xref: /linux/drivers/block/brd.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/smp_lock.h>
19 #include <linux/radix-tree.h>
20 #include <linux/buffer_head.h> /* invalidate_bh_lrus() */
21 #include <linux/slab.h>
22 
23 #include <asm/uaccess.h>
24 
25 #define SECTOR_SHIFT		9
26 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
28 
29 /*
30  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31  * the pages containing the block device's contents. A brd page's ->index is
32  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33  * with, the kernel's pagecache or buffer cache (which sit above our block
34  * device).
35  */
36 struct brd_device {
37 	int		brd_number;
38 	int		brd_refcnt;
39 	loff_t		brd_offset;
40 	loff_t		brd_sizelimit;
41 	unsigned	brd_blocksize;
42 
43 	struct request_queue	*brd_queue;
44 	struct gendisk		*brd_disk;
45 	struct list_head	brd_list;
46 
47 	/*
48 	 * Backing store of pages and lock to protect it. This is the contents
49 	 * of the block device.
50 	 */
51 	spinlock_t		brd_lock;
52 	struct radix_tree_root	brd_pages;
53 };
54 
55 /*
56  * Look up and return a brd's page for a given sector.
57  */
58 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
59 {
60 	pgoff_t idx;
61 	struct page *page;
62 
63 	/*
64 	 * The page lifetime is protected by the fact that we have opened the
65 	 * device node -- brd pages will never be deleted under us, so we
66 	 * don't need any further locking or refcounting.
67 	 *
68 	 * This is strictly true for the radix-tree nodes as well (ie. we
69 	 * don't actually need the rcu_read_lock()), however that is not a
70 	 * documented feature of the radix-tree API so it is better to be
71 	 * safe here (we don't have total exclusion from radix tree updates
72 	 * here, only deletes).
73 	 */
74 	rcu_read_lock();
75 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
76 	page = radix_tree_lookup(&brd->brd_pages, idx);
77 	rcu_read_unlock();
78 
79 	BUG_ON(page && page->index != idx);
80 
81 	return page;
82 }
83 
84 /*
85  * Look up and return a brd's page for a given sector.
86  * If one does not exist, allocate an empty page, and insert that. Then
87  * return it.
88  */
89 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
90 {
91 	pgoff_t idx;
92 	struct page *page;
93 	gfp_t gfp_flags;
94 
95 	page = brd_lookup_page(brd, sector);
96 	if (page)
97 		return page;
98 
99 	/*
100 	 * Must use NOIO because we don't want to recurse back into the
101 	 * block or filesystem layers from page reclaim.
102 	 *
103 	 * Cannot support XIP and highmem, because our ->direct_access
104 	 * routine for XIP must return memory that is always addressable.
105 	 * If XIP was reworked to use pfns and kmap throughout, this
106 	 * restriction might be able to be lifted.
107 	 */
108 	gfp_flags = GFP_NOIO | __GFP_ZERO;
109 #ifndef CONFIG_BLK_DEV_XIP
110 	gfp_flags |= __GFP_HIGHMEM;
111 #endif
112 	page = alloc_page(gfp_flags);
113 	if (!page)
114 		return NULL;
115 
116 	if (radix_tree_preload(GFP_NOIO)) {
117 		__free_page(page);
118 		return NULL;
119 	}
120 
121 	spin_lock(&brd->brd_lock);
122 	idx = sector >> PAGE_SECTORS_SHIFT;
123 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
124 		__free_page(page);
125 		page = radix_tree_lookup(&brd->brd_pages, idx);
126 		BUG_ON(!page);
127 		BUG_ON(page->index != idx);
128 	} else
129 		page->index = idx;
130 	spin_unlock(&brd->brd_lock);
131 
132 	radix_tree_preload_end();
133 
134 	return page;
135 }
136 
137 static void brd_free_page(struct brd_device *brd, sector_t sector)
138 {
139 	struct page *page;
140 	pgoff_t idx;
141 
142 	spin_lock(&brd->brd_lock);
143 	idx = sector >> PAGE_SECTORS_SHIFT;
144 	page = radix_tree_delete(&brd->brd_pages, idx);
145 	spin_unlock(&brd->brd_lock);
146 	if (page)
147 		__free_page(page);
148 }
149 
150 static void brd_zero_page(struct brd_device *brd, sector_t sector)
151 {
152 	struct page *page;
153 
154 	page = brd_lookup_page(brd, sector);
155 	if (page)
156 		clear_highpage(page);
157 }
158 
159 /*
160  * Free all backing store pages and radix tree. This must only be called when
161  * there are no other users of the device.
