1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/major.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/highmem.h> 18 #include <linux/mutex.h> 19 #include <linux/radix-tree.h> 20 #include <linux/fs.h> 21 #include <linux/slab.h> 22 #ifdef CONFIG_BLK_DEV_RAM_DAX 23 #include <linux/pfn_t.h> 24 #endif 25 26 #include <asm/uaccess.h> 27 28 #define SECTOR_SHIFT 9 29 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 30 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 31 32 /* 33 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 34 * the pages containing the block device's contents. A brd page's ->index is 35 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 36 * with, the kernel's pagecache or buffer cache (which sit above our block 37 * device). 38 */ 39 struct brd_device { 40 int brd_number; 41 42 struct request_queue *brd_queue; 43 struct gendisk *brd_disk; 44 struct list_head brd_list; 45 46 /* 47 * Backing store of pages and lock to protect it. This is the contents 48 * of the block device. 49 */ 50 spinlock_t brd_lock; 51 struct radix_tree_root brd_pages; 52 }; 53 54 /* 55 * Look up and return a brd's page for a given sector. 56 */ 57 static DEFINE_MUTEX(brd_mutex); 58 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 59 { 60 pgoff_t idx; 61 struct page *page; 62 63 /* 64 * The page lifetime is protected by the fact that we have opened the 65 * device node -- brd pages will never be deleted under us, so we 66 * don't need any further locking or refcounting. 67 * 68 * This is strictly true for the radix-tree nodes as well (ie. we 69 * don't actually need the rcu_read_lock()), however that is not a 70 * documented feature of the radix-tree API so it is better to be 71 * safe here (we don't have total exclusion from radix tree updates 72 * here, only deletes). 73 */ 74 rcu_read_lock(); 75 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 76 page = radix_tree_lookup(&brd->brd_pages, idx); 77 rcu_read_unlock(); 78 79 BUG_ON(page && page->index != idx); 80 81 return page; 82 } 83 84 /* 85 * Look up and return a brd's page for a given sector. 86 * If one does not exist, allocate an empty page, and insert that. Then 87 * return it. 88 */ 89 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 90 { 91 pgoff_t idx; 92 struct page *page; 93 gfp_t gfp_flags; 94 95 page = brd_lookup_page(brd, sector); 96 if (page) 97 return page; 98 99 /* 100 * Must use NOIO because we don't want to recurse back into the 101 * block or filesystem layers from page reclaim. 102 * 103 * Cannot support DAX and highmem, because our ->direct_access 104 * routine for DAX must return memory that is always addressable. 105 * If DAX was reworked to use pfns and kmap throughout, this 106 * restriction might be able to be lifted. 107 */ 108 gfp_flags = GFP_NOIO | __GFP_ZERO; 109 #ifndef CONFIG_BLK_DEV_RAM_DAX 110 gfp_flags |= __GFP_HIGHMEM; 111 #endif 112 page = alloc_page(gfp_flags); 113 if (!page) 114 return NULL; 115 116 if (radix_tree_preload(GFP_NOIO)) { 117 __free_page(page); 118 return NULL; 119 } 120 121 spin_lock(&brd->brd_lock); 122 idx = sector >> PAGE_SECTORS_SHIFT; 123 page->index = idx; 124 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 125 __free_page(page); 126 page = radix_tree_lookup(&brd->brd_pages, idx); 127 BUG_ON(!page); 128 BUG_ON(page->index != idx); 129 } 130 spin_unlock(&brd->brd_lock); 131 132 radix_tree_preload_end(); 133 134 return page; 135 } 136 137 static void brd_free_page(struct brd_device *brd, sector_t sector) 138 { 139 struct page *page; 140 pgoff_t idx; 141 142 spin_lock(&brd->brd_lock); 143 idx = sector >> PAGE_SECTORS_SHIFT; 144 page = radix_tree_delete(&brd->brd_pages, idx); 145 spin_unlock(&brd->brd_lock); 146 if (page) 147 __free_page(page); 148 } 149 150 static void brd_zero_page(struct brd_device *brd, sector_t sector) 151 { 152 struct page *page; 153 154 page = brd_lookup_page(brd, sector); 155 if (page) 156 clear_highpage(page); 157 } 158 159 /* 160 * Free all backing store pages and radix tree. This must only be called when 161 * there are no other users of the device. 