xref: /linux/drivers/block/brd.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/radix-tree.h>
19 #include <linux/buffer_head.h> /* invalidate_bh_lrus() */
20 #include <linux/slab.h>
21 
22 #include <asm/uaccess.h>
23 
24 #define SECTOR_SHIFT		9
25 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
26 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
27 
28 /*
29  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
30  * the pages containing the block device's contents. A brd page's ->index is
31  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
32  * with, the kernel's pagecache or buffer cache (which sit above our block
33  * device).
34  */
35 struct brd_device {
36 	int		brd_number;
37 	int		brd_refcnt;
38 	loff_t		brd_offset;
39 	loff_t		brd_sizelimit;
40 	unsigned	brd_blocksize;
41 
42 	struct request_queue	*brd_queue;
43 	struct gendisk		*brd_disk;
44 	struct list_head	brd_list;
45 
46 	/*
47 	 * Backing store of pages and lock to protect it. This is the contents
48 	 * of the block device.
49 	 */
50 	spinlock_t		brd_lock;
51 	struct radix_tree_root	brd_pages;
52 };
53 
54 /*
55  * Look up and return a brd's page for a given sector.
56  */
57 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
58 {
59 	pgoff_t idx;
60 	struct page *page;
61 
62 	/*
63 	 * The page lifetime is protected by the fact that we have opened the
64 	 * device node -- brd pages will never be deleted under us, so we
65 	 * don't need any further locking or refcounting.
66 	 *
67 	 * This is strictly true for the radix-tree nodes as well (ie. we
68 	 * don't actually need the rcu_read_lock()), however that is not a
69 	 * documented feature of the radix-tree API so it is better to be
70 	 * safe here (we don't have total exclusion from radix tree updates
71 	 * here, only deletes).
72 	 */
73 	rcu_read_lock();
74 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
75 	page = radix_tree_lookup(&brd->brd_pages, idx);
76 	rcu_read_unlock();
77 
78 	BUG_ON(page && page->index != idx);
79 
80 	return page;
81 }
82 
83 /*
84  * Look up and return a brd's page for a given sector.
85  * If one does not exist, allocate an empty page, and insert that. Then
86  * return it.
87  */
88 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
89 {
90 	pgoff_t idx;
91 	struct page *page;
92 	gfp_t gfp_flags;
93 
94 	page = brd_lookup_page(brd, sector);
95 	if (page)
96 		return page;
97 
98 	/*
99 	 * Must use NOIO because we don't want to recurse back into the
100 	 * block or filesystem layers from page reclaim.
101 	 *
102 	 * Cannot support XIP and highmem, because our ->direct_access
103 	 * routine for XIP must return memory that is always addressable.
104 	 * If XIP was reworked to use pfns and kmap throughout, this
105 	 * restriction might be able to be lifted.
106 	 */
107 	gfp_flags = GFP_NOIO | __GFP_ZERO;
108 #ifndef CONFIG_BLK_DEV_XIP
109 	gfp_flags |= __GFP_HIGHMEM;
110 #endif
111 	page = alloc_page(gfp_flags);
112 	if (!page)
113 		return NULL;
114 
115 	if (radix_tree_preload(GFP_NOIO)) {
116 		__free_page(page);
117 		return NULL;
118 	}
119 
120 	spin_lock(&brd->brd_lock);
121 	idx = sector >> PAGE_SECTORS_SHIFT;
122 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
123 		__free_page(page);
124 		page = radix_tree_lookup(&brd->brd_pages, idx);
125 		BUG_ON(!page);
126 		BUG_ON(page->index != idx);
127 	} else
128 		page->index = idx;
129 	spin_unlock(&brd->brd_lock);
130 
131 	radix_tree_preload_end();
132 
133 	return page;
134 }
135 
136 static void brd_free_page(struct brd_device *brd, sector_t sector)
137 {
138 	struct page *page;
139 	pgoff_t idx;
140 
141 	spin_lock(&brd->brd_lock);
142 	idx = sector >> PAGE_SECTORS_SHIFT;
143 	page = radix_tree_delete(&brd->brd_pages, idx);
144 	spin_unlock(&brd->brd_lock);
145 	if (page)
146 		__free_page(page);
147 }
148 
149 static void brd_zero_page(struct brd_device *brd, sector_t sector)
150 {
151 	struct page *page;
152 
153 	page = brd_lookup_page(brd, sector);
154 	if (page)
155 		clear_highpage(page);
156 }
157 
158 /*
159  * Free all backing store pages and radix tree. This must only be called when
160  * there are no other users of the device.