162  */
163 #define FREE_BATCH 16
164 static void brd_free_pages(struct brd_device *brd)
165 {
166 	unsigned long pos = 0;
167 	struct page *pages[FREE_BATCH];
168 	int nr_pages;
169 
170 	do {
171 		int i;
172 
173 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
174 				(void **)pages, pos, FREE_BATCH);
175 
176 		for (i = 0; i < nr_pages; i++) {
177 			void *ret;
178 
179 			BUG_ON(pages[i]->index < pos);
180 			pos = pages[i]->index;
181 			ret = radix_tree_delete(&brd->brd_pages, pos);
182 			BUG_ON(!ret || ret != pages[i]);
183 			__free_page(pages[i]);
184 		}
185 
186 		pos++;
187 
188 		/*
189 		 * This assumes radix_tree_gang_lookup always returns as
190 		 * many pages as possible. If the radix-tree code changes,
191 		 * so will this have to.
192 		 */
193 	} while (nr_pages == FREE_BATCH);
194 }
195 
196 /*
197  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
198  */
199 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
200 {
201 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
202 	size_t copy;
203 
204 	copy = min_t(size_t, n, PAGE_SIZE - offset);
205 	if (!brd_insert_page(brd, sector))
206 		return -ENOMEM;
207 	if (copy < n) {
208 		sector += copy >> SECTOR_SHIFT;
209 		if (!brd_insert_page(brd, sector))
210 			return -ENOMEM;
211 	}
212 	return 0;
213 }
214 
215 static void discard_from_brd(struct brd_device *brd,
216 			sector_t sector, size_t n)
217 {
218 	while (n >= PAGE_SIZE) {
219 		/*
220 		 * Don't want to actually discard pages here because
221 		 * re-allocating the pages can result in writeback
222 		 * deadlocks under heavy load.
223 		 */
224 		if (0)
225 			brd_free_page(brd, sector);
226 		else
227 			brd_zero_page(brd, sector);
228 		sector += PAGE_SIZE >> SECTOR_SHIFT;
229 		n -= PAGE_SIZE;
230 	}
231 }
232 
233 /*
234  * Copy n bytes from src to the brd starting at sector. Does not sleep.
235  */
236 static void copy_to_brd(struct brd_device *brd, const void *src,
237 			sector_t sector, size_t n)
238 {
239 	struct page *page;
240 	void *dst;
241 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
242 	size_t copy;
243 
244 	copy = min_t(size_t, n, PAGE_SIZE - offset);
245 	page = brd_lookup_page(brd, sector);
246 	BUG_ON(!page);
247 
248 	dst = kmap_atomic(page, KM_USER1);
249 	memcpy(dst + offset, src, copy);
250 	kunmap_atomic(dst, KM_USER1);
251 
252 	if (copy < n) {
253 		src += copy;
254 		sector += copy >> SECTOR_SHIFT;
255 		copy = n - copy;
256 		page = brd_lookup_page(brd, sector);
257 		BUG_ON(!page);
258 
259 		dst = kmap_atomic(page, KM_USER1);
260 		memcpy(dst, src, copy);
261 		kunmap_atomic(dst, KM_USER1);
262 	}
263 }
264 
265 /*
266  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
267  */
268 static void copy_from_brd(void *dst, struct brd_device *brd,
269 			sector_t sector, size_t n)
270 {
271 	struct page *page;
272 	void *src;
273 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
274 	size_t copy;
275 
276 	copy = min_t(size_t, n, PAGE_SIZE - offset);
277 	page = brd_lookup_page(brd, sector);
278 	if (page) {
279 		src = kmap_atomic(page, KM_USER1);
280 		memcpy(dst, src + offset, copy);
281 		kunmap_atomic(src, KM_USER1);
282 	} else
283 		memset(dst, 0, copy);
284 
285 	if (copy < n) {
286 		dst += copy;
287 		sector += copy >> SECTOR_SHIFT;
288 		copy = n - copy;
289 		page = brd_lookup_page(brd, sector);
290 		if (page) {
291 			src = kmap_atomic(page, KM_USER1);
292 			memcpy(dst, src, copy);
293 			kunmap_atomic(src, KM_USER1);
294 		} else
295 			memset(dst, 0, copy);
296 	}
297 }
298 
299 /*
300  * Process a single bvec of a bio.
