1 /* 2 * linux/amiga/amiflop.c 3 * 4 * Copyright (C) 1993 Greg Harp 5 * Portions of this driver are based on code contributed by Brad Pepers 6 * 7 * revised 28.5.95 by Joerg Dorchain 8 * - now no bugs(?) any more for both HD & DD 9 * - added support for 40 Track 5.25" drives, 80-track hopefully behaves 10 * like 3.5" dd (no way to test - are there any 5.25" drives out there 11 * that work on an A4000?) 12 * - wrote formatting routine (maybe dirty, but works) 13 * 14 * june/july 1995 added ms-dos support by Joerg Dorchain 15 * (portions based on messydos.device and various contributors) 16 * - currently only 9 and 18 sector disks 17 * 18 * - fixed a bug with the internal trackbuffer when using multiple 19 * disks the same time 20 * - made formatting a bit safer 21 * - added command line and machine based default for "silent" df0 22 * 23 * december 1995 adapted for 1.2.13pl4 by Joerg Dorchain 24 * - works but I think it's inefficient. (look in redo_fd_request) 25 * But the changes were very efficient. (only three and a half lines) 26 * 27 * january 1996 added special ioctl for tracking down read/write problems 28 * - usage ioctl(d, RAW_TRACK, ptr); the raw track buffer (MFM-encoded data 29 * is copied to area. (area should be large enough since no checking is 30 * done - 30K is currently sufficient). return the actual size of the 31 * trackbuffer 32 * - replaced udelays() by a timer (CIAA timer B) for the waits 33 * needed for the disk mechanic. 34 * 35 * february 1996 fixed error recovery and multiple disk access 36 * - both got broken the first time I tampered with the driver :-( 37 * - still not safe, but better than before 38 * 39 * revised Marts 3rd, 1996 by Jes Sorensen for use in the 1.3.28 kernel. 40 * - Minor changes to accept the kdev_t. 41 * - Replaced some more udelays with ms_delays. Udelay is just a loop, 42 * and so the delay will be different depending on the given 43 * processor :-( 44 * - The driver could use a major cleanup because of the new 45 * major/minor handling that came with kdev_t. It seems to work for 46 * the time being, but I can't guarantee that it will stay like 47 * that when we start using 16 (24?) bit minors. 48 * 49 * restructured jan 1997 by Joerg Dorchain 50 * - Fixed Bug accessing multiple disks 51 * - some code cleanup 52 * - added trackbuffer for each drive to speed things up 53 * - fixed some race conditions (who finds the next may send it to me ;-) 54 */ 55 56 #include <linux/module.h> 57 58 #include <linux/fd.h> 59 #include <linux/hdreg.h> 60 #include <linux/delay.h> 61 #include <linux/init.h> 62 #include <linux/amifdreg.h> 63 #include <linux/amifd.h> 64 #include <linux/buffer_head.h> 65 #include <linux/blkdev.h> 66 #include <linux/elevator.h> 67 68 #include <asm/setup.h> 69 #include <asm/uaccess.h> 70 #include <asm/amigahw.h> 71 #include <asm/amigaints.h> 72 #include <asm/irq.h> 73 74 #undef DEBUG /* print _LOTS_ of infos */ 75 76 #define RAW_IOCTL 77 #ifdef RAW_IOCTL 78 #define IOCTL_RAW_TRACK 0x5254524B /* 'RTRK' */ 79 #endif 80 81 /* 82 * Defines 83 */ 84 85 /* 86 * Error codes 87 */ 88 #define FD_OK 0 /* operation succeeded */ 89 #define FD_ERROR -1 /* general error (seek, read, write, etc) */ 90 #define FD_NOUNIT 1 /* unit does not exist */ 91 #define FD_UNITBUSY 2 /* unit already active */ 92 #define FD_NOTACTIVE 3 /* unit is not active */ 93 #define FD_NOTREADY 4 /* unit is not ready (motor not on/no disk) */ 94 95 #define MFM_NOSYNC 1 96 #define MFM_HEADER 2 97 #define MFM_DATA 3 98 #define MFM_TRACK 4 99 100 /* 101 * Floppy ID values 102 */ 103 #define FD_NODRIVE 0x00000000 /* response when no unit is present */ 104 #define FD_DD_3 0xffffffff /* double-density 3.5" (880K) drive */ 105 #define FD_HD_3 0x55555555 /* high-density 3.5" (1760K) drive */ 106 #define FD_DD_5 0xaaaaaaaa /* double-density 5.25" (440K) drive */ 107 108 static unsigned long int fd_def_df0 = FD_DD_3; /* default for df0 if it doesn't identify */ 109 110 module_param(fd_def_df0, ulong, 0); 111 MODULE_LICENSE("GPL"); 112 113 static struct request_queue *floppy_queue; 114 #define QUEUE (floppy_queue) 115 #define CURRENT elv_next_request(floppy_queue) 116 117 /* 118 * Macros 119 */ 120 #define MOTOR_ON (ciab.prb &= ~DSKMOTOR) 121 #define MOTOR_OFF (ciab.prb |= DSKMOTOR) 122 #define SELECT(mask) (ciab.prb &= ~mask) 123 #define DESELECT(mask) (ciab.prb |= mask) 124 #define SELMASK(drive) (1 << (3 + (drive & 3))) 125 126 static struct fd_drive_type drive_types[] = { 127 /* code name tr he rdsz wrsz sm pc1 pc2 sd st st*/ 128 /* warning: times are now in milliseconds (ms) */ 129 { FD_DD_3, "DD 3.5", 80, 2, 14716, 13630, 1, 80,161, 3, 18, 1}, 130 { FD_HD_3, "HD 3.5", 80, 2, 28344, 27258, 2, 80,161, 3, 18, 1}, 131 { FD_DD_5, "DD 5.25", 40, 2, 14716, 13630, 1, 40, 81, 6, 30, 2}, 132 { FD_NODRIVE, "No Drive", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 133 }; 134 static