xref: /linux/drivers/block/brd.c (revision 37cb8e1f8e10c6e9bd2a1b95cdda0620a21b0551)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/major.h>
16 #include <linux/blkdev.h>
17 #include <linux/bio.h>
18 #include <linux/highmem.h>
19 #include <linux/mutex.h>
20 #include <linux/radix-tree.h>
21 #include <linux/fs.h>
22 #include <linux/slab.h>
23 #ifdef CONFIG_BLK_DEV_RAM_DAX
24 #include <linux/pfn_t.h>
25 #include <linux/dax.h>
26 #include <linux/uio.h>
27 #endif
28 
29 #include <linux/uaccess.h>
30 
31 #define SECTOR_SHIFT		9
32 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
33 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
34 
35 /*
36  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
37  * the pages containing the block device's contents. A brd page's ->index is
38  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
39  * with, the kernel's pagecache or buffer cache (which sit above our block
40  * device).
41  */
42 struct brd_device {
43 	int		brd_number;
44 
45 	struct request_queue	*brd_queue;
46 	struct gendisk		*brd_disk;
47 #ifdef CONFIG_BLK_DEV_RAM_DAX
48 	struct dax_device	*dax_dev;
49 #endif
50 	struct list_head	brd_list;
51 
52 	/*
53 	 * Backing store of pages and lock to protect it. This is the contents
54 	 * of the block device.
55 	 */
56 	spinlock_t		brd_lock;
57 	struct radix_tree_root	brd_pages;
58 };
59 
60 /*
61  * Look up and return a brd's page for a given sector.
62  */
63 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
64 {
65 	pgoff_t idx;
66 	struct page *page;
67 
68 	/*
69 	 * The page lifetime is protected by the fact that we have opened the
70 	 * device node -- brd pages will never be deleted under us, so we
71 	 * don't need any further locking or refcounting.
72 	 *
73 	 * This is strictly true for the radix-tree nodes as well (ie. we
74 	 * don't actually need the rcu_read_lock()), however that is not a
75 	 * documented feature of the radix-tree API so it is better to be
76 	 * safe here (we don't have total exclusion from radix tree updates
77 	 * here, only deletes).
78 	 */
79 	rcu_read_lock();
80 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
81 	page = radix_tree_lookup(&brd->brd_pages, idx);
82 	rcu_read_unlock();
83 
84 	BUG_ON(page && page->index != idx);
85 
86 	return page;
87 }
88 
89 /*
90  * Look up and return a brd's page for a given sector.
91  * If one does not exist, allocate an empty page, and insert that. Then
92  * return it.
93  */
94 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
95 {
96 	pgoff_t idx;
97 	struct page *page;
98 	gfp_t gfp_flags;
99 
100 	page = brd_lookup_page(brd, sector);
101 	if (page)
102 		return page;
103 
104 	/*
105 	 * Must use NOIO because we don't want to recurse back into the
106 	 * block or filesystem layers from page reclaim.
107 	 *
108 	 * Cannot support DAX and highmem, because our ->direct_access
109 	 * routine for DAX must return memory that is always addressable.
110 	 * If DAX was reworked to use pfns and kmap throughout, this
111 	 * restriction might be able to be lifted.
112 	 */
113 	gfp_flags = GFP_NOIO | __GFP_ZERO;
114 #ifndef CONFIG_BLK_DEV_RAM_DAX
115 	gfp_flags |= __GFP_HIGHMEM;
116 #endif
117 	page = alloc_page(gfp_flags);
118 	if (!page)
119 		return NULL;
120 
121 	if (radix_tree_preload(GFP_NOIO)) {
122 		__free_page(page);
123 		return NULL;
124 	}
125 
126 	spin_lock(&brd->brd_lock);
127 	idx = sector >> PAGE_SECTORS_SHIFT;
128 	page->index = idx;
129 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
130 		__free_page(page);
131 		page = radix_tree_lookup(&brd->brd_pages, idx);
132 		BUG_ON(!page);
133 		BUG_ON(page->index != idx);
134 	}
135 	spin_unlock(&brd->brd_lock);
136 
137 	radix_tree_preload_end();
138 
139 	return page;
140 }
141 
142 /*
143  * Free all backing store pages and radix tree. This must only be called when
144  * there are no other users of the device.
