1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/major.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/highmem.h> 18 #include <linux/radix-tree.h> 19 #include <linux/buffer_head.h> /* invalidate_bh_lrus() */ 20 #include <linux/slab.h> 21 22 #include <asm/uaccess.h> 23 24 #define SECTOR_SHIFT 9 25 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 26 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 27 28 /* 29 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 30 * the pages containing the block device's contents. A brd page's ->index is 31 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 32 * with, the kernel's pagecache or buffer cache (which sit above our block 33 * device). 34 */ 35 struct brd_device { 36 int brd_number; 37 int brd_refcnt; 38 loff_t brd_offset; 39 loff_t brd_sizelimit; 40 unsigned brd_blocksize; 41 42 struct request_queue *brd_queue; 43 struct gendisk *brd_disk; 44 struct list_head brd_list; 45 46 /* 47 * Backing store of pages and lock to protect it. This is the contents 48 * of the block device. 49 */ 50 spinlock_t brd_lock; 51 struct radix_tree_root brd_pages; 52 }; 53 54 /* 55 * Look up and return a brd's page for a given sector. 56 */ 57 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 58 { 59 pgoff_t idx; 60 struct page *page; 61 62 /* 63 * The page lifetime is protected by the fact that we have opened the 64 * device node -- brd pages will never be deleted under us, so we 65 * don't need any further locking or refcounting. 66 * 67 * This is strictly true for the radix-tree nodes as well (ie. we 68 * don't actually need the rcu_read_lock()), however that is not a 69 * documented feature of the radix-tree API so it is better to be 70 * safe here (we don't have total exclusion from radix tree updates 71 * here, only deletes). 72 */ 73 rcu_read_lock(); 74 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 75 page = radix_tree_lookup(&brd->brd_pages, idx); 76 rcu_read_unlock(); 77 78 BUG_ON(page && page->index != idx); 79 80 return page; 81 } 82 83 /* 84 * Look up and return a brd's page for a given sector. 85 * If one does not exist, allocate an empty page, and insert that. Then 86 * return it. 87 */ 88 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 89 { 90 pgoff_t idx; 91 struct page *page; 92 gfp_t gfp_flags; 93 94 page = brd_lookup_page(brd, sector); 95 if (page) 96 return page; 97 98 /* 99 * Must use NOIO because we don't want to recurse back into the 100 * block or filesystem layers from page reclaim. 101 * 102 * Cannot support XIP and highmem, because our ->direct_access 103 * routine for XIP must return memory that is always addressable. 104 * If XIP was reworked to use pfns and kmap throughout, this 105 * restriction might be able to be lifted. 106 */ 107 gfp_flags = GFP_NOIO | __GFP_ZERO; 108 #ifndef CONFIG_BLK_DEV_XIP 109 gfp_flags |= __GFP_HIGHMEM; 110 #endif 111 page = alloc_page(gfp_flags); 112 if (!page) 113 return NULL; 114 115 if (radix_tree_preload(GFP_NOIO)) { 116 __free_page(page); 117 return NULL; 118 } 119 120 spin_lock(&brd->brd_lock); 121 idx = sector >> PAGE_SECTORS_SHIFT; 122 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 123 __free_page(page); 124 page = radix_tree_lookup(&brd->brd_pages, idx); 125 BUG_ON(!page); 126 BUG_ON(page->index != idx); 127 } else 128 page->index = idx; 129 spin_unlock(&brd->brd_lock); 130 131 radix_tree_preload_end(); 132 133 return page; 134 } 135 136 static void brd_free_page(struct brd_device *brd, sector_t sector) 137 { 138 struct page *page; 139 pgoff_t idx; 140 141 spin_lock(&brd->brd_lock); 142 idx = sector >> PAGE_SECTORS_SHIFT; 143 page = radix_tree_delete(&brd->brd_pages, idx); 144 spin_unlock(&brd->brd_lock); 145 if (page) 146 __free_page(page); 147 } 148 149 static void brd_zero_page(struct brd_device *brd, sector_t sector) 150 { 151 struct page *page; 152 153 page = brd_lookup_page(brd, sector); 154 if (page) 155 clear_highpage(page); 156 } 157 158 /* 159 * Free all backing store pages and radix tree. This must only be called when 160 * there are no other users of the device. 