int num_dr_types = ARRAY_SIZE(drive_types); 135 136 static int amiga_read(int), dos_read(int); 137 static void amiga_write(int), dos_write(int); 138 static struct fd_data_type data_types[] = { 139 { "Amiga", 11 , amiga_read, amiga_write}, 140 { "MS-Dos", 9, dos_read, dos_write} 141 }; 142 143 /* current info on each unit */ 144 static struct amiga_floppy_struct unit[FD_MAX_UNITS]; 145 146 static struct timer_list flush_track_timer[FD_MAX_UNITS]; 147 static struct timer_list post_write_timer; 148 static struct timer_list motor_on_timer; 149 static struct timer_list motor_off_timer[FD_MAX_UNITS]; 150 static int on_attempts; 151 152 /* Synchronization of FDC access */ 153 /* request loop (trackbuffer) */ 154 static volatile int fdc_busy = -1; 155 static volatile int fdc_nested; 156 static DECLARE_WAIT_QUEUE_HEAD(fdc_wait); 157 158 static DECLARE_WAIT_QUEUE_HEAD(motor_wait); 159 160 static volatile int selected = -1; /* currently selected drive */ 161 162 static int writepending; 163 static int writefromint; 164 static char *raw_buf; 165 166 static DEFINE_SPINLOCK(amiflop_lock); 167 168 #define RAW_BUF_SIZE 30000 /* size of raw disk data */ 169 170 /* 171 * These are global variables, as that's the easiest way to give 172 * information to interrupts. They are the data used for the current 173 * request. 174 */ 175 static volatile char block_flag; 176 static DECLARE_WAIT_QUEUE_HEAD(wait_fd_block); 177 178 /* MS-Dos MFM Coding tables (should go quick and easy) */ 179 static unsigned char mfmencode[16]={ 180 0x2a, 0x29, 0x24, 0x25, 0x12, 0x11, 0x14, 0x15, 181 0x4a, 0x49, 0x44, 0x45, 0x52, 0x51, 0x54, 0x55 182 }; 183 static unsigned char mfmdecode[128]; 184 185 /* floppy internal millisecond timer stuff */ 186 static volatile int ms_busy = -1; 187 static DECLARE_WAIT_QUEUE_HEAD(ms_wait); 188 #define MS_TICKS ((amiga_eclock+50)/1000) 189 190 /* 191 * Note that MAX_ERRORS=X doesn't imply that we retry every bad read 192 * max X times - some types of errors increase the errorcount by 2 or 193 * even 3, so we might actually retry only X/2 times before giving up. 194 */ 195 #define MAX_ERRORS 12 196 197 #define custom amiga_custom 198 199 /* Prevent "aliased" accesses. */ 200 static int fd_ref[4] = { 0,0,0,0 }; 201 static int fd_device[4] = { 0, 0, 0, 0 }; 202 203 /* 204 * Here come the actual hardware access and helper functions. 205 * They are not reentrant and single threaded because all drives 206 * share the same hardware and the same trackbuffer. 207 */ 208 209 /* Milliseconds timer */ 210 211 static irqreturn_t ms_isr(int irq, void *dummy, struct pt_regs *fp) 212 { 213 ms_busy = -1; 214 wake_up(&ms_wait); 215 return IRQ_HANDLED; 216 } 217 218 /* all waits are queued up 219 A more generic routine would do a schedule a la timer.device */ 220 static void ms_delay(int ms) 221 { 222 unsigned long flags; 223 int ticks; 224 if (ms > 0) { 225 local_irq_save(flags); 226 while (ms_busy == 0) 227 sleep_on(&ms_wait); 228 ms_busy = 0; 229 local_irq_restore(flags); 230 ticks = MS_TICKS*ms-1; 231 ciaa.tblo=ticks%256; 232 ciaa.tbhi=ticks/256; 233 ciaa.crb=0x19; /*count eclock, force load, one-shoot, start */ 234 sleep_on(&ms_wait); 235 } 236 } 237 238 /* Hardware semaphore */ 239 240 /* returns true when we would get the semaphore */ 241 static inline int try_fdc(int drive) 242 { 243 drive &= 3; 244 return ((fdc_busy < 0) || (fdc_busy == drive)); 245 } 246 247 static void get_fdc(int drive) 248 { 249 unsigned long flags; 250 251 drive &= 3; 252 #ifdef DEBUG 253 printk("get_fdc: drive %d fdc_busy %d fdc_nested %d\n",drive,fdc_busy,fdc_nested); 254 #endif 255 local_irq_save(flags); 256 while (!try_fdc(drive)) 257 sleep_on(&fdc_wait); 258 fdc_busy = drive; 259 fdc_nested++; 260 local_irq_restore(flags); 261 } 262 263 static inline void rel_fdc(void) 264 { 265 #ifdef DEBUG 266 if (fdc_nested == 0) 267 printk("fd: unmatched rel_fdc\n"); 268 printk("rel_fdc: fdc_busy %d fdc_nested %d\n",fdc_busy,fdc_nested); 269 #endif 270 fdc_nested--; 271 if (fdc_nested == 0) { 272 fdc_busy = -1; 273 wake_up(&fdc_wait); 274 } 275 } 276 277 static void fd_select (int drive) 278 { 279 unsigned char prb = ~0; 280 281 drive&=3; 282 #ifdef DEBUG 283 printk("selecting %d\n",drive); 284 #endif 285 if (drive == selected) 286 return; 287 get_fdc(drive); 288 selected = drive; 289 290 if (unit[drive].track % 2 != 0) 291 prb &= ~DSKSIDE; 292 if (unit[drive].motor == 1) 293 prb &= ~DSKMOTOR; 294 ciab.prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3)); 295 ciab.prb = prb; 296 prb &= ~SELMASK(drive); 297 ciab.prb = prb; 298 rel_fdc(); 299 } 300 301 static void fd_deselect (int drive) 302 { 303 unsigned char prb; 304 unsigned long flags; 305 306 drive&=3; 307 #ifdef DEBUG 308 printk("deselecting %d\n",drive); 309 #endif 310 if (drive != selected) { 311 printk(KERN_WARNING "Deselecting drive %d while %d was selected!