1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Ram backed block device driver. 4 * 5 * Copyright (C) 2007 Nick Piggin 6 * Copyright (C) 2007 Novell Inc. 7 * 8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 9 * of their respective owners. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/initrd.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/major.h> 17 #include <linux/blkdev.h> 18 #include <linux/bio.h> 19 #include <linux/highmem.h> 20 #include <linux/mutex.h> 21 #include <linux/pagemap.h> 22 #include <linux/radix-tree.h> 23 #include <linux/fs.h> 24 #include <linux/slab.h> 25 #include <linux/backing-dev.h> 26 #include <linux/debugfs.h> 27 28 #include <linux/uaccess.h> 29 30 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 31 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 32 33 /* 34 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 35 * the pages containing the block device's contents. A brd page's ->index is 36 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 37 * with, the kernel's pagecache or buffer cache (which sit above our block 38 * device). 39 */ 40 struct brd_device { 41 int brd_number; 42 43 struct request_queue *brd_queue; 44 struct gendisk *brd_disk; 45 struct list_head brd_list; 46 47 /* 48 * Backing store of pages and lock to protect it. This is the contents 49 * of the block device. 50 */ 51 spinlock_t brd_lock; 52 struct radix_tree_root brd_pages; 53 u64 brd_nr_pages; 54 }; 55 56 /* 57 * Look up and return a brd's page for a given sector. 58 */ 59 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 60 { 61 pgoff_t idx; 62 struct page *page; 63 64 /* 65 * The page lifetime is protected by the fact that we have opened the 66 * device node -- brd pages will never be deleted under us, so we 67 * don't need any further locking or refcounting. 68 * 69 * This is strictly true for the radix-tree nodes as well (ie. we 70 * don't actually need the rcu_read_lock()), however that is not a 71 * documented feature of the radix-tree API so it is better to be 72 * safe here (we don't have total exclusion from radix tree updates 73 * here, only deletes). 74 */ 75 rcu_read_lock(); 76 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 77 page = radix_tree_lookup(&brd->brd_pages, idx); 78 rcu_read_unlock(); 79 80 BUG_ON(page && page->index != idx); 81 82 return page; 83 } 84 85 /* 86 * Look up and return a brd's page for a given sector. 87 * If one does not exist, allocate an empty page, and insert that. Then 88 * return it. 89 */ 90 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 91 { 92 pgoff_t idx; 93 struct page *page; 94 gfp_t gfp_flags; 95 96 page = brd_lookup_page(brd, sector); 97 if (page) 98 return page; 99 100 /* 101 * Must use NOIO because we don't want to recurse back into the 102 * block or filesystem layers from page reclaim. 103 */ 104 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; 105 page = alloc_page(gfp_flags); 106 if (!page) 107 return NULL; 108 109 if (radix_tree_preload(GFP_NOIO)) { 110 __free_page(page); 111 return NULL; 112 } 113 114 spin_lock(&brd->brd_lock); 115 idx = sector >> PAGE_SECTORS_SHIFT; 116 page->index = idx; 117 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 118 __free_page(page); 119 page = radix_tree_lookup(&brd->brd_pages, idx); 120 BUG_ON(!page); 121 BUG_ON(page->index != idx); 122 } else { 123 brd->brd_nr_pages++; 124 } 125 spin_unlock(&brd->brd_lock); 126 127 radix_tree_preload_end(); 128 129 return page; 130 } 131 132 /* 133 * Free all backing store pages and radix tree. This must only be called when 134 * there are no other users of the device. 