161 */ 162 #define FREE_BATCH 16 163 static void brd_free_pages(struct brd_device *brd) 164 { 165 unsigned long pos = 0; 166 struct page *pages[FREE_BATCH]; 167 int nr_pages; 168 169 do { 170 int i; 171 172 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 173 (void **)pages, pos, FREE_BATCH); 174 175 for (i = 0; i < nr_pages; i++) { 176 void *ret; 177 178 BUG_ON(pages[i]->index < pos); 179 pos = pages[i]->index; 180 ret = radix_tree_delete(&brd->brd_pages, pos); 181 BUG_ON(!ret || ret != pages[i]); 182 __free_page(pages[i]); 183 } 184 185 pos++; 186 187 /* 188 * This assumes radix_tree_gang_lookup always returns as 189 * many pages as possible. If the radix-tree code changes, 190 * so will this have to. 191 */ 192 } while (nr_pages == FREE_BATCH); 193 } 194 195 /* 196 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 197 */ 198 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 199 { 200 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 201 size_t copy; 202 203 copy = min_t(size_t, n, PAGE_SIZE - offset); 204 if (!brd_insert_page(brd, sector)) 205 return -ENOMEM; 206 if (copy < n) { 207 sector += copy >> SECTOR_SHIFT; 208 if (!brd_insert_page(brd, sector)) 209 return -ENOMEM; 210 } 211 return 0; 212 } 213 214 static void discard_from_brd(struct brd_device *brd, 215 sector_t sector, size_t n) 216 { 217 while (n >= PAGE_SIZE) { 218 /* 219 * Don't want to actually discard pages here because 220 * re-allocating the pages can result in writeback 221 * deadlocks under heavy load. 222 */ 223 if (0) 224 brd_free_page(brd, sector); 225 else 226 brd_zero_page(brd, sector); 227 sector += PAGE_SIZE >> SECTOR_SHIFT; 228 n -= PAGE_SIZE; 229 } 230 } 231 232 /* 233 * Copy n bytes from src to the brd starting at sector. Does not sleep. 234 */ 235 static void copy_to_brd(struct brd_device *brd, const void *src, 236 sector_t sector, size_t n) 237 { 238 struct page *page; 239 void *dst; 240 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 241 size_t copy; 242 243 copy = min_t(size_t, n, PAGE_SIZE - offset); 244 page = brd_lookup_page(brd, sector); 245 BUG_ON(!page); 246 247 dst = kmap_atomic(page, KM_USER1); 248 memcpy(dst + offset, src, copy); 249 kunmap_atomic(dst, KM_USER1); 250 251 if (copy < n) { 252 src += copy; 253 sector += copy >> SECTOR_SHIFT; 254 copy = n - copy; 255 page = brd_lookup_page(brd, sector); 256 BUG_ON(!page); 257 258 dst = kmap_atomic(page, KM_USER1); 259 memcpy(dst, src, copy); 260 kunmap_atomic(dst, KM_USER1); 261 } 262 } 263 264 /* 265 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 266 */ 267 static void copy_from_brd(void *dst, struct brd_device *brd, 268 sector_t sector, size_t n) 269 { 270 struct page *page; 271 void *src; 272 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 273 size_t copy; 274 275 copy = min_t(size_t, n, PAGE_SIZE - offset); 276 page = brd_lookup_page(brd, sector); 277 if (page) { 278 src = kmap_atomic(page, KM_USER1); 279 memcpy(dst, src + offset, copy); 280 kunmap_atomic(src, KM_USER1); 281 } else 282 memset(dst, 0, copy); 283 284 if (copy < n) { 285 dst += copy; 286 sector += copy >> SECTOR_SHIFT; 287 copy = n - copy; 288 page = brd_lookup_page(brd, sector); 289 if (page) { 290 src = kmap_atomic(page, KM_USER1); 291 memcpy(dst, src, copy); 292 kunmap_atomic(src, KM_USER1); 293 } else 294 memset(dst, 0, copy); 295 } 296 } 297 298 /* 299 * Process a single bvec of a bio. 300 */ 301 static int brd_do_bvec(struct brd_device *brd, struct page *page, 302 unsigned int len, unsigned int off, int rw, 303 sector_t sector) 304 { 305 void *mem; 306 int err = 0; 307 308 if (rw != READ) { 309 err = copy_to_brd_setup(brd, sector, len); 310 if (err) 311 goto out; 312 } 313 314 mem = kmap_atomic(page, KM_USER0); 315 if (rw == READ) { 316 copy_from_brd(mem + off, brd, sector, len); 317 flush_dcache_page(page); 318 } else { 319 flush_dcache_page(page); 320 copy_to_brd(brd, mem + off, sector, len); 321 } 322 kunmap_atomic(mem, KM_USER0); 323 324 out: 325 return err; 326 } 327 328 static int brd_make_request(struct request_queue *q, struct bio *bio) 329 { 330 struct block_device *bdev = bio->bi_bdev; 331 struct