1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/major.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/highmem.h> 18 #include <linux/mutex.h> 19 #include <linux/radix-tree.h> 20 #include <linux/fs.h> 21 #include <linux/slab.h> 22 #ifdef CONFIG_BLK_DEV_RAM_DAX 23 #include <linux/pfn_t.h> 24 #include <linux/dax.h> 25 #include <linux/uio.h> 26 #endif 27 28 #include <linux/uaccess.h> 29 30 #define SECTOR_SHIFT 9 31 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 32 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 33 34 /* 35 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 36 * the pages containing the block device's contents. A brd page's ->index is 37 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 38 * with, the kernel's pagecache or buffer cache (which sit above our block 39 * device). 40 */ 41 struct brd_device { 42 int brd_number; 43 44 struct request_queue *brd_queue; 45 struct gendisk *brd_disk; 46 #ifdef CONFIG_BLK_DEV_RAM_DAX 47 struct dax_device *dax_dev; 48 #endif 49 struct list_head brd_list; 50 51 /* 52 * Backing store of pages and lock to protect it. This is the contents 53 * of the block device. 54 */ 55 spinlock_t brd_lock; 56 struct radix_tree_root brd_pages; 57 }; 58 59 /* 60 * Look up and return a brd's page for a given sector. 61 */ 62 static DEFINE_MUTEX(brd_mutex); 63 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 64 { 65 pgoff_t idx; 66 struct page *page; 67 68 /* 69 * The page lifetime is protected by the fact that we have opened the 70 * device node -- brd pages will never be deleted under us, so we 71 * don't need any further locking or refcounting. 72 * 73 * This is strictly true for the radix-tree nodes as well (ie. we 74 * don't actually need the rcu_read_lock()), however that is not a 75 * documented feature of the radix-tree API so it is better to be 76 * safe here (we don't have total exclusion from radix tree updates 77 * here, only deletes). 78 */ 79 rcu_read_lock(); 80 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 81 page = radix_tree_lookup(&brd->brd_pages, idx); 82 rcu_read_unlock(); 83 84 BUG_ON(page && page->index != idx); 85 86 return page; 87 } 88 89 /* 90 * Look up and return a brd's page for a given sector. 91 * If one does not exist, allocate an empty page, and insert that. Then 92 * return it. 93 */ 94 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 95 { 96 pgoff_t idx; 97 struct page *page; 98 gfp_t gfp_flags; 99 100 page = brd_lookup_page(brd, sector); 101 if (page) 102 return page; 103 104 /* 105 * Must use NOIO because we don't want to recurse back into the 106 * block or filesystem layers from page reclaim. 107 * 108 * Cannot support DAX and highmem, because our ->direct_access 109 * routine for DAX must return memory that is always addressable. 110 * If DAX was reworked to use pfns and kmap throughout, this 111 * restriction might be able to be lifted. 112 */ 113 gfp_flags = GFP_NOIO | __GFP_ZERO; 114 #ifndef CONFIG_BLK_DEV_RAM_DAX 115 gfp_flags |= __GFP_HIGHMEM; 116 #endif 117 page = alloc_page(gfp_flags); 118 if (!page) 119 return NULL; 120 121 if (radix_tree_preload(GFP_NOIO)) { 122 __free_page(page); 123 return NULL; 124 } 125 126 spin_lock(&brd->brd_lock); 127 idx = sector >> PAGE_SECTORS_SHIFT; 128 page->index = idx; 129 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 130 __free_page(page); 131 page = radix_tree_lookup(&brd->brd_pages, idx); 132 BUG_ON(!page); 133 BUG_ON(page->index != idx); 134 } 135 spin_unlock(&brd->brd_lock); 136 137 radix_tree_preload_end(); 138 139 return page; 140 } 141 142 /* 143 * Free all backing store pages and radix tree. This must only be called when 144 * there are no other users of the device. 