145  */
146 #define FREE_BATCH 16
147 static void brd_free_pages(struct brd_device *brd)
148 {
149 	unsigned long pos = 0;
150 	struct page *pages[FREE_BATCH];
151 	int nr_pages;
152 
153 	do {
154 		int i;
155 
156 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
157 				(void **)pages, pos, FREE_BATCH);
158 
159 		for (i = 0; i < nr_pages; i++) {
160 			void *ret;
161 
162 			BUG_ON(pages[i]->index < pos);
163 			pos = pages[i]->index;
164 			ret = radix_tree_delete(&brd->brd_pages, pos);
165 			BUG_ON(!ret || ret != pages[i]);
166 			__free_page(pages[i]);
167 		}
168 
169 		pos++;
170 
171 		/*
172 		 * This assumes radix_tree_gang_lookup always returns as
173 		 * many pages as possible. If the radix-tree code changes,
174 		 * so will this have to.
175 		 */
176 	} while (nr_pages == FREE_BATCH);
177 }
178 
179 /*
180  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
181  */
182 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
183 {
184 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
185 	size_t copy;
186 
187 	copy = min_t(size_t, n, PAGE_SIZE - offset);
188 	if (!brd_insert_page(brd, sector))
189 		return -ENOSPC;
190 	if (copy < n) {
191 		sector += copy >> SECTOR_SHIFT;
192 		if (!brd_insert_page(brd, sector))
193 			return -ENOSPC;
194 	}
195 	return 0;
196 }
197 
198 /*
199  * Copy n bytes from src to the brd starting at sector. Does not sleep.
200  */
201 static void copy_to_brd(struct brd_device *brd, const void *src,
202 			sector_t sector, size_t n)
203 {
204 	struct page *page;
205 	void *dst;
206 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
207 	size_t copy;
208 
209 	copy = min_t(size_t, n, PAGE_SIZE - offset);
210 	page = brd_lookup_page(brd, sector);
211 	BUG_ON(!page);
212 
213 	dst = kmap_atomic(page);
214 	memcpy(dst + offset, src, copy);
215 	kunmap_atomic(dst);
216 
217 	if (copy < n) {
218 		src += copy;
219 		sector += copy >> SECTOR_SHIFT;
220 		copy = n - copy;
221 		page = brd_lookup_page(brd, sector);
222 		BUG_ON(!page);
223 
224 		dst = kmap_atomic(page);
225 		memcpy(dst, src, copy);
226 		kunmap_atomic(dst);
227 	}
228 }
229 
230 /*
231  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
232  */
233 static void copy_from_brd(void *dst, struct brd_device *brd,
234 			sector_t sector, size_t n)
235 {
236 	struct page *page;
237 	void *src;
238 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239 	size_t copy;
240 
241 	copy = min_t(size_t, n, PAGE_SIZE - offset);
242 	page = brd_lookup_page(brd, sector);
243 	if (page) {
244 		src = kmap_atomic(page);
245 		memcpy(dst, src + offset, copy);
246 		kunmap_atomic(src);
247 	} else
248 		memset(dst, 0, copy);
249 
250 	if (copy < n) {
251 		dst += copy;
252 		sector += copy >> SECTOR_SHIFT;
253 		copy = n - copy;
254 		page = brd_lookup_page(brd, sector);
255 		if (page) {
256 			src = kmap_atomic(page);
257 			memcpy(dst, src, copy);
258 			kunmap_atomic(src);
259 		} else
260 			memset(dst, 0, copy);
261 	}
262 }
263 
264 /*
265  * Process a single bvec of a bio.