brd_device *brd = bdev->bd_disk->private_data; 332 int rw; 333 struct bio_vec *bvec; 334 sector_t sector; 335 int i; 336 int err = -EIO; 337 338 sector = bio->bi_sector; 339 if (sector + (bio->bi_size >> SECTOR_SHIFT) > 340 get_capacity(bdev->bd_disk)) 341 goto out; 342 343 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) { 344 err = 0; 345 discard_from_brd(brd, sector, bio->bi_size); 346 goto out; 347 } 348 349 rw = bio_rw(bio); 350 if (rw == READA) 351 rw = READ; 352 353 bio_for_each_segment(bvec, bio, i) { 354 unsigned int len = bvec->bv_len; 355 err = brd_do_bvec(brd, bvec->bv_page, len, 356 bvec->bv_offset, rw, sector); 357 if (err) 358 break; 359 sector += len >> SECTOR_SHIFT; 360 } 361 362 out: 363 bio_endio(bio, err); 364 365 return 0; 366 } 367 368 #ifdef CONFIG_BLK_DEV_XIP 369 static int brd_direct_access(struct block_device *bdev, sector_t sector, 370 void **kaddr, unsigned long *pfn) 371 { 372 struct brd_device *brd = bdev->bd_disk->private_data; 373 struct page *page; 374 375 if (!brd) 376 return -ENODEV; 377 if (sector & (PAGE_SECTORS-1)) 378 return -EINVAL; 379 if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk)) 380 return -ERANGE; 381 page = brd_insert_page(brd, sector); 382 if (!page) 383 return -ENOMEM; 384 *kaddr = page_address(page); 385 *pfn = page_to_pfn(page); 386 387 return 0; 388 } 389 #endif 390 391 static int brd_ioctl(struct block_device *bdev, fmode_t mode, 392 unsigned int cmd, unsigned long arg) 393 { 394 int error; 395 struct brd_device *brd = bdev->bd_disk->private_data; 396 397 if (cmd != BLKFLSBUF) 398 return -ENOTTY; 399 400 /* 401 * ram device BLKFLSBUF has special semantics, we want to actually 402 * release and destroy the ramdisk data. 403 */ 404 mutex_lock(&bdev->bd_mutex); 405 error = -EBUSY; 406 if (bdev->bd_openers <= 1) { 407 /* 408 * Invalidate the cache first, so it isn't written 409 * back to the device. 410 * 411 * Another thread might instantiate more buffercache here, 412 * but there is not much we can do to close that race. 413 */ 414 invalidate_bh_lrus(); 415 truncate_inode_pages(bdev->bd_inode->i_mapping, 0); 416 brd_free_pages(brd); 417 error = 0; 418 } 419 mutex_unlock(&bdev->bd_mutex); 420 421 return error; 422 } 423 424 static const struct block_device_operations brd_fops = { 425 .owner = THIS_MODULE, 426 .locked_ioctl = brd_ioctl, 427 #ifdef CONFIG_BLK_DEV_XIP 428 .direct_access = brd_direct_access, 429 #endif 430 }; 431 432 /* 433 * And now the modules code and kernel interface. 434 */ 435 static int rd_nr; 436 int rd_size = CONFIG_BLK_DEV_RAM_SIZE; 437 static int max_part; 438 static int part_shift; 439 module_param(rd_nr, int, 0); 440 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 441 module_param(rd_size, int, 0); 442 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 443 module_param(max_part, int, 0); 444 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk"); 445 MODULE_LICENSE("GPL"); 446 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 447 MODULE_ALIAS("rd"); 448 449 #ifndef MODULE 450 /* Legacy boot options - nonmodular */ 451 static int __init ramdisk_size(char *str) 452 { 453 rd_size = simple_strtol(str, NULL, 0); 454 return 1; 455 } 456 __setup("ramdisk_size=", ramdisk_size); 457 #endif 458 459 /* 460 * The device scheme is derived from loop.c. Keep them in synch where possible 461 * (should share code eventually). 462 */ 463 static LIST_HEAD(brd_devices); 464 static DEFINE_MUTEX(brd_devices_mutex); 465 466 static struct brd_device *brd_alloc(int i) 467 { 468 struct brd_device *brd; 469 struct gendisk *disk; 470 471 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 472 if (!brd) 473 goto out; 474 brd->brd_number = i; 475 spin_lock_init(&brd->brd_lock); 476 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 477 478 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 479 if (!brd->brd_queue) 480 goto out_free_dev; 481 blk_queue_make_request(brd->brd_queue, brd_make_request); 482 blk_queue_ordered(brd->brd_queue, QUEUE_ORDERED_TAG, NULL); 483 blk_queue_max_hw_sectors(brd->brd_queue, 1024); 484 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY); 