xref: /linux/drivers/block/brd.c (revision c98be0c96db00e9b6b02d31e0fa7590c54cdaaac)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 
23 #include <asm/uaccess.h>
24 
25 #define SECTOR_SHIFT		9
26 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
28 
29 /*
30  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31  * the pages containing the block device's contents. A brd page's ->index is
32  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33  * with, the kernel's pagecache or buffer cache (which sit above our block
34  * device).
35  */
36 struct brd_device {
37 	int		brd_number;
38 
39 	struct request_queue	*brd_queue;
40 	struct gendisk		*brd_disk;
41 	struct list_head	brd_list;
42 
43 	/*
44 	 * Backing store of pages and lock to protect it. This is the contents
45 	 * of the block device.
46 	 */
47 	spinlock_t		brd_lock;
48 	struct radix_tree_root	brd_pages;
49 };
50 
51 /*
52  * Look up and return a brd's page for a given sector.
53  */
54 static DEFINE_MUTEX(brd_mutex);
55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
56 {
57 	pgoff_t idx;
58 	struct page *page;
59 
60 	/*
61 	 * The page lifetime is protected by the fact that we have opened the
62 	 * device node -- brd pages will never be deleted under us, so we
63 	 * don't need any further locking or refcounting.
64 	 *
65 	 * This is strictly true for the radix-tree nodes as well (ie. we
66 	 * don't actually need the rcu_read_lock()), however that is not a
67 	 * documented feature of the radix-tree API so it is better to be
68 	 * safe here (we don't have total exclusion from radix tree updates
69 	 * here, only deletes).
70 	 */
71 	rcu_read_lock();
72 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
73 	page = radix_tree_lookup(&brd->brd_pages, idx);
74 	rcu_read_unlock();
75 
76 	BUG_ON(page && page->index != idx);
77 
78 	return page;
79 }
80 
81 /*
82  * Look up and return a brd's page for a given sector.
83  * If one does not exist, allocate an empty page, and insert that. Then
84  * return it.
85  */
86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
87 {
88 	pgoff_t idx;
89 	struct page *page;
90 	gfp_t gfp_flags;
91 
92 	page = brd_lookup_page(brd, sector);
93 	if (page)
94 		return page;
95 
96 	/*
97 	 * Must use NOIO because we don't want to recurse back into the
98 	 * block or filesystem layers from page reclaim.
99 	 *
100 	 * Cannot support XIP and highmem, because our ->direct_access
101 	 * routine for XIP must return memory that is always addressable.
102 	 * If XIP was reworked to use pfns and kmap throughout, this
103 	 * restriction might be able to be lifted.
104 	 */
105 	gfp_flags = GFP_NOIO | __GFP_ZERO;
106 #ifndef CONFIG_BLK_DEV_XIP
107 	gfp_flags |= __GFP_HIGHMEM;
108 #endif
109 	page = alloc_page(gfp_flags);
110 	if (!page)
111 		return NULL;
112 
113 	if (radix_tree_preload(GFP_NOIO)) {
114 		__free_page(page);
115 		return NULL;
116 	}
117 
118 	spin_lock(&brd->brd_lock);
119 	idx = sector >> PAGE_SECTORS_SHIFT;
120 	page->index = idx;
121 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
122 		__free_page(page);
123 		page = radix_tree_lookup(&brd->brd_pages, idx);
124 		BUG_ON(!page);
125 		BUG_ON(page->index != idx);
126 	}
127 	spin_unlock(&brd->brd_lock);
128 
129 	radix_tree_preload_end();
130 
131 	return page;
132 }
133 
134 static void brd_free_page(struct brd_device *brd, sector_t sector)
135 {
136 	struct page *page;
137 	pgoff_t idx;
138 
139 	spin_lock(&brd->brd_lock);
140 	idx = sector >> PAGE_SECTORS_SHIFT;
141 	page = radix_tree_delete(&brd->brd_pages, idx);
142 	spin_unlock(&brd->brd_lock);
143 	if (page)
144 		__free_page(page);
145 }
146 
147 static void brd_zero_page(struct brd_device *brd, sector_t sector)
148 {
149 	struct page *page;
150 
151 	page = brd_lookup_page(brd, sector);
152 	if (page)
153 		clear_highpage(page);
154 }
155 
156 /*
157  * Free all backing store pages and radix tree. This must only be called when
158  * there are no other users of the device.
