xref: /linux/drivers/block/brd.c (revision cbafa54aa2ae23939846e150ad4ba98c784f6395)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Ram backed block device driver.
4  *
5  * Copyright (C) 2007 Nick Piggin
6  * Copyright (C) 2007 Novell Inc.
7  *
8  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9  * of their respective owners.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/pagemap.h>
22 #include <linux/radix-tree.h>
23 #include <linux/fs.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/debugfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
31 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
32 
33 /*
34  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
35  * the pages containing the block device's contents. A brd page's ->index is
36  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
37  * with, the kernel's pagecache or buffer cache (which sit above our block
38  * device).
39  */
40 struct brd_device {
41 	int		brd_number;
42 
43 	struct request_queue	*brd_queue;
44 	struct gendisk		*brd_disk;
45 	struct list_head	brd_list;
46 
47 	/*
48 	 * Backing store of pages and lock to protect it. This is the contents
49 	 * of the block device.
50 	 */
51 	spinlock_t		brd_lock;
52 	struct radix_tree_root	brd_pages;
53 	u64			brd_nr_pages;
54 };
55 
56 /*
57  * Look up and return a brd's page for a given sector.
58  */
59 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
60 {
61 	pgoff_t idx;
62 	struct page *page;
63 
64 	/*
65 	 * The page lifetime is protected by the fact that we have opened the
66 	 * device node -- brd pages will never be deleted under us, so we
67 	 * don't need any further locking or refcounting.
68 	 *
69 	 * This is strictly true for the radix-tree nodes as well (ie. we
70 	 * don't actually need the rcu_read_lock()), however that is not a
71 	 * documented feature of the radix-tree API so it is better to be
72 	 * safe here (we don't have total exclusion from radix tree updates
73 	 * here, only deletes).
74 	 */
75 	rcu_read_lock();
76 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
77 	page = radix_tree_lookup(&brd->brd_pages, idx);
78 	rcu_read_unlock();
79 
80 	BUG_ON(page && page->index != idx);
81 
82 	return page;
83 }
84 
85 /*
86  * Look up and return a brd's page for a given sector.
87  * If one does not exist, allocate an empty page, and insert that. Then
88  * return it.
89  */
90 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
91 {
92 	pgoff_t idx;
93 	struct page *page;
94 	gfp_t gfp_flags;
95 
96 	page = brd_lookup_page(brd, sector);
97 	if (page)
98 		return page;
99 
100 	/*
101 	 * Must use NOIO because we don't want to recurse back into the
102 	 * block or filesystem layers from page reclaim.
103 	 */
104 	gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
105 	page = alloc_page(gfp_flags);
106 	if (!page)
107 		return NULL;
108 
109 	if (radix_tree_preload(GFP_NOIO)) {
110 		__free_page(page);
111 		return NULL;
112 	}
113 
114 	spin_lock(&brd->brd_lock);
115 	idx = sector >> PAGE_SECTORS_SHIFT;
116 	page->index = idx;
117 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
118 		__free_page(page);
119 		page = radix_tree_lookup(&brd->brd_pages, idx);
120 		BUG_ON(!page);
121 		BUG_ON(page->index != idx);
122 	} else {
123 		brd->brd_nr_pages++;
124 	}
125 	spin_unlock(&brd->brd_lock);
126 
127 	radix_tree_preload_end();
128 
129 	return page;
130 }
131 
132 /*
133  * Free all backing store pages and radix tree. This must only be called when
134  * there are no other users of the device.
135  */
136 #define FREE_BATCH 16
137 static void brd_free_pages(struct brd_device *brd)
138 {
139 	unsigned long pos = 0;
140 	struct page *pages[FREE_BATCH];
141 	int nr_pages;
142 
143 	do {
144 		int i;
145 
146 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
147 				(void **)pages, pos, FREE_BATCH);
148 
149 		for (i = 0; i < nr_pages; i++) {
150 			void *ret;
151 
152 			BUG_ON(pages[i]->index < pos);
153 			pos = pages[i]->index;
154 			ret = radix_tree_delete(&brd->brd_pages, pos);
155 			BUG_ON(!ret || ret != pages[i]);
156 			__free_page(pages[i]);
157 		}
158 
159 		pos++;
160 
161 		/*
162 		 * It takes 3.4 seconds to remove 80GiB ramdisk.
