this a bit: it is ok, if the striped activity log 3125 * fits in the available on-disk activity log size. 3126 * Right now, that would break how resize is implemented. 3127 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3128 * of possible unused padding space in the on disk layout. */ 3129 if (in_core->al_offset < 0) { 3130 if (in_core->bm_offset > in_core->al_offset) 3131 goto err; 3132 on_disk_al_sect = -in_core->al_offset; 3133 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3134 } else { 3135 if (in_core->al_offset != MD_4kB_SECT) 3136 goto err; 3137 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3138 goto err; 3139 3140 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3141 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3142 } 3143 3144 /* old fixed size meta data is exactly that: fixed. */ 3145 if (in_core->meta_dev_idx >= 0) { 3146 if (in_core->md_size_sect != MD_128MB_SECT 3147 || in_core->al_offset != MD_4kB_SECT 3148 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3149 || in_core->al_stripes != 1 3150 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3151 goto err; 3152 } 3153 3154 if (capacity < in_core->md_size_sect) 3155 goto err; 3156 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3157 goto err; 3158 3159 /* should be aligned, and at least 32k */ 3160 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3161 goto err; 3162 3163 /* should fit (for now: exactly) into the available on-disk space; 3164 * overflow prevention is in check_activity_log_stripe_size() above. */ 3165 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3166 goto err; 3167 3168 /* again, should be aligned */ 3169 if (in_core->bm_offset & 7) 3170 goto err; 3171 3172 /* FIXME check for device grow with flex external meta data? */ 3173 3174 /* can the available bitmap space cover the last agreed device size? */ 3175 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3176 goto err; 3177 3178 return 0; 3179 3180 err: 3181 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3182 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3183 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3184 in_core->meta_dev_idx, 3185 in_core->al_stripes, in_core->al_stripe_size_4k, 3186 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3187 (unsigned long long)in_core->la_size_sect, 3188 (unsigned long long)capacity); 3189 3190 return -EINVAL; 3191 } 3192 3193 3194 /** 3195 * drbd_md_read() - Reads in the meta data super block 3196 * @device: DRBD device. 3197 * @bdev: Device from which the meta data should be read in. 3198 * 3199 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3200 * something goes wrong. 3201 * 3202 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3203 * even before @bdev is assigned to @device->ldev. 3204 */ 3205 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3206 { 3207 struct meta_data_on_disk *buffer; 3208 u32 magic, flags; 3209 int i, rv = NO_ERROR; 3210 3211 if (device->state.disk != D_DISKLESS) 3212 return ERR_DISK_CONFIGURED; 3213 3214 buffer = drbd_md_get_buffer(device, __func__); 3215 if (!buffer) 3216 return ERR_NOMEM; 3217 3218 /* First, figure out where our meta data superblock is located, 3219 * and read it. */ 3220 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3221 bdev->md.md_offset = drbd_md_ss(bdev); 3222 /* Even for (flexible or indexed) external meta data, 3223 * initially restrict us to the 4k superblock for now. 3224 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3225 bdev->md.md_size_sect = 8; 3226 3227 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3228 REQ_OP_READ)) { 3229 /* NOTE: can't do normal error processing here as this is 3230 called BEFORE disk is attached */ 3231 drbd_err(device, "Error while reading metadata.