\n",drive,selected); 312 return; 313 } 314 315 get_fdc(drive); 316 local_irq_save(flags); 317 318 selected = -1; 319 320 prb = ciab.prb; 321 prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3)); 322 ciab.prb = prb; 323 324 local_irq_restore (flags); 325 rel_fdc(); 326 327 } 328 329 static void motor_on_callback(unsigned long nr) 330 { 331 if (!(ciaa.pra & DSKRDY) || --on_attempts == 0) { 332 wake_up (&motor_wait); 333 } else { 334 motor_on_timer.expires = jiffies + HZ/10; 335 add_timer(&motor_on_timer); 336 } 337 } 338 339 static int fd_motor_on(int nr) 340 { 341 nr &= 3; 342 343 del_timer(motor_off_timer + nr); 344 345 if (!unit[nr].motor) { 346 unit[nr].motor = 1; 347 fd_select(nr); 348 349 motor_on_timer.data = nr; 350 mod_timer(&motor_on_timer, jiffies + HZ/2); 351 352 on_attempts = 10; 353 sleep_on (&motor_wait); 354 fd_deselect(nr); 355 } 356 357 if (on_attempts == 0) { 358 on_attempts = -1; 359 #if 0 360 printk (KERN_ERR "motor_on failed, turning motor off\n"); 361 fd_motor_off (nr); 362 return 0; 363 #else 364 printk (KERN_WARNING "DSKRDY not set after 1.5 seconds - assuming drive is spinning notwithstanding\n"); 365 #endif 366 } 367 368 return 1; 369 } 370 371 static void fd_motor_off(unsigned long drive) 372 { 373 long calledfromint; 374 #ifdef MODULE 375 long decusecount; 376 377 decusecount = drive & 0x40000000; 378 #endif 379 calledfromint = drive & 0x80000000; 380 drive&=3; 381 if (calledfromint && !try_fdc(drive)) { 382 /* We would be blocked in an interrupt, so try again later */ 383 motor_off_timer[drive].expires = jiffies + 1; 384 add_timer(motor_off_timer + drive); 385 return; 386 } 387 unit[drive].motor = 0; 388 fd_select(drive); 389 udelay (1); 390 fd_deselect(drive); 391 } 392 393 static void floppy_off (unsigned int nr) 394 { 395 int drive; 396 397 drive = nr & 3; 398 /* called this way it is always from interrupt */ 399 motor_off_timer[drive].data = nr | 0x80000000; 400 mod_timer(motor_off_timer + drive, jiffies + 3*HZ); 401 } 402 403 static int fd_calibrate(int drive) 404 { 405 unsigned char prb; 406 int n; 407 408 drive &= 3; 409 get_fdc(drive); 410 if (!fd_motor_on (drive)) 411 return 0; 412 fd_select (drive); 413 prb = ciab.prb; 414 prb |= DSKSIDE; 415 prb &= ~DSKDIREC; 416 ciab.prb = prb; 417 for (n = unit[drive].type->tracks/2; n != 0; --n) { 418 if (ciaa.pra & DSKTRACK0) 419 break; 420 prb &= ~DSKSTEP; 421 ciab.prb = prb; 422 prb |= DSKSTEP; 423 udelay (2); 424 ciab.prb = prb; 425 ms_delay(unit[drive].type->step_delay); 426 } 427 ms_delay (unit[drive].type->settle_time); 428 prb |= DSKDIREC; 429 n = unit[drive].type->tracks + 20; 430 for (;;) { 431 prb &= ~DSKSTEP; 432 ciab.prb = prb; 433 prb |= DSKSTEP; 434 udelay (2); 435 ciab.prb = prb; 436 ms_delay(unit[drive].type->step_delay + 1); 437 if ((ciaa.pra & DSKTRACK0) == 0) 438 break; 439 if (--n == 0) { 440 printk (KERN_ERR "fd%d: calibrate failed, turning motor off\n", drive); 441 fd_motor_off (drive); 442 unit[drive].track = -1; 443 rel_fdc(); 444 return 0; 445 } 446 } 447 unit[drive].track = 0; 448 ms_delay(unit[drive].type->settle_time); 449 450 rel_fdc(); 451 fd_deselect(drive); 452 return 1; 453 } 454 455 static int fd_seek(int drive, int track) 456 { 457 unsigned char prb; 458 int cnt; 459 460 #ifdef DEBUG 461 printk("seeking drive %d to track %d\n",drive,track); 462 #endif 463 drive &= 3; 464 get_fdc(drive); 465 if (unit[drive].track == track) { 466 rel_fdc(); 467 return 1; 468 } 469 if (!fd_motor_on(drive)) { 470 rel_fdc(); 471 return 0; 472 } 473 if (unit[drive].track < 0 && !fd_calibrate(drive)) { 474 rel_fdc(); 475 return 0; 476 } 477 478 fd_select (drive); 479 cnt = unit[drive].track/2 - track/2; 480 prb = ciab.prb; 481 prb |= DSKSIDE | DSKDIREC; 482 if (track % 2 != 0) 483 prb &= ~DSKSIDE; 484 if (cnt < 0) { 485 cnt = - cnt; 486 prb &= ~DSKDIREC; 487 } 488 ciab.prb = prb; 489 if (track % 2 != unit[drive].track % 2) 490 ms_delay (unit[drive].type->side_time); 491 unit[drive].track = track; 492 if (cnt == 0) { 493 rel_fdc(); 494 fd_deselect(drive); 495 return 1; 496 } 497 do { 498 prb &= ~DSKSTEP; 499 ciab.prb = prb; 500 prb |= DSKSTEP; 501 udelay (1); 502 ciab.prb = prb; 503 ms_delay (unit[drive].type->step_delay); 504 } while (--cnt != 0); 505 ms_delay (unit[drive].type->settle_time); 506 507 rel_fdc(); 508 fd_deselect(drive); 509 return 1; 510 } 511 512 static unsigned long fd_get_drive_id(int drive) 513 { 514 int i; 515 ulong id = 0; 516 517 drive&=3; 518 get_fdc(drive); 519 /* set up for ID */ 520 MOTOR_ON; 521 udelay(2); 522 SELECT(SELMASK(drive)); 523 udelay(2); 524 DESELECT(SELMASK(drive)); 525 udelay(2); 526 MOTOR_OFF; 527 udelay(2); 528 SELECT(SELMASK(drive)); 529 udelay(2); 530 DESELECT(SELMASK(drive)); 531 udelay(2); 532 533 /* loop and read disk ID */ 534 for (i=0; i<32; i++) { 535 SELECT(SELMASK(drive)); 536 udelay(2); 537 538 /* read and store value of DSKRDY */ 539 id <<= 1; 540 id |= (ciaa.pra & DSKRDY) ? 