159  */
160 #define FREE_BATCH 16
161 static void brd_free_pages(struct brd_device *brd)
162 {
163 	unsigned long pos = 0;
164 	struct page *pages[FREE_BATCH];
165 	int nr_pages;
166 
167 	do {
168 		int i;
169 
170 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
171 				(void **)pages, pos, FREE_BATCH);
172 
173 		for (i = 0; i < nr_pages; i++) {
174 			void *ret;
175 
176 			BUG_ON(pages[i]->index < pos);
177 			pos = pages[i]->index;
178 			ret = radix_tree_delete(&brd->brd_pages, pos);
179 			BUG_ON(!ret || ret != pages[i]);
180 			__free_page(pages[i]);
181 		}
182 
183 		pos++;
184 
185 		/*
186 		 * This assumes radix_tree_gang_lookup always returns as
187 		 * many pages as possible. If the radix-tree code changes,
188 		 * so will this have to.
189 		 */
190 	} while (nr_pages == FREE_BATCH);
191 }
192 
193 /*
194  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
195  */
196 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
197 {
198 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
199 	size_t copy;
200 
201 	copy = min_t(size_t, n, PAGE_SIZE - offset);
202 	if (!brd_insert_page(brd, sector))
203 		return -ENOMEM;
204 	if (copy < n) {
205 		sector += copy >> SECTOR_SHIFT;
206 		if (!brd_insert_page(brd, sector))
207 			return -ENOMEM;
208 	}
209 	return 0;
210 }
211 
212 static void discard_from_brd(struct brd_device *brd,
213 			sector_t sector, size_t n)
214 {
215 	while (n >= PAGE_SIZE) {
216 		/*
217 		 * Don't want to actually discard pages here because
218 		 * re-allocating the pages can result in writeback
219 		 * deadlocks under heavy load.
220 		 */
221 		if (0)
222 			brd_free_page(brd, sector);
223 		else
224 			brd_zero_page(brd, sector);
225 		sector += PAGE_SIZE >> SECTOR_SHIFT;
226 		n -= PAGE_SIZE;
227 	}
228 }
229 
230 /*
231  * Copy n bytes from src to the brd starting at sector. Does not sleep.
232  */
233 static void copy_to_brd(struct brd_device *brd, const void *src,
234 			sector_t sector, size_t n)
235 {
236 	struct page *page;
237 	void *dst;
238 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239 	size_t copy;
240 
241 	copy = min_t(size_t, n, PAGE_SIZE - offset);
242 	page = brd_lookup_page(brd, sector);
243 	BUG_ON(!page);
244 
245 	dst = kmap_atomic(page);
246 	memcpy(dst + offset, src, copy);
247 	kunmap_atomic(dst);
248 
249 	if (copy < n) {
250 		src += copy;
251 		sector += copy >> SECTOR_SHIFT;
252 		copy = n - copy;
253 		page = brd_lookup_page(brd, sector);
254 		BUG_ON(!page);
255 
256 		dst = kmap_atomic(page);
257 		memcpy(dst, src, copy);
258 		kunmap_atomic(dst);
259 	}
260 }
261 
262 /*
263  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
264  */
265 static void copy_from_brd(void *dst, struct brd_device *brd,
266 			sector_t sector, size_t n)
267 {
268 	struct page *page;
269 	void *src;
270 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
271 	size_t copy;
272 
273 	copy = min_t(size_t, n, PAGE_SIZE - offset);
274 	page = brd_lookup_page(brd, sector);
275 	if (page) {
276 		src = kmap_atomic(page);
277 		memcpy(dst, src + offset, copy);
278 		kunmap_atomic(src);
279 	} else
280 		memset(dst, 0, copy);
281 
282 	if (copy < n) {
283 		dst += copy;
284 		sector += copy >> SECTOR_SHIFT;
285 		copy = n - copy;
286 		page = brd_lookup_page(brd, sector);
287 		if (page) {
288 			src = kmap_atomic(page);
289 			memcpy(dst, src, copy);
290 			kunmap_atomic(src);
291 		} else
292 			memset(dst, 0, copy);
293 	}
294 }
295 
296 /*
297  * Process a single bvec of a bio.