\n"); 3232 rv = ERR_IO_MD_DISK; 3233 goto err; 3234 } 3235 3236 magic = be32_to_cpu(buffer->magic); 3237 flags = be32_to_cpu(buffer->flags); 3238 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3239 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3240 /* btw: that's Activity Log clean, not "all" clean. */ 3241 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3242 rv = ERR_MD_UNCLEAN; 3243 goto err; 3244 } 3245 3246 rv = ERR_MD_INVALID; 3247 if (magic != DRBD_MD_MAGIC_08) { 3248 if (magic == DRBD_MD_MAGIC_07) 3249 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3250 else 3251 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3252 goto err; 3253 } 3254 3255 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3256 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3257 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3258 goto err; 3259 } 3260 3261 3262 /* convert to in_core endian */ 3263 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3264 for (i = UI_CURRENT; i < UI_SIZE; i++) 3265 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3266 bdev->md.flags = be32_to_cpu(buffer->flags); 3267 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3268 3269 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3270 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3271 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3272 3273 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3274 goto err; 3275 if (check_offsets_and_sizes(device, bdev)) 3276 goto err; 3277 3278 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3279 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3280 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3281 goto err; 3282 } 3283 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3284 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3285 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3286 goto err; 3287 } 3288 3289 rv = NO_ERROR; 3290 3291 spin_lock_irq(&device->resource->req_lock); 3292 if (device->state.conn < C_CONNECTED) { 3293 unsigned int peer; 3294 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3295 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3296 device->peer_max_bio_size = peer; 3297 } 3298 spin_unlock_irq(&device->resource->req_lock); 3299 3300 err: 3301 drbd_md_put_buffer(device); 3302 3303 return rv; 3304 } 3305 3306 /** 3307 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3308 * @device: DRBD device. 3309 * 3310 * Call this function if you change anything that should be written to 3311 * the meta-data super block. This function sets MD_DIRTY, and starts a 3312 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3313 */ 3314 void drbd_md_mark_dirty(struct drbd_device *device) 3315 { 3316 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3317 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3318 } 3319 3320 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3321 { 3322 int i; 3323 3324 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3325 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3326 } 3327 3328 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3329 { 3330 if (idx == UI_CURRENT) { 3331 if (device->state.role == R_PRIMARY) 3332 val |= 1; 3333 else 3334 val &= ~((u64)1); 3335 3336 drbd_set_ed_uuid(device, val); 3337 } 3338 3339 device->ldev->md.uuid[idx] = val; 3340 drbd_md_mark_dirty(device); 3341 } 3342 3343 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3344 { 3345 unsigned long flags; 3346 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3347 __drbd_uuid_set(device, idx, val); 3348 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3349 } 3350 3351 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3352 { 3353 unsigned long flags; 3354 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3355 if (device->ldev->md.uuid[idx]) { 3356 drbd_uuid_move_history(device); 3357 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3358 } 3359 __drbd_uuid_set(device, idx, val); 3360 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3361 } 3362 3363 /** 3364 * drbd_uuid_new_current() - Creates a new current UUID 3365 * @device: DRBD device. 3366 * 3367 * Creates a new current UUID, and rotates the old current UUID into 3368 * the bitmap slot. Causes an incremental resync upon next connect. 