135 */ 136 #define FREE_BATCH 16 137 static void brd_free_pages(struct brd_device *brd) 138 { 139 unsigned long pos = 0; 140 struct page *pages[FREE_BATCH]; 141 int nr_pages; 142 143 do { 144 int i; 145 146 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 147 (void **)pages, pos, FREE_BATCH); 148 149 for (i = 0; i < nr_pages; i++) { 150 void *ret; 151 152 BUG_ON(pages[i]->index < pos); 153 pos = pages[i]->index; 154 ret = radix_tree_delete(&brd->brd_pages, pos); 155 BUG_ON(!ret || ret != pages[i]); 156 __free_page(pages[i]); 157 } 158 159 pos++; 160 161 /* 162 * It takes 3.4 seconds to remove 80GiB ramdisk. 163 * So, we need cond_resched to avoid stalling the CPU. 164 */ 165 cond_resched(); 166 167 /* 168 * This assumes radix_tree_gang_lookup always returns as 169 * many pages as possible. If the radix-tree code changes, 170 * so will this have to. 171 */ 172 } while (nr_pages == FREE_BATCH); 173 } 174 175 /* 176 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 177 */ 178 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 179 { 180 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 181 size_t copy; 182 183 copy = min_t(size_t, n, PAGE_SIZE - offset); 184 if (!brd_insert_page(brd, sector)) 185 return -ENOSPC; 186 if (copy < n) { 187 sector += copy >> SECTOR_SHIFT; 188 if (!brd_insert_page(brd, sector)) 189 return -ENOSPC; 190 } 191 return 0; 192 } 193 194 /* 195 * Copy n bytes from src to the brd starting at sector. Does not sleep. 196 */ 197 static void copy_to_brd(struct brd_device *brd, const void *src, 198 sector_t sector, size_t n) 199 { 200 struct page *page; 201 void *dst; 202 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 203 size_t copy; 204 205 copy = min_t(size_t, n, PAGE_SIZE - offset); 206 page = brd_lookup_page(brd, sector); 207 BUG_ON(!page); 208 209 dst = kmap_atomic(page); 210 memcpy(dst + offset, src, copy); 211 kunmap_atomic(dst); 212 213 if (copy < n) { 214 src += copy; 215 sector += copy >> SECTOR_SHIFT; 216 copy = n - copy; 217 page = brd_lookup_page(brd, sector); 218 BUG_ON(!page); 219 220 dst = kmap_atomic(page); 221 memcpy(dst, src, copy); 222 kunmap_atomic(dst); 223 } 224 } 225 226 /* 227 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 228 */ 229 static void copy_from_brd(void *dst, struct brd_device *brd, 230 sector_t sector, size_t n) 231 { 232 struct page *page; 233 void *src; 234 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 235 size_t copy; 236 237 copy = min_t(size_t, n, PAGE_SIZE - offset); 238 page = brd_lookup_page(brd, sector); 239 if (page) { 240 src = kmap_atomic(page); 241 memcpy(dst, src + offset, copy); 242 kunmap_atomic(src); 243 } else 244 memset(dst, 0, copy); 245 246 if (copy < n) { 247 dst += copy; 248 sector += copy >> SECTOR_SHIFT; 249 copy = n - copy; 250 page = brd_lookup_page(brd, sector); 251 if (page) { 252 src = kmap_atomic(page); 253 memcpy(dst, src, copy); 254 kunmap_atomic(src); 255 } else 256 memset(dst, 0, copy); 257 } 258 } 259 260 /* 261 * Process a single bvec of a bio. 262 */ 263 static int brd_do_bvec(struct brd_device *brd, struct page *page, 264 unsigned int len, unsigned int off, unsigned int op, 265 sector_t sector) 266 { 267 void *mem; 268 int err = 0; 269 270 if (op_is_write(op)) { 271 err = copy_to_brd_setup(brd, sector, len); 272 if (err) 273 goto out; 274 } 275 276 mem = kmap_atomic(page); 277 if (!op_is_write(op)) { 278 copy_from_brd(mem + off, brd, sector, len); 279 flush_dcache_page(page); 280 } else { 281 flush_dcache_page(page); 282 copy_to_brd(brd, mem + off, sector, len); 283 } 284 kunmap_atomic(mem); 285 286 out: 287 return err; 288 } 289 290 static blk_qc_t brd_submit_bio(struct bio *bio) 291 { 292 struct brd_device *brd = bio->bi_bdev->bd_disk->private_data; 293 sector_t sector = bio->bi_iter.bi_sector; 294 struct