xref: /linux/drivers/block/brd.c (revision 6331b8765cd0634a4e4cdcc1a6f1a74196616b94)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Ram backed block device driver.
4  *
5  * Copyright (C) 2007 Nick Piggin
6  * Copyright (C) 2007 Novell Inc.
7  *
8  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9  * of their respective owners.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/pagemap.h>
22 #include <linux/radix-tree.h>
23 #include <linux/fs.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/debugfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 /*
31  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
32  * the pages containing the block device's contents. A brd page's ->index is
33  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
34  * with, the kernel's pagecache or buffer cache (which sit above our block
35  * device).
36  */
37 struct brd_device {
38 	int			brd_number;
39 	struct gendisk		*brd_disk;
40 	struct list_head	brd_list;
41 
42 	/*
43 	 * Backing store of pages and lock to protect it. This is the contents
44 	 * of the block device.
45 	 */
46 	spinlock_t		brd_lock;
47 	struct radix_tree_root	brd_pages;
48 	u64			brd_nr_pages;
49 };
50 
51 /*
52  * Look up and return a brd's page for a given sector.
53  */
54 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
55 {
56 	pgoff_t idx;
57 	struct page *page;
58 
59 	/*
60 	 * The page lifetime is protected by the fact that we have opened the
61 	 * device node -- brd pages will never be deleted under us, so we
62 	 * don't need any further locking or refcounting.
63 	 *
64 	 * This is strictly true for the radix-tree nodes as well (ie. we
65 	 * don't actually need the rcu_read_lock()), however that is not a
66 	 * documented feature of the radix-tree API so it is better to be
67 	 * safe here (we don't have total exclusion from radix tree updates
68 	 * here, only deletes).
69 	 */
70 	rcu_read_lock();
71 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
72 	page = radix_tree_lookup(&brd->brd_pages, idx);
73 	rcu_read_unlock();
74 
75 	BUG_ON(page && page->index != idx);
76 
77 	return page;
78 }
79 
80 /*
81  * Look up and return a brd's page for a given sector.
82  * If one does not exist, allocate an empty page, and insert that. Then
83  * return it.
84  */
85 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
86 {
87 	pgoff_t idx;
88 	struct page *page;
89 	gfp_t gfp_flags;
90 
91 	page = brd_lookup_page(brd, sector);
92 	if (page)
93 		return page;
94 
95 	/*
96 	 * Must use NOIO because we don't want to recurse back into the
97 	 * block or filesystem layers from page reclaim.
98 	 */
99 	gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
100 	page = alloc_page(gfp_flags);
101 	if (!page)
102 		return NULL;
103 
104 	if (radix_tree_preload(GFP_NOIO)) {
105 		__free_page(page);
106 		return NULL;
107 	}
108 
109 	spin_lock(&brd->brd_lock);
110 	idx = sector >> PAGE_SECTORS_SHIFT;
111 	page->index = idx;
112 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
113 		__free_page(page);
114 		page = radix_tree_lookup(&brd->brd_pages, idx);
115 		BUG_ON(!page);
116 		BUG_ON(page->index != idx);
117 	} else {
118 		brd->brd_nr_pages++;
119 	}
120 	spin_unlock(&brd->brd_lock);
121 
122 	radix_tree_preload_end();
123 
124 	return page;
125 }
126 
127 /*
128  * Free all backing store pages and radix tree. This must only be called when
129  * there are no other users of the device.
130  */
131 #define FREE_BATCH 16
132 static void brd_free_pages(struct brd_device *brd)
133 {
134 	unsigned long pos = 0;
135 	struct page *pages[FREE_BATCH];
136 	int nr_pages;
137 
138 	do {
139 		int i;
140 
141 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
142 				(void **)pages, pos, FREE_BATCH);
143 
144 		for (i = 0; i < nr_pages; i++) {
145 			void *ret;
146 
147 			BUG_ON(pages[i]->index < pos);
148 			pos = pages[i]->index;
149 			ret = radix_tree_delete(&brd->brd_pages, pos);
150 			BUG_ON(!ret || ret != pages[i]);
151 			__free_page(pages[i]);
152 		}
153 
154 		pos++;
155 
156 		/*
157 		 * It takes 3.4 seconds to remove 80GiB ramdisk.