162 */ 163 #define FREE_BATCH 16 164 static void brd_free_pages(struct brd_device *brd) 165 { 166 unsigned long pos = 0; 167 struct page *pages[FREE_BATCH]; 168 int nr_pages; 169 170 do { 171 int i; 172 173 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 174 (void **)pages, pos, FREE_BATCH); 175 176 for (i = 0; i < nr_pages; i++) { 177 void *ret; 178 179 BUG_ON(pages[i]->index < pos); 180 pos = pages[i]->index; 181 ret = radix_tree_delete(&brd->brd_pages, pos); 182 BUG_ON(!ret || ret != pages[i]); 183 __free_page(pages[i]); 184 } 185 186 pos++; 187 188 /* 189 * This assumes radix_tree_gang_lookup always returns as 190 * many pages as possible. If the radix-tree code changes, 191 * so will this have to. 192 */ 193 } while (nr_pages == FREE_BATCH); 194 } 195 196 /* 197 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 198 */ 199 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 200 { 201 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 202 size_t copy; 203 204 copy = min_t(size_t, n, PAGE_SIZE - offset); 205 if (!brd_insert_page(brd, sector)) 206 return -ENOSPC; 207 if (copy < n) { 208 sector += copy >> SECTOR_SHIFT; 209 if (!brd_insert_page(brd, sector)) 210 return -ENOSPC; 211 } 212 return 0; 213 } 214 215 static void discard_from_brd(struct brd_device *brd, 216 sector_t sector, size_t n) 217 { 218 while (n >= PAGE_SIZE) { 219 /* 220 * Don't want to actually discard pages here because 221 * re-allocating the pages can result in writeback 222 * deadlocks under heavy load. 223 */ 224 if (0) 225 brd_free_page(brd, sector); 226 else 227 brd_zero_page(brd, sector); 228 sector += PAGE_SIZE >> SECTOR_SHIFT; 229 n -= PAGE_SIZE; 230 } 231 } 232 233 /* 234 * Copy n bytes from src to the brd starting at sector. Does not sleep. 235 */ 236 static void copy_to_brd(struct brd_device *brd, const void *src, 237 sector_t sector, size_t n) 238 { 239 struct page *page; 240 void *dst; 241 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 242 size_t copy; 243 244 copy = min_t(size_t, n, PAGE_SIZE - offset); 245 page = brd_lookup_page(brd, sector); 246 BUG_ON(!page); 247 248 dst = kmap_atomic(page); 249 memcpy(dst + offset, src, copy); 250 kunmap_atomic(dst); 251 252 if (copy < n) { 253 src += copy; 254 sector += copy >> SECTOR_SHIFT; 255 copy = n - copy; 256 page = brd_lookup_page(brd, sector); 257 BUG_ON(!page); 258 259 dst = kmap_atomic(page); 260 memcpy(dst, src, copy); 261 kunmap_atomic(dst); 262 } 263 } 264 265 /* 266 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 267 */ 268 static void copy_from_brd(void *dst, struct brd_device *brd, 269 sector_t sector, size_t n) 270 { 271 struct page *page; 272 void *src; 273 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 274 size_t copy; 275 276 copy = min_t(size_t, n, PAGE_SIZE - offset); 277 page = brd_lookup_page(brd, sector); 278 if (page) { 279 src = kmap_atomic(page); 280 memcpy(dst, src + offset, copy); 281 kunmap_atomic(src); 282 } else 283 memset(dst, 0, copy); 284 285 if (copy < n) { 286 dst += copy; 287 sector += copy >> SECTOR_SHIFT; 288 copy = n - copy; 289 page = brd_lookup_page(brd, sector); 290 if (page) { 291 src = kmap_atomic(page); 292 memcpy(dst, src, copy); 293 kunmap_atomic(src); 294 } else 295 memset(dst, 0, copy); 296 } 297 } 298 299 /* 300 * Process a single bvec of a bio. 301 */ 302 static int brd_do_bvec(struct brd_device *brd, struct page *page, 303 unsigned int len, unsigned int off, int rw, 304 sector_t sector) 305 { 306 void *mem; 307 int err = 0; 308 309 if (rw != READ) { 310 err = copy_to_brd_setup(brd, sector, len); 311 if (err) 312 goto out; 313 } 314 315 mem = kmap_atomic(page); 316 if (rw == READ) { 317 copy_from_brd(mem + off, brd, sector, len); 318 flush_dcache_page(page); 319 } else { 320 flush_dcache_page(page); 321 copy_to_brd(brd, mem + off, sector, len); 322 } 323 kunmap_atomic(mem); 324 325 out: 326 return err; 327 } 328 329 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio) 330 { 331 struct block_device *bdev = bio->bi_bdev; 332 struct brd_device *brd = bdev->bd_disk->private_data; 333 int rw; 334 struct bio_vec bvec; 335 sector_t sector; 336 struct bvec_iter iter; 337 338 sector = bio->bi_iter.bi_sector; 339 if (bio_end_sector(bio) > get_capacity(bdev->bd_disk)) 340 goto io_error; 341 