bio_vec bvec; 295 struct bvec_iter iter; 296 297 bio_for_each_segment(bvec, bio, iter) { 298 unsigned int len = bvec.bv_len; 299 int err; 300 301 /* Don't support un-aligned buffer */ 302 WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) || 303 (len & (SECTOR_SIZE - 1))); 304 305 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 306 bio_op(bio), sector); 307 if (err) 308 goto io_error; 309 sector += len >> SECTOR_SHIFT; 310 } 311 312 bio_endio(bio); 313 return BLK_QC_T_NONE; 314 io_error: 315 bio_io_error(bio); 316 return BLK_QC_T_NONE; 317 } 318 319 static int brd_rw_page(struct block_device *bdev, sector_t sector, 320 struct page *page, unsigned int op) 321 { 322 struct brd_device *brd = bdev->bd_disk->private_data; 323 int err; 324 325 if (PageTransHuge(page)) 326 return -ENOTSUPP; 327 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector); 328 page_endio(page, op_is_write(op), err); 329 return err; 330 } 331 332 static const struct block_device_operations brd_fops = { 333 .owner = THIS_MODULE, 334 .submit_bio = brd_submit_bio, 335 .rw_page = brd_rw_page, 336 }; 337 338 /* 339 * And now the modules code and kernel interface. 340 */ 341 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 342 module_param(rd_nr, int, 0444); 343 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 344 345 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 346 module_param(rd_size, ulong, 0444); 347 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 348 349 static int max_part = 1; 350 module_param(max_part, int, 0444); 351 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 352 353 MODULE_LICENSE("GPL"); 354 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 355 MODULE_ALIAS("rd"); 356 357 #ifndef MODULE 358 /* Legacy boot options - nonmodular */ 359 static int __init ramdisk_size(char *str) 360 { 361 rd_size = simple_strtol(str, NULL, 0); 362 return 1; 363 } 364 __setup("ramdisk_size=", ramdisk_size); 365 #endif 366 367 /* 368 * The device scheme is derived from loop.c. Keep them in synch where possible 369 * (should share code eventually). 370 */ 371 static LIST_HEAD(brd_devices); 372 static DEFINE_MUTEX(brd_devices_mutex); 373 static struct dentry *brd_debugfs_dir; 374 375 static struct brd_device *brd_alloc(int i) 376 { 377 struct brd_device *brd; 378 struct gendisk *disk; 379 char buf[DISK_NAME_LEN]; 380 381 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 382 if (!brd) 383 goto out; 384 brd->brd_number = i; 385 spin_lock_init(&brd->brd_lock); 386 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 387 388 brd->brd_queue = blk_alloc_queue(NUMA_NO_NODE); 389 if (!brd->brd_queue) 390 goto out_free_dev; 391 392 snprintf(buf, DISK_NAME_LEN, "ram%d", i); 393 if (!IS_ERR_OR_NULL(brd_debugfs_dir)) 394 debugfs_create_u64(buf, 0444, brd_debugfs_dir, 395 &brd->brd_nr_pages); 396 397 /* This is so fdisk will align partitions on 4k, because of 398 * direct_access API needing 4k alignment, returning a PFN 399 * (This is only a problem on very small devices <= 4M, 400 * otherwise fdisk will align on 1M. Regardless this call 401 * is harmless) 402 */ 403 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 404 disk = brd->brd_disk = alloc_disk(max_part); 405 if (!disk) 406 goto out_free_queue; 407 disk->major = RAMDISK_MAJOR; 408 disk->first_minor = i * max_part; 409 disk->fops = &brd_fops; 410 disk->private_data = brd; 411 disk->flags = GENHD_FL_EXT_DEVT; 412 strlcpy(disk->disk_name, buf, DISK_NAME_LEN); 413 set_capacity(disk, rd_size * 2); 414 415 /* Tell the block layer that this is not a rotational device */ 416 blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue); 417 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue); 