161  */
162 #define FREE_BATCH 16
163 static void brd_free_pages(struct brd_device *brd)
164 {
165 	unsigned long pos = 0;
166 	struct page *pages[FREE_BATCH];
167 	int nr_pages;
168 
169 	do {
170 		int i;
171 
172 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
173 				(void **)pages, pos, FREE_BATCH);
174 
175 		for (i = 0; i < nr_pages; i++) {
176 			void *ret;
177 
178 			BUG_ON(pages[i]->index < pos);
179 			pos = pages[i]->index;
180 			ret = radix_tree_delete(&brd->brd_pages, pos);
181 			BUG_ON(!ret || ret != pages[i]);
182 			__free_page(pages[i]);
183 		}
184 
185 		pos++;
186 
187 		/*
188 		 * This assumes radix_tree_gang_lookup always returns as
189 		 * many pages as possible. If the radix-tree code changes,
190 		 * so will this have to.
191 		 */
192 	} while (nr_pages == FREE_BATCH);
193 }
194 
195 /*
196  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
197  */
198 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
199 {
200 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
201 	size_t copy;
202 
203 	copy = min_t(size_t, n, PAGE_SIZE - offset);
204 	if (!brd_insert_page(brd, sector))
205 		return -ENOMEM;
206 	if (copy < n) {
207 		sector += copy >> SECTOR_SHIFT;
208 		if (!brd_insert_page(brd, sector))
209 			return -ENOMEM;
210 	}
211 	return 0;
212 }
213 
214 static void discard_from_brd(struct brd_device *brd,
215 			sector_t sector, size_t n)
216 {
217 	while (n >= PAGE_SIZE) {
218 		/*
219 		 * Don't want to actually discard pages here because
220 		 * re-allocating the pages can result in writeback
221 		 * deadlocks under heavy load.
222 		 */
223 		if (0)
224 			brd_free_page(brd, sector);
225 		else
226 			brd_zero_page(brd, sector);
227 		sector += PAGE_SIZE >> SECTOR_SHIFT;
228 		n -= PAGE_SIZE;
229 	}
230 }
231 
232 /*
233  * Copy n bytes from src to the brd starting at sector. Does not sleep.
234  */
235 static void copy_to_brd(struct brd_device *brd, const void *src,
236 			sector_t sector, size_t n)
237 {
238 	struct page *page;
239 	void *dst;
240 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
241 	size_t copy;
242 
243 	copy = min_t(size_t, n, PAGE_SIZE - offset);
244 	page = brd_lookup_page(brd, sector);
245 	BUG_ON(!page);
246 
247 	dst = kmap_atomic(page, KM_USER1);
248 	memcpy(dst + offset, src, copy);
249 	kunmap_atomic(dst, KM_USER1);
250 
251 	if (copy < n) {
252 		src += copy;
253 		sector += copy >> SECTOR_SHIFT;
254 		copy = n - copy;
255 		page = brd_lookup_page(brd, sector);
256 		BUG_ON(!page);
257 
258 		dst = kmap_atomic(page, KM_USER1);
259 		memcpy(dst, src, copy);
260 		kunmap_atomic(dst, KM_USER1);
261 	}
262 }
263 
264 /*
265  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
266  */
267 static void copy_from_brd(void *dst, struct brd_device *brd,
268 			sector_t sector, size_t n)
269 {
270 	struct page *page;
271 	void *src;
272 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
273 	size_t copy;
274 
275 	copy = min_t(size_t, n, PAGE_SIZE - offset);
276 	page = brd_lookup_page(brd, sector);
277 	if (page) {
278 		src = kmap_atomic(page, KM_USER1);
279 		memcpy(dst, src + offset, copy);
280 		kunmap_atomic(src, KM_USER1);
281 	} else
282 		memset(dst, 0, copy);
283 
284 	if (copy < n) {
285 		dst += copy;
286 		sector += copy >> SECTOR_SHIFT;
287 		copy = n - copy;
288 		page = brd_lookup_page(brd, sector);
289 		if (page) {
290 			src = kmap_atomic(page, KM_USER1);
291 			memcpy(dst, src, copy);
292 			kunmap_atomic(src, KM_USER1);
293 		} else
294 			memset(dst, 0, copy);
295 	}
296 }
297 
298 /*
299  * Process a single bvec of a bio.