163 		 * So, we need cond_resched to avoid stalling the CPU.
164 		 */
165 		cond_resched();
166 
167 		/*
168 		 * This assumes radix_tree_gang_lookup always returns as
169 		 * many pages as possible. If the radix-tree code changes,
170 		 * so will this have to.
171 		 */
172 	} while (nr_pages == FREE_BATCH);
173 }
174 
175 /*
176  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
177  */
178 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
179 {
180 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
181 	size_t copy;
182 
183 	copy = min_t(size_t, n, PAGE_SIZE - offset);
184 	if (!brd_insert_page(brd, sector))
185 		return -ENOSPC;
186 	if (copy < n) {
187 		sector += copy >> SECTOR_SHIFT;
188 		if (!brd_insert_page(brd, sector))
189 			return -ENOSPC;
190 	}
191 	return 0;
192 }
193 
194 /*
195  * Copy n bytes from src to the brd starting at sector. Does not sleep.
196  */
197 static void copy_to_brd(struct brd_device *brd, const void *src,
198 			sector_t sector, size_t n)
199 {
200 	struct page *page;
201 	void *dst;
202 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
203 	size_t copy;
204 
205 	copy = min_t(size_t, n, PAGE_SIZE - offset);
206 	page = brd_lookup_page(brd, sector);
207 	BUG_ON(!page);
208 
209 	dst = kmap_atomic(page);
210 	memcpy(dst + offset, src, copy);
211 	kunmap_atomic(dst);
212 
213 	if (copy < n) {
214 		src += copy;
215 		sector += copy >> SECTOR_SHIFT;
216 		copy = n - copy;
217 		page = brd_lookup_page(brd, sector);
218 		BUG_ON(!page);
219 
220 		dst = kmap_atomic(page);
221 		memcpy(dst, src, copy);
222 		kunmap_atomic(dst);
223 	}
224 }
225 
226 /*
227  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
228  */
229 static void copy_from_brd(void *dst, struct brd_device *brd,
230 			sector_t sector, size_t n)
231 {
232 	struct page *page;
233 	void *src;
234 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
235 	size_t copy;
236 
237 	copy = min_t(size_t, n, PAGE_SIZE - offset);
238 	page = brd_lookup_page(brd, sector);
239 	if (page) {
240 		src = kmap_atomic(page);
241 		memcpy(dst, src + offset, copy);
242 		kunmap_atomic(src);
243 	} else
244 		memset(dst, 0, copy);
245 
246 	if (copy < n) {
247 		dst += copy;
248 		sector += copy >> SECTOR_SHIFT;
249 		copy = n - copy;
250 		page = brd_lookup_page(brd, sector);
251 		if (page) {
252 			src = kmap_atomic(page);
253 			memcpy(dst, src, copy);
254 			kunmap_atomic(src);
255 		} else
256 			memset(dst, 0, copy);
257 	}
258 }
259 
260 /*
261  * Process a single bvec of a bio.