266  */
267 static int brd_do_bvec(struct brd_device *brd, struct page *page,
268 			unsigned int len, unsigned int off, bool is_write,
269 			sector_t sector)
270 {
271 	void *mem;
272 	int err = 0;
273 
274 	if (is_write) {
275 		err = copy_to_brd_setup(brd, sector, len);
276 		if (err)
277 			goto out;
278 	}
279 
280 	mem = kmap_atomic(page);
281 	if (!is_write) {
282 		copy_from_brd(mem + off, brd, sector, len);
283 		flush_dcache_page(page);
284 	} else {
285 		flush_dcache_page(page);
286 		copy_to_brd(brd, mem + off, sector, len);
287 	}
288 	kunmap_atomic(mem);
289 
290 out:
291 	return err;
292 }
293 
294 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
295 {
296 	struct brd_device *brd = bio->bi_disk->private_data;
297 	struct bio_vec bvec;
298 	sector_t sector;
299 	struct bvec_iter iter;
300 
301 	sector = bio->bi_iter.bi_sector;
302 	if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
303 		goto io_error;
304 
305 	bio_for_each_segment(bvec, bio, iter) {
306 		unsigned int len = bvec.bv_len;
307 		int err;
308 
309 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
310 					op_is_write(bio_op(bio)), sector);
311 		if (err)
312 			goto io_error;
313 		sector += len >> SECTOR_SHIFT;
314 	}
315 
316 	bio_endio(bio);
317 	return BLK_QC_T_NONE;
318 io_error:
319 	bio_io_error(bio);
320 	return BLK_QC_T_NONE;
321 }
322 
323 static int brd_rw_page(struct block_device *bdev, sector_t sector,
324 		       struct page *page, bool is_write)
325 {
326 	struct brd_device *brd = bdev->bd_disk->private_data;
327 	int err;
328 
329 	if (PageTransHuge(page))
330 		return -ENOTSUPP;
331 	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
332 	page_endio(page, is_write, err);
333 	return err;
334 }
335 
336 #ifdef CONFIG_BLK_DEV_RAM_DAX
337 static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff,
338 		long nr_pages, void **kaddr, pfn_t *pfn)
339 {
340 	struct page *page;
341 
342 	if (!brd)
343 		return -ENODEV;
344 	page = brd_insert_page(brd, (sector_t)pgoff << PAGE_SECTORS_SHIFT);
345 	if (!page)
346 		return -ENOSPC;
347 	*kaddr = page_address(page);
348 	*pfn = page_to_pfn_t(page);
349 
350 	return 1;
351 }
352 
353 static long brd_dax_direct_access(struct dax_device *dax_dev,
354 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
355 {
356 	struct brd_device *brd = dax_get_private(dax_dev);
357 
358 	return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn);
359 }
360 
361 static size_t brd_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
362 		void *addr, size_t bytes, struct iov_iter *i)
363 {
364 	return copy_from_iter(addr, bytes, i);
365 }
366 
367 static const struct dax_operations brd_dax_ops = {
368 	.direct_access = brd_dax_direct_access,
369 	.copy_from_iter = brd_dax_copy_from_iter,
370 };
371 #endif
372 
373 static const struct block_device_operations brd_fops = {
374 	.owner =		THIS_MODULE,
375 	.rw_page =		brd_rw_page,
376 };
377 
378 /*
379  * And now the modules code and kernel interface.
380  */
381 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
382 module_param(rd_nr, int, S_IRUGO);
383 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
384 
385 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
386 module_param(rd_size, ulong, S_IRUGO);
387 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
388 
389 static int max_part = 1;
390 module_param(max_part, int, S_IRUGO);
391 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
392 
393 MODULE_LICENSE("GPL");
394 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
395 MODULE_ALIAS("rd");
396 
397 #ifndef MODULE
398 /* Legacy boot options - nonmodular */
399 static int __init ramdisk_size(char *str)
400 {
401 	rd_size = simple_strtol(str, NULL, 0);
402 	return 1;
403 }
404 __setup("ramdisk_size=", ramdisk_size);
405 #endif
406 
407 /*
408  * The device scheme is derived from loop.c. Keep them in synch where possible
409  * (should share code eventually).
