1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Ram backed block device driver. 4 * 5 * Copyright (C) 2007 Nick Piggin 6 * Copyright (C) 2007 Novell Inc. 7 * 8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 9 * of their respective owners. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/initrd.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/major.h> 17 #include <linux/blkdev.h> 18 #include <linux/bio.h> 19 #include <linux/highmem.h> 20 #include <linux/mutex.h> 21 #include <linux/radix-tree.h> 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/backing-dev.h> 25 #include <linux/debugfs.h> 26 27 #include <linux/uaccess.h> 28 29 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 30 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 31 32 /* 33 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 34 * the pages containing the block device's contents. A brd page's ->index is 35 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 36 * with, the kernel's pagecache or buffer cache (which sit above our block 37 * device). 38 */ 39 struct brd_device { 40 int brd_number; 41 42 struct request_queue *brd_queue; 43 struct gendisk *brd_disk; 44 struct list_head brd_list; 45 46 /* 47 * Backing store of pages and lock to protect it. This is the contents 48 * of the block device. 49 */ 50 spinlock_t brd_lock; 51 struct radix_tree_root brd_pages; 52 u64 brd_nr_pages; 53 }; 54 55 /* 56 * Look up and return a brd's page for a given sector. 57 */ 58 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 59 { 60 pgoff_t idx; 61 struct page *page; 62 63 /* 64 * The page lifetime is protected by the fact that we have opened the 65 * device node -- brd pages will never be deleted under us, so we 66 * don't need any further locking or refcounting. 67 * 68 * This is strictly true for the radix-tree nodes as well (ie. we 69 * don't actually need the rcu_read_lock()), however that is not a 70 * documented feature of the radix-tree API so it is better to be 71 * safe here (we don't have total exclusion from radix tree updates 72 * here, only deletes). 73 */ 74 rcu_read_lock(); 75 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 76 page = radix_tree_lookup(&brd->brd_pages, idx); 77 rcu_read_unlock(); 78 79 BUG_ON(page && page->index != idx); 80 81 return page; 82 } 83 84 /* 85 * Look up and return a brd's page for a given sector. 86 * If one does not exist, allocate an empty page, and insert that. Then 87 * return it. 88 */ 89 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 90 { 91 pgoff_t idx; 92 struct page *page; 93 gfp_t gfp_flags; 94 95 page = brd_lookup_page(brd, sector); 96 if (page) 97 return page; 98 99 /* 100 * Must use NOIO because we don't want to recurse back into the 101 * block or filesystem layers from page reclaim. 102 */ 103 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; 104 page = alloc_page(gfp_flags); 105 if (!page) 106 return NULL; 107 108 if (radix_tree_preload(GFP_NOIO)) { 109 __free_page(page); 110 return NULL; 111 } 112 113 spin_lock(&brd->brd_lock); 114 idx = sector >> PAGE_SECTORS_SHIFT; 115 page->index = idx; 116 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 117 __free_page(page); 118 page = radix_tree_lookup(&brd->brd_pages, idx); 119 BUG_ON(!page); 120 BUG_ON(page->index != idx); 121 } else { 122 brd->brd_nr_pages++; 123 } 124 spin_unlock(&brd->brd_lock); 125 126 radix_tree_preload_end(); 127 128 return page; 129 } 130 131 /* 132 * Free all backing store pages and radix tree. This must only be called when 133 * there are no other users of the device. 