xref: /linux/drivers/block/brd.c (revision 9009b455811b0fa1f6b0adfa94db136984db5a38)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Ram backed block device driver.
4  *
5  * Copyright (C) 2007 Nick Piggin
6  * Copyright (C) 2007 Novell Inc.
7  *
8  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9  * of their respective owners.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/radix-tree.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
25 #include <linux/debugfs.h>
26 
27 #include <linux/uaccess.h>
28 
29 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
30 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
31 
32 /*
33  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
34  * the pages containing the block device's contents. A brd page's ->index is
35  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
36  * with, the kernel's pagecache or buffer cache (which sit above our block
37  * device).
38  */
39 struct brd_device {
40 	int		brd_number;
41 
42 	struct request_queue	*brd_queue;
43 	struct gendisk		*brd_disk;
44 	struct list_head	brd_list;
45 
46 	/*
47 	 * Backing store of pages and lock to protect it. This is the contents
48 	 * of the block device.
49 	 */
50 	spinlock_t		brd_lock;
51 	struct radix_tree_root	brd_pages;
52 	u64			brd_nr_pages;
53 };
54 
55 /*
56  * Look up and return a brd's page for a given sector.
57  */
58 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
59 {
60 	pgoff_t idx;
61 	struct page *page;
62 
63 	/*
64 	 * The page lifetime is protected by the fact that we have opened the
65 	 * device node -- brd pages will never be deleted under us, so we
66 	 * don't need any further locking or refcounting.
67 	 *
68 	 * This is strictly true for the radix-tree nodes as well (ie. we
69 	 * don't actually need the rcu_read_lock()), however that is not a
70 	 * documented feature of the radix-tree API so it is better to be
71 	 * safe here (we don't have total exclusion from radix tree updates
72 	 * here, only deletes).
73 	 */
74 	rcu_read_lock();
75 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
76 	page = radix_tree_lookup(&brd->brd_pages, idx);
77 	rcu_read_unlock();
78 
79 	BUG_ON(page && page->index != idx);
80 
81 	return page;
82 }
83 
84 /*
85  * Look up and return a brd's page for a given sector.
86  * If one does not exist, allocate an empty page, and insert that. Then
87  * return it.
88  */
89 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
90 {
91 	pgoff_t idx;
92 	struct page *page;
93 	gfp_t gfp_flags;
94 
95 	page = brd_lookup_page(brd, sector);
96 	if (page)
97 		return page;
98 
99 	/*
100 	 * Must use NOIO because we don't want to recurse back into the
101 	 * block or filesystem layers from page reclaim.
102 	 */
103 	gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
104 	page = alloc_page(gfp_flags);
105 	if (!page)
106 		return NULL;
107 
108 	if (radix_tree_preload(GFP_NOIO)) {
109 		__free_page(page);
110 		return NULL;
111 	}
112 
113 	spin_lock(&brd->brd_lock);
114 	idx = sector >> PAGE_SECTORS_SHIFT;
115 	page->index = idx;
116 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
117 		__free_page(page);
118 		page = radix_tree_lookup(&brd->brd_pages, idx);
119 		BUG_ON(!page);
120 		BUG_ON(page->index != idx);
121 	} else {
122 		brd->brd_nr_pages++;
123 	}
124 	spin_unlock(&brd->brd_lock);
125 
126 	radix_tree_preload_end();
127 
128 	return page;
129 }
130 
131 /*
132  * Free all backing store pages and radix tree. This must only be called when
133  * there are no other users of the device.
134  */
135 #define FREE_BATCH 16
136 static void brd_free_pages(struct brd_device *brd)
137 {
138 	unsigned long pos = 0;
139 	struct page *pages[FREE_BATCH];
140 	int nr_pages;
141 
142 	do {
143 		int i;
144 
145 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
146 				(void **)pages, pos, FREE_BATCH);
147 
148 		for (i = 0; i < nr_pages; i++) {
149 			void *ret;
150 
151 			BUG_ON(pages[i]->index < pos);
152 			pos = pages[i]->index;
153 			ret = radix_tree_delete(&brd->brd_pages, pos);
154 			BUG_ON(!ret || ret != pages[i]);
155 			__free_page(pages[i]);
156 		}
157 
158 		pos++;
159 
160 		/*
161 		 * It takes 3.4 seconds to remove 80GiB ramdisk.