0 : 1; /* cia regs are low-active! */ 541 542 DESELECT(SELMASK(drive)); 543 } 544 545 rel_fdc(); 546 547 /* 548 * RB: At least A500/A2000's df0: don't identify themselves. 549 * As every (real) Amiga has at least a 3.5" DD drive as df0: 550 * we default to that if df0: doesn't identify as a certain 551 * type. 552 */ 553 if(drive == 0 && id == FD_NODRIVE) 554 { 555 id = fd_def_df0; 556 printk(KERN_NOTICE "fd: drive 0 didn't identify, setting default %08lx\n", (ulong)fd_def_df0); 557 } 558 /* return the ID value */ 559 return (id); 560 } 561 562 static irqreturn_t fd_block_done(int irq, void *dummy, struct pt_regs *fp) 563 { 564 if (block_flag) 565 custom.dsklen = 0x4000; 566 567 if (block_flag == 2) { /* writing */ 568 writepending = 2; 569 post_write_timer.expires = jiffies + 1; /* at least 2 ms */ 570 post_write_timer.data = selected; 571 add_timer(&post_write_timer); 572 } 573 else { /* reading */ 574 block_flag = 0; 575 wake_up (&wait_fd_block); 576 } 577 return IRQ_HANDLED; 578 } 579 580 static void raw_read(int drive) 581 { 582 drive&=3; 583 get_fdc(drive); 584 while (block_flag) 585 sleep_on(&wait_fd_block); 586 fd_select(drive); 587 /* setup adkcon bits correctly */ 588 custom.adkcon = ADK_MSBSYNC; 589 custom.adkcon = ADK_SETCLR|ADK_WORDSYNC|ADK_FAST; 590 591 custom.dsksync = MFM_SYNC; 592 593 custom.dsklen = 0; 594 custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf); 595 custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN; 596 custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN; 597 598 block_flag = 1; 599 600 while (block_flag) 601 sleep_on (&wait_fd_block); 602 603 custom.dsklen = 0; 604 fd_deselect(drive); 605 rel_fdc(); 606 } 607 608 static int raw_write(int drive) 609 { 610 ushort adk; 611 612 drive&=3; 613 get_fdc(drive); /* corresponds to rel_fdc() in post_write() */ 614 if ((ciaa.pra & DSKPROT) == 0) { 615 rel_fdc(); 616 return 0; 617 } 618 while (block_flag) 619 sleep_on(&wait_fd_block); 620 fd_select(drive); 621 /* clear adkcon bits */ 622 custom.adkcon = ADK_PRECOMP1|ADK_PRECOMP0|ADK_WORDSYNC|ADK_MSBSYNC; 623 /* set appropriate adkcon bits */ 624 adk = ADK_SETCLR|ADK_FAST; 625 if ((ulong)unit[drive].track >= unit[drive].type->precomp2) 626 adk |= ADK_PRECOMP1; 627 else if ((ulong)unit[drive].track >= unit[drive].type->precomp1) 628 adk |= ADK_PRECOMP0; 629 custom.adkcon = adk; 630 631 custom.dsklen = DSKLEN_WRITE; 632 custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf); 633 custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE; 634 custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE; 635 636 block_flag = 2; 637 return 1; 638 } 639 640 /* 641 * to be called at least 2ms after the write has finished but before any 642 * other access to the hardware. 643 */ 644 static void post_write (unsigned long drive) 645 { 646 #ifdef DEBUG 647 printk("post_write for drive %ld\n",drive); 648 #endif 649 drive &= 3; 650 custom.dsklen = 0; 651 block_flag = 0; 652 writepending = 0; 653 writefromint = 0; 654 unit[drive].dirty = 0; 655 wake_up(&wait_fd_block); 656 fd_deselect(drive); 657 rel_fdc(); /* corresponds to get_fdc() in raw_write */ 658 } 659 660 661 /* 662 * The following functions are to convert the block contents into raw data 663 * written to disk and vice versa. 664 * (Add other formats here ;-)) 665 */ 666 667 static unsigned long scan_sync(unsigned long raw, unsigned long end) 668 { 669 ushort *ptr = (ushort *)raw, *endp = (ushort *)end; 670 671 while (ptr < endp && *ptr++ != 0x4489) 672 ; 673 if (ptr < endp) { 674 while (*ptr == 0x4489 && ptr < endp) 675 ptr++; 676 return (ulong)ptr; 677 } 678 return 0; 679 } 680 681 static inline unsigned long checksum(unsigned long *addr, int len) 682 { 683 unsigned long csum = 0; 684 685 len /= sizeof(*addr); 686 while (len-- > 0) 687 csum ^= *addr++; 688 csum = ((csum>>1) & 0x55555555) ^ (csum & 0x55555555); 689 690 return csum; 691 } 692 693 static unsigned long decode (unsigned long *data, unsigned long *raw, 694 int len) 695 { 696 ulong *odd, *even; 697 698 /* convert length from bytes to longwords */ 699 len >>= 2; 700 odd = raw; 701 even = odd + len; 702 703 /* prepare return pointer */ 704 raw += len * 2; 705 706 do { 707 *data++ = ((*odd++ & 0x55555555) << 1) | (*even++ & 0x55555555); 708 } while (--len != 0); 709 710 return (ulong)raw; 711 } 712 713 struct header { 714 unsigned char magic; 715 unsigned char track; 716 unsigned char sect; 717 unsigned char ord; 718 unsigned char labels[16]; 719 unsigned long hdrchk; 720 unsigned long datachk; 721 }; 722 723 static int amiga_read(int drive) 724 { 725 unsigned long raw; 726 unsigned long end; 727 int scnt; 728 unsigned long csum; 729 struct header hdr; 730 731 drive&=3; 732 raw = (long) raw_buf; 733 end = raw + unit[drive].type->read_size; 734 735 for (scnt = 0;scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) { 736 if (!