158 		 * So, we need cond_resched to avoid stalling the CPU.
159 		 */
160 		cond_resched();
161 
162 		/*
163 		 * This assumes radix_tree_gang_lookup always returns as
164 		 * many pages as possible. If the radix-tree code changes,
165 		 * so will this have to.
166 		 */
167 	} while (nr_pages == FREE_BATCH);
168 }
169 
170 /*
171  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
172  */
173 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
174 {
175 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
176 	size_t copy;
177 
178 	copy = min_t(size_t, n, PAGE_SIZE - offset);
179 	if (!brd_insert_page(brd, sector))
180 		return -ENOSPC;
181 	if (copy < n) {
182 		sector += copy >> SECTOR_SHIFT;
183 		if (!brd_insert_page(brd, sector))
184 			return -ENOSPC;
185 	}
186 	return 0;
187 }
188 
189 /*
190  * Copy n bytes from src to the brd starting at sector. Does not sleep.
191  */
192 static void copy_to_brd(struct brd_device *brd, const void *src,
193 			sector_t sector, size_t n)
194 {
195 	struct page *page;
196 	void *dst;
197 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
198 	size_t copy;
199 
200 	copy = min_t(size_t, n, PAGE_SIZE - offset);
201 	page = brd_lookup_page(brd, sector);
202 	BUG_ON(!page);
203 
204 	dst = kmap_atomic(page);
205 	memcpy(dst + offset, src, copy);
206 	kunmap_atomic(dst);
207 
208 	if (copy < n) {
209 		src += copy;
210 		sector += copy >> SECTOR_SHIFT;
211 		copy = n - copy;
212 		page = brd_lookup_page(brd, sector);
213 		BUG_ON(!page);
214 
215 		dst = kmap_atomic(page);
216 		memcpy(dst, src, copy);
217 		kunmap_atomic(dst);
218 	}
219 }
220 
221 /*
222  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
223  */
224 static void copy_from_brd(void *dst, struct brd_device *brd,
225 			sector_t sector, size_t n)
226 {
227 	struct page *page;
228 	void *src;
229 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
230 	size_t copy;
231 
232 	copy = min_t(size_t, n, PAGE_SIZE - offset);
233 	page = brd_lookup_page(brd, sector);
234 	if (page) {
235 		src = kmap_atomic(page);
236 		memcpy(dst, src + offset, copy);
237 		kunmap_atomic(src);
238 	} else
239 		memset(dst, 0, copy);
240 
241 	if (copy < n) {
242 		dst += copy;
243 		sector += copy >> SECTOR_SHIFT;
244 		copy = n - copy;
245 		page = brd_lookup_page(brd, sector);
246 		if (page) {
247 			src = kmap_atomic(page);
248 			memcpy(dst, src, copy);
249 			kunmap_atomic(src);
250 		} else
251 			memset(dst, 0, copy);
252 	}
253 }
254 
255 /*
256  * Process a single bvec of a bio.