162 		 * So, we need cond_resched to avoid stalling the CPU.
163 		 */
164 		cond_resched();
165 
166 		/*
167 		 * This assumes radix_tree_gang_lookup always returns as
168 		 * many pages as possible. If the radix-tree code changes,
169 		 * so will this have to.
170 		 */
171 	} while (nr_pages == FREE_BATCH);
172 }
173 
174 /*
175  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
176  */
177 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
178 {
179 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
180 	size_t copy;
181 
182 	copy = min_t(size_t, n, PAGE_SIZE - offset);
183 	if (!brd_insert_page(brd, sector))
184 		return -ENOSPC;
185 	if (copy < n) {
186 		sector += copy >> SECTOR_SHIFT;
187 		if (!brd_insert_page(brd, sector))
188 			return -ENOSPC;
189 	}
190 	return 0;
191 }
192 
193 /*
194  * Copy n bytes from src to the brd starting at sector. Does not sleep.
195  */
196 static void copy_to_brd(struct brd_device *brd, const void *src,
197 			sector_t sector, size_t n)
198 {
199 	struct page *page;
200 	void *dst;
201 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
202 	size_t copy;
203 
204 	copy = min_t(size_t, n, PAGE_SIZE - offset);
205 	page = brd_lookup_page(brd, sector);
206 	BUG_ON(!page);
207 
208 	dst = kmap_atomic(page);
209 	memcpy(dst + offset, src, copy);
210 	kunmap_atomic(dst);
211 
212 	if (copy < n) {
213 		src += copy;
214 		sector += copy >> SECTOR_SHIFT;
215 		copy = n - copy;
216 		page = brd_lookup_page(brd, sector);
217 		BUG_ON(!page);
218 
219 		dst = kmap_atomic(page);
220 		memcpy(dst, src, copy);
221 		kunmap_atomic(dst);
222 	}
223 }
224 
225 /*
226  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
227  */
228 static void copy_from_brd(void *dst, struct brd_device *brd,
229 			sector_t sector, size_t n)
230 {
231 	struct page *page;
232 	void *src;
233 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
234 	size_t copy;
235 
236 	copy = min_t(size_t, n, PAGE_SIZE - offset);
237 	page = brd_lookup_page(brd, sector);
238 	if (page) {
239 		src = kmap_atomic(page);
240 		memcpy(dst, src + offset, copy);
241 		kunmap_atomic(src);
242 	} else
243 		memset(dst, 0, copy);
244 
245 	if (copy < n) {
246 		dst += copy;
247 		sector += copy >> SECTOR_SHIFT;
248 		copy = n - copy;
249 		page = brd_lookup_page(brd, sector);
250 		if (page) {
251 			src = kmap_atomic(page);
252 			memcpy(dst, src, copy);
253 			kunmap_atomic(src);
254 		} else
255 			memset(dst, 0, copy);
256 	}
257 }
258 
259 /*
260  * Process a single bvec of a bio.