(raw = scan_sync(raw, end))) { 737 printk (KERN_INFO "can't find sync for sector %d\n", scnt); 738 return MFM_NOSYNC; 739 } 740 741 raw = decode ((ulong *)&hdr.magic, (ulong *)raw, 4); 742 raw = decode ((ulong *)&hdr.labels, (ulong *)raw, 16); 743 raw = decode ((ulong *)&hdr.hdrchk, (ulong *)raw, 4); 744 raw = decode ((ulong *)&hdr.datachk, (ulong *)raw, 4); 745 csum = checksum((ulong *)&hdr, 746 (char *)&hdr.hdrchk-(char *)&hdr); 747 748 #ifdef DEBUG 749 printk ("(%x,%d,%d,%d) (%lx,%lx,%lx,%lx) %lx %lx\n", 750 hdr.magic, hdr.track, hdr.sect, hdr.ord, 751 *(ulong *)&hdr.labels[0], *(ulong *)&hdr.labels[4], 752 *(ulong *)&hdr.labels[8], *(ulong *)&hdr.labels[12], 753 hdr.hdrchk, hdr.datachk); 754 #endif 755 756 if (hdr.hdrchk != csum) { 757 printk(KERN_INFO "MFM_HEADER: %08lx,%08lx\n", hdr.hdrchk, csum); 758 return MFM_HEADER; 759 } 760 761 /* verify track */ 762 if (hdr.track != unit[drive].track) { 763 printk(KERN_INFO "MFM_TRACK: %d, %d\n", hdr.track, unit[drive].track); 764 return MFM_TRACK; 765 } 766 767 raw = decode ((ulong *)(unit[drive].trackbuf + hdr.sect*512), 768 (ulong *)raw, 512); 769 csum = checksum((ulong *)(unit[drive].trackbuf + hdr.sect*512), 512); 770 771 if (hdr.datachk != csum) { 772 printk(KERN_INFO "MFM_DATA: (%x:%d:%d:%d) sc=%d %lx, %lx\n", 773 hdr.magic, hdr.track, hdr.sect, hdr.ord, scnt, 774 hdr.datachk, csum); 775 printk (KERN_INFO "data=(%lx,%lx,%lx,%lx)\n", 776 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[0], 777 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[1], 778 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[2], 779 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[3]); 780 return MFM_DATA; 781 } 782 } 783 784 return 0; 785 } 786 787 static void encode(unsigned long data, unsigned long *dest) 788 { 789 unsigned long data2; 790 791 data &= 0x55555555; 792 data2 = data ^ 0x55555555; 793 data |= ((data2 >> 1) | 0x80000000) & (data2 << 1); 794 795 if (*(dest - 1) & 0x00000001) 796 data &= 0x7FFFFFFF; 797 798 *dest = data; 799 } 800 801 static void encode_block(unsigned long *dest, unsigned long *src, int len) 802 { 803 int cnt, to_cnt = 0; 804 unsigned long data; 805 806 /* odd bits */ 807 for (cnt = 0; cnt < len / 4; cnt++) { 808 data = src[cnt] >> 1; 809 encode(data, dest + to_cnt++); 810 } 811 812 /* even bits */ 813 for (cnt = 0; cnt < len / 4; cnt++) { 814 data = src[cnt]; 815 encode(data, dest + to_cnt++); 816 } 817 } 818 819 static unsigned long *putsec(int disk, unsigned long *raw, int cnt) 820 { 821 struct header hdr; 822 int i; 823 824 disk&=3; 825 *raw = (raw[-1]&1) ? 0x2AAAAAAA : 0xAAAAAAAA; 826 raw++; 827 *raw++ = 0x44894489; 828 829 hdr.magic = 0xFF; 830 hdr.track = unit[disk].track; 831 hdr.sect = cnt; 832 hdr.ord = unit[disk].dtype->sects * unit[disk].type->sect_mult - cnt; 833 for (i = 0; i < 16; i++) 834 hdr.labels[i] = 0; 835 hdr.hdrchk = checksum((ulong *)&hdr, 836 (char *)&hdr.hdrchk-(char *)&hdr); 837 hdr.datachk = checksum((ulong *)(unit[disk].trackbuf+cnt*512), 512); 838 839 encode_block(raw, (ulong *)&hdr.magic, 4); 840 raw += 2; 841 encode_block(raw, (ulong *)&hdr.labels, 16); 842 raw += 8; 843 encode_block(raw, (ulong *)&hdr.hdrchk, 4); 844 raw += 2; 845 encode_block(raw, (ulong *)&hdr.datachk, 4); 846 raw += 2; 847 encode_block(raw, (ulong *)(unit[disk].trackbuf+cnt*512), 512); 848 raw += 256; 849 850 return raw; 851 } 852 853 static void amiga_write(int disk) 854 { 855 unsigned int cnt; 856 unsigned long *ptr = (unsigned long *)raw_buf; 857 858 disk&=3; 859 /* gap space */ 860 for (cnt = 0; cnt < 415 * unit[disk].type->sect_mult; cnt++) 861 *ptr++ = 0xaaaaaaaa; 862 863 /* sectors */ 864 for (cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++) 865 ptr = putsec (disk, ptr, cnt); 866 *(ushort *)ptr = (ptr[-1]&1) ? 0x2AA8 : 0xAAA8; 867 } 868 869 870 struct dos_header { 871 unsigned char track, /* 0-80 */ 872 side, /* 0-1 */ 873 sec, /* 0-...*/ 874 len_desc;/* 2 */ 875 unsigned short crc; /* on 68000 we got an alignment problem, 876 but this compiler solves it by adding silently 877 adding a pad byte so data won't fit 878 and this took about 3h to discover.... */ 879 unsigned char gap1[22]; /* for longword-alignedness (0x4e) */ 880 }; 881 882 /* crc routines are borrowed from the messydos-handler */ 883 884 /* excerpt from the messydos-device 885 ; The CRC is computed not only over the actual data, but including 886 ; the SYNC mark (3 * $a1) and the 'ID/DATA - Address Mark' ($fe/$fb). 887 ; As we don't read or encode these fields into our buffers, we have to 888 ; preload the registers containing the CRC with the values they would have 889 ; after stepping over these fields. 