134 */ 135 #define FREE_BATCH 16 136 static void brd_free_pages(struct brd_device *brd) 137 { 138 unsigned long pos = 0; 139 struct page *pages[FREE_BATCH]; 140 int nr_pages; 141 142 do { 143 int i; 144 145 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 146 (void **)pages, pos, FREE_BATCH); 147 148 for (i = 0; i < nr_pages; i++) { 149 void *ret; 150 151 BUG_ON(pages[i]->index < pos); 152 pos = pages[i]->index; 153 ret = radix_tree_delete(&brd->brd_pages, pos); 154 BUG_ON(!ret || ret != pages[i]); 155 __free_page(pages[i]); 156 } 157 158 pos++; 159 160 /* 161 * It takes 3.4 seconds to remove 80GiB ramdisk. 162 * So, we need cond_resched to avoid stalling the CPU. 163 */ 164 cond_resched(); 165 166 /* 167 * This assumes radix_tree_gang_lookup always returns as 168 * many pages as possible. If the radix-tree code changes, 169 * so will this have to. 170 */ 171 } while (nr_pages == FREE_BATCH); 172 } 173 174 /* 175 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 176 */ 177 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 178 { 179 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 180 size_t copy; 181 182 copy = min_t(size_t, n, PAGE_SIZE - offset); 183 if (!brd_insert_page(brd, sector)) 184 return -ENOSPC; 185 if (copy < n) { 186 sector += copy >> SECTOR_SHIFT; 187 if (!brd_insert_page(brd, sector)) 188 return -ENOSPC; 189 } 190 return 0; 191 } 192 193 /* 194 * Copy n bytes from src to the brd starting at sector. Does not sleep. 195 */ 196 static void copy_to_brd(struct brd_device *brd, const void *src, 197 sector_t sector, size_t n) 198 { 199 struct page *page; 200 void *dst; 201 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 202 size_t copy; 203 204 copy = min_t(size_t, n, PAGE_SIZE - offset); 205 page = brd_lookup_page(brd, sector); 206 BUG_ON(!page); 207 208 dst = kmap_atomic(page); 209 memcpy(dst + offset, src, copy); 210 kunmap_atomic(dst); 211 212 if (copy < n) { 213 src += copy; 214 sector += copy >> SECTOR_SHIFT; 215 copy = n - copy; 216 page = brd_lookup_page(brd, sector); 217 BUG_ON(!page); 218 219 dst = kmap_atomic(page); 220 memcpy(dst, src, copy); 221 kunmap_atomic(dst); 222 } 223 } 224 225 /* 226 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 227 */ 228 static void copy_from_brd(void *dst, struct brd_device *brd, 229 sector_t sector, size_t n) 230 { 231 struct page *page; 232 void *src; 233 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 234 size_t copy; 235 236 copy = min_t(size_t, n, PAGE_SIZE - offset); 237 page = brd_lookup_page(brd, sector); 238 if (page) { 239 src = kmap_atomic(page); 240 memcpy(dst, src + offset, copy); 241 kunmap_atomic(src); 242 } else 243 memset(dst, 0, copy); 244 245 if (copy < n) { 246 dst += copy; 247 sector += copy >> SECTOR_SHIFT; 248 copy = n - copy; 249 page = brd_lookup_page(brd, sector); 250 if (page) { 251 src = kmap_atomic(page); 252 memcpy(dst, src, copy); 253 kunmap_atomic(src); 254 } else 255 memset(dst, 0, copy); 256 } 257 } 258 259 /* 260 * Process a single bvec of a bio. 261 */ 262 static int brd_do_bvec(struct brd_device *brd, struct page *page, 263 unsigned int len, unsigned int off, unsigned int op, 264 sector_t sector) 265 { 266 void *mem; 267 int err = 0; 268 269 if (op_is_write(op)) { 270 err = copy_to_brd_setup(brd, sector, len); 271 if (err) 272 goto out; 273 } 274 275 mem = kmap_atomic(page); 276 if (!op_is_write(op)) { 277 copy_from_brd(mem + off, brd, sector, len); 278 flush_dcache_page(page); 279 } else { 280 flush_dcache_page(page); 281 copy_to_brd(brd, mem + off, sector, len); 282 } 283 kunmap_atomic(mem); 284 285 out: 286 return err; 287 } 288 289 static blk_qc_t brd_submit_bio(struct bio *bio) 290 { 291 struct brd_device *brd = bio->bi_bdev->bd_disk->private_data; 292 sector_t sector = bio->bi_iter.bi_sector; 293 struct bio_vec bvec; 294 struct