418 419 return brd; 420 421 out_free_queue: 422 blk_cleanup_queue(brd->brd_queue); 423 out_free_dev: 424 kfree(brd); 425 out: 426 return NULL; 427 } 428 429 static void brd_free(struct brd_device *brd) 430 { 431 put_disk(brd->brd_disk); 432 blk_cleanup_queue(brd->brd_queue); 433 brd_free_pages(brd); 434 kfree(brd); 435 } 436 437 static void brd_probe(dev_t dev) 438 { 439 struct brd_device *brd; 440 int i = MINOR(dev) / max_part; 441 442 mutex_lock(&brd_devices_mutex); 443 list_for_each_entry(brd, &brd_devices, brd_list) { 444 if (brd->brd_number == i) 445 goto out_unlock; 446 } 447 448 brd = brd_alloc(i); 449 if (brd) { 450 brd->brd_disk->queue = brd->brd_queue; 451 add_disk(brd->brd_disk); 452 list_add_tail(&brd->brd_list, &brd_devices); 453 } 454 455 out_unlock: 456 mutex_unlock(&brd_devices_mutex); 457 } 458 459 static void brd_del_one(struct brd_device *brd) 460 { 461 list_del(&brd->brd_list); 462 del_gendisk(brd->brd_disk); 463 brd_free(brd); 464 } 465 466 static inline void brd_check_and_reset_par(void) 467 { 468 if (unlikely(!max_part)) 469 max_part = 1; 470 471 /* 472 * make sure 'max_part' can be divided exactly by (1U << MINORBITS), 473 * otherwise, it is possiable to get same dev_t when adding partitions. 474 */ 475 if ((1U << MINORBITS) % max_part != 0) 476 max_part = 1UL << fls(max_part); 477 478 if (max_part > DISK_MAX_PARTS) { 479 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n", 480 DISK_MAX_PARTS, DISK_MAX_PARTS); 481 max_part = DISK_MAX_PARTS; 482 } 483 } 484 485 static int __init brd_init(void) 486 { 487 struct brd_device *brd, *next; 488 int i; 489 490 /* 491 * brd module now has a feature to instantiate underlying device 492 * structure on-demand, provided that there is an access dev node. 493 * 494 * (1) if rd_nr is specified, create that many upfront. else 495 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 496 * (2) User can further extend brd devices by create dev node themselves 497 * and have kernel automatically instantiate actual device 498 * on-demand. Example: 499 * mknod /path/devnod_name b 1 X # 1 is the rd major 500 * fdisk -l /path/devnod_name 501 * If (X / max_part) was not already created it will be created 502 * dynamically. 503 */ 504 505 if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) 506 return -EIO; 507 508 brd_check_and_reset_par(); 509 510 brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL); 511 512 mutex_lock(&brd_devices_mutex); 513 for (i = 0; i < rd_nr; i++) { 514 brd = brd_alloc(i); 515 if (!brd) 516 goto out_free; 517 list_add_tail(&brd->brd_list, &brd_devices); 518 } 519 520 /* point of no return */ 521 522 list_for_each_entry(brd, &brd_devices, brd_list) { 523 /* 524 * associate with queue just before adding disk for 525 * avoiding to mess up failure path 526 */ 527 brd->brd_disk->queue = brd->brd_queue; 528 add_disk(brd->brd_disk); 529 } 530 mutex_unlock(&brd_devices_mutex); 531 532 pr_info("brd: module loaded\n"); 533 return 0; 534 535 out_free: 536 debugfs_remove_recursive(brd_debugfs_dir); 537 538 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 539 list_del(&brd->brd_list); 540 brd_free(brd); 541 } 542 mutex_unlock(&brd_devices_mutex); 543 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 544 545 pr_info("brd: module NOT loaded !!!\n"); 546 return -ENOMEM; 547 } 548 549 static void __exit brd_exit(void) 550 { 551 struct brd_device *brd, *next; 552 553 debugfs_remove_recursive(brd_debugfs_dir); 554 555 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 556 brd_del_one(brd); 557 558 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 559 560 pr_info("brd: module unloaded\n"); 561 } 562 563 module_init(brd_init); 564 module_exit(brd_exit); 565 566