xref: /linux/drivers/block/brd.c (revision 55a42f78ffd386e01a5404419f8c5ded7db70a21)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Ram backed block device driver.
4  *
5  * Copyright (C) 2007 Nick Piggin
6  * Copyright (C) 2007 Novell Inc.
7  *
8  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9  * of their respective owners.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/pagemap.h>
22 #include <linux/xarray.h>
23 #include <linux/fs.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/debugfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 /*
31  * Each block ramdisk device has a xarray brd_pages of pages that stores
32  * the pages containing the block device's contents.
33  */
34 struct brd_device {
35 	int			brd_number;
36 	struct gendisk		*brd_disk;
37 	struct list_head	brd_list;
38 
39 	/*
40 	 * Backing store of pages. This is the contents of the block device.
41 	 */
42 	struct xarray	        brd_pages;
43 	u64			brd_nr_pages;
44 };
45 
46 /*
47  * Look up and return a brd's page with reference grabbed for a given sector.
48  */
49 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
50 {
51 	struct page *page;
52 	XA_STATE(xas, &brd->brd_pages, sector >> PAGE_SECTORS_SHIFT);
53 
54 	rcu_read_lock();
55 repeat:
56 	page = xas_load(&xas);
57 	if (xas_retry(&xas, page)) {
58 		xas_reset(&xas);
59 		goto repeat;
60 	}
61 
62 	if (!page)
63 		goto out;
64 
65 	if (!get_page_unless_zero(page)) {
66 		xas_reset(&xas);
67 		goto repeat;
68 	}
69 
70 	if (unlikely(page != xas_reload(&xas))) {
71 		put_page(page);
72 		xas_reset(&xas);
73 		goto repeat;
74 	}
75 out:
76 	rcu_read_unlock();
77 
78 	return page;
79 }
80 
81 /*
82  * Insert a new page for a given sector, if one does not already exist.
83  * The returned page will grab reference.
84  */
85 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector,
86 		blk_opf_t opf)
87 {
88 	gfp_t gfp = (opf & REQ_NOWAIT) ? GFP_NOWAIT : GFP_NOIO;
89 	struct page *page, *ret;
90 
91 	page = alloc_page(gfp | __GFP_ZERO | __GFP_HIGHMEM);
92 	if (!page)
93 		return ERR_PTR(-ENOMEM);
94 
95 	xa_lock(&brd->brd_pages);
96 	ret = __xa_cmpxchg(&brd->brd_pages, sector >> PAGE_SECTORS_SHIFT, NULL,
97 			page, gfp);
98 	if (!ret) {
99 		brd->brd_nr_pages++;
100 		get_page(page);
101 		xa_unlock(&brd->brd_pages);
102 		return page;
103 	}
104 
105 	if (!xa_is_err(ret)) {
106 		get_page(ret);
107 		xa_unlock(&brd->brd_pages);
108 		put_page(page);
109 		return ret;
110 	}
111 
112 	xa_unlock(&brd->brd_pages);
113 	put_page(page);
114 	return ERR_PTR(xa_err(ret));
115 }
116 
117 /*
118  * Free all backing store pages and xarray. This must only be called when
119  * there are no other users of the device.
120  */
121 static void brd_free_pages(struct brd_device *brd)
122 {
123 	struct page *page;
124 	pgoff_t idx;
125 
126 	xa_for_each(&brd->brd_pages, idx, page) {
127 		put_page(page);
128 		cond_resched();
129 	}
130 
131 	xa_destroy(&brd->brd_pages);
132 }
133 
134 /*
135  * Process a single segment.  The segment is capped to not cross page boundaries
136  * in both the bio and the brd backing memory.