bvec_iter iter; 295 296 bio_for_each_segment(bvec, bio, iter) { 297 unsigned int len = bvec.bv_len; 298 int err; 299 300 /* Don't support un-aligned buffer */ 301 WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) || 302 (len & (SECTOR_SIZE - 1))); 303 304 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 305 bio_op(bio), sector); 306 if (err) 307 goto io_error; 308 sector += len >> SECTOR_SHIFT; 309 } 310 311 bio_endio(bio); 312 return BLK_QC_T_NONE; 313 io_error: 314 bio_io_error(bio); 315 return BLK_QC_T_NONE; 316 } 317 318 static int brd_rw_page(struct block_device *bdev, sector_t sector, 319 struct page *page, unsigned int op) 320 { 321 struct brd_device *brd = bdev->bd_disk->private_data; 322 int err; 323 324 if (PageTransHuge(page)) 325 return -ENOTSUPP; 326 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector); 327 page_endio(page, op_is_write(op), err); 328 return err; 329 } 330 331 static const struct block_device_operations brd_fops = { 332 .owner = THIS_MODULE, 333 .submit_bio = brd_submit_bio, 334 .rw_page = brd_rw_page, 335 }; 336 337 /* 338 * And now the modules code and kernel interface. 339 */ 340 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 341 module_param(rd_nr, int, 0444); 342 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 343 344 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 345 module_param(rd_size, ulong, 0444); 346 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 347 348 static int max_part = 1; 349 module_param(max_part, int, 0444); 350 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 351 352 MODULE_LICENSE("GPL"); 353 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 354 MODULE_ALIAS("rd"); 355 356 #ifndef MODULE 357 /* Legacy boot options - nonmodular */ 358 static int __init ramdisk_size(char *str) 359 { 360 rd_size = simple_strtol(str, NULL, 0); 361 return 1; 362 } 363 __setup("ramdisk_size=", ramdisk_size); 364 #endif 365 366 /* 367 * The device scheme is derived from loop.c. Keep them in synch where possible 368 * (should share code eventually). 369 */ 370 static LIST_HEAD(brd_devices); 371 static DEFINE_MUTEX(brd_devices_mutex); 372 static struct dentry *brd_debugfs_dir; 373 374 static struct brd_device *brd_alloc(int i) 375 { 376 struct brd_device *brd; 377 struct gendisk *disk; 378 char buf[DISK_NAME_LEN]; 379 380 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 381 if (!brd) 382 goto out; 383 brd->brd_number = i; 384 spin_lock_init(&brd->brd_lock); 385 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 386 387 brd->brd_queue = blk_alloc_queue(NUMA_NO_NODE); 388 if (!brd->brd_queue) 389 goto out_free_dev; 390 391 snprintf(buf, DISK_NAME_LEN, "ram%d", i); 392 if (!IS_ERR_OR_NULL(brd_debugfs_dir)) 393 debugfs_create_u64(buf, 0444, brd_debugfs_dir, 394 &brd->brd_nr_pages); 395 396 /* This is so fdisk will align partitions on 4k, because of 397 * direct_access API needing 4k alignment, returning a PFN 398 * (This is only a problem on very small devices <= 4M, 399 * otherwise fdisk will align on 1M. Regardless this call 400 * is harmless) 401 */ 402 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 403 disk = brd->brd_disk = alloc_disk(max_part); 404 if (!disk) 405 goto out_free_queue; 406 disk->major = RAMDISK_MAJOR; 407 disk->first_minor = i * max_part; 408 disk->fops = &brd_fops; 409 disk->private_data = brd; 410 disk->flags = GENHD_FL_EXT_DEVT; 411 strlcpy(disk->disk_name, buf, DISK_NAME_LEN); 412 set_capacity(disk, rd_size * 2); 413 414 /* Tell the block layer that this is not a rotational device */ 415 blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue); 416 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue); 417 418 