485 486 brd->brd_queue->limits.discard_granularity = PAGE_SIZE; 487 brd->brd_queue->limits.max_discard_sectors = UINT_MAX; 488 brd->brd_queue->limits.discard_zeroes_data = 1; 489 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue); 490 491 disk = brd->brd_disk = alloc_disk(1 << part_shift); 492 if (!disk) 493 goto out_free_queue; 494 disk->major = RAMDISK_MAJOR; 495 disk->first_minor = i << part_shift; 496 disk->fops = &brd_fops; 497 disk->private_data = brd; 498 disk->queue = brd->brd_queue; 499 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; 500 sprintf(disk->disk_name, "ram%d", i); 501 set_capacity(disk, rd_size * 2); 502 503 return brd; 504 505 out_free_queue: 506 blk_cleanup_queue(brd->brd_queue); 507 out_free_dev: 508 kfree(brd); 509 out: 510 return NULL; 511 } 512 513 static void brd_free(struct brd_device *brd) 514 { 515 put_disk(brd->brd_disk); 516 blk_cleanup_queue(brd->brd_queue); 517 brd_free_pages(brd); 518 kfree(brd); 519 } 520 521 static struct brd_device *brd_init_one(int i) 522 { 523 struct brd_device *brd; 524 525 list_for_each_entry(brd, &brd_devices, brd_list) { 526 if (brd->brd_number == i) 527 goto out; 528 } 529 530 brd = brd_alloc(i); 531 if (brd) { 532 add_disk(brd->brd_disk); 533 list_add_tail(&brd->brd_list, &brd_devices); 534 } 535 out: 536 return brd; 537 } 538 539 static void brd_del_one(struct brd_device *brd) 540 { 541 list_del(&brd->brd_list); 542 del_gendisk(brd->brd_disk); 543 brd_free(brd); 544 } 545 546 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 547 { 548 struct brd_device *brd; 549 struct kobject *kobj; 550 551 mutex_lock(&brd_devices_mutex); 552 brd = brd_init_one(dev & MINORMASK); 553 kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM); 554 mutex_unlock(&brd_devices_mutex); 555 556 *part = 0; 557 return kobj; 558 } 559 560 static int __init brd_init(void) 561 { 562 int i, nr; 563 unsigned long range; 564 struct brd_device *brd, *next; 565 566 /* 567 * brd module now has a feature to instantiate underlying device 568 * structure on-demand, provided that there is an access dev node. 569 * However, this will not work well with user space tool that doesn't 570 * know about such "feature". In order to not break any existing 571 * tool, we do the following: 572 * 573 * (1) if rd_nr is specified, create that many upfront, and this 574 * also becomes a hard limit. 575 * (2) if rd_nr is not specified, create 1 rd device on module 576 * load, user can further extend brd device by create dev node 577 * themselves and have kernel automatically instantiate actual 578 * device on-demand. 579 */ 580 581 part_shift = 0; 582 if (max_part > 0) 583 part_shift = fls(max_part); 584 585 if (rd_nr > 1UL << (MINORBITS - part_shift)) 586 return -EINVAL; 587 588 if (rd_nr) { 589 nr = rd_nr; 590 range = rd_nr; 591 } else { 592 nr = CONFIG_BLK_DEV_RAM_COUNT; 593 range = 1UL << (MINORBITS - part_shift); 594 } 595 596 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 597 return -EIO; 598 599 for (i = 0; i < nr; i++) { 600 brd = brd_alloc(i); 601 if (!brd) 602 goto out_free; 603 list_add_tail(&brd->brd_list, &brd_devices); 604 } 605 606 /* point of no return */ 607 608 list_for_each_entry(brd, &brd_devices, brd_list) 609 add_disk(brd->brd_disk); 610 611 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range, 612 THIS_MODULE, brd_probe, NULL, NULL); 613 614 printk(KERN_INFO "brd: module loaded\n"); 615 return 0; 616 617 out_free: 618 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 619 list_del(&brd->brd_list); 620 brd_free(brd); 621 } 622 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 623 624 return -ENOMEM; 625 } 626 627 static void __exit brd_exit(void) 628 { 629 unsigned long range; 630 struct brd_device *brd, *next; 631 632 range = rd_nr ? rd_nr : 1UL << (MINORBITS - part_shift); 633 634 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 635 brd_del_one(brd); 636 637 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range); 638 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 639 } 640 641 module_init(brd_init); 642 module_exit(brd_exit); 643 644