298  */
299 static int brd_do_bvec(struct brd_device *brd, struct page *page,
300 			unsigned int len, unsigned int off, int rw,
301 			sector_t sector)
302 {
303 	void *mem;
304 	int err = 0;
305 
306 	if (rw != READ) {
307 		err = copy_to_brd_setup(brd, sector, len);
308 		if (err)
309 			goto out;
310 	}
311 
312 	mem = kmap_atomic(page);
313 	if (rw == READ) {
314 		copy_from_brd(mem + off, brd, sector, len);
315 		flush_dcache_page(page);
316 	} else {
317 		flush_dcache_page(page);
318 		copy_to_brd(brd, mem + off, sector, len);
319 	}
320 	kunmap_atomic(mem);
321 
322 out:
323 	return err;
324 }
325 
326 static void brd_make_request(struct request_queue *q, struct bio *bio)
327 {
328 	struct block_device *bdev = bio->bi_bdev;
329 	struct brd_device *brd = bdev->bd_disk->private_data;
330 	int rw;
331 	struct bio_vec bvec;
332 	sector_t sector;
333 	struct bvec_iter iter;
334 	int err = -EIO;
335 
336 	sector = bio->bi_iter.bi_sector;
337 	if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
338 		goto out;
339 
340 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
341 		err = 0;
342 		discard_from_brd(brd, sector, bio->bi_iter.bi_size);
343 		goto out;
344 	}
345 
346 	rw = bio_rw(bio);
347 	if (rw == READA)
348 		rw = READ;
349 
350 	bio_for_each_segment(bvec, bio, iter) {
351 		unsigned int len = bvec.bv_len;
352 		err = brd_do_bvec(brd, bvec.bv_page, len,
353 					bvec.bv_offset, rw, sector);
354 		if (err)
355 			break;
356 		sector += len >> SECTOR_SHIFT;
357 	}
358 
359 out:
360 	bio_endio(bio, err);
361 }
362 
363 #ifdef CONFIG_BLK_DEV_XIP
364 static int brd_direct_access(struct block_device *bdev, sector_t sector,
365 			void **kaddr, unsigned long *pfn)
366 {
367 	struct brd_device *brd = bdev->bd_disk->private_data;
368 	struct page *page;
369 
370 	if (!brd)
371 		return -ENODEV;
372 	if (sector & (PAGE_SECTORS-1))
373 		return -EINVAL;
374 	if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
375 		return -ERANGE;
376 	page = brd_insert_page(brd, sector);
377 	if (!page)
378 		return -ENOMEM;
379 	*kaddr = page_address(page);
380 	*pfn = page_to_pfn(page);
381 
382 	return 0;
383 }
384 #endif
385 
386 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
387 			unsigned int cmd, unsigned long arg)
388 {
389 	int error;
390 	struct brd_device *brd = bdev->bd_disk->private_data;
391 
392 	if (cmd != BLKFLSBUF)
393 		return -ENOTTY;
394 
395 	/*
396 	 * ram device BLKFLSBUF has special semantics, we want to actually
397 	 * release and destroy the ramdisk data.
398 	 */
399 	mutex_lock(&brd_mutex);
400 	mutex_lock(&bdev->bd_mutex);
401 	error = -EBUSY;
402 	if (bdev->bd_openers <= 1) {
403 		/*
404 		 * Kill the cache first, so it isn't written back to the
405 		 * device.
406 		 *
407 		 * Another thread might instantiate more buffercache here,
408 		 * but there is not much we can do to close that race.
409 		 */
410 		kill_bdev(bdev);
411 		brd_free_pages(brd);
412 		error = 0;
413 	}
414 	mutex_unlock(&bdev->bd_mutex);
415 	mutex_unlock(&brd_mutex);
416 
417 	return error;
418 }
419 
420 static const struct block_device_operations brd_fops = {
421 	.owner =		THIS_MODULE,
422 	.ioctl =		brd_ioctl,
423 #ifdef CONFIG_BLK_DEV_XIP
424 	.direct_access =	brd_direct_access,
425 #endif
426 };
427 
428 /*
429  * And now the modules code and kernel interface.
430  */
431 static int rd_nr;
432 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
433 static int max_part;
434 static int part_shift;
435 module_param(rd_nr, int, S_IRUGO);
436 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
437 module_param(rd_size, int, S_IRUGO);
438 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
439 module_param(max_part, int, S_IRUGO);
440 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
441 MODULE_LICENSE("GPL");
442 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
443 MODULE_ALIAS("rd");
444 
445 #ifndef MODULE
446 /* Legacy boot options - nonmodular */
447 static int __init ramdisk_size(char *str)
448 {
449 	rd_size = simple_strtol(str, NULL, 0);
450 	return 1;
451 }
452 __setup("ramdisk_size=", ramdisk_size);
453 #endif
454 
455 /*
456  * The device scheme is derived from loop.c. Keep them in synch where possible
457  * (should share code eventually).