137  */
138 static bool brd_rw_bvec(struct brd_device *brd, struct bio *bio)
139 {
140 	struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
141 	sector_t sector = bio->bi_iter.bi_sector;
142 	u32 offset = (sector & (PAGE_SECTORS - 1)) << SECTOR_SHIFT;
143 	blk_opf_t opf = bio->bi_opf;
144 	struct page *page;
145 	void *kaddr;
146 
147 	bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
148 
149 	page = brd_lookup_page(brd, sector);
150 	if (!page && op_is_write(opf)) {
151 		page = brd_insert_page(brd, sector, opf);
152 		if (IS_ERR(page))
153 			goto out_error;
154 	}
155 
156 	kaddr = bvec_kmap_local(&bv);
157 	if (op_is_write(opf)) {
158 		memcpy_to_page(page, offset, kaddr, bv.bv_len);
159 	} else {
160 		if (page)
161 			memcpy_from_page(kaddr, page, offset, bv.bv_len);
162 		else
163 			memset(kaddr, 0, bv.bv_len);
164 	}
165 	kunmap_local(kaddr);
166 
167 	bio_advance_iter_single(bio, &bio->bi_iter, bv.bv_len);
168 	if (page)
169 		put_page(page);
170 	return true;
171 
172 out_error:
173 	if (PTR_ERR(page) == -ENOMEM && (opf & REQ_NOWAIT))
174 		bio_wouldblock_error(bio);
175 	else
176 		bio_io_error(bio);
177 	return false;
178 }
179 
180 static void brd_do_discard(struct brd_device *brd, sector_t sector, u32 size)
181 {
182 	sector_t aligned_sector = round_up(sector, PAGE_SECTORS);
183 	sector_t aligned_end = round_down(
184 			sector + (size >> SECTOR_SHIFT), PAGE_SECTORS);
185 	struct page *page;
186 
187 	if (aligned_end <= aligned_sector)
188 		return;
189 
190 	xa_lock(&brd->brd_pages);
191 	while (aligned_sector < aligned_end && aligned_sector < rd_size * 2) {
192 		page = __xa_erase(&brd->brd_pages, aligned_sector >> PAGE_SECTORS_SHIFT);
193 		if (page) {
194 			put_page(page);
195 			brd->brd_nr_pages--;
196 		}
197 		aligned_sector += PAGE_SECTORS;
198 	}
199 	xa_unlock(&brd->brd_pages);
200 }
201 
202 static void brd_submit_bio(struct bio *bio)
203 {
204 	struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
205 
206 	if (unlikely(op_is_discard(bio->bi_opf))) {
207 		brd_do_discard(brd, bio->bi_iter.bi_sector,
208 				bio->bi_iter.bi_size);
209 		bio_endio(bio);
210 		return;
211 	}
212 
213 	do {
214 		if (!brd_rw_bvec(brd, bio))
215 			return;
216 	} while (bio->bi_iter.bi_size);
217 
218 	bio_endio(bio);
219 }
220 
221 static const struct block_device_operations brd_fops = {
222 	.owner =		THIS_MODULE,
223 	.submit_bio =		brd_submit_bio,
224 };
225 
226 /*
227  * And now the modules code and kernel interface.
228  */
229 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
230 module_param(rd_nr, int, 0444);
231 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
232 
233 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
234 module_param(rd_size, ulong, 0444);
235 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
236 
237 static int max_part = 1;
238 module_param(max_part, int, 0444);
239 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
240 
241 MODULE_DESCRIPTION("Ram backed block device driver");
242 MODULE_LICENSE("GPL");
243 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
244 MODULE_ALIAS("rd");
245 
246 #ifndef MODULE
247 /* Legacy boot options - nonmodular */
248 static int __init ramdisk_size(char *str)
249 {
250 	rd_size = simple_strtol(str, NULL, 0);
251 	return 1;
252 }
253 __setup("ramdisk_size=", ramdisk_size);
254 #endif
255 
256 /*
257  * The device scheme is derived from loop.c. Keep them in synch where possible
258  * (should share code eventually).
259  */
260 static LIST_HEAD(brd_devices);
261 static DEFINE_MUTEX(brd_devices_mutex);
262 static struct dentry *brd_debugfs_dir;
263 
264 static struct brd_device *brd_find_or_alloc_device(int i)
265 {
266 	struct brd_device *brd;
267 
268 	mutex_lock(&brd_devices_mutex);
269 	list_for_each_entry(brd, &brd_devices, brd_list) {
270 		if (brd->brd_number == i) {
271 			mutex_unlock(&brd_devices_mutex);
272 			return ERR_PTR(-EEXIST);
273 		}
274 	}
275 
276 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
277 	if (!brd) {
278 		mutex_unlock(&brd_devices_mutex);
279 		return ERR_PTR(-ENOMEM);
280 	}
281 	brd->brd_number	= i;
282 	list_add_tail(&brd->brd_list, &brd_devices);
283 	mutex_unlock(&brd_devices_mutex);
284 	return brd;
285 }
286 
