xref: /linux/drivers/block/brd.c (revision 895931232d9358e0016f580f26b336c29c9528cc)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #ifdef CONFIG_BLK_DEV_RAM_DAX
23 #include <linux/pfn_t.h>
24 #include <linux/dax.h>
25 #include <linux/uio.h>
26 #endif
27 
28 #include <linux/uaccess.h>
29 
30 #define SECTOR_SHIFT		9
31 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
32 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
33 
34 /*
35  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
36  * the pages containing the block device's contents. A brd page's ->index is
37  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
38  * with, the kernel's pagecache or buffer cache (which sit above our block
39  * device).
40  */
41 struct brd_device {
42 	int		brd_number;
43 
44 	struct request_queue	*brd_queue;
45 	struct gendisk		*brd_disk;
46 #ifdef CONFIG_BLK_DEV_RAM_DAX
47 	struct dax_device	*dax_dev;
48 #endif
49 	struct list_head	brd_list;
50 
51 	/*
52 	 * Backing store of pages and lock to protect it. This is the contents
53 	 * of the block device.
54 	 */
55 	spinlock_t		brd_lock;
56 	struct radix_tree_root	brd_pages;
57 };
58 
59 /*
60  * Look up and return a brd's page for a given sector.
61  */
62 static DEFINE_MUTEX(brd_mutex);
63 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
64 {
65 	pgoff_t idx;
66 	struct page *page;
67 
68 	/*
69 	 * The page lifetime is protected by the fact that we have opened the
70 	 * device node -- brd pages will never be deleted under us, so we
71 	 * don't need any further locking or refcounting.
72 	 *
73 	 * This is strictly true for the radix-tree nodes as well (ie. we
74 	 * don't actually need the rcu_read_lock()), however that is not a
75 	 * documented feature of the radix-tree API so it is better to be
76 	 * safe here (we don't have total exclusion from radix tree updates
77 	 * here, only deletes).
78 	 */
79 	rcu_read_lock();
80 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
81 	page = radix_tree_lookup(&brd->brd_pages, idx);
82 	rcu_read_unlock();
83 
84 	BUG_ON(page && page->index != idx);
85 
86 	return page;
87 }
88 
89 /*
90  * Look up and return a brd's page for a given sector.
91  * If one does not exist, allocate an empty page, and insert that. Then
92  * return it.
93  */
94 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
95 {
96 	pgoff_t idx;
97 	struct page *page;
98 	gfp_t gfp_flags;
99 
100 	page = brd_lookup_page(brd, sector);
101 	if (page)
102 		return page;
103 
104 	/*
105 	 * Must use NOIO because we don't want to recurse back into the
106 	 * block or filesystem layers from page reclaim.
107 	 *
108 	 * Cannot support DAX and highmem, because our ->direct_access
109 	 * routine for DAX must return memory that is always addressable.
110 	 * If DAX was reworked to use pfns and kmap throughout, this
111 	 * restriction might be able to be lifted.
112 	 */
113 	gfp_flags = GFP_NOIO | __GFP_ZERO;
114 #ifndef CONFIG_BLK_DEV_RAM_DAX
115 	gfp_flags |= __GFP_HIGHMEM;
116 #endif
117 	page = alloc_page(gfp_flags);
118 	if (!page)
119 		return NULL;
120 
121 	if (radix_tree_preload(GFP_NOIO)) {
122 		__free_page(page);
123 		return NULL;
124 	}
125 
126 	spin_lock(&brd->brd_lock);
127 	idx = sector >> PAGE_SECTORS_SHIFT;
128 	page->index = idx;
129 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
130 		__free_page(page);
131 		page = radix_tree_lookup(&brd->brd_pages, idx);
132 		BUG_ON(!page);
133 		BUG_ON(page->index != idx);
134 	}
135 	spin_unlock(&brd->brd_lock);
136 
137 	radix_tree_preload_end();
138 
139 	return page;
140 }
141 
142 /*
143  * Free all backing store pages and radix tree. This must only be called when
144  * there are no other users of the device.