300  */
301 static int brd_do_bvec(struct brd_device *brd, struct page *page,
302 			unsigned int len, unsigned int off, int rw,
303 			sector_t sector)
304 {
305 	void *mem;
306 	int err = 0;
307 
308 	if (rw != READ) {
309 		err = copy_to_brd_setup(brd, sector, len);
310 		if (err)
311 			goto out;
312 	}
313 
314 	mem = kmap_atomic(page, KM_USER0);
315 	if (rw == READ) {
316 		copy_from_brd(mem + off, brd, sector, len);
317 		flush_dcache_page(page);
318 	} else {
319 		flush_dcache_page(page);
320 		copy_to_brd(brd, mem + off, sector, len);
321 	}
322 	kunmap_atomic(mem, KM_USER0);
323 
324 out:
325 	return err;
326 }
327 
328 static int brd_make_request(struct request_queue *q, struct bio *bio)
329 {
330 	struct block_device *bdev = bio->bi_bdev;
331 	struct brd_device *brd = bdev->bd_disk->private_data;
332 	int rw;
333 	struct bio_vec *bvec;
334 	sector_t sector;
335 	int i;
336 	int err = -EIO;
337 
338 	sector = bio->bi_sector;
339 	if (sector + (bio->bi_size >> SECTOR_SHIFT) >
340 						get_capacity(bdev->bd_disk))
341 		goto out;
342 
343 	if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
344 		err = 0;
345 		discard_from_brd(brd, sector, bio->bi_size);
346 		goto out;
347 	}
348 
349 	rw = bio_rw(bio);
350 	if (rw == READA)
351 		rw = READ;
352 
353 	bio_for_each_segment(bvec, bio, i) {
354 		unsigned int len = bvec->bv_len;
355 		err = brd_do_bvec(brd, bvec->bv_page, len,
356 					bvec->bv_offset, rw, sector);
357 		if (err)
358 			break;
359 		sector += len >> SECTOR_SHIFT;
360 	}
361 
362 out:
363 	bio_endio(bio, err);
364 
365 	return 0;
366 }
367 
368 #ifdef CONFIG_BLK_DEV_XIP
369 static int brd_direct_access(struct block_device *bdev, sector_t sector,
370 			void **kaddr, unsigned long *pfn)
371 {
372 	struct brd_device *brd = bdev->bd_disk->private_data;
373 	struct page *page;
374 
375 	if (!brd)
376 		return -ENODEV;
377 	if (sector & (PAGE_SECTORS-1))
378 		return -EINVAL;
379 	if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
380 		return -ERANGE;
381 	page = brd_insert_page(brd, sector);
382 	if (!page)
383 		return -ENOMEM;
384 	*kaddr = page_address(page);
385 	*pfn = page_to_pfn(page);
386 
387 	return 0;
388 }
389 #endif
390 
391 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
392 			unsigned int cmd, unsigned long arg)
393 {
394 	int error;
395 	struct brd_device *brd = bdev->bd_disk->private_data;
396 
397 	if (cmd != BLKFLSBUF)
398 		return -ENOTTY;
399 
400 	/*
401 	 * ram device BLKFLSBUF has special semantics, we want to actually
402 	 * release and destroy the ramdisk data.
403 	 */
404 	mutex_lock(&bdev->bd_mutex);
405 	error = -EBUSY;
406 	if (bdev->bd_openers <= 1) {
407 		/*
408 		 * Invalidate the cache first, so it isn't written
409 		 * back to the device.
410 		 *
411 		 * Another thread might instantiate more buffercache here,
412 		 * but there is not much we can do to close that race.
413 		 */
414 		invalidate_bh_lrus();
415 		truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
416 		brd_free_pages(brd);
417 		error = 0;
418 	}
419 	mutex_unlock(&bdev->bd_mutex);
420 
421 	return error;
422 }
423 
424 static const struct block_device_operations brd_fops = {
425 	.owner =		THIS_MODULE,
426 	.locked_ioctl =		brd_ioctl,
427 #ifdef CONFIG_BLK_DEV_XIP
428 	.direct_access =	brd_direct_access,
429 #endif
430 };
431 
432 /*
433  * And now the modules code and kernel interface.
434  */
435 static int rd_nr;
436 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
437 static int max_part;
438 static int part_shift;
439 module_param(rd_nr, int, 0);
440 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
441 module_param(rd_size, int, 0);
442 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
443 module_param(max_part, int, 0);
444 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
445 MODULE_LICENSE("GPL");
446 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
447 MODULE_ALIAS("rd");
448 
449 #ifndef MODULE
450 /* Legacy boot options - nonmodular */
451 static int __init ramdisk_size(char *str)
452 {
453 	rd_size = simple_strtol(str, NULL, 0);
454 	return 1;
455 }
456 __setup("ramdisk_size=", ramdisk_size);
457 #endif
458 
459 /*
460  * The device scheme is derived from loop.c. Keep them in synch where possible
461  * (should share code eventually).