262  */
263 static int brd_do_bvec(struct brd_device *brd, struct page *page,
264 			unsigned int len, unsigned int off, unsigned int op,
265 			sector_t sector)
266 {
267 	void *mem;
268 	int err = 0;
269 
270 	if (op_is_write(op)) {
271 		err = copy_to_brd_setup(brd, sector, len);
272 		if (err)
273 			goto out;
274 	}
275 
276 	mem = kmap_atomic(page);
277 	if (!op_is_write(op)) {
278 		copy_from_brd(mem + off, brd, sector, len);
279 		flush_dcache_page(page);
280 	} else {
281 		flush_dcache_page(page);
282 		copy_to_brd(brd, mem + off, sector, len);
283 	}
284 	kunmap_atomic(mem);
285 
286 out:
287 	return err;
288 }
289 
290 static blk_qc_t brd_submit_bio(struct bio *bio)
291 {
292 	struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
293 	sector_t sector = bio->bi_iter.bi_sector;
294 	struct bio_vec bvec;
295 	struct bvec_iter iter;
296 
297 	bio_for_each_segment(bvec, bio, iter) {
298 		unsigned int len = bvec.bv_len;
299 		int err;
300 
301 		/* Don't support un-aligned buffer */
302 		WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
303 				(len & (SECTOR_SIZE - 1)));
304 
305 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
306 				  bio_op(bio), sector);
307 		if (err)
308 			goto io_error;
309 		sector += len >> SECTOR_SHIFT;
310 	}
311 
312 	bio_endio(bio);
313 	return BLK_QC_T_NONE;
314 io_error:
315 	bio_io_error(bio);
316 	return BLK_QC_T_NONE;
317 }
318 
319 static int brd_rw_page(struct block_device *bdev, sector_t sector,
320 		       struct page *page, unsigned int op)
321 {
322 	struct brd_device *brd = bdev->bd_disk->private_data;
323 	int err;
324 
325 	if (PageTransHuge(page))
326 		return -ENOTSUPP;
327 	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
328 	page_endio(page, op_is_write(op), err);
329 	return err;
330 }
331 
332 static const struct block_device_operations brd_fops = {
333 	.owner =		THIS_MODULE,
334 	.submit_bio =		brd_submit_bio,
335 	.rw_page =		brd_rw_page,
336 };
337 
338 /*
339  * And now the modules code and kernel interface.
340  */
341 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
342 module_param(rd_nr, int, 0444);
343 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
344 
345 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
346 module_param(rd_size, ulong, 0444);
347 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
348 
349 static int max_part = 1;
350 module_param(max_part, int, 0444);
351 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
352 
353 MODULE_LICENSE("GPL");
354 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
355 MODULE_ALIAS("rd");
356 
357 #ifndef MODULE
358 /* Legacy boot options - nonmodular */
359 static int __init ramdisk_size(char *str)
360 {
361 	rd_size = simple_strtol(str, NULL, 0);
362 	return 1;
363 }
364 __setup("ramdisk_size=", ramdisk_size);
365 #endif
366 
367 /*
368  * The device scheme is derived from loop.c. Keep them in synch where possible
369  * (should share code eventually).
370  */
371 static LIST_HEAD(brd_devices);
372 static DEFINE_MUTEX(brd_devices_mutex);
373 static struct dentry *brd_debugfs_dir;
374 
375 static struct brd_device *brd_alloc(int i)
376 {
377 	struct brd_device *brd;
378 	struct gendisk *disk;
379 	char buf[DISK_NAME_LEN];
380 
381 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
382 	if (!brd)
383 		goto out;
384 	brd->brd_number		= i;
385 	spin_lock_init(&brd->brd_lock);
386 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
387 
388 	brd->brd_queue = blk_alloc_queue(NUMA_NO_NODE);
389 	if (!brd->brd_queue)
390 		goto out_free_dev;
391 
392 	snprintf(buf, DISK_NAME_LEN, "ram%d", i);
393 	if (!IS_ERR_OR_NULL(brd_debugfs_dir))
394 		debugfs_create_u64(buf, 0444, brd_debugfs_dir,
395 				&brd->brd_nr_pages);
396 
397 	/* This is so fdisk will align partitions on 4k, because of
398 	 * direct_access API needing 4k alignment, returning a PFN
399 	 * (This is only a problem on very small devices <= 4M,
400 	 *  otherwise fdisk will align on 1M. Regardless this call
401 	 *  is harmless)
402 	 */
403 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
404 	disk = brd->brd_disk = alloc_disk(max_part);
405 	if (!disk)
406 		goto out_free_queue;
407 	disk->major		= RAMDISK_MAJOR;
408 	disk->first_minor	= i * max_part;