145  */
146 #define FREE_BATCH 16
147 static void brd_free_pages(struct brd_device *brd)
148 {
149 	unsigned long pos = 0;
150 	struct page *pages[FREE_BATCH];
151 	int nr_pages;
152 
153 	do {
154 		int i;
155 
156 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
157 				(void **)pages, pos, FREE_BATCH);
158 
159 		for (i = 0; i < nr_pages; i++) {
160 			void *ret;
161 
162 			BUG_ON(pages[i]->index < pos);
163 			pos = pages[i]->index;
164 			ret = radix_tree_delete(&brd->brd_pages, pos);
165 			BUG_ON(!ret || ret != pages[i]);
166 			__free_page(pages[i]);
167 		}
168 
169 		pos++;
170 
171 		/*
172 		 * This assumes radix_tree_gang_lookup always returns as
173 		 * many pages as possible. If the radix-tree code changes,
174 		 * so will this have to.
175 		 */
176 	} while (nr_pages == FREE_BATCH);
177 }
178 
179 /*
180  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
181  */
182 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
183 {
184 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
185 	size_t copy;
186 
187 	copy = min_t(size_t, n, PAGE_SIZE - offset);
188 	if (!brd_insert_page(brd, sector))
189 		return -ENOSPC;
190 	if (copy < n) {
191 		sector += copy >> SECTOR_SHIFT;
192 		if (!brd_insert_page(brd, sector))
193 			return -ENOSPC;
194 	}
195 	return 0;
196 }
197 
198 /*
199  * Copy n bytes from src to the brd starting at sector. Does not sleep.
200  */
201 static void copy_to_brd(struct brd_device *brd, const void *src,
202 			sector_t sector, size_t n)
203 {
204 	struct page *page;
205 	void *dst;
206 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
207 	size_t copy;
208 
209 	copy = min_t(size_t, n, PAGE_SIZE - offset);
210 	page = brd_lookup_page(brd, sector);
211 	BUG_ON(!page);
212 
213 	dst = kmap_atomic(page);
214 	memcpy(dst + offset, src, copy);
215 	kunmap_atomic(dst);
216 
217 	if (copy < n) {
218 		src += copy;
219 		sector += copy >> SECTOR_SHIFT;
220 		copy = n - copy;
221 		page = brd_lookup_page(brd, sector);
222 		BUG_ON(!page);
223 
224 		dst = kmap_atomic(page);
225 		memcpy(dst, src, copy);
226 		kunmap_atomic(dst);
227 	}
228 }
229 
230 /*
231  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
232  */
233 static void copy_from_brd(void *dst, struct brd_device *brd,
234 			sector_t sector, size_t n)
235 {
236 	struct page *page;
237 	void *src;
238 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239 	size_t copy;
240 
241 	copy = min_t(size_t, n, PAGE_SIZE - offset);
242 	page = brd_lookup_page(brd, sector);
243 	if (page) {
244 		src = kmap_atomic(page);
245 		memcpy(dst, src + offset, copy);
246 		kunmap_atomic(src);
247 	} else
248 		memset(dst, 0, copy);
249 
250 	if (copy < n) {
251 		dst += copy;
252 		sector += copy >> SECTOR_SHIFT;
253 		copy = n - copy;
254 		page = brd_lookup_page(brd, sector);
255 		if (page) {
256 			src = kmap_atomic(page);
257 			memcpy(dst, src, copy);
258 			kunmap_atomic(src);
259 		} else
260 			memset(dst, 0, copy);
261 	}
262 }
263 
264 /*
265  * Process a single bvec of a bio.