410  */
411 static LIST_HEAD(brd_devices);
412 static DEFINE_MUTEX(brd_devices_mutex);
413 
414 static struct brd_device *brd_alloc(int i)
415 {
416 	struct brd_device *brd;
417 	struct gendisk *disk;
418 
419 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
420 	if (!brd)
421 		goto out;
422 	brd->brd_number		= i;
423 	spin_lock_init(&brd->brd_lock);
424 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
425 
426 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
427 	if (!brd->brd_queue)
428 		goto out_free_dev;
429 
430 	blk_queue_make_request(brd->brd_queue, brd_make_request);
431 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
432 
433 	/* This is so fdisk will align partitions on 4k, because of
434 	 * direct_access API needing 4k alignment, returning a PFN
435 	 * (This is only a problem on very small devices <= 4M,
436 	 *  otherwise fdisk will align on 1M. Regardless this call
437 	 *  is harmless)
438 	 */
439 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
440 	disk = brd->brd_disk = alloc_disk(max_part);
441 	if (!disk)
442 		goto out_free_queue;
443 	disk->major		= RAMDISK_MAJOR;
444 	disk->first_minor	= i * max_part;
445 	disk->fops		= &brd_fops;
446 	disk->private_data	= brd;
447 	disk->queue		= brd->brd_queue;
448 	disk->flags		= GENHD_FL_EXT_DEVT;
449 	sprintf(disk->disk_name, "ram%d", i);
450 	set_capacity(disk, rd_size * 2);
451 
452 #ifdef CONFIG_BLK_DEV_RAM_DAX
453 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
454 	brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops);
455 	if (!brd->dax_dev)
456 		goto out_free_inode;
457 #endif
458 
459 
460 	return brd;
461 
462 #ifdef CONFIG_BLK_DEV_RAM_DAX
463 out_free_inode:
464 	kill_dax(brd->dax_dev);
465 	put_dax(brd->dax_dev);
466 #endif
467 out_free_queue:
468 	blk_cleanup_queue(brd->brd_queue);
469 out_free_dev:
470 	kfree(brd);
471 out:
472 	return NULL;
473 }
474 
475 static void brd_free(struct brd_device *brd)
476 {
477 	put_disk(brd->brd_disk);
478 	blk_cleanup_queue(brd->brd_queue);
479 	brd_free_pages(brd);
480 	kfree(brd);
481 }
482 
483 static struct brd_device *brd_init_one(int i, bool *new)
484 {
485 	struct brd_device *brd;
486 
487 	*new = false;
488 	list_for_each_entry(brd, &brd_devices, brd_list) {
489 		if (brd->brd_number == i)
490 			goto out;
491 	}
492 
493 	brd = brd_alloc(i);
494 	if (brd) {
495 		add_disk(brd->brd_disk);
496 		list_add_tail(&brd->brd_list, &brd_devices);
497 	}
498 	*new = true;
499 out:
500 	return brd;
501 }
502 
503 static void brd_del_one(struct brd_device *brd)
504 {
505 	list_del(&brd->brd_list);
506 #ifdef CONFIG_BLK_DEV_RAM_DAX
507 	kill_dax(brd->dax_dev);
508 	put_dax(brd->dax_dev);
509 #endif
510 	del_gendisk(brd->brd_disk);
511 	brd_free(brd);
512 }
513 
514 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
515 {
516 	struct brd_device *brd;
517 	struct kobject *kobj;
518 	bool new;
519 
520 	mutex_lock(&brd_devices_mutex);
521 	brd = brd_init_one(MINOR(dev) / max_part, &new);
522 	kobj = brd ? get_disk(brd->brd_disk) : NULL;
523 	mutex_unlock(&brd_devices_mutex);
524 
525 	if (new)
526 		*part = 0;
527 
528 	return kobj;
529 }
530 
531 static int __init brd_init(void)
532 {
533 	struct brd_device *brd, *next;
534 	int i;
535 
536 	/*
537 	 * brd module now has a feature to instantiate underlying device
538 	 * structure on-demand, provided that there is an access dev node.
539 	 *
540 	 * (1) if rd_nr is specified, create that many upfront. else
541 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
542 	 * (2) User can further extend brd devices by create dev node themselves
543 	 *     and have kernel automatically instantiate actual device
544 	 *     on-demand. Example:
545 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
546 	 *		fdisk -l /path/devnod_name
547 	 *	If (X / max_part) was not already created it will be created
548 	 *	dynamically.
549 	 */
550 
551 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
552 		return -EIO;
553 
554 	if (unlikely(!max_part))
555 		max_part = 1;
556 
557 	for (i = 0; i < rd_nr; i++) {
558 		brd = brd_alloc(i);
559 		if (!brd)
560 			goto out_free;
561 		list_add_tail(&brd->brd_list, &brd_devices);
562 	}
563 
564 	/* point of no return */
565 
566 	list_for_each_entry(brd, &brd_devices, brd_list)
567 		add_disk(brd->brd_disk);
568 
569 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
570 				  THIS_MODULE, brd_probe, NULL, NULL);
571 
572 	pr_info("brd: module loaded\n");
573 	return 0;
574 
575 out_free:
576 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
577 		list_del(&brd->brd_list);
578 		brd_free(brd);
579 	}
580 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
581 
582 	pr_info("brd: module NOT loaded !!!\n");
583 	return -ENOMEM;
584 }
585 
586 static void __exit brd_exit(void)
587 {
588 	struct brd_device *brd, *next;
589 
590 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
591 		brd_del_one(brd);
592 
593 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
594 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
595 
596 	pr_info("brd: module unloaded\n");
597 }
598 
599 module_init(brd_init);
600 module_exit(brd_exit);
601 
602