xref: /linux/drivers/block/brd.c (revision fcad9bbf9e1a7de6c53908954ba1b1a1ab11ef1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Ram backed block device driver.
4  *
5  * Copyright (C) 2007 Nick Piggin
6  * Copyright (C) 2007 Novell Inc.
7  *
8  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9  * of their respective owners.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/pagemap.h>
22 #include <linux/xarray.h>
23 #include <linux/fs.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/debugfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 /*
31  * Each block ramdisk device has a xarray brd_pages of pages that stores
32  * the pages containing the block device's contents.
33  */
34 struct brd_device {
35 	int			brd_number;
36 	struct gendisk		*brd_disk;
37 	struct list_head	brd_list;
38 
39 	/*
40 	 * Backing store of pages. This is the contents of the block device.
41 	 */
42 	struct xarray	        brd_pages;
43 	u64			brd_nr_pages;
44 };
45 
46 /*
47  * Look up and return a brd's page for a given sector.
48  */
49 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
50 {
51 	return xa_load(&brd->brd_pages, sector >> PAGE_SECTORS_SHIFT);
52 }
53 
54 /*
55  * Insert a new page for a given sector, if one does not already exist.
56  */
57 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector,
58 		blk_opf_t opf)
59 	__releases(rcu)
60 	__acquires(rcu)
61 {
62 	gfp_t gfp = (opf & REQ_NOWAIT) ? GFP_NOWAIT : GFP_NOIO;
63 	struct page *page, *ret;
64 
65 	rcu_read_unlock();
66 	page = alloc_page(gfp | __GFP_ZERO | __GFP_HIGHMEM);
67 	rcu_read_lock();
68 	if (!page)
69 		return ERR_PTR(-ENOMEM);
70 
71 	xa_lock(&brd->brd_pages);
72 	ret = __xa_cmpxchg(&brd->brd_pages, sector >> PAGE_SECTORS_SHIFT, NULL,
73 			page, gfp);
74 	if (ret) {
75 		xa_unlock(&brd->brd_pages);
76 		__free_page(page);
77 		if (xa_is_err(ret))
78 			return ERR_PTR(xa_err(ret));
79 		return ret;
80 	}
81 	brd->brd_nr_pages++;
82 	xa_unlock(&brd->brd_pages);
83 	return page;
84 }
85 
86 /*
87  * Free all backing store pages and xarray. This must only be called when
88  * there are no other users of the device.
89  */
90 static void brd_free_pages(struct brd_device *brd)
91 {
92 	struct page *page;
93 	pgoff_t idx;
94 
95 	xa_for_each(&brd->brd_pages, idx, page) {
96 		__free_page(page);
97 		cond_resched();
98 	}
99 
100 	xa_destroy(&brd->brd_pages);
101 }
102 
103 /*
104  * Process a single segment.  The segment is capped to not cross page boundaries
105  * in both the bio and the brd backing memory.
106  */
107 static bool brd_rw_bvec(struct brd_device *brd, struct bio *bio)
108 {
109 	struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
110 	sector_t sector = bio->bi_iter.bi_sector;
111 	u32 offset = (sector & (PAGE_SECTORS - 1)) << SECTOR_SHIFT;
112 	blk_opf_t opf = bio->bi_opf;
113 	struct page *page;
114 	void *kaddr;
115 
116 	bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
117 
118 	rcu_read_lock();
119 	page = brd_lookup_page(brd, sector);
120 	if (!page && op_is_write(opf)) {
121 		page = brd_insert_page(brd, sector, opf);
122 		if (IS_ERR(page))
123 			goto out_error;
124 	}
125 
126 	kaddr = bvec_kmap_local(&bv);
127 	if (op_is_write(opf)) {
128 		memcpy_to_page(page, offset, kaddr, bv.bv_len);
129 	} else {
130 		if (page)
131 			memcpy_from_page(kaddr, page, offset, bv.bv_len);
132 		else
133 			memset(kaddr, 0, bv.bv_len);
134 	}
135 	kunmap_local(kaddr);
136 	rcu_read_unlock();
137 
138 	bio_advance_iter_single(bio, &bio->bi_iter, bv.bv_len);
139 	return true;
140 
141 out_error:
142 	rcu_read_unlock();
143 	if (PTR_ERR(page) == -ENOMEM && (opf & REQ_NOWAIT))
144 		bio_wouldblock_error(bio);
145 	else
146 		bio_io_error(bio);
147 	return false;
148 }
149 