301  */
302 static int brd_do_bvec(struct brd_device *brd, struct page *page,
303 			unsigned int len, unsigned int off, int rw,
304 			sector_t sector)
305 {
306 	void *mem;
307 	int err = 0;
308 
309 	if (rw != READ) {
310 		err = copy_to_brd_setup(brd, sector, len);
311 		if (err)
312 			goto out;
313 	}
314 
315 	mem = kmap_atomic(page, KM_USER0);
316 	if (rw == READ) {
317 		copy_from_brd(mem + off, brd, sector, len);
318 		flush_dcache_page(page);
319 	} else {
320 		flush_dcache_page(page);
321 		copy_to_brd(brd, mem + off, sector, len);
322 	}
323 	kunmap_atomic(mem, KM_USER0);
324 
325 out:
326 	return err;
327 }
328 
329 static int brd_make_request(struct request_queue *q, struct bio *bio)
330 {
331 	struct block_device *bdev = bio->bi_bdev;
332 	struct brd_device *brd = bdev->bd_disk->private_data;
333 	int rw;
334 	struct bio_vec *bvec;
335 	sector_t sector;
336 	int i;
337 	int err = -EIO;
338 
339 	sector = bio->bi_sector;
340 	if (sector + (bio->bi_size >> SECTOR_SHIFT) >
341 						get_capacity(bdev->bd_disk))
342 		goto out;
343 
344 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
345 		err = 0;
346 		discard_from_brd(brd, sector, bio->bi_size);
347 		goto out;
348 	}
349 
350 	rw = bio_rw(bio);
351 	if (rw == READA)
352 		rw = READ;
353 
354 	bio_for_each_segment(bvec, bio, i) {
355 		unsigned int len = bvec->bv_len;
356 		err = brd_do_bvec(brd, bvec->bv_page, len,
357 					bvec->bv_offset, rw, sector);
358 		if (err)
359 			break;
360 		sector += len >> SECTOR_SHIFT;
361 	}
362 
363 out:
364 	bio_endio(bio, err);
365 
366 	return 0;
367 }
368 
369 #ifdef CONFIG_BLK_DEV_XIP
370 static int brd_direct_access(struct block_device *bdev, sector_t sector,
371 			void **kaddr, unsigned long *pfn)
372 {
373 	struct brd_device *brd = bdev->bd_disk->private_data;
374 	struct page *page;
375 
376 	if (!brd)
377 		return -ENODEV;
378 	if (sector & (PAGE_SECTORS-1))
379 		return -EINVAL;
380 	if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
381 		return -ERANGE;
382 	page = brd_insert_page(brd, sector);
383 	if (!page)
384 		return -ENOMEM;
385 	*kaddr = page_address(page);
386 	*pfn = page_to_pfn(page);
387 
388 	return 0;
389 }
390 #endif
391 
392 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
393 			unsigned int cmd, unsigned long arg)
394 {
395 	int error;
396 	struct brd_device *brd = bdev->bd_disk->private_data;
397 
398 	if (cmd != BLKFLSBUF)
399 		return -ENOTTY;
400 
401 	/*
402 	 * ram device BLKFLSBUF has special semantics, we want to actually
403 	 * release and destroy the ramdisk data.
404 	 */
405 	lock_kernel();
406 	mutex_lock(&bdev->bd_mutex);
407 	error = -EBUSY;
408 	if (bdev->bd_openers <= 1) {
409 		/*
410 		 * Invalidate the cache first, so it isn't written
411 		 * back to the device.
412 		 *
413 		 * Another thread might instantiate more buffercache here,
414 		 * but there is not much we can do to close that race.
415 		 */
416 		invalidate_bh_lrus();
417 		truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
418 		brd_free_pages(brd);
419 		error = 0;
420 	}
421 	mutex_unlock(&bdev->bd_mutex);
422 	unlock_kernel();
423 
424 	return error;
425 }
426 
427 static const struct block_device_operations brd_fops = {
428 	.owner =		THIS_MODULE,
429 	.ioctl =		brd_ioctl,
430 #ifdef CONFIG_BLK_DEV_XIP
431 	.direct_access =	brd_direct_access,
432 #endif
433 };
434 
435 /*
436  * And now the modules code and kernel interface.
437  */
438 static int rd_nr;
439 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
440 static int max_part;
441 static int part_shift;
442 module_param(rd_nr, int, 0);
443 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
444 module_param(rd_size, int, 0);
445 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
446 module_param(max_part, int, 0);
447 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
448 MODULE_LICENSE("GPL");
449 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
450 MODULE_ALIAS("rd");
451 
452 #ifndef MODULE
453 /* Legacy boot options - nonmodular */
454 static int __init ramdisk_size(char *str)
455 {
456 	rd_size = simple_strtol(str, NULL, 0);
457 	return 1;
458 }
459 __setup("ramdisk_size=", ramdisk_size);
460 #endif
461 
462 /*
463  * The device scheme is derived from loop.c. Keep them in synch where possible
464  * (should share code eventually).