462  */
463 static LIST_HEAD(brd_devices);
464 static DEFINE_MUTEX(brd_devices_mutex);
465 
466 static struct brd_device *brd_alloc(int i)
467 {
468 	struct brd_device *brd;
469 	struct gendisk *disk;
470 
471 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
472 	if (!brd)
473 		goto out;
474 	brd->brd_number		= i;
475 	spin_lock_init(&brd->brd_lock);
476 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
477 
478 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
479 	if (!brd->brd_queue)
480 		goto out_free_dev;
481 	blk_queue_make_request(brd->brd_queue, brd_make_request);
482 	blk_queue_ordered(brd->brd_queue, QUEUE_ORDERED_TAG, NULL);
483 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
484 	blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
485 
486 	brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
487 	brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
488 	brd->brd_queue->limits.discard_zeroes_data = 1;
489 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
490 
491 	disk = brd->brd_disk = alloc_disk(1 << part_shift);
492 	if (!disk)
493 		goto out_free_queue;
494 	disk->major		= RAMDISK_MAJOR;
495 	disk->first_minor	= i << part_shift;
496 	disk->fops		= &brd_fops;
497 	disk->private_data	= brd;
498 	disk->queue		= brd->brd_queue;
499 	disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
500 	sprintf(disk->disk_name, "ram%d", i);
501 	set_capacity(disk, rd_size * 2);
502 
503 	return brd;
504 
505 out_free_queue:
506 	blk_cleanup_queue(brd->brd_queue);
507 out_free_dev:
508 	kfree(brd);
509 out:
510 	return NULL;
511 }
512 
513 static void brd_free(struct brd_device *brd)
514 {
515 	put_disk(brd->brd_disk);
516 	blk_cleanup_queue(brd->brd_queue);
517 	brd_free_pages(brd);
518 	kfree(brd);
519 }
520 
521 static struct brd_device *brd_init_one(int i)
522 {
523 	struct brd_device *brd;
524 
525 	list_for_each_entry(brd, &brd_devices, brd_list) {
526 		if (brd->brd_number == i)
527 			goto out;
528 	}
529 
530 	brd = brd_alloc(i);
531 	if (brd) {
532 		add_disk(brd->brd_disk);
533 		list_add_tail(&brd->brd_list, &brd_devices);
534 	}
535 out:
536 	return brd;
537 }
538 
539 static void brd_del_one(struct brd_device *brd)
540 {
541 	list_del(&brd->brd_list);
542 	del_gendisk(brd->brd_disk);
543 	brd_free(brd);
544 }
545 
546 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
547 {
548 	struct brd_device *brd;
549 	struct kobject *kobj;
550 
551 	mutex_lock(&brd_devices_mutex);
552 	brd = brd_init_one(dev & MINORMASK);
553 	kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
554 	mutex_unlock(&brd_devices_mutex);
555 
556 	*part = 0;
557 	return kobj;
558 }
559 
560 static int __init brd_init(void)
561 {
562 	int i, nr;
563 	unsigned long range;
564 	struct brd_device *brd, *next;
565 
566 	/*
567 	 * brd module now has a feature to instantiate underlying device
568 	 * structure on-demand, provided that there is an access dev node.
569 	 * However, this will not work well with user space tool that doesn't
570 	 * know about such "feature".  In order to not break any existing
571 	 * tool, we do the following:
572 	 *
573 	 * (1) if rd_nr is specified, create that many upfront, and this
574 	 *     also becomes a hard limit.
575 	 * (2) if rd_nr is not specified, create 1 rd device on module
576 	 *     load, user can further extend brd device by create dev node
577 	 *     themselves and have kernel automatically instantiate actual
578 	 *     device on-demand.
579 	 */
580 
581 	part_shift = 0;
582 	if (max_part > 0)
583 		part_shift = fls(max_part);
584 
585 	if (rd_nr > 1UL << (MINORBITS - part_shift))
586 		return -EINVAL;
587 
588 	if (rd_nr) {
589 		nr = rd_nr;
590 		range = rd_nr;
591 	} else {
592 		nr = CONFIG_BLK_DEV_RAM_COUNT;
593 		range = 1UL << (MINORBITS - part_shift);
594 	}
595 
596 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
597 		return -EIO;
598 
599 	for (i = 0; i < nr; i++) {
600 		brd = brd_alloc(i);
601 		if (!brd)
602 			goto out_free;
603 		list_add_tail(&brd->brd_list, &brd_devices);
604 	}
605 
606 	/* point of no return */
607 
608 	list_for_each_entry(brd, &brd_devices, brd_list)
609 		add_disk(brd->brd_disk);
610 
611 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
612 				  THIS_MODULE, brd_probe, NULL, NULL);
613 
614 	printk(KERN_INFO "brd: module loaded\n");
615 	return 0;
616 
617 out_free:
618 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
619 		list_del(&brd->brd_list);
620 		brd_free(brd);
621 	}
622 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
623 
624 	return -ENOMEM;
625 }
626 
627 static void __exit brd_exit(void)
628 {
629 	unsigned long range;
630 	struct brd_device *brd, *next;
631 
632 	range = rd_nr ? rd_nr :  1UL << (MINORBITS - part_shift);
633 
634 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
635 		brd_del_one(brd);
636 
637 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
638 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
639 }
640 
641 module_init(brd_init);
642 module_exit(brd_exit);
643 
644