150 static void brd_free_one_page(struct rcu_head *head)
151 {
152 	struct page *page = container_of(head, struct page, rcu_head);
153 
154 	__free_page(page);
155 }
156 
157 static void brd_do_discard(struct brd_device *brd, sector_t sector, u32 size)
158 {
159 	sector_t aligned_sector = round_up(sector, PAGE_SECTORS);
160 	sector_t aligned_end = round_down(
161 			sector + (size >> SECTOR_SHIFT), PAGE_SECTORS);
162 	struct page *page;
163 
164 	if (aligned_end <= aligned_sector)
165 		return;
166 
167 	xa_lock(&brd->brd_pages);
168 	while (aligned_sector < aligned_end && aligned_sector < rd_size * 2) {
169 		page = __xa_erase(&brd->brd_pages, aligned_sector >> PAGE_SECTORS_SHIFT);
170 		if (page) {
171 			call_rcu(&page->rcu_head, brd_free_one_page);
172 			brd->brd_nr_pages--;
173 		}
174 		aligned_sector += PAGE_SECTORS;
175 	}
176 	xa_unlock(&brd->brd_pages);
177 }
178 
179 static void brd_submit_bio(struct bio *bio)
180 {
181 	struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
182 
183 	if (unlikely(op_is_discard(bio->bi_opf))) {
184 		brd_do_discard(brd, bio->bi_iter.bi_sector,
185 				bio->bi_iter.bi_size);
186 		bio_endio(bio);
187 		return;
188 	}
189 
190 	do {
191 		if (!brd_rw_bvec(brd, bio))
192 			return;
193 	} while (bio->bi_iter.bi_size);
194 
195 	bio_endio(bio);
196 }
197 
198 static const struct block_device_operations brd_fops = {
199 	.owner =		THIS_MODULE,
200 	.submit_bio =		brd_submit_bio,
201 };
202 
203 /*
204  * And now the modules code and kernel interface.
205  */
206 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
207 module_param(rd_nr, int, 0444);
208 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
209 
210 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
211 module_param(rd_size, ulong, 0444);
212 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
213 
214 static int max_part = 1;
215 module_param(max_part, int, 0444);
216 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
217 
218 MODULE_DESCRIPTION("Ram backed block device driver");
219 MODULE_LICENSE("GPL");
220 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
221 MODULE_ALIAS("rd");
222 
223 #ifndef MODULE
224 /* Legacy boot options - nonmodular */
225 static int __init ramdisk_size(char *str)
226 {
227 	rd_size = simple_strtol(str, NULL, 0);
228 	return 1;
229 }
230 __setup("ramdisk_size=", ramdisk_size);
231 #endif
232 
233 /*
234  * The device scheme is derived from loop.c. Keep them in synch where possible
235  * (should share code eventually).
236  */
237 static LIST_HEAD(brd_devices);
238 static DEFINE_MUTEX(brd_devices_mutex);
239 static struct dentry *brd_debugfs_dir;
240 
241 static struct brd_device *brd_find_or_alloc_device(int i)
242 {
243 	struct brd_device *brd;
244 
245 	mutex_lock(&brd_devices_mutex);
246 	list_for_each_entry(brd, &brd_devices, brd_list) {
247 		if (brd->brd_number == i) {
248 			mutex_unlock(&brd_devices_mutex);
249 			return ERR_PTR(-EEXIST);
250 		}
251 	}
252 
253 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
254 	if (!brd) {
255 		mutex_unlock(&brd_devices_mutex);
256 		return ERR_PTR(-ENOMEM);
257 	}
258 	brd->brd_number	= i;
259 	list_add_tail(&brd->brd_list, &brd_devices);
260 	mutex_unlock(&brd_devices_mutex);
261 	return brd;
262 }
263 
264 static void brd_free_device(struct brd_device *brd)
265 {
266 	mutex_lock(&brd_devices_mutex);
267 	list_del(&brd->brd_list);
268 	mutex_unlock(&brd_devices_mutex);
269 	kfree(brd);
270 }
271 
272 static int brd_alloc(int i)
273 {
274 	struct brd_device *brd;
275 	struct gendisk *disk;
276 	char buf[DISK_NAME_LEN];
277 	int err = -ENOMEM;
278 	struct queue_limits lim = {
279 		/*
280 		 * This is so fdisk will align partitions on 4k, because of
281 		 * direct_access API needing 4k alignment, returning a PFN