409 	disk->fops		= &brd_fops;
410 	disk->private_data	= brd;
411 	disk->flags		= GENHD_FL_EXT_DEVT;
412 	strlcpy(disk->disk_name, buf, DISK_NAME_LEN);
413 	set_capacity(disk, rd_size * 2);
414 
415 	/* Tell the block layer that this is not a rotational device */
416 	blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue);
417 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue);
418 
419 	return brd;
420 
421 out_free_queue:
422 	blk_cleanup_queue(brd->brd_queue);
423 out_free_dev:
424 	kfree(brd);
425 out:
426 	return NULL;
427 }
428 
429 static void brd_free(struct brd_device *brd)
430 {
431 	put_disk(brd->brd_disk);
432 	blk_cleanup_queue(brd->brd_queue);
433 	brd_free_pages(brd);
434 	kfree(brd);
435 }
436 
437 static void brd_probe(dev_t dev)
438 {
439 	struct brd_device *brd;
440 	int i = MINOR(dev) / max_part;
441 
442 	mutex_lock(&brd_devices_mutex);
443 	list_for_each_entry(brd, &brd_devices, brd_list) {
444 		if (brd->brd_number == i)
445 			goto out_unlock;
446 	}
447 
448 	brd = brd_alloc(i);
449 	if (brd) {
450 		brd->brd_disk->queue = brd->brd_queue;
451 		add_disk(brd->brd_disk);
452 		list_add_tail(&brd->brd_list, &brd_devices);
453 	}
454 
455 out_unlock:
456 	mutex_unlock(&brd_devices_mutex);
457 }
458 
459 static void brd_del_one(struct brd_device *brd)
460 {
461 	list_del(&brd->brd_list);
462 	del_gendisk(brd->brd_disk);
463 	brd_free(brd);
464 }
465 
466 static inline void brd_check_and_reset_par(void)
467 {
468 	if (unlikely(!max_part))
469 		max_part = 1;
470 
471 	/*
472 	 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
473 	 * otherwise, it is possiable to get same dev_t when adding partitions.
474 	 */
475 	if ((1U << MINORBITS) % max_part != 0)
476 		max_part = 1UL << fls(max_part);
477 
478 	if (max_part > DISK_MAX_PARTS) {
479 		pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
480 			DISK_MAX_PARTS, DISK_MAX_PARTS);
481 		max_part = DISK_MAX_PARTS;
482 	}
483 }
484 
485 static int __init brd_init(void)
486 {
487 	struct brd_device *brd, *next;
488 	int i;
489 
490 	/*
491 	 * brd module now has a feature to instantiate underlying device
492 	 * structure on-demand, provided that there is an access dev node.
493 	 *
494 	 * (1) if rd_nr is specified, create that many upfront. else
495 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
496 	 * (2) User can further extend brd devices by create dev node themselves
497 	 *     and have kernel automatically instantiate actual device
498 	 *     on-demand. Example:
499 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
500 	 *		fdisk -l /path/devnod_name
501 	 *	If (X / max_part) was not already created it will be created
502 	 *	dynamically.
503 	 */
504 
505 	if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe))
506 		return -EIO;
507 
508 	brd_check_and_reset_par();
509 
510 	brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
511 
512 	mutex_lock(&brd_devices_mutex);
513 	for (i = 0; i < rd_nr; i++) {
514 		brd = brd_alloc(i);
515 		if (!brd)
516 			goto out_free;
517 		list_add_tail(&brd->brd_list, &brd_devices);
518 	}
519 
520 	/* point of no return */
521 
522 	list_for_each_entry(brd, &brd_devices, brd_list) {
523 		/*
524 		 * associate with queue just before adding disk for
525 		 * avoiding to mess up failure path
526 		 */
527 		brd->brd_disk->queue = brd->brd_queue;
528 		add_disk(brd->brd_disk);
529 	}
530 	mutex_unlock(&brd_devices_mutex);
531 
532 	pr_info("brd: module loaded\n");
533 	return 0;
534 
535 out_free:
536 	debugfs_remove_recursive(brd_debugfs_dir);
537 
538 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
539 		list_del(&brd->brd_list);
540 		brd_free(brd);
541 	}
542 	mutex_unlock(&brd_devices_mutex);
543 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
544 
545 	pr_info("brd: module NOT loaded !!!\n");
546 	return -ENOMEM;
547 }
548 
549 static void __exit brd_exit(void)
550 {
551 	struct brd_device *brd, *next;
552 
553 	debugfs_remove_recursive(brd_debugfs_dir);
554 
555 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
556 		brd_del_one(brd);
557 
558 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
559 
560 	pr_info("brd: module unloaded\n");
561 }
562 
563 module_init(brd_init);
564 module_exit(brd_exit);
565 
566