261  */
262 static int brd_do_bvec(struct brd_device *brd, struct page *page,
263 			unsigned int len, unsigned int off, unsigned int op,
264 			sector_t sector)
265 {
266 	void *mem;
267 	int err = 0;
268 
269 	if (op_is_write(op)) {
270 		err = copy_to_brd_setup(brd, sector, len);
271 		if (err)
272 			goto out;
273 	}
274 
275 	mem = kmap_atomic(page);
276 	if (!op_is_write(op)) {
277 		copy_from_brd(mem + off, brd, sector, len);
278 		flush_dcache_page(page);
279 	} else {
280 		flush_dcache_page(page);
281 		copy_to_brd(brd, mem + off, sector, len);
282 	}
283 	kunmap_atomic(mem);
284 
285 out:
286 	return err;
287 }
288 
289 static blk_qc_t brd_submit_bio(struct bio *bio)
290 {
291 	struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
292 	sector_t sector = bio->bi_iter.bi_sector;
293 	struct bio_vec bvec;
294 	struct bvec_iter iter;
295 
296 	bio_for_each_segment(bvec, bio, iter) {
297 		unsigned int len = bvec.bv_len;
298 		int err;
299 
300 		/* Don't support un-aligned buffer */
301 		WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
302 				(len & (SECTOR_SIZE - 1)));
303 
304 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
305 				  bio_op(bio), sector);
306 		if (err)
307 			goto io_error;
308 		sector += len >> SECTOR_SHIFT;
309 	}
310 
311 	bio_endio(bio);
312 	return BLK_QC_T_NONE;
313 io_error:
314 	bio_io_error(bio);
315 	return BLK_QC_T_NONE;
316 }
317 
318 static int brd_rw_page(struct block_device *bdev, sector_t sector,
319 		       struct page *page, unsigned int op)
320 {
321 	struct brd_device *brd = bdev->bd_disk->private_data;
322 	int err;
323 
324 	if (PageTransHuge(page))
325 		return -ENOTSUPP;
326 	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
327 	page_endio(page, op_is_write(op), err);
328 	return err;
329 }
330 
331 static const struct block_device_operations brd_fops = {
332 	.owner =		THIS_MODULE,
333 	.submit_bio =		brd_submit_bio,
334 	.rw_page =		brd_rw_page,
335 };
336 
337 /*
338  * And now the modules code and kernel interface.
339  */
340 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
341 module_param(rd_nr, int, 0444);
342 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
343 
344 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
345 module_param(rd_size, ulong, 0444);
346 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
347 
348 static int max_part = 1;
349 module_param(max_part, int, 0444);
350 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
351 
352 MODULE_LICENSE("GPL");
353 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
354 MODULE_ALIAS("rd");
355 
356 #ifndef MODULE
357 /* Legacy boot options - nonmodular */
358 static int __init ramdisk_size(char *str)
359 {
360 	rd_size = simple_strtol(str, NULL, 0);
361 	return 1;
362 }
363 __setup("ramdisk_size=", ramdisk_size);
364 #endif
365 
366 /*
367  * The device scheme is derived from loop.c. Keep them in synch where possible
368  * (should share code eventually).
369  */
370 static LIST_HEAD(brd_devices);
371 static DEFINE_MUTEX(brd_devices_mutex);
372 static struct dentry *brd_debugfs_dir;
373 
374 static struct brd_device *brd_alloc(int i)
375 {
376 	struct brd_device *brd;
377 	struct gendisk *disk;
378 	char buf[DISK_NAME_LEN];
379 
380 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
381 	if (!brd)
382 		goto out;
383 	brd->brd_number		= i;
384 	spin_lock_init(&brd->brd_lock);
385 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
386 
387 	brd->brd_queue = blk_alloc_queue(NUMA_NO_NODE);
388 	if (!brd->brd_queue)
389 		goto out_free_dev;
390 
391 	snprintf(buf, DISK_NAME_LEN, "ram%d", i);
392 	if (!IS_ERR_OR_NULL(brd_debugfs_dir))
393 		debugfs_create_u64(buf, 0444, brd_debugfs_dir,
394 				&brd->brd_nr_pages);
395 
396 	/* This is so fdisk will align partitions on 4k, because of
397 	 * direct_access API needing 4k alignment, returning a PFN
398 	 * (This is only a problem on very small devices <= 4M,
399 	 *  otherwise fdisk will align on 1M. Regardless this call
400 	 *  is harmless)
401 	 */
402 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
403 	disk = brd->brd_disk = alloc_disk(max_part);
404 	if (!disk)
405 		goto out_free_queue;
406 	disk->major		= RAMDISK_MAJOR;
407 	disk->first_minor	= i * max_part;