342 if (unlikely(bio->bi_rw & REQ_DISCARD)) { 343 if (sector & ((PAGE_SIZE >> SECTOR_SHIFT) - 1) || 344 bio->bi_iter.bi_size & PAGE_MASK) 345 goto io_error; 346 discard_from_brd(brd, sector, bio->bi_iter.bi_size); 347 goto out; 348 } 349 350 rw = bio_rw(bio); 351 if (rw == READA) 352 rw = READ; 353 354 bio_for_each_segment(bvec, bio, iter) { 355 unsigned int len = bvec.bv_len; 356 int err; 357 358 err = brd_do_bvec(brd, bvec.bv_page, len, 359 bvec.bv_offset, rw, sector); 360 if (err) 361 goto io_error; 362 sector += len >> SECTOR_SHIFT; 363 } 364 365 out: 366 bio_endio(bio); 367 return BLK_QC_T_NONE; 368 io_error: 369 bio_io_error(bio); 370 return BLK_QC_T_NONE; 371 } 372 373 static int brd_rw_page(struct block_device *bdev, sector_t sector, 374 struct page *page, int rw) 375 { 376 struct brd_device *brd = bdev->bd_disk->private_data; 377 int err = brd_do_bvec(brd, page, PAGE_CACHE_SIZE, 0, rw, sector); 378 page_endio(page, rw & WRITE, err); 379 return err; 380 } 381 382 #ifdef CONFIG_BLK_DEV_RAM_DAX 383 static long brd_direct_access(struct block_device *bdev, sector_t sector, 384 void __pmem **kaddr, pfn_t *pfn) 385 { 386 struct brd_device *brd = bdev->bd_disk->private_data; 387 struct page *page; 388 389 if (!brd) 390 return -ENODEV; 391 page = brd_insert_page(brd, sector); 392 if (!page) 393 return -ENOSPC; 394 *kaddr = (void __pmem *)page_address(page); 395 *pfn = page_to_pfn_t(page); 396 397 return PAGE_SIZE; 398 } 399 #else 400 #define brd_direct_access NULL 401 #endif 402 403 static int brd_ioctl(struct block_device *bdev, fmode_t mode, 404 unsigned int cmd, unsigned long arg) 405 { 406 int error; 407 struct brd_device *brd = bdev->bd_disk->private_data; 408 409 if (cmd != BLKFLSBUF) 410 return -ENOTTY; 411 412 /* 413 * ram device BLKFLSBUF has special semantics, we want to actually 414 * release and destroy the ramdisk data. 415 */ 416 mutex_lock(&brd_mutex); 417 mutex_lock(&bdev->bd_mutex); 418 error = -EBUSY; 419 if (bdev->bd_openers <= 1) { 420 /* 421 * Kill the cache first, so it isn't written back to the 422 * device. 423 * 424 * Another thread might instantiate more buffercache here, 425 * but there is not much we can do to close that race. 426 */ 427 kill_bdev(bdev); 428 brd_free_pages(brd); 429 error = 0; 430 } 431 mutex_unlock(&bdev->bd_mutex); 432 mutex_unlock(&brd_mutex); 433 434 return error; 435 } 436 437 static const struct block_device_operations brd_fops = { 438 .owner = THIS_MODULE, 439 .rw_page = brd_rw_page, 440 .ioctl = brd_ioctl, 441 .direct_access = brd_direct_access, 442 }; 443 444 /* 445 * And now the modules code and kernel interface. 446 */ 447 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 448 module_param(rd_nr, int, S_IRUGO); 449 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 450 451 int rd_size = CONFIG_BLK_DEV_RAM_SIZE; 452 module_param(rd_size, int, S_IRUGO); 453 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 454 455 static int max_part = 1; 456 module_param(max_part, int, S_IRUGO); 457 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 458 459 MODULE_LICENSE("GPL"); 460 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 461 MODULE_ALIAS("rd"); 462 463 #ifndef MODULE 464 /* Legacy boot options - nonmodular */ 465 static int __init ramdisk_size(char *str) 466 { 467 rd_size = simple_strtol(str, NULL, 0); 468 return 1; 469 } 470 __setup("ramdisk_size=", ramdisk_size); 471 #endif 472 473 /* 474 * The device scheme is derived from loop.c. Keep them in synch where possible 475 * (should share code eventually). 476 */ 477 static LIST_HEAD(brd_devices); 478 static DEFINE_MUTEX(brd_devices_mutex); 479 480 static struct brd_device *brd_alloc(int i) 481 { 482 struct brd_device *brd; 483 struct gendisk *disk; 484 485 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 486 if (!brd) 487 goto out; 488 brd->brd_number = i; 489 spin_lock_init(&brd->brd_lock); 490 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 491 492 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 493 if (!brd->brd_queue) 494 goto out_free_dev; 495 496 blk_queue_make_request(brd->brd_queue, brd_make_request); 497 blk_queue_max_hw_sectors(brd->brd_queue, 1024); 498 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY); 499 500 /* This is so fdisk will align partitions on 4k, because of 501 * direct_access API needing 4k alignment, returning a PFN 502 * (This is only a problem on very small devices <= 4M, 503 * otherwise fdisk will align on 1M. Regardless this call 504 * is harmless) 505 */ 506 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 507 508 brd->brd_queue->limits.discard_granularity = PAGE_SIZE; 509 blk_queue_max_discard_sectors(brd->brd_queue, UINT_MAX); 510 brd->brd_queue->limits.discard_zeroes_data = 1; 511 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue); 512 513 disk = brd->brd_disk = alloc_disk(max_part); 514 if (!disk) 515 goto out_free_queue; 516 disk->major = RAMDISK_MAJOR; 517 disk->first_minor = i * max_part; 518 disk->fops = &brd_fops; 519 disk->private_data = brd; 520 disk->queue = brd->brd_queue; 521 disk->flags = GENHD_FL_EXT_DEVT; 522 sprintf(disk->disk_name, "ram%d", i); 523 set_capacity(disk, rd_size * 2); 524 525 return brd; 526 527 out_free_queue: 528 blk_cleanup_queue(brd->brd_queue); 529 out_free_dev: 530 kfree(brd); 531 out: 532 return NULL; 533 } 534 535 static void brd_free(struct brd_device *brd) 536 { 537 put_disk(brd->brd_disk); 538 blk_cleanup_queue(brd->brd_queue); 539 brd_free_pages(brd); 540 kfree(brd); 541 } 542 543 static struct brd_device *brd_init_one(int i, bool *new) 544 { 545 struct brd_device *brd; 546 547 *new = false; 548 list_for_each_entry(brd, &brd_devices, brd_list) { 549 if (brd->brd_number == i) 550 goto out; 551 } 552 553 brd = brd_alloc(i); 554 if (brd) { 555 add_disk(brd->brd_disk); 556 list_add_tail(&brd->brd_list, &brd_devices); 557 } 558 *new = true; 559 out: 560 return brd; 561 } 562 563 static void brd_del_one(struct brd_device *brd) 564 { 565 list_del(&brd->brd_list); 566 del_gendisk(brd->brd_disk); 567 brd_free(brd); 568 } 569 570 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 571 { 572 struct brd_device *brd; 573 struct kobject *kobj; 574 bool new; 575 576 mutex_lock(&brd_devices_mutex); 577 brd = brd_init_one(MINOR(dev) / max_part, &new); 578 kobj = brd ? get_disk(brd->brd_disk) : NULL; 579 mutex_unlock(&brd_devices_mutex); 580 581 if (new) 582 *part = 0; 583 584 return kobj; 585 } 586 587 static int __init brd_init(void) 588 { 589 struct brd_device *brd, *next; 590 int i; 591 592 /* 593 * brd module now has a feature to instantiate underlying device 594 * structure on-demand, provided that there is an access dev node. 595 * 596 * (1) if rd_nr is specified, create that many upfront. else 597 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 598 * (2) User can further extend brd devices by create dev node themselves 599 * and have kernel automatically instantiate actual device 600 * on-demand. Example: 601 * mknod /path/devnod_name b 1 X # 1 is the rd major 602 * fdisk -l /path/devnod_name 603 * If (X / max_part) was not already created it will be created 604 * dynamically. 605 */ 606 607 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 608 return -EIO; 609 610 if (unlikely(!max_part)) 611 max_part = 1; 612 613 for (i = 0; i < rd_nr; i++) { 614 brd = brd_alloc(i); 615 if (!brd) 616 goto out_free; 617 list_add_tail(&brd->brd_list, &brd_devices); 618 } 619 620 /* point of no return */ 621 622 list_for_each_entry(brd, &brd_devices, brd_list) 623 add_disk(brd->brd_disk); 624 625 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, 626 THIS_MODULE, brd_probe, NULL, NULL); 627 628 pr_info("brd: module loaded\n"); 629 return 0; 630 631 out_free: 632 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 633 list_del(&brd->brd_list); 634 brd_free(brd); 635 } 636 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 637 638 pr_info("brd: module NOT loaded !!!\n"); 639 return -ENOMEM; 640 } 641 642 static void __exit brd_exit(void) 643 { 644 struct brd_device *brd, *next; 645 646 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 647 brd_del_one(brd); 648 649 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); 650 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 651 652 pr_info("brd: module unloaded\n"); 653 } 654 655 module_init(brd_init); 656 module_exit(brd_exit); 657 658