282 		 * (This is only a problem on very small devices <= 4M,
283 		 *  otherwise fdisk will align on 1M. Regardless this call
284 		 *  is harmless)
285 		 */
286 		.physical_block_size	= PAGE_SIZE,
287 		.max_hw_discard_sectors	= UINT_MAX,
288 		.max_discard_segments	= 1,
289 		.discard_granularity	= PAGE_SIZE,
290 		.features		= BLK_FEAT_SYNCHRONOUS |
291 					  BLK_FEAT_NOWAIT,
292 	};
293 
294 	brd = brd_find_or_alloc_device(i);
295 	if (IS_ERR(brd))
296 		return PTR_ERR(brd);
297 
298 	xa_init(&brd->brd_pages);
299 
300 	snprintf(buf, DISK_NAME_LEN, "ram%d", i);
301 	if (!IS_ERR_OR_NULL(brd_debugfs_dir))
302 		debugfs_create_u64(buf, 0444, brd_debugfs_dir,
303 				&brd->brd_nr_pages);
304 
305 	disk = brd->brd_disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
306 	if (IS_ERR(disk)) {
307 		err = PTR_ERR(disk);
308 		goto out_free_dev;
309 	}
310 	disk->major		= RAMDISK_MAJOR;
311 	disk->first_minor	= i * max_part;
312 	disk->minors		= max_part;
313 	disk->fops		= &brd_fops;
314 	disk->private_data	= brd;
315 	strscpy(disk->disk_name, buf, DISK_NAME_LEN);
316 	set_capacity(disk, rd_size * 2);
317 
318 	err = add_disk(disk);
319 	if (err)
320 		goto out_cleanup_disk;
321 
322 	return 0;
323 
324 out_cleanup_disk:
325 	put_disk(disk);
326 out_free_dev:
327 	brd_free_device(brd);
328 	return err;
329 }
330 
331 static void brd_probe(dev_t dev)
332 {
333 	brd_alloc(MINOR(dev) / max_part);
334 }
335 
336 static void brd_cleanup(void)
337 {
338 	struct brd_device *brd, *next;
339 
340 	debugfs_remove_recursive(brd_debugfs_dir);
341 
342 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
343 		del_gendisk(brd->brd_disk);
344 		put_disk(brd->brd_disk);
345 		brd_free_pages(brd);
346 		brd_free_device(brd);
347 	}
348 }
349 
350 static inline void brd_check_and_reset_par(void)
351 {
352 	if (unlikely(!max_part))
353 		max_part = 1;
354 
355 	/*
356 	 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
357 	 * otherwise, it is possiable to get same dev_t when adding partitions.
358 	 */
359 	if ((1U << MINORBITS) % max_part != 0)
360 		max_part = 1UL << fls(max_part);
361 
362 	if (max_part > DISK_MAX_PARTS) {
363 		pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
364 			DISK_MAX_PARTS, DISK_MAX_PARTS);
365 		max_part = DISK_MAX_PARTS;
366 	}
367 }
368 
369 static int __init brd_init(void)
370 {
371 	int err, i;
372 
373 	/*
374 	 * brd module now has a feature to instantiate underlying device
375 	 * structure on-demand, provided that there is an access dev node.
376 	 *
377 	 * (1) if rd_nr is specified, create that many upfront. else
378 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
379 	 * (2) User can further extend brd devices by create dev node themselves
380 	 *     and have kernel automatically instantiate actual device
381 	 *     on-demand. Example:
382 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
383 	 *		fdisk -l /path/devnod_name
384 	 *	If (X / max_part) was not already created it will be created
385 	 *	dynamically.
386 	 */
387 
388 	brd_check_and_reset_par();
389 
390 	brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
391 
392 	if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) {
393 		err = -EIO;
394 		goto out_free;
395 	}
396 
397 	for (i = 0; i < rd_nr; i++)
398 		brd_alloc(i);
399 
400 	pr_info("brd: module loaded\n");
401 	return 0;
402 
403 out_free:
404 	brd_cleanup();
405 
406 	pr_info("brd: module NOT loaded !!!\n");
407 	return err;
408 }
409 
410 static void __exit brd_exit(void)
411 {
412 
413 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
414 	brd_cleanup();
415 
416 	pr_info("brd: module unloaded\n");
417 }
418 
419 module_init(brd_init);
420 module_exit(brd_exit);
421 
422