458  */
459 static LIST_HEAD(brd_devices);
460 static DEFINE_MUTEX(brd_devices_mutex);
461 
462 static struct brd_device *brd_alloc(int i)
463 {
464 	struct brd_device *brd;
465 	struct gendisk *disk;
466 
467 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
468 	if (!brd)
469 		goto out;
470 	brd->brd_number		= i;
471 	spin_lock_init(&brd->brd_lock);
472 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
473 
474 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
475 	if (!brd->brd_queue)
476 		goto out_free_dev;
477 	blk_queue_make_request(brd->brd_queue, brd_make_request);
478 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
479 	blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
480 
481 	brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
482 	brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
483 	brd->brd_queue->limits.discard_zeroes_data = 1;
484 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
485 
486 	disk = brd->brd_disk = alloc_disk(1 << part_shift);
487 	if (!disk)
488 		goto out_free_queue;
489 	disk->major		= RAMDISK_MAJOR;
490 	disk->first_minor	= i << part_shift;
491 	disk->fops		= &brd_fops;
492 	disk->private_data	= brd;
493 	disk->queue		= brd->brd_queue;
494 	disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
495 	sprintf(disk->disk_name, "ram%d", i);
496 	set_capacity(disk, rd_size * 2);
497 
498 	return brd;
499 
500 out_free_queue:
501 	blk_cleanup_queue(brd->brd_queue);
502 out_free_dev:
503 	kfree(brd);
504 out:
505 	return NULL;
506 }
507 
508 static void brd_free(struct brd_device *brd)
509 {
510 	put_disk(brd->brd_disk);
511 	blk_cleanup_queue(brd->brd_queue);
512 	brd_free_pages(brd);
513 	kfree(brd);
514 }
515 
516 static struct brd_device *brd_init_one(int i)
517 {
518 	struct brd_device *brd;
519 
520 	list_for_each_entry(brd, &brd_devices, brd_list) {
521 		if (brd->brd_number == i)
522 			goto out;
523 	}
524 
525 	brd = brd_alloc(i);
526 	if (brd) {
527 		add_disk(brd->brd_disk);
528 		list_add_tail(&brd->brd_list, &brd_devices);
529 	}
530 out:
531 	return brd;
532 }
533 
534 static void brd_del_one(struct brd_device *brd)
535 {
536 	list_del(&brd->brd_list);
537 	del_gendisk(brd->brd_disk);
538 	brd_free(brd);
539 }
540 
541 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
542 {
543 	struct brd_device *brd;
544 	struct kobject *kobj;
545 
546 	mutex_lock(&brd_devices_mutex);
547 	brd = brd_init_one(MINOR(dev) >> part_shift);
548 	kobj = brd ? get_disk(brd->brd_disk) : NULL;
549 	mutex_unlock(&brd_devices_mutex);
550 
551 	*part = 0;
552 	return kobj;
553 }
554 
555 static int __init brd_init(void)
556 {
557 	int i, nr;
558 	unsigned long range;
559 	struct brd_device *brd, *next;
560 
561 	/*
562 	 * brd module now has a feature to instantiate underlying device
563 	 * structure on-demand, provided that there is an access dev node.
564 	 * However, this will not work well with user space tool that doesn't
565 	 * know about such "feature".  In order to not break any existing
566 	 * tool, we do the following:
567 	 *
568 	 * (1) if rd_nr is specified, create that many upfront, and this
569 	 *     also becomes a hard limit.
570 	 * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT
571 	 *     (default 16) rd device on module load, user can further
572 	 *     extend brd device by create dev node themselves and have
573 	 *     kernel automatically instantiate actual device on-demand.
574 	 */
575 
576 	part_shift = 0;
577 	if (max_part > 0) {
578 		part_shift = fls(max_part);
579 
580 		/*
581 		 * Adjust max_part according to part_shift as it is exported
582 		 * to user space so that user can decide correct minor number
583 		 * if [s]he want to create more devices.
584 		 *
585 		 * Note that -1 is required because partition 0 is reserved
586 		 * for the whole disk.
587 		 */
588 		max_part = (1UL << part_shift) - 1;
589 	}
590 
591 	if ((1UL << part_shift) > DISK_MAX_PARTS)
592 		return -EINVAL;
593 
594 	if (rd_nr > 1UL << (MINORBITS - part_shift))
595 		return -EINVAL;
596 
597 	if (rd_nr) {
598 		nr = rd_nr;
599 		range = rd_nr << part_shift;
600 	} else {
601 		nr = CONFIG_BLK_DEV_RAM_COUNT;
602 		range = 1UL << MINORBITS;
603 	}
604 
605 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
606 		return -EIO;
607 
608 	for (i = 0; i < nr; i++) {
609 		brd = brd_alloc(i);
610 		if (!brd)
611 			goto out_free;
612 		list_add_tail(&brd->brd_list, &brd_devices);
613 	}
614 
615 	/* point of no return */
616 
617 	list_for_each_entry(brd, &brd_devices, brd_list)
618 		add_disk(brd->brd_disk);
619 
620 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
621 				  THIS_MODULE, brd_probe, NULL, NULL);
622 
623 	printk(KERN_INFO "brd: module loaded\n");
624 	return 0;
625 
626 out_free:
627 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
628 		list_del(&brd->brd_list);
629 		brd_free(brd);
630 	}
631 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
632 
633 	return -ENOMEM;
634 }
635 
636 static void __exit brd_exit(void)
637 {
638 	unsigned long range;
639 	struct brd_device *brd, *next;
640 
641 	range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS;
642 
643 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
644 		brd_del_one(brd);
645 
646 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
647 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
648 }
649 
650 module_init(brd_init);
651 module_exit(brd_exit);
652 
653