3369 */ 3370 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3371 { 3372 u64 val; 3373 unsigned long long bm_uuid; 3374 3375 get_random_bytes(&val, sizeof(u64)); 3376 3377 spin_lock_irq(&device->ldev->md.uuid_lock); 3378 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3379 3380 if (bm_uuid) 3381 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3382 3383 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3384 __drbd_uuid_set(device, UI_CURRENT, val); 3385 spin_unlock_irq(&device->ldev->md.uuid_lock); 3386 3387 drbd_print_uuids(device, "new current UUID"); 3388 /* get it to stable storage _now_ */ 3389 drbd_md_sync(device); 3390 } 3391 3392 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3393 { 3394 unsigned long flags; 3395 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3396 return; 3397 3398 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3399 if (val == 0) { 3400 drbd_uuid_move_history(device); 3401 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3402 device->ldev->md.uuid[UI_BITMAP] = 0; 3403 } else { 3404 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3405 if (bm_uuid) 3406 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3407 3408 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3409 } 3410 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3411 3412 drbd_md_mark_dirty(device); 3413 } 3414 3415 /** 3416 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3417 * @device: DRBD device. 3418 * 3419 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3420 */ 3421 int drbd_bmio_set_n_write(struct drbd_device *device, 3422 struct drbd_peer_device *peer_device) __must_hold(local) 3423 3424 { 3425 int rv = -EIO; 3426 3427 drbd_md_set_flag(device, MDF_FULL_SYNC); 3428 drbd_md_sync(device); 3429 drbd_bm_set_all(device); 3430 3431 rv = drbd_bm_write(device, peer_device); 3432 3433 if (!rv) { 3434 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3435 drbd_md_sync(device); 3436 } 3437 3438 return rv; 3439 } 3440 3441 /** 3442 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3443 * @device: DRBD device. 3444 * 3445 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3446 */ 3447 int drbd_bmio_clear_n_write(struct drbd_device *device, 3448 struct drbd_peer_device *peer_device) __must_hold(local) 3449 3450 { 3451 drbd_resume_al(device); 3452 drbd_bm_clear_all(device); 3453 return drbd_bm_write(device, peer_device); 3454 } 3455 3456 static int w_bitmap_io(struct drbd_work *w, int unused) 3457 { 3458 struct drbd_device *device = 3459 container_of(w, struct drbd_device, bm_io_work.w); 3460 struct bm_io_work *work = &device->bm_io_work; 3461 int rv = -EIO; 3462 3463 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3464 int cnt = atomic_read(&device->ap_bio_cnt); 3465 if (cnt) 3466 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3467 cnt, work->why); 3468 } 3469 3470 if (get_ldev(device)) { 3471 drbd_bm_lock(device, work->why, work->flags); 3472 rv = work->io_fn(device, work->peer_device); 3473 drbd_bm_unlock(device); 3474 put_ldev(device); 3475 } 3476 3477 clear_bit_unlock(BITMAP_IO, &device->flags); 3478 wake_up(&device->misc_wait); 3479 3480 if (work->done) 3481 work->done(device, rv); 3482 3483 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3484 work->why = NULL; 3485 work->flags = 0; 3486 3487 return 0; 3488 } 3489 3490 /** 3491 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3492 * @device: DRBD device. 3493 * @io_fn: IO callback to be called when bitmap IO is possible 3494 * @done: callback to be called after the bitmap IO was performed 3495 * @why: Descriptive text of the reason for doing the IO 3496 * @flags: Bitmap flags 3497 * 3498 * While IO on the bitmap happens we freeze application IO thus we ensure 3499 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3500 * called from worker context. It MUST NOT be used while a previous such 3501 * work is still pending! 3502 * 3503 * Its worker function encloses the call of io_fn() by get_ldev() and 3504 * put_ldev(). 3505 */ 3506 void drbd_queue_bitmap_io(struct drbd_device *device, 3507 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *), 3508 void (*done)(struct drbd_device *, int), 3509 char *why, enum bm_flag flags, 3510 struct drbd_peer_device *peer_device) 3511 { 3512 D_ASSERT(device, current == peer_device->connection->worker.task); 3513 3514 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3515 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3516 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3517 if (device->bm_io_work.why) 3518 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3519 why, device->bm_io_work.why); 3520 3521 device->bm_io_work.peer_device = peer_device; 3522 device->bm_io_work.io_fn = io_fn; 3523 device->bm_io_work.done = done; 3524 device->bm_io_work.why = why; 3525 device->bm_io_work.flags = flags; 3526 3527 spin_lock_irq(&device->resource->req_lock); 3528 set_bit(BITMAP_IO, &device->flags); 3529 /* don't wait for pending application IO if the caller indicates that 3530 * application IO does not conflict anyways. */ 3531 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3532 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3533 drbd_queue_work(&peer_device->connection->sender_work, 3534 &device->bm_io_work.w); 3535 } 3536 spin_unlock_irq(&device->resource->req_lock); 3537 } 3538 3539 /** 3540 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3541 * @device: DRBD device. 