465  */
466 static LIST_HEAD(brd_devices);
467 static DEFINE_MUTEX(brd_devices_mutex);
468 
469 static struct brd_device *brd_alloc(int i)
470 {
471 	struct brd_device *brd;
472 	struct gendisk *disk;
473 
474 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
475 	if (!brd)
476 		goto out;
477 	brd->brd_number		= i;
478 	spin_lock_init(&brd->brd_lock);
479 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
480 
481 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
482 	if (!brd->brd_queue)
483 		goto out_free_dev;
484 	blk_queue_make_request(brd->brd_queue, brd_make_request);
485 	blk_queue_ordered(brd->brd_queue, QUEUE_ORDERED_TAG);
486 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
487 	blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
488 
489 	brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
490 	brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
491 	brd->brd_queue->limits.discard_zeroes_data = 1;
492 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
493 
494 	disk = brd->brd_disk = alloc_disk(1 << part_shift);
495 	if (!disk)
496 		goto out_free_queue;
497 	disk->major		= RAMDISK_MAJOR;
498 	disk->first_minor	= i << part_shift;
499 	disk->fops		= &brd_fops;
500 	disk->private_data	= brd;
501 	disk->queue		= brd->brd_queue;
502 	disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
503 	sprintf(disk->disk_name, "ram%d", i);
504 	set_capacity(disk, rd_size * 2);
505 
506 	return brd;
507 
508 out_free_queue:
509 	blk_cleanup_queue(brd->brd_queue);
510 out_free_dev:
511 	kfree(brd);
512 out:
513 	return NULL;
514 }
515 
516 static void brd_free(struct brd_device *brd)
517 {
518 	put_disk(brd->brd_disk);
519 	blk_cleanup_queue(brd->brd_queue);
520 	brd_free_pages(brd);
521 	kfree(brd);
522 }
523 
524 static struct brd_device *brd_init_one(int i)
525 {
526 	struct brd_device *brd;
527 
528 	list_for_each_entry(brd, &brd_devices, brd_list) {
529 		if (brd->brd_number == i)
530 			goto out;
531 	}
532 
533 	brd = brd_alloc(i);
534 	if (brd) {
535 		add_disk(brd->brd_disk);
536 		list_add_tail(&brd->brd_list, &brd_devices);
537 	}
538 out:
539 	return brd;
540 }
541 
542 static void brd_del_one(struct brd_device *brd)
543 {
544 	list_del(&brd->brd_list);
545 	del_gendisk(brd->brd_disk);
546 	brd_free(brd);
547 }
548 
549 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
550 {
551 	struct brd_device *brd;
552 	struct kobject *kobj;
553 
554 	mutex_lock(&brd_devices_mutex);
555 	brd = brd_init_one(dev & MINORMASK);
556 	kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
557 	mutex_unlock(&brd_devices_mutex);
558 
559 	*part = 0;
560 	return kobj;
561 }
562 
563 static int __init brd_init(void)
564 {
565 	int i, nr;
566 	unsigned long range;
567 	struct brd_device *brd, *next;
568 
569 	/*
570 	 * brd module now has a feature to instantiate underlying device
571 	 * structure on-demand, provided that there is an access dev node.
572 	 * However, this will not work well with user space tool that doesn't
573 	 * know about such "feature".  In order to not break any existing
574 	 * tool, we do the following:
575 	 *
576 	 * (1) if rd_nr is specified, create that many upfront, and this
577 	 *     also becomes a hard limit.
578 	 * (2) if rd_nr is not specified, create 1 rd device on module
579 	 *     load, user can further extend brd device by create dev node
580 	 *     themselves and have kernel automatically instantiate actual
581 	 *     device on-demand.
582 	 */
583 
584 	part_shift = 0;
585 	if (max_part > 0)
586 		part_shift = fls(max_part);
587 
588 	if (rd_nr > 1UL << (MINORBITS - part_shift))
589 		return -EINVAL;
590 
591 	if (rd_nr) {
592 		nr = rd_nr;
593 		range = rd_nr;
594 	} else {
595 		nr = CONFIG_BLK_DEV_RAM_COUNT;
596 		range = 1UL << (MINORBITS - part_shift);
597 	}
598 
599 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
600 		return -EIO;
601 
602 	for (i = 0; i < nr; i++) {
603 		brd = brd_alloc(i);
604 		if (!brd)
605 			goto out_free;
606 		list_add_tail(&brd->brd_list, &brd_devices);
607 	}
608 
609 	/* point of no return */
610 
611 	list_for_each_entry(brd, &brd_devices, brd_list)
612 		add_disk(brd->brd_disk);
613 
614 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
615 				  THIS_MODULE, brd_probe, NULL, NULL);
616 
617 	printk(KERN_INFO "brd: module loaded\n");
618 	return 0;
619 
620 out_free:
621 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
622 		list_del(&brd->brd_list);
623 		brd_free(brd);
624 	}
625 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
626 
627 	return -ENOMEM;
628 }
629 
630 static void __exit brd_exit(void)
631 {
632 	unsigned long range;
633 	struct brd_device *brd, *next;
634 
635 	range = rd_nr ? rd_nr :  1UL << (MINORBITS - part_shift);
636 
637 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
638 		brd_del_one(brd);
639 
640 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
641 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
642 }
643 
644 module_init(brd_init);
645 module_exit(brd_exit);
646 
647