287 static void brd_free_device(struct brd_device *brd)
288 {
289 	mutex_lock(&brd_devices_mutex);
290 	list_del(&brd->brd_list);
291 	mutex_unlock(&brd_devices_mutex);
292 	kfree(brd);
293 }
294 
295 static int brd_alloc(int i)
296 {
297 	struct brd_device *brd;
298 	struct gendisk *disk;
299 	char buf[DISK_NAME_LEN];
300 	int err = -ENOMEM;
301 	struct queue_limits lim = {
302 		/*
303 		 * This is so fdisk will align partitions on 4k, because of
304 		 * direct_access API needing 4k alignment, returning a PFN
305 		 * (This is only a problem on very small devices <= 4M,
306 		 *  otherwise fdisk will align on 1M. Regardless this call
307 		 *  is harmless)
308 		 */
309 		.physical_block_size	= PAGE_SIZE,
310 		.max_hw_discard_sectors	= UINT_MAX,
311 		.max_discard_segments	= 1,
312 		.discard_granularity	= PAGE_SIZE,
313 		.features		= BLK_FEAT_SYNCHRONOUS |
314 					  BLK_FEAT_NOWAIT,
315 	};
316 
317 	brd = brd_find_or_alloc_device(i);
318 	if (IS_ERR(brd))
319 		return PTR_ERR(brd);
320 
321 	xa_init(&brd->brd_pages);
322 
323 	snprintf(buf, DISK_NAME_LEN, "ram%d", i);
324 	if (!IS_ERR_OR_NULL(brd_debugfs_dir))
325 		debugfs_create_u64(buf, 0444, brd_debugfs_dir,
326 				&brd->brd_nr_pages);
327 
328 	disk = brd->brd_disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
329 	if (IS_ERR(disk)) {
330 		err = PTR_ERR(disk);
331 		goto out_free_dev;
332 	}
333 	disk->major		= RAMDISK_MAJOR;
334 	disk->first_minor	= i * max_part;
335 	disk->minors		= max_part;
336 	disk->fops		= &brd_fops;
337 	disk->private_data	= brd;
338 	strscpy(disk->disk_name, buf, DISK_NAME_LEN);
339 	set_capacity(disk, rd_size * 2);
340 
341 	err = add_disk(disk);
342 	if (err)
343 		goto out_cleanup_disk;
344 
345 	return 0;
346 
347 out_cleanup_disk:
348 	put_disk(disk);
349 out_free_dev:
350 	brd_free_device(brd);
351 	return err;
352 }
353 
354 static void brd_probe(dev_t dev)
355 {
356 	brd_alloc(MINOR(dev) / max_part);
357 }
358 
359 static void brd_cleanup(void)
360 {
361 	struct brd_device *brd, *next;
362 
363 	debugfs_remove_recursive(brd_debugfs_dir);
364 
365 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
366 		del_gendisk(brd->brd_disk);
367 		put_disk(brd->brd_disk);
368 		brd_free_pages(brd);
369 		brd_free_device(brd);
370 	}
371 }
372 
373 static inline void brd_check_and_reset_par(void)
374 {
375 	if (unlikely(!max_part))
376 		max_part = 1;
377 
378 	/*
379 	 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
380 	 * otherwise, it is possiable to get same dev_t when adding partitions.
381 	 */
382 	if ((1U << MINORBITS) % max_part != 0)
383 		max_part = 1UL << fls(max_part);
384 
385 	if (max_part > DISK_MAX_PARTS) {
386 		pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
387 			DISK_MAX_PARTS, DISK_MAX_PARTS);
388 		max_part = DISK_MAX_PARTS;
389 	}
390 }
391 
392 static int __init brd_init(void)
393 {
394 	int err, i;
395 
396 	/*
397 	 * brd module now has a feature to instantiate underlying device
398 	 * structure on-demand, provided that there is an access dev node.
399 	 *
400 	 * (1) if rd_nr is specified, create that many upfront. else
401 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
402 	 * (2) User can further extend brd devices by create dev node themselves
403 	 *     and have kernel automatically instantiate actual device
404 	 *     on-demand. Example:
405 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
406 	 *		fdisk -l /path/devnod_name
407 	 *	If (X / max_part) was not already created it will be created
408 	 *	dynamically.
409 	 */
410 
411 	brd_check_and_reset_par();
412 
413 	brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
414 
415 	if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) {
416 		err = -EIO;
417 		goto out_free;
418 	}
419 
420 	for (i = 0; i < rd_nr; i++)
421 		brd_alloc(i);
422 
423 	pr_info("brd: module loaded\n");
424 	return 0;
425 
426 out_free:
427 	brd_cleanup();
428 
429 	pr_info("brd: module NOT loaded !!!\n");
430 	return err;
431 }
432 
433 static void __exit brd_exit(void)
434 {
435 
436 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
437 	brd_cleanup();
438 
439 	pr_info("brd: module unloaded\n");
440 }
441 
442 module_init(brd_init);
443 module_exit(brd_exit);
444 
445