257  */
258 static int brd_do_bvec(struct brd_device *brd, struct page *page,
259 			unsigned int len, unsigned int off, unsigned int op,
260 			sector_t sector)
261 {
262 	void *mem;
263 	int err = 0;
264 
265 	if (op_is_write(op)) {
266 		err = copy_to_brd_setup(brd, sector, len);
267 		if (err)
268 			goto out;
269 	}
270 
271 	mem = kmap_atomic(page);
272 	if (!op_is_write(op)) {
273 		copy_from_brd(mem + off, brd, sector, len);
274 		flush_dcache_page(page);
275 	} else {
276 		flush_dcache_page(page);
277 		copy_to_brd(brd, mem + off, sector, len);
278 	}
279 	kunmap_atomic(mem);
280 
281 out:
282 	return err;
283 }
284 
285 static void brd_submit_bio(struct bio *bio)
286 {
287 	struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
288 	sector_t sector = bio->bi_iter.bi_sector;
289 	struct bio_vec bvec;
290 	struct bvec_iter iter;
291 
292 	bio_for_each_segment(bvec, bio, iter) {
293 		unsigned int len = bvec.bv_len;
294 		int err;
295 
296 		/* Don't support un-aligned buffer */
297 		WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
298 				(len & (SECTOR_SIZE - 1)));
299 
300 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
301 				  bio_op(bio), sector);
302 		if (err) {
303 			bio_io_error(bio);
304 			return;
305 		}
306 		sector += len >> SECTOR_SHIFT;
307 	}
308 
309 	bio_endio(bio);
310 }
311 
312 static int brd_rw_page(struct block_device *bdev, sector_t sector,
313 		       struct page *page, unsigned int op)
314 {
315 	struct brd_device *brd = bdev->bd_disk->private_data;
316 	int err;
317 
318 	if (PageTransHuge(page))
319 		return -ENOTSUPP;
320 	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
321 	page_endio(page, op_is_write(op), err);
322 	return err;
323 }
324 
325 static const struct block_device_operations brd_fops = {
326 	.owner =		THIS_MODULE,
327 	.submit_bio =		brd_submit_bio,
328 	.rw_page =		brd_rw_page,
329 };
330 
331 /*
332  * And now the modules code and kernel interface.
333  */
334 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
335 module_param(rd_nr, int, 0444);
336 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
337 
338 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
339 module_param(rd_size, ulong, 0444);
340 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
341 
342 static int max_part = 1;
343 module_param(max_part, int, 0444);
344 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
345 
346 MODULE_LICENSE("GPL");
347 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
348 MODULE_ALIAS("rd");
349 
350 #ifndef MODULE
351 /* Legacy boot options - nonmodular */
352 static int __init ramdisk_size(char *str)
353 {
354 	rd_size = simple_strtol(str, NULL, 0);
355 	return 1;
356 }
357 __setup("ramdisk_size=", ramdisk_size);
358 #endif
359 
360 /*
361  * The device scheme is derived from loop.c. Keep them in synch where possible
362  * (should share code eventually).
363  */
364 static LIST_HEAD(brd_devices);
365 static DEFINE_MUTEX(brd_devices_mutex);
366 static struct dentry *brd_debugfs_dir;
367 
368 static int brd_alloc(int i)
369 {
370 	struct brd_device *brd;
371 	struct gendisk *disk;
372 	char buf[DISK_NAME_LEN];
373 	int err = -ENOMEM;
374 
375 	mutex_lock(&brd_devices_mutex);
376 	list_for_each_entry(brd, &brd_devices, brd_list) {
377 		if (brd->brd_number == i) {
378 			mutex_unlock(&brd_devices_mutex);
379 			return -EEXIST;
380 		}
381 	}
382 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
383 	if (!brd) {
384 		mutex_unlock(&brd_devices_mutex);
385 		return -ENOMEM;
386 	}
387 	brd->brd_number		= i;
388 	list_add_tail(&brd->brd_list, &brd_devices);
389 	mutex_unlock(&brd_devices_mutex);
390 
391 	spin_lock_init(&brd->brd_lock);
392 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
393 
394 	snprintf(buf, DISK_NAME_LEN, "ram%d", i);
395 	if (!IS_ERR_OR_NULL(brd_debugfs_dir))
396 		debugfs_create_u64(buf, 0444, brd_debugfs_dir,
397 				&brd->brd_nr_pages);
398 
399 	disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE);