return brd; 419 420 out_free_queue: 421 blk_cleanup_queue(brd->brd_queue); 422 out_free_dev: 423 kfree(brd); 424 out: 425 return NULL; 426 } 427 428 static void brd_free(struct brd_device *brd) 429 { 430 put_disk(brd->brd_disk); 431 blk_cleanup_queue(brd->brd_queue); 432 brd_free_pages(brd); 433 kfree(brd); 434 } 435 436 static void brd_probe(dev_t dev) 437 { 438 struct brd_device *brd; 439 int i = MINOR(dev) / max_part; 440 441 mutex_lock(&brd_devices_mutex); 442 list_for_each_entry(brd, &brd_devices, brd_list) { 443 if (brd->brd_number == i) 444 goto out_unlock; 445 } 446 447 brd = brd_alloc(i); 448 if (brd) { 449 brd->brd_disk->queue = brd->brd_queue; 450 add_disk(brd->brd_disk); 451 list_add_tail(&brd->brd_list, &brd_devices); 452 } 453 454 out_unlock: 455 mutex_unlock(&brd_devices_mutex); 456 } 457 458 static void brd_del_one(struct brd_device *brd) 459 { 460 list_del(&brd->brd_list); 461 del_gendisk(brd->brd_disk); 462 brd_free(brd); 463 } 464 465 static inline void brd_check_and_reset_par(void) 466 { 467 if (unlikely(!max_part)) 468 max_part = 1; 469 470 /* 471 * make sure 'max_part' can be divided exactly by (1U << MINORBITS), 472 * otherwise, it is possiable to get same dev_t when adding partitions. 473 */ 474 if ((1U << MINORBITS) % max_part != 0) 475 max_part = 1UL << fls(max_part); 476 477 if (max_part > DISK_MAX_PARTS) { 478 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n", 479 DISK_MAX_PARTS, DISK_MAX_PARTS); 480 max_part = DISK_MAX_PARTS; 481 } 482 } 483 484 static int __init brd_init(void) 485 { 486 struct brd_device *brd, *next; 487 int i; 488 489 /* 490 * brd module now has a feature to instantiate underlying device 491 * structure on-demand, provided that there is an access dev node. 492 * 493 * (1) if rd_nr is specified, create that many upfront. else 494 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 495 * (2) User can further extend brd devices by create dev node themselves 496 * and have kernel automatically instantiate actual device 497 * on-demand. Example: 498 * mknod /path/devnod_name b 1 X # 1 is the rd major 499 * fdisk -l /path/devnod_name 500 * If (X / max_part) was not already created it will be created 501 * dynamically. 502 */ 503 504 if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) 505 return -EIO; 506 507 brd_check_and_reset_par(); 508 509 brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL); 510 511 mutex_lock(&brd_devices_mutex); 512 for (i = 0; i < rd_nr; i++) { 513 brd = brd_alloc(i); 514 if (!brd) 515 goto out_free; 516 list_add_tail(&brd->brd_list, &brd_devices); 517 } 518 519 /* point of no return */ 520 521 list_for_each_entry(brd, &brd_devices, brd_list) { 522 /* 523 * associate with queue just before adding disk for 524 * avoiding to mess up failure path 525 */ 526 brd->brd_disk->queue = brd->brd_queue; 527 add_disk(brd->brd_disk); 528 } 529 mutex_unlock(&brd_devices_mutex); 530 531 pr_info("brd: module loaded\n"); 532 return 0; 533 534 out_free: 535 debugfs_remove_recursive(brd_debugfs_dir); 536 537 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 538 list_del(&brd->brd_list); 539 brd_free(brd); 540 } 541 mutex_unlock(&brd_devices_mutex); 542 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 543 544 pr_info("brd: module NOT loaded !!!\n"); 545 return -ENOMEM; 546 } 547 548 static void __exit brd_exit(void) 549 { 550 struct brd_device *brd, *next; 551 552 debugfs_remove_recursive(brd_debugfs_dir); 553 554 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 555 brd_del_one(brd); 556 557 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 558 559 pr_info("brd: module unloaded\n"); 560 } 561 562 module_init(brd_init); 563 module_exit(brd_exit); 564 565