408 	disk->fops		= &brd_fops;
409 	disk->private_data	= brd;
410 	disk->flags		= GENHD_FL_EXT_DEVT;
411 	strlcpy(disk->disk_name, buf, DISK_NAME_LEN);
412 	set_capacity(disk, rd_size * 2);
413 
414 	/* Tell the block layer that this is not a rotational device */
415 	blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue);
416 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue);
417 
418 	return brd;
419 
420 out_free_queue:
421 	blk_cleanup_queue(brd->brd_queue);
422 out_free_dev:
423 	kfree(brd);
424 out:
425 	return NULL;
426 }
427 
428 static void brd_free(struct brd_device *brd)
429 {
430 	put_disk(brd->brd_disk);
431 	blk_cleanup_queue(brd->brd_queue);
432 	brd_free_pages(brd);
433 	kfree(brd);
434 }
435 
436 static void brd_probe(dev_t dev)
437 {
438 	struct brd_device *brd;
439 	int i = MINOR(dev) / max_part;
440 
441 	mutex_lock(&brd_devices_mutex);
442 	list_for_each_entry(brd, &brd_devices, brd_list) {
443 		if (brd->brd_number == i)
444 			goto out_unlock;
445 	}
446 
447 	brd = brd_alloc(i);
448 	if (brd) {
449 		brd->brd_disk->queue = brd->brd_queue;
450 		add_disk(brd->brd_disk);
451 		list_add_tail(&brd->brd_list, &brd_devices);
452 	}
453 
454 out_unlock:
455 	mutex_unlock(&brd_devices_mutex);
456 }
457 
458 static void brd_del_one(struct brd_device *brd)
459 {
460 	list_del(&brd->brd_list);
461 	del_gendisk(brd->brd_disk);
462 	brd_free(brd);
463 }
464 
465 static inline void brd_check_and_reset_par(void)
466 {
467 	if (unlikely(!max_part))
468 		max_part = 1;
469 
470 	/*
471 	 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
472 	 * otherwise, it is possiable to get same dev_t when adding partitions.
473 	 */
474 	if ((1U << MINORBITS) % max_part != 0)
475 		max_part = 1UL << fls(max_part);
476 
477 	if (max_part > DISK_MAX_PARTS) {
478 		pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
479 			DISK_MAX_PARTS, DISK_MAX_PARTS);
480 		max_part = DISK_MAX_PARTS;
481 	}
482 }
483 
484 static int __init brd_init(void)
485 {
486 	struct brd_device *brd, *next;
487 	int i;
488 
489 	/*
490 	 * brd module now has a feature to instantiate underlying device
491 	 * structure on-demand, provided that there is an access dev node.
492 	 *
493 	 * (1) if rd_nr is specified, create that many upfront. else
494 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
495 	 * (2) User can further extend brd devices by create dev node themselves
496 	 *     and have kernel automatically instantiate actual device
497 	 *     on-demand. Example:
498 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
499 	 *		fdisk -l /path/devnod_name
500 	 *	If (X / max_part) was not already created it will be created
501 	 *	dynamically.
502 	 */
503 
504 	if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe))
505 		return -EIO;
506 
507 	brd_check_and_reset_par();
508 
509 	brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
510 
511 	mutex_lock(&brd_devices_mutex);
512 	for (i = 0; i < rd_nr; i++) {
513 		brd = brd_alloc(i);
514 		if (!brd)
515 			goto out_free;
516 		list_add_tail(&brd->brd_list, &brd_devices);
517 	}
518 
519 	/* point of no return */
520 
521 	list_for_each_entry(brd, &brd_devices, brd_list) {
522 		/*
523 		 * associate with queue just before adding disk for
524 		 * avoiding to mess up failure path
525 		 */
526 		brd->brd_disk->queue = brd->brd_queue;
527 		add_disk(brd->brd_disk);
528 	}
529 	mutex_unlock(&brd_devices_mutex);
530 
531 	pr_info("brd: module loaded\n");
532 	return 0;
533 
534 out_free:
535 	debugfs_remove_recursive(brd_debugfs_dir);
536 
537 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
538 		list_del(&brd->brd_list);
539 		brd_free(brd);
540 	}
541 	mutex_unlock(&brd_devices_mutex);
542 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
543 
544 	pr_info("brd: module NOT loaded !!!\n");
545 	return -ENOMEM;
546 }
547 
548 static void __exit brd_exit(void)
549 {
550 	struct brd_device *brd, *next;
551 
552 	debugfs_remove_recursive(brd_debugfs_dir);
553 
554 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
555 		brd_del_one(brd);
556 
557 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
558 
559 	pr_info("brd: module unloaded\n");
560 }
561 
562 module_init(brd_init);
563 module_exit(brd_exit);
564 
565