400 	if (!disk)
401 		goto out_free_dev;
402 
403 	disk->major		= RAMDISK_MAJOR;
404 	disk->first_minor	= i * max_part;
405 	disk->minors		= max_part;
406 	disk->fops		= &brd_fops;
407 	disk->private_data	= brd;
408 	disk->flags		= GENHD_FL_EXT_DEVT;
409 	strlcpy(disk->disk_name, buf, DISK_NAME_LEN);
410 	set_capacity(disk, rd_size * 2);
411 
412 	/*
413 	 * This is so fdisk will align partitions on 4k, because of
414 	 * direct_access API needing 4k alignment, returning a PFN
415 	 * (This is only a problem on very small devices <= 4M,
416 	 *  otherwise fdisk will align on 1M. Regardless this call
417 	 *  is harmless)
418 	 */
419 	blk_queue_physical_block_size(disk->queue, PAGE_SIZE);
420 
421 	/* Tell the block layer that this is not a rotational device */
422 	blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
423 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue);
424 	err = add_disk(disk);
425 	if (err)
426 		goto out_cleanup_disk;
427 
428 	return 0;
429 
430 out_cleanup_disk:
431 	blk_cleanup_disk(disk);
432 out_free_dev:
433 	mutex_lock(&brd_devices_mutex);
434 	list_del(&brd->brd_list);
435 	mutex_unlock(&brd_devices_mutex);
436 	kfree(brd);
437 	return err;
438 }
439 
440 static void brd_probe(dev_t dev)
441 {
442 	brd_alloc(MINOR(dev) / max_part);
443 }
444 
445 static void brd_del_one(struct brd_device *brd)
446 {
447 	del_gendisk(brd->brd_disk);
448 	blk_cleanup_disk(brd->brd_disk);
449 	brd_free_pages(brd);
450 	mutex_lock(&brd_devices_mutex);
451 	list_del(&brd->brd_list);
452 	mutex_unlock(&brd_devices_mutex);
453 	kfree(brd);
454 }
455 
456 static inline void brd_check_and_reset_par(void)
457 {
458 	if (unlikely(!max_part))
459 		max_part = 1;
460 
461 	/*
462 	 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
463 	 * otherwise, it is possiable to get same dev_t when adding partitions.
464 	 */
465 	if ((1U << MINORBITS) % max_part != 0)
466 		max_part = 1UL << fls(max_part);
467 
468 	if (max_part > DISK_MAX_PARTS) {
469 		pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
470 			DISK_MAX_PARTS, DISK_MAX_PARTS);
471 		max_part = DISK_MAX_PARTS;
472 	}
473 }
474 
475 static int __init brd_init(void)
476 {
477 	struct brd_device *brd, *next;
478 	int err, i;
479 
480 	/*
481 	 * brd module now has a feature to instantiate underlying device
482 	 * structure on-demand, provided that there is an access dev node.
483 	 *
484 	 * (1) if rd_nr is specified, create that many upfront. else
485 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
486 	 * (2) User can further extend brd devices by create dev node themselves
487 	 *     and have kernel automatically instantiate actual device
488 	 *     on-demand. Example:
489 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
490 	 *		fdisk -l /path/devnod_name
491 	 *	If (X / max_part) was not already created it will be created
492 	 *	dynamically.
493 	 */
494 
495 	if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe))
496 		return -EIO;
497 
498 	brd_check_and_reset_par();
499 
500 	brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
501 
502 	for (i = 0; i < rd_nr; i++) {
503 		err = brd_alloc(i);
504 		if (err)
505 			goto out_free;
506 	}
507 
508 	pr_info("brd: module loaded\n");
509 	return 0;
510 
511 out_free:
512 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
513 	debugfs_remove_recursive(brd_debugfs_dir);
514 
515 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
516 		brd_del_one(brd);
517 
518 	pr_info("brd: module NOT loaded !!!\n");
519 	return err;
520 }
521 
522 static void __exit brd_exit(void)
523 {
524 	struct brd_device *brd, *next;
525 
526 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
527 	debugfs_remove_recursive(brd_debugfs_dir);
528 
529 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
530 		brd_del_one(brd);
531 
532 	pr_info("brd: module unloaded\n");
533 }
534 
535 module_init(brd_init);
536 module_exit(brd_exit);
537 
538