3542 * @io_fn: IO callback to be called when bitmap IO is possible 3543 * @why: Descriptive text of the reason for doing the IO 3544 * @flags: Bitmap flags 3545 * 3546 * freezes application IO while that the actual IO operations runs. This 3547 * functions MAY NOT be called from worker context. 3548 */ 3549 int drbd_bitmap_io(struct drbd_device *device, 3550 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *), 3551 char *why, enum bm_flag flags, 3552 struct drbd_peer_device *peer_device) 3553 { 3554 /* Only suspend io, if some operation is supposed to be locked out */ 3555 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3556 int rv; 3557 3558 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3559 3560 if (do_suspend_io) 3561 drbd_suspend_io(device); 3562 3563 drbd_bm_lock(device, why, flags); 3564 rv = io_fn(device, peer_device); 3565 drbd_bm_unlock(device); 3566 3567 if (do_suspend_io) 3568 drbd_resume_io(device); 3569 3570 return rv; 3571 } 3572 3573 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3574 { 3575 if ((device->ldev->md.flags & flag) != flag) { 3576 drbd_md_mark_dirty(device); 3577 device->ldev->md.flags |= flag; 3578 } 3579 } 3580 3581 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3582 { 3583 if ((device->ldev->md.flags & flag) != 0) { 3584 drbd_md_mark_dirty(device); 3585 device->ldev->md.flags &= ~flag; 3586 } 3587 } 3588 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3589 { 3590 return (bdev->md.flags & flag) != 0; 3591 } 3592 3593 static void md_sync_timer_fn(struct timer_list *t) 3594 { 3595 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3596 drbd_device_post_work(device, MD_SYNC); 3597 } 3598 3599 const char *cmdname(enum drbd_packet cmd) 3600 { 3601 /* THINK may need to become several global tables 3602 * when we want to support more than 3603 * one PRO_VERSION */ 3604 static const char *cmdnames[] = { 3605 3606 [P_DATA] = "Data", 3607 [P_DATA_REPLY] = "DataReply", 3608 [P_RS_DATA_REPLY] = "RSDataReply", 3609 [P_BARRIER] = "Barrier", 3610 [P_BITMAP] = "ReportBitMap", 3611 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3612 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3613 [P_UNPLUG_REMOTE] = "UnplugRemote", 3614 [P_DATA_REQUEST] = "DataRequest", 3615 [P_RS_DATA_REQUEST] = "RSDataRequest", 3616 [P_SYNC_PARAM] = "SyncParam", 3617 [P_PROTOCOL] = "ReportProtocol", 3618 [P_UUIDS] = "ReportUUIDs", 3619 [P_SIZES] = "ReportSizes", 3620 [P_STATE] = "ReportState", 3621 [P_SYNC_UUID] = "ReportSyncUUID", 3622 [P_AUTH_CHALLENGE] = "AuthChallenge", 3623 [P_AUTH_RESPONSE] = "AuthResponse", 3624 [P_STATE_CHG_REQ] = "StateChgRequest", 3625 [P_PING] = "Ping", 3626 [P_PING_ACK] = "PingAck", 3627 [P_RECV_ACK] = "RecvAck", 3628 [P_WRITE_ACK] = "WriteAck", 3629 [P_RS_WRITE_ACK] = "RSWriteAck", 3630 [P_SUPERSEDED] = "Superseded", 3631 [P_NEG_ACK] = "NegAck", 3632 [P_NEG_DREPLY] = "NegDReply", 3633 [P_NEG_RS_DREPLY] = "NegRSDReply", 3634 [P_BARRIER_ACK] = "BarrierAck", 3635 [P_STATE_CHG_REPLY] = "StateChgReply", 3636 [P_OV_REQUEST] = "OVRequest", 3637 [P_OV_REPLY] = "OVReply", 3638 [P_OV_RESULT] = "OVResult", 3639 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3640 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3641 [P_SYNC_PARAM89] = "SyncParam89", 3642 [P_COMPRESSED_BITMAP] = "CBitmap", 3643 [P_DELAY_PROBE] = "DelayProbe", 3644 [P_OUT_OF_SYNC] = "OutOfSync", 3645 [P_RS_CANCEL] = "RSCancel", 3646 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3647 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3648 [P_PROTOCOL_UPDATE] = "protocol_update", 3649 [P_TRIM] = "Trim", 3650 [P_RS_THIN_REQ] = "rs_thin_req", 3651 [P_RS_DEALLOCATED] = "rs_deallocated", 3652 [P_WSAME] = "WriteSame", 3653 [P_ZEROES] = "Zeroes", 3654 3655 /* enum drbd_packet, but not commands - obsoleted flags: 3656 * P_MAY_IGNORE 3657 * P_MAX_OPT_CMD 3658 */ 3659 }; 3660 3661 /* too big for the array: 0xfffX */ 3662 if (cmd == P_INITIAL_META) 3663 return "InitialMeta"; 3664 if (cmd == P_INITIAL_DATA) 3665 return "InitialData"; 3666 if (cmd == P_CONNECTION_FEATURES) 3667 return "ConnectionFeatures"; 3668 if (cmd >= ARRAY_SIZE(cmdnames)) 3669 return "Unknown"; 3670 return cmdnames[cmd]; 3671 } 3672 3673 /** 3674 * drbd_wait_misc - wait for a request to make progress 3675 * @device: device associated with the request 3676 * @i: the struct drbd_interval embedded in struct drbd_request or 3677 * struct drbd_peer_request 3678 */ 3679 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3680 { 3681 struct net_conf *nc; 3682 DEFINE_WAIT(wait); 3683 long timeout; 3684 3685 rcu_read_lock(); 3686 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3687 if (!nc) { 3688 rcu_read_unlock(); 3689 return -ETIMEDOUT; 3690 } 3691 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3692 rcu_read_unlock(); 3693 3694 /* Indicate to wake up device->misc_wait on progress. */ 3695 i->waiting = true; 3696 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3697 spin_unlock_irq(&device->resource->req_lock); 3698 timeout = schedule_timeout(timeout); 3699 finish_wait(&device->misc_wait, &wait); 3700 spin_lock_irq(&device->resource->req_lock); 3701 if (!timeout || device->state.conn < C_CONNECTED) 3702 return -ETIMEDOUT; 3703 if (signal_pending(current)) 3704 return -ERESTARTSYS; 3705 return 0; 3706 } 3707 3708 void lock_all_resources(void) 3709 { 3710 struct drbd_resource *resource; 3711 int __maybe_unused i = 0; 3712 3713 mutex_lock(&resources_mutex); 3714 local_irq_disable(); 3715 for_each_resource(resource, &drbd_resources) 3716 spin_lock_nested(&resource->req_lock, i++); 3717 } 3718 3719 void unlock_all_resources(void) 3720 { 3721 struct drbd_resource *resource; 3722 3723 for_each_resource(resource, &drbd_resources) 3724 spin_unlock(&resource->req_lock); 3725 local_irq_enable(); 3726 mutex_unlock(&resources_mutex); 3727 } 3728 3729 #ifdef CONFIG_DRBD_FAULT_INJECTION 3730 /* Fault insertion support including random number generator shamelessly 3731 * stolen from kernel/rcutorture.c */ 3732 struct fault_random_state { 3733 unsigned long state; 3734 unsigned long count; 3735 }; 3736 3737 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3738 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3739 #define FAULT_RANDOM_REFRESH 10000 3740 3741 /* 3742 * Crude but fast random-number generator. Uses a linear congruential 3743 * generator, with occasional help from get_random_bytes(). 3744 */ 3745 static unsigned long 3746 _drbd_fault_random(struct fault_random_state *rsp) 3747 { 3748 long refresh; 3749 3750 if (!rsp->count--) { 3751 get_random_bytes(&refresh, sizeof(refresh)); 3752 rsp->state += refresh; 3753 rsp->count = FAULT_RANDOM_REFRESH; 3754 } 3755 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3756 return swahw32(rsp->state); 3757 } 3758 3759 static char * 3760 _drbd_fault_str(unsigned int type) { 3761 static char *_faults[] = { 3762 [DRBD_FAULT_MD_WR] = "Meta-data write", 3763 [DRBD_FAULT_MD_RD] = "Meta-data read", 3764 [DRBD_FAULT_RS_WR] = "Resync write", 3765 [DRBD_FAULT_RS_RD] = "Resync read", 3766 [DRBD_FAULT_DT_WR] = "Data write", 3767 [DRBD_FAULT_DT_RD] = "Data read", 3768 [DRBD_FAULT_DT_RA] = "Data read ahead", 3769 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3770 [DRBD_FAULT_AL_EE] = "EE allocation", 3771 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3772 }; 3773 3774 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3775 } 3776 3777 unsigned int 3778 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3779 { 3780 static struct fault_random_state rrs = {0, 0}; 3781 3782 unsigned int ret = ( 3783 (drbd_fault_devs == 0 || 3784 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3785 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3786 3787 if (ret) { 3788 drbd_fault_count++; 3789 3790 if (drbd_ratelimit()) 3791 drbd_warn(device, "***Simulating %s failure\n", 3792 _drbd_fault_str(type)); 3793 } 3794 3795 return ret; 3796 } 3797 #endif 3798 3799 module_init(drbd_init) 3800 module_exit(drbd_cleanup) 3801 3802 EXPORT_SYMBOL(drbd_conn_str); 3803 EXPORT_SYMBOL(drbd_role_str); 3804 EXPORT_SYMBOL(drbd_disk_str); 3805 EXPORT_SYMBOL(drbd_set_st_err_str); 3806