890 ; 891 ; How CRCs "really" work: 892 ; 893 ; First, you should regard a bitstring as a series of coefficients of 894 ; polynomials. We calculate with these polynomials in modulo-2 895 ; arithmetic, in which both add and subtract are done the same as 896 ; exclusive-or. Now, we modify our data (a very long polynomial) in 897 ; such a way that it becomes divisible by the CCITT-standard 16-bit 898 ; 16 12 5 899 ; polynomial: x + x + x + 1, represented by $11021. The easiest 900 ; way to do this would be to multiply (using proper arithmetic) our 901 ; datablock with $11021. So we have: 902 ; data * $11021 = 903 ; data * ($10000 + $1021) = 904 ; data * $10000 + data * $1021 905 ; The left part of this is simple: Just add two 0 bytes. But then 906 ; the right part (data $1021) remains difficult and even could have 907 ; a carry into the left part. The solution is to use a modified 908 ; multiplication, which has a result that is not correct, but with 909 ; a difference of any multiple of $11021. We then only need to keep 910 ; the 16 least significant bits of the result. 911 ; 912 ; The following algorithm does this for us: 913 ; 914 ; unsigned char *data, c, crclo, crchi; 915 ; while (not done) { 916 ; c = *data++ + crchi; 917 ; crchi = (@ c) >> 8 + crclo; 918 ; crclo = @ c; 919 ; } 920 ; 921 ; Remember, + is done with EOR, the @ operator is in two tables (high 922 ; and low byte separately), which is calculated as 923 ; 924 ; $1021 * (c & $F0) 925 ; xor $1021 * (c & $0F) 926 ; xor $1021 * (c >> 4) (* is regular multiplication) 927 ; 928 ; 929 ; Anyway, the end result is the same as the remainder of the division of 930 ; the data by $11021. I am afraid I need to study theory a bit more... 931 932 933 my only works was to code this from manx to C.... 934 935 */ 936 937 static ushort dos_crc(void * data_a3, int data_d0, int data_d1, int data_d3) 938 { 939 static unsigned char CRCTable1[] = { 940 0x00,0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x81,0x91,0xa1,0xb1,0xc1,0xd1,0xe1,0xf1, 941 0x12,0x02,0x32,0x22,0x52,0x42,0x72,0x62,0x93,0x83,0xb3,0xa3,0xd3,0xc3,0xf3,0xe3, 942 0x24,0x34,0x04,0x14,0x64,0x74,0x44,0x54,0xa5,0xb5,0x85,0x95,0xe5,0xf5,0xc5,0xd5, 943 0x36,0x26,0x16,0x06,0x76,0x66,0x56,0x46,0xb7,0xa7,0x97,0x87,0xf7,0xe7,0xd7,0xc7, 944 0x48,0x58,0x68,0x78,0x08,0x18,0x28,0x38,0xc9,0xd9,0xe9,0xf9,0x89,0x99,0xa9,0xb9, 945 0x5a,0x4a,0x7a,0x6a,0x1a,0x0a,0x3a,0x2a,0xdb,0xcb,0xfb,0xeb,0x9b,0x8b,0xbb,0xab, 946 0x6c,0x7c,0x4c,0x5c,0x2c,0x3c,0x0c,0x1c,0xed,0xfd,0xcd,0xdd,0xad,0xbd,0x8d,0x9d, 947 0x7e,0x6e,0x5e,0x4e,0x3e,0x2e,0x1e,0x0e,0xff,0xef,0xdf,0xcf,0xbf,0xaf,0x9f,0x8f, 948 0x91,0x81,0xb1,0xa1,0xd1,0xc1,0xf1,0xe1,0x10,0x00,0x30,0x20,0x50,0x40,0x70,0x60, 949 0x83,0x93,0xa3,0xb3,0xc3,0xd3,0xe3,0xf3,0x02,0x12,0x22,0x32,0x42,0x52,0x62,0x72, 950 0xb5,0xa5,0x95,0x85,0xf5,0xe5,0xd5,0xc5,0x34,0x24,0x14,0x04,0x74,0x64,0x54,0x44, 951 0xa7,0xb7,0x87,0x97,0xe7,0xf7,0xc7,0xd7,0x26,0x36,0x06,0x16,0x66,0x76,0x46,0x56, 952 0xd9,0xc9,0xf9,0xe9,0x99,0x89,0xb9,0xa9,0x58,0x48,0x78,0x68,0x18,0x08,0x38,0x28, 953 0xcb,0xdb,0xeb,0xfb,0x8b,0x9b,0xab,0xbb,0x4a,0x5a,0x6a,0x7a,0x0a,0x1a,0x2a,0x3a, 954 0xfd,0xed,0xdd,0xcd,0xbd,0xad,0x9d,0x8d,0x7c,0x6c,0x5c,0x4c,0x3c,0x2c,0x1c,0x0c, 955 0xef,0xff,0xcf,0xdf,0xaf,0xbf,0x8f,0x9f,0x6e,0x7e,0x4e,0x5e,0x2e,0x3e,0x0e,0x1e 956 }; 957 958 static unsigned char CRCTable2[] = { 959 0x00,0x21,0x42,0x63,0x84,0xa5,0xc6,0xe7,0x08,0x29,0x4a,0x6b,0x8c,0xad,0xce,0xef, 960 0x31,0x10,0x73,0x52,0xb5,0x94,0xf7,0xd6,0x39,0x18,0x7b,0x5a,0xbd,0x9c,0xff,0xde, 961 0x62,0x43,0x20,0x01,0xe6,0xc7,0xa4,0x85,0x6a,0x4b,0x28,0x09,0xee,0xcf,0xac,0x8d, 962 0x53,0x72,0x11,0x30,0xd7,0xf6,0x95,0xb4,0x5b,0x7a,0x19,0x38,0xdf,0xfe,0x9d,0xbc, 963 0xc4,0xe5,0x86,0xa7,0x40,0x61,0x02,0x23,0xcc,0xed,0x8e,0xaf,0x48,0x69,0x0a,0x2b, 964 0xf5,0xd4,0xb7,0x96,0x71,0x50,0x33,0x12,0xfd,0xdc,0xbf,0x9e,0x79,0x58,0x3b,0x1a, 965 0xa6,0x87,0xe4,0xc5,0x22,0x03,0x60,0x41,0xae,0x8f,0xec,0xcd,0x2a,0x0b,0x68,0x49, 966 0x97,0xb6,0xd5,0xf4,0x13,0x32,0x51,0x70,0x9f,0xbe,0xdd,0xfc,0x1b,0x3a,0x59,0x78, 967 0x88,0xa9,0xca,0xeb,0x0c,0x2d,0x4e,0x6f,0x80,0xa1,0xc2,0xe3,0x04,0x25,0x46,0x67, 968 0xb9,0x98,0xfb,0xda,0x3d,0x1c,0x7f,0x5e,0xb1,0x90,0xf3,0xd2,0x35,0x14,0x77,0x56, 969 0xea,0xcb,0xa8,0x89,0x6e,0x4f,0x2c,0x0d,0xe2,0xc3,0xa0,0x81,0x66,0x47,0x24,0x05, 970 0xdb,0xfa,0x99,0xb8,0x5f,0x7e,0x1d,0x3c,0xd3,0xf2,0x91,0xb0,0x57,0x76,0x15,0x34, 971 0x4c,0x6d,0x0e,0x2f,0xc8,0xe9,0x8a,0xab,0x44,0x65,0x06,0x27,0xc0,0xe1,0x82,0xa3, 972 0x7d,0x5c,0x3f,0x1e,0xf9,0xd8,0xbb,0x9a,0x75,0x54,0x37,0x16,0xf1,0xd0,0xb3,0x92, 973 0x2e,0x0f,0x6c,0x4d,0xaa,0x8b,0xe8,0xc9,0x26,0x07,0x64,0x45,0xa2,0x83,0xe0,0xc1, 974 0x1f,0x3e,0x5d,0x7c,0x9b,0xba,0xd9,0xf8,0x17,0x36,0x55,0x74,0x93,0xb2,0xd1,0xf0 975 }; 976 977 /* look at the asm-code - what looks in C a bit strange is almost as good as handmade */ 978 register int i; 979 register unsigned char *CRCT1, *CRCT2, *data, c, crch, crcl; 980 981 CRCT1=CRCTable1; 982 CRCT2=CRCTable2; 983 data=data_a3; 984 crcl=data_d1; 985 crch=data_d0; 986 for (i=data_d3; i>=0; i--) { 987 c = (*data++) ^ crch; 988 crch = CRCT1[c] ^ crcl; 989 crcl = CRCT2[c]; 990 } 991 