266  */
267 static int brd_do_bvec(struct brd_device *brd, struct page *page,
268 			unsigned int len, unsigned int off, bool is_write,
269 			sector_t sector)
270 {
271 	void *mem;
272 	int err = 0;
273 
274 	if (is_write) {
275 		err = copy_to_brd_setup(brd, sector, len);
276 		if (err)
277 			goto out;
278 	}
279 
280 	mem = kmap_atomic(page);
281 	if (!is_write) {
282 		copy_from_brd(mem + off, brd, sector, len);
283 		flush_dcache_page(page);
284 	} else {
285 		flush_dcache_page(page);
286 		copy_to_brd(brd, mem + off, sector, len);
287 	}
288 	kunmap_atomic(mem);
289 
290 out:
291 	return err;
292 }
293 
294 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
295 {
296 	struct block_device *bdev = bio->bi_bdev;
297 	struct brd_device *brd = bdev->bd_disk->private_data;
298 	struct bio_vec bvec;
299 	sector_t sector;
300 	struct bvec_iter iter;
301 
302 	sector = bio->bi_iter.bi_sector;
303 	if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
304 		goto io_error;
305 
306 	bio_for_each_segment(bvec, bio, iter) {
307 		unsigned int len = bvec.bv_len;
308 		int err;
309 
310 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
311 					op_is_write(bio_op(bio)), sector);
312 		if (err)
313 			goto io_error;
314 		sector += len >> SECTOR_SHIFT;
315 	}
316 
317 	bio_endio(bio);
318 	return BLK_QC_T_NONE;
319 io_error:
320 	bio_io_error(bio);
321 	return BLK_QC_T_NONE;
322 }
323 
324 static int brd_rw_page(struct block_device *bdev, sector_t sector,
325 		       struct page *page, bool is_write)
326 {
327 	struct brd_device *brd = bdev->bd_disk->private_data;
328 	int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
329 	page_endio(page, is_write, err);
330 	return err;
331 }
332 
333 #ifdef CONFIG_BLK_DEV_RAM_DAX
334 static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff,
335 		long nr_pages, void **kaddr, pfn_t *pfn)
336 {
337 	struct page *page;
338 
339 	if (!brd)
340 		return -ENODEV;
341 	page = brd_insert_page(brd, PFN_PHYS(pgoff) / 512);
342 	if (!page)
343 		return -ENOSPC;
344 	*kaddr = page_address(page);
345 	*pfn = page_to_pfn_t(page);
346 
347 	return 1;
348 }
349 
350 static long brd_dax_direct_access(struct dax_device *dax_dev,
351 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
352 {
353 	struct brd_device *brd = dax_get_private(dax_dev);
354 
355 	return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn);
356 }
357 
358 static size_t brd_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
359 		void *addr, size_t bytes, struct iov_iter *i)
360 {
361 	return copy_from_iter(addr, bytes, i);
362 }
363 
364 static const struct dax_operations brd_dax_ops = {
365 	.direct_access = brd_dax_direct_access,
366 	.copy_from_iter = brd_dax_copy_from_iter,
367 };
368 #endif
369 
370 static const struct block_device_operations brd_fops = {
371 	.owner =		THIS_MODULE,
372 	.rw_page =		brd_rw_page,
373 };
374 
375 /*
376  * And now the modules code and kernel interface.
377  */
378 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
379 module_param(rd_nr, int, S_IRUGO);
380 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
381 
382 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
383 module_param(rd_size, ulong, S_IRUGO);
384 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
385 
386 static int max_part = 1;
387 module_param(max_part, int, S_IRUGO);
388 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
389 
390 MODULE_LICENSE("GPL");
391 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
392 MODULE_ALIAS("rd");
393 
394 #ifndef MODULE
395 /* Legacy boot options - nonmodular */
396 static int __init ramdisk_size(char *str)
397 {
398 	rd_size = simple_strtol(str, NULL, 0);
399 	return 1;
400 }
401 __setup("ramdisk_size=", ramdisk_size);
402 #endif
403 
404 /*
405  * The device scheme is derived from loop.c. Keep them in synch where possible
406  * (should share code eventually).
407  */
408 static LIST_HEAD(brd_devices);
409 static DEFINE_MUTEX(brd_devices_mutex);
410 
411 static struct brd_device *brd_alloc(int i)
412 {
413 	struct brd_device *brd;
414 	struct gendisk *disk;
415 
416 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
417 	if (!brd)
418 		goto out;
419 	brd->brd_number		= i;
420 	spin_lock_init(&brd->brd_lock);
421 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
422 
423 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
424 	if (!brd->brd_queue)
425 		goto out_free_dev;
426 
427 	blk_queue_make_request(brd->brd_queue, brd_make_request);
428 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