145 */ 146 #define FREE_BATCH 16 147 static void brd_free_pages(struct brd_device *brd) 148 { 149 unsigned long pos = 0; 150 struct page *pages[FREE_BATCH]; 151 int nr_pages; 152 153 do { 154 int i; 155 156 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 157 (void **)pages, pos, FREE_BATCH); 158 159 for (i = 0; i < nr_pages; i++) { 160 void *ret; 161 162 BUG_ON(pages[i]->index < pos); 163 pos = pages[i]->index; 164 ret = radix_tree_delete(&brd->brd_pages, pos); 165 BUG_ON(!ret || ret != pages[i]); 166 __free_page(pages[i]); 167 } 168 169 pos++; 170 171 /* 172 * This assumes radix_tree_gang_lookup always returns as 173 * many pages as possible. If the radix-tree code changes, 174 * so will this have to. 175 */ 176 } while (nr_pages == FREE_BATCH); 177 } 178 179 /* 180 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 181 */ 182 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 183 { 184 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 185 size_t copy; 186 187 copy = min_t(size_t, n, PAGE_SIZE - offset); 188 if (!brd_insert_page(brd, sector)) 189 return -ENOSPC; 190 if (copy < n) { 191 sector += copy >> SECTOR_SHIFT; 192 if (!brd_insert_page(brd, sector)) 193 return -ENOSPC; 194 } 195 return 0; 196 } 197 198 /* 199 * Copy n bytes from src to the brd starting at sector. Does not sleep. 200 */ 201 static void copy_to_brd(struct brd_device *brd, const void *src, 202 sector_t sector, size_t n) 203 { 204 struct page *page; 205 void *dst; 206 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 207 size_t copy; 208 209 copy = min_t(size_t, n, PAGE_SIZE - offset); 210 page = brd_lookup_page(brd, sector); 211 BUG_ON(!page); 212 213 dst = kmap_atomic(page); 214 memcpy(dst + offset, src, copy); 215 kunmap_atomic(dst); 216 217 if (copy < n) { 218 src += copy; 219 sector += copy >> SECTOR_SHIFT; 220 copy = n - copy; 221 page = brd_lookup_page(brd, sector); 222 BUG_ON(!page); 223 224 dst = kmap_atomic(page); 225 memcpy(dst, src, copy); 226 kunmap_atomic(dst); 227 } 228 } 229 230 /* 231 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 232 */ 233 static void copy_from_brd(void *dst, struct brd_device *brd, 234 sector_t sector, size_t n) 235 { 236 struct page *page; 237 void *src; 238 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 239 size_t copy; 240 241 copy = min_t(size_t, n, PAGE_SIZE - offset); 242 page = brd_lookup_page(brd, sector); 243 if (page) { 244 src = kmap_atomic(page); 245 memcpy(dst, src + offset, copy); 246 kunmap_atomic(src); 247 } else 248 memset(dst, 0, copy); 249 250 if (copy < n) { 251 dst += copy; 252 sector += copy >> SECTOR_SHIFT; 253 copy = n - copy; 254 page = brd_lookup_page(brd, sector); 255 if (page) { 256 src = kmap_atomic(page); 257 memcpy(dst, src, copy); 258 kunmap_atomic(src); 259 } else 260 memset(dst, 0, copy); 261 } 262 } 263 264 /* 265 * Process a single bvec of a bio. 266 */ 267 static int brd_do_bvec(struct brd_device *brd, struct page *page, 268 unsigned int len, unsigned int off, bool is_write, 269 sector_t sector) 270 { 271 void *mem; 272 int err = 0; 273 274 if (is_write) { 275 err = copy_to_brd_setup(brd, sector, len); 276 if (err) 277 goto out; 278 } 279 280 mem = kmap_atomic(page); 281 if (!is_write) { 282 copy_from_brd(mem + off, brd, sector, len); 283 flush_dcache_page(page); 284 } else { 285 flush_dcache_page(page); 286 copy_to_brd(brd, mem + off, sector, len); 287 } 288 kunmap_atomic(mem); 289 290 out: 291 return err; 292 } 293 294 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio) 295 { 296 struct block_device *bdev = bio->bi_bdev; 297 struct brd_device *brd = bdev->bd_disk->private_data; 298 struct bio_vec bvec; 299 sector_t sector; 300 struct bvec_iter iter; 301 302 sector = bio->bi_iter.bi_sector; 303 if (bio_end_sector(bio) > get_capacity(bdev->bd_disk)) 304 goto io_error; 305 306 bio_for_each_segment(bvec, bio, iter) { 307 unsigned int len = bvec.bv_len; 308 int err; 309 310 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 311 op_is_write(bio_op(bio)), sector); 312 if (err) 313 goto io_error; 314 sector += len >> SECTOR_SHIFT; 315 } 316 317 bio_endio(bio); 318 return BLK_QC_T_NONE; 319 io_error: 320 bio_io_error(bio); 321 return BLK_QC_T_NONE; 322 } 323 324 static int brd_rw_page(struct block_device *bdev, sector_t sector, 325 struct page *page, bool is_write) 326 { 327 struct brd_device *brd = bdev->bd_disk->private_data; 328 int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector); 329 page_endio(page, is_write, err); 330 return err; 331 } 332 333 #ifdef CONFIG_BLK_DEV_RAM_DAX 334 static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff, 335 long nr_pages, void **kaddr, pfn_t *pfn) 336 { 337 struct page *page; 338 339 if (!brd) 340 return -ENODEV; 341 page = brd_insert_page(brd, PFN_PHYS(pgoff) / 512); 342 if (!page) 343 return -ENOSPC; 344 *kaddr = page_address(page); 345 *pfn = page_to_pfn_t(page); 346 347 return 1; 348 } 349 350 static long brd_dax_direct_access(struct dax_device *dax_dev, 351 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn) 352 { 353 struct brd_device *brd = dax_get_private(dax_dev); 354 355 return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn); 356 } 357 358 static size_t brd_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 359 void *addr, size_t bytes, struct iov_iter *i) 360 { 361 return copy_from_iter(addr, bytes, i); 362 } 363 364 static const struct dax_operations brd_dax_ops = { 365 .direct_access = brd_dax_direct_access, 366 .copy_from_iter = brd_dax_copy_from_iter, 367 }; 368 #endif 369 370 static const struct block_device_operations brd_fops = { 371 .owner = THIS_MODULE, 372 .rw_page = brd_rw_page, 373 }; 374 375 /* 376 * And now the modules code and kernel interface. 377 */ 378 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 379 module_param(rd_nr, int, S_IRUGO); 380 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 381 382 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 383 module_param(rd_size, ulong, S_IRUGO); 384 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 385 386 static int max_part = 1; 387 module_param(max_part, int, S_IRUGO); 388 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 389 390 MODULE_LICENSE("GPL"); 391 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 392 MODULE_ALIAS("rd"); 393 394 #ifndef MODULE 395 /* Legacy boot options - nonmodular */ 396 static int __init ramdisk_size(char *str) 397 { 398 rd_size = simple_strtol(str, NULL, 0); 399 return 1; 400 } 401 __setup("ramdisk_size=", ramdisk_size); 402 #endif 403 404 /* 405 * The device scheme is derived from loop.c. Keep them in synch where possible 406 * (should share code eventually). 407 */ 408 static LIST_HEAD(brd_devices); 409 static DEFINE_MUTEX(brd_devices_mutex); 410 411 static struct brd_device *brd_alloc(int i) 412 { 413 struct brd_device *brd; 414 struct gendisk *disk; 415 416 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 417 if (!brd) 418 goto out; 419 brd->brd_number = i; 420 spin_lock_init(&brd->brd_lock); 421 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 422 423 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 424 if (!brd->brd_queue) 425 goto out_free_dev; 426 427 blk_queue_make_request(brd->brd_queue, brd_make_request); 428 blk_queue_max_hw_sectors(brd->brd_queue, 1024); 429 430 /* This is so fdisk will align partitions on 4k, because of 431 * direct_access API needing 4k alignment, returning a PFN 432 * (This is only a problem on very small devices <= 4M, 433 * otherwise fdisk will align on 1M. Regardless this call 434 * is harmless) 435 */ 436 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 437 disk = brd->brd_disk = alloc_disk(max_part); 438 if (!disk) 439 goto out_free_queue; 440 disk->major = RAMDISK_MAJOR; 441 disk->first_minor = i * max_part; 442 disk->fops = &brd_fops; 443 disk->private_data = brd; 444 disk->queue = brd->brd_queue; 445 disk->flags = GENHD_FL_EXT_DEVT; 446 sprintf(disk->disk_name, "ram%d", i); 447 set_capacity(disk, rd_size * 2); 448 449 #ifdef CONFIG_BLK_DEV_RAM_DAX 450 queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue); 451 brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops); 452 if (!brd->dax_dev) 453 goto out_free_inode; 454 #endif 455 456 457 return brd; 458 459 #ifdef CONFIG_BLK_DEV_RAM_DAX 460 out_free_inode: 461 kill_dax(brd->dax_dev); 462 put_dax(brd->dax_dev); 463 #endif 464 out_free_queue: 465 blk_cleanup_queue(brd->brd_queue); 466 out_free_dev: 467 kfree(brd); 468 out: 469 return NULL; 470 } 471 472 static void brd_free(struct brd_device *brd) 473 { 474 put_disk(brd->brd_disk); 475 blk_cleanup_queue(brd->brd_queue); 476 brd_free_pages(brd); 477 kfree(brd); 478 } 479 480 static struct brd_device *brd_init_one(int i, bool *new) 481 { 482 struct brd_device *brd; 483 484 *new = false; 485 list_for_each_entry(brd, &brd_devices, brd_list) { 486 if (brd->brd_number == i) 487 goto out; 488 } 489 490 brd = brd_alloc(i); 491 if (brd) { 492 add_disk(brd->brd_disk); 493 list_add_tail(&brd->brd_list, &brd_devices); 494 } 495 *new = true; 496 out: 497 return brd; 498 } 499 500 static void brd_del_one(struct brd_device *brd) 501 { 502 list_del(&brd->brd_list); 503 #ifdef CONFIG_BLK_DEV_RAM_DAX 504 kill_dax(brd->dax_dev); 505 put_dax(brd->dax_dev); 506 #endif 507 del_gendisk(brd->brd_disk); 508 brd_free(brd); 509 } 510 511 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 512 { 513 struct brd_device *brd; 514 struct kobject *kobj; 515 bool new; 516 517 mutex_lock(&brd_devices_mutex); 518 brd = brd_init_one(MINOR(dev) / max_part, &new); 519 kobj = brd ? get_disk(brd->brd_disk) : NULL; 520 mutex_unlock(&brd_devices_mutex); 521 522 if (new) 523 *part = 0; 524 525 return kobj; 526 } 527 528 static int __init brd_init(void) 529 { 530 struct brd_device *brd, *next; 531 int i; 532 533 /* 534 * brd module now has a feature to instantiate underlying device 535 * structure on-demand, provided that there is an access dev node. 536 * 537 * (1) if rd_nr is specified, create that many upfront. else 538 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 539 * (2) User can further extend brd devices by create dev node themselves 540 * and have kernel automatically instantiate actual device 541 * on-demand. Example: 542 * mknod /path/devnod_name b 1 X # 1 is the rd major 543 * fdisk -l /path/devnod_name 544 * If (X / max_part) was not already created it will be created 545 * dynamically. 546 */ 547 548 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 549 return -EIO; 550 551 if (unlikely(!max_part)) 552 max_part = 1; 553 554 for (i = 0; i < rd_nr; i++) { 555 brd = brd_alloc(i); 556 if (!brd) 557 goto out_free; 558 list_add_tail(&brd->brd_list, &brd_devices); 559 } 560 561 /* point of no return */ 562 563 list_for_each_entry(brd, &brd_devices, brd_list) 564 add_disk(brd->brd_disk); 565 566 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, 567 THIS_MODULE, brd_probe, NULL, NULL); 568 569 pr_info("brd: module loaded\n"); 570 return 0; 571 572 out_free: 573 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 574 list_del(&brd->brd_list); 575 brd_free(brd); 576 } 577 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 578 579 pr_info("brd: module NOT loaded !!!\n"); 580 return -ENOMEM; 581 } 582 583 static void __exit brd_exit(void) 584 { 585 struct brd_device *brd, *next; 586 587 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 588 brd_del_one(brd); 589 590 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); 591 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 592 593 pr_info("brd: module unloaded\n"); 594 } 595 596 module_init(brd_init); 597 module_exit(brd_exit); 598 599