return (crch<<8)|crcl; 992 } 993 994 static inline ushort dos_hdr_crc (struct dos_header *hdr) 995 { 996 return dos_crc(&(hdr->track), 0xb2, 0x30, 3); /* precomputed magic */ 997 } 998 999 static inline ushort dos_data_crc(unsigned char *data) 1000 { 1001 return dos_crc(data, 0xe2, 0x95 ,511); /* precomputed magic */ 1002 } 1003 1004 static inline unsigned char dos_decode_byte(ushort word) 1005 { 1006 register ushort w2; 1007 register unsigned char byte; 1008 register unsigned char *dec = mfmdecode; 1009 1010 w2=word; 1011 w2>>=8; 1012 w2&=127; 1013 byte = dec[w2]; 1014 byte <<= 4; 1015 w2 = word & 127; 1016 byte |= dec[w2]; 1017 return byte; 1018 } 1019 1020 static unsigned long dos_decode(unsigned char *data, unsigned short *raw, int len) 1021 { 1022 int i; 1023 1024 for (i = 0; i < len; i++) 1025 *data++=dos_decode_byte(*raw++); 1026 return ((ulong)raw); 1027 } 1028 1029 #ifdef DEBUG 1030 static void dbg(unsigned long ptr) 1031 { 1032 printk("raw data @%08lx: %08lx, %08lx ,%08lx, %08lx\n", ptr, 1033 ((ulong *)ptr)[0], ((ulong *)ptr)[1], 1034 ((ulong *)ptr)[2], ((ulong *)ptr)[3]); 1035 } 1036 #endif 1037 1038 static int dos_read(int drive) 1039 { 1040 unsigned long end; 1041 unsigned long raw; 1042 int scnt; 1043 unsigned short crc,data_crc[2]; 1044 struct dos_header hdr; 1045 1046 drive&=3; 1047 raw = (long) raw_buf; 1048 end = raw + unit[drive].type->read_size; 1049 1050 for (scnt=0; scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) { 1051 do { /* search for the right sync of each sec-hdr */ 1052 if (!(raw = scan_sync (raw, end))) { 1053 printk(KERN_INFO "dos_read: no hdr sync on " 1054 "track %d, unit %d for sector %d\n", 1055 unit[drive].track,drive,scnt); 1056 return MFM_NOSYNC; 1057 } 1058 #ifdef DEBUG 1059 dbg(raw); 1060 #endif 1061 } while (*((ushort *)raw)!=0x5554); /* loop usually only once done */ 1062 raw+=2; /* skip over headermark */ 1063 raw = dos_decode((unsigned char *)&hdr,(ushort *) raw,8); 1064 crc = dos_hdr_crc(&hdr); 1065 1066 #ifdef DEBUG 1067 printk("(%3d,%d,%2d,%d) %x\n", hdr.track, hdr.side, 1068 hdr.sec, hdr.len_desc, hdr.crc); 1069 #endif 1070 1071 if (crc != hdr.crc) { 1072 printk(KERN_INFO "dos_read: MFM_HEADER %04x,%04x\n", 1073 hdr.crc, crc); 1074 return MFM_HEADER; 1075 } 1076 if (hdr.track != unit[drive].track/unit[drive].type->heads) { 1077 printk(KERN_INFO "dos_read: MFM_TRACK %d, %d\n", 1078 hdr.track, 1079 unit[drive].track/unit[drive].type->heads); 1080 return MFM_TRACK; 1081 } 1082 1083 if (hdr.side != unit[drive].track%unit[drive].type->heads) { 1084 printk(KERN_INFO "dos_read: MFM_SIDE %d, %d\n", 1085 hdr.side, 1086 unit[drive].track%unit[drive].type->heads); 1087 return MFM_TRACK; 1088 } 1089 1090 if (hdr.len_desc != 2) { 1091 printk(KERN_INFO "dos_read: unknown sector len " 1092 "descriptor %d\n", hdr.len_desc); 1093 return MFM_DATA; 1094 } 1095 #ifdef DEBUG 1096 printk("hdr accepted\n"); 1097 #endif 1098 if (!(raw = scan_sync (raw, end))) { 1099 printk(KERN_INFO "dos_read: no data sync on track " 1100 "%d, unit %d for sector%d, disk sector %d\n", 1101 unit[drive].track, drive, scnt, hdr.sec); 1102 return MFM_NOSYNC; 1103 } 1104 #ifdef DEBUG 1105 dbg(raw); 1106 #endif 1107 1108 if (*((ushort *)raw)!=0x5545) { 1109 printk(KERN_INFO "dos_read: no data mark after " 1110 "sync (%d,%d,%d,%d) sc=%d\n", 1111 hdr.track,hdr.side,hdr.sec,hdr.len_desc,scnt); 1112 return MFM_NOSYNC; 1113 } 1114 1115 raw+=2; /* skip data mark (included in checksum) */ 1116 raw = dos_decode((unsigned char *)(unit[drive].trackbuf + (hdr.sec - 1) * 512), (ushort *) raw, 512); 1117 raw = dos_decode((unsigned char *)data_crc,(ushort *) raw,4); 1118 crc = dos_data_crc(unit[drive].trackbuf + (hdr.sec - 1) * 512); 1119 1120 if (crc != data_crc[0]) { 1121 printk(KERN_INFO "dos_read: MFM_DATA (%d,%d,%d,%d) " 1122 "sc=%d, %x %x\n", hdr.track, hdr.side, 1123 hdr.sec, hdr.len_desc, scnt,data_crc[0], crc); 1124 printk(KERN_INFO "data=(%lx,%lx,%lx,%lx,...)\n", 1125 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[0], 1126 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[1], 1127 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[2], 1128 ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[3]); 1129 return MFM_DATA; 1130 } 1131 } 1132 return 0; 1133 } 1134 1135 static inline ushort dos_encode_byte(unsigned char byte) 1136 { 1137 register unsigned char *enc, b2, b1; 1138 register ushort word; 1139 1140 enc=mfmencode; 1141 b1=byte; 1142 b2=b1>>4; 1143 b1&=15; 1144 word=enc[b2] <<8 | enc [b1]; 1145 return (word|((word&(256|64)) ? 0: 128)); 1146 } 1147 1148 static void dos_encode_block(ushort *dest, unsigned char *src, int len) 1149 { 1150 int i; 1151 1152 for (i = 0; i < len; i++) { 1153 *dest=dos_encode_byte(*src++); 1154 *dest|=((dest[-1]&1)||(*dest&0x4000))? 