429 
430 	/* This is so fdisk will align partitions on 4k, because of
431 	 * direct_access API needing 4k alignment, returning a PFN
432 	 * (This is only a problem on very small devices <= 4M,
433 	 *  otherwise fdisk will align on 1M. Regardless this call
434 	 *  is harmless)
435 	 */
436 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
437 	disk = brd->brd_disk = alloc_disk(max_part);
438 	if (!disk)
439 		goto out_free_queue;
440 	disk->major		= RAMDISK_MAJOR;
441 	disk->first_minor	= i * max_part;
442 	disk->fops		= &brd_fops;
443 	disk->private_data	= brd;
444 	disk->queue		= brd->brd_queue;
445 	disk->flags		= GENHD_FL_EXT_DEVT;
446 	sprintf(disk->disk_name, "ram%d", i);
447 	set_capacity(disk, rd_size * 2);
448 
449 #ifdef CONFIG_BLK_DEV_RAM_DAX
450 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
451 	brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops);
452 	if (!brd->dax_dev)
453 		goto out_free_inode;
454 #endif
455 
456 
457 	return brd;
458 
459 #ifdef CONFIG_BLK_DEV_RAM_DAX
460 out_free_inode:
461 	kill_dax(brd->dax_dev);
462 	put_dax(brd->dax_dev);
463 #endif
464 out_free_queue:
465 	blk_cleanup_queue(brd->brd_queue);
466 out_free_dev:
467 	kfree(brd);
468 out:
469 	return NULL;
470 }
471 
472 static void brd_free(struct brd_device *brd)
473 {
474 	put_disk(brd->brd_disk);
475 	blk_cleanup_queue(brd->brd_queue);
476 	brd_free_pages(brd);
477 	kfree(brd);
478 }
479 
480 static struct brd_device *brd_init_one(int i, bool *new)
481 {
482 	struct brd_device *brd;
483 
484 	*new = false;
485 	list_for_each_entry(brd, &brd_devices, brd_list) {
486 		if (brd->brd_number == i)
487 			goto out;
488 	}
489 
490 	brd = brd_alloc(i);
491 	if (brd) {
492 		add_disk(brd->brd_disk);
493 		list_add_tail(&brd->brd_list, &brd_devices);
494 	}
495 	*new = true;
496 out:
497 	return brd;
498 }
499 
500 static void brd_del_one(struct brd_device *brd)
501 {
502 	list_del(&brd->brd_list);
503 #ifdef CONFIG_BLK_DEV_RAM_DAX
504 	kill_dax(brd->dax_dev);
505 	put_dax(brd->dax_dev);
506 #endif
507 	del_gendisk(brd->brd_disk);
508 	brd_free(brd);
509 }
510 
511 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
512 {
513 	struct brd_device *brd;
514 	struct kobject *kobj;
515 	bool new;
516 
517 	mutex_lock(&brd_devices_mutex);
518 	brd = brd_init_one(MINOR(dev) / max_part, &new);
519 	kobj = brd ? get_disk(brd->brd_disk) : NULL;
520 	mutex_unlock(&brd_devices_mutex);
521 
522 	if (new)
523 		*part = 0;
524 
525 	return kobj;
526 }
527 
528 static int __init brd_init(void)
529 {
530 	struct brd_device *brd, *next;
531 	int i;
532 
533 	/*
534 	 * brd module now has a feature to instantiate underlying device
535 	 * structure on-demand, provided that there is an access dev node.
536 	 *
537 	 * (1) if rd_nr is specified, create that many upfront. else
538 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
539 	 * (2) User can further extend brd devices by create dev node themselves
540 	 *     and have kernel automatically instantiate actual device
541 	 *     on-demand. Example:
542 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
543 	 *		fdisk -l /path/devnod_name
544 	 *	If (X / max_part) was not already created it will be created
545 	 *	dynamically.
546 	 */
547 
548 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
549 		return -EIO;
550 
551 	if (unlikely(!max_part))
552 		max_part = 1;
553 
554 	for (i = 0; i < rd_nr; i++) {
555 		brd = brd_alloc(i);
556 		if (!brd)
557 			goto out_free;
558 		list_add_tail(&brd->brd_list, &brd_devices);
559 	}
560 
561 	/* point of no return */
562 
563 	list_for_each_entry(brd, &brd_devices, brd_list)
564 		add_disk(brd->brd_disk);
565 
566 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
567 				  THIS_MODULE, brd_probe, NULL, NULL);
568 
569 	pr_info("brd: module loaded\n");
570 	return 0;
571 
572 out_free:
573 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
574 		list_del(&brd->brd_list);
575 		brd_free(brd);
576 	}
577 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
578 
579 	pr_info("brd: module NOT loaded !!!\n");
580 	return -ENOMEM;
581 }
582 
583 static void __exit brd_exit(void)
584 {
585 	struct brd_device *brd, *next;
586 
587 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
588 		brd_del_one(brd);
589 
590 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
591 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
592 
593 	pr_info("brd: module unloaded\n");
594 }
595 
596 module_init(brd_init);
597 module_exit(brd_exit);
598 
599