0: 0x8000; 1155 dest++; 1156 } 1157 } 1158 1159 static unsigned long *ms_putsec(int drive, unsigned long *raw, int cnt) 1160 { 1161 static struct dos_header hdr={0,0,0,2,0, 1162 {78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78}}; 1163 int i; 1164 static ushort crc[2]={0,0x4e4e}; 1165 1166 drive&=3; 1167 /* id gap 1 */ 1168 /* the MFM word before is always 9254 */ 1169 for(i=0;i<6;i++) 1170 *raw++=0xaaaaaaaa; 1171 /* 3 sync + 1 headermark */ 1172 *raw++=0x44894489; 1173 *raw++=0x44895554; 1174 1175 /* fill in the variable parts of the header */ 1176 hdr.track=unit[drive].track/unit[drive].type->heads; 1177 hdr.side=unit[drive].track%unit[drive].type->heads; 1178 hdr.sec=cnt+1; 1179 hdr.crc=dos_hdr_crc(&hdr); 1180 1181 /* header (without "magic") and id gap 2*/ 1182 dos_encode_block((ushort *)raw,(unsigned char *) &hdr.track,28); 1183 raw+=14; 1184 1185 /*id gap 3 */ 1186 for(i=0;i<6;i++) 1187 *raw++=0xaaaaaaaa; 1188 1189 /* 3 syncs and 1 datamark */ 1190 *raw++=0x44894489; 1191 *raw++=0x44895545; 1192 1193 /* data */ 1194 dos_encode_block((ushort *)raw, 1195 (unsigned char *)unit[drive].trackbuf+cnt*512,512); 1196 raw+=256; 1197 1198 /*data crc + jd's special gap (long words :-/) */ 1199 crc[0]=dos_data_crc(unit[drive].trackbuf+cnt*512); 1200 dos_encode_block((ushort *) raw,(unsigned char *)crc,4); 1201 raw+=2; 1202 1203 /* data gap */ 1204 for(i=0;i<38;i++) 1205 *raw++=0x92549254; 1206 1207 return raw; /* wrote 652 MFM words */ 1208 } 1209 1210 static void dos_write(int disk) 1211 { 1212 int cnt; 1213 unsigned long raw = (unsigned long) raw_buf; 1214 unsigned long *ptr=(unsigned long *)raw; 1215 1216 disk&=3; 1217 /* really gap4 + indexgap , but we write it first and round it up */ 1218 for (cnt=0;cnt<425;cnt++) 1219 *ptr++=0x92549254; 1220 1221 /* the following is just guessed */ 1222 if (unit[disk].type->sect_mult==2) /* check for HD-Disks */ 1223 for(cnt=0;cnt<473;cnt++) 1224 *ptr++=0x92549254; 1225 1226 /* now the index marks...*/ 1227 for (cnt=0;cnt<20;cnt++) 1228 *ptr++=0x92549254; 1229 for (cnt=0;cnt<6;cnt++) 1230 *ptr++=0xaaaaaaaa; 1231 *ptr++=0x52245224; 1232 *ptr++=0x52245552; 1233 for (cnt=0;cnt<20;cnt++) 1234 *ptr++=0x92549254; 1235 1236 /* sectors */ 1237 for(cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++) 1238 ptr=ms_putsec(disk,ptr,cnt); 1239 1240 *(ushort *)ptr = 0xaaa8; /* MFM word before is always 0x9254 */ 1241 } 1242 1243 /* 1244 * Here comes the high level stuff (i.e. the filesystem interface) 1245 * and helper functions. 1246 * Normally this should be the only part that has to be adapted to 1247 * different kernel versions. 1248 */ 1249 1250 /* FIXME: this assumes the drive is still spinning - 1251 * which is only true if we complete writing a track within three seconds 1252 */ 1253 static void flush_track_callback(unsigned long nr) 1254 { 1255 nr&=3; 1256 writefromint = 1; 1257 if (!try_fdc(nr)) { 1258 /* we might block in an interrupt, so try again later */ 1259 flush_track_timer[nr].expires = jiffies + 1; 1260 add_timer(flush_track_timer + nr); 1261 return; 1262 } 1263 get_fdc(nr); 1264 (*unit[nr].dtype->write_fkt)(nr); 1265 if (!raw_write(nr)) { 1266 printk (KERN_NOTICE "floppy disk write protected\n"); 1267 writefromint = 0; 1268 writepending = 0; 1269 } 1270 rel_fdc(); 1271 } 1272 1273 static int non_int_flush_track (unsigned long nr) 1274 { 1275 unsigned long flags; 1276 1277 nr&=3; 1278 writefromint = 0; 1279 del_timer(&post_write_timer); 1280 get_fdc(nr); 1281 if (!fd_motor_on(nr)) { 1282 writepending = 0; 1283 rel_fdc(); 1284 return 0; 1285 } 1286 local_irq_save(flags); 1287 if (writepending != 2) { 1288 local_irq_restore(flags); 1289 (*unit[nr].dtype->write_fkt)(nr); 1290 if (!raw_write(nr)) { 1291 printk (KERN_NOTICE "floppy disk write protected " 1292 "in write!\n"); 1293 writepending = 0; 1294 return 0; 1295 } 1296 while (block_flag == 2) 1297 sleep_on (&wait_fd_block); 1298 } 1299 else { 1300 local_irq_restore(flags); 1301 ms_delay(2); /* 2 ms post_write delay */ 1302 post_write(nr); 1303 } 1304 rel_fdc(); 1305 return 1; 1306 } 1307 1308 static int get_track(int drive, int track) 1309 { 1310 int error, errcnt; 1311 1312 drive&=3; 1313 if (unit[drive].track == track) 1314 return 0; 1315 get_fdc(drive); 1316 if (!fd_motor_on(drive)) { 1317 rel_fdc(); 1318 return -1; 1319 } 1320 1321 if (unit[drive].dirty == 1) { 1322 del_timer (flush_track_timer + drive); 1323 non_int_flush_track (drive); 1324 } 1325 errcnt = 0; 1326 while (errcnt < MAX_ERRORS) { 1327 if (!fd_seek(drive, track)) 1328 return -1; 1329 raw_read(drive); 1330 error = (*unit[drive].dtype->read_fkt)(drive); 1331 if (error == 0) { 1332 rel_fdc(); 1333 return 0; 1334 } 1335 /* Read Error Handling: recalibrate and try again */ 1336 unit[drive].track = -1; 1337 errcnt++; 1338 } 1339 rel_fdc(); 1340 return -1; 1341 } 1342 1343 static void redo_fd_request(void) 1344 { 1345 unsigned int cnt, block, track, sector; 1346 int drive; 1347 struct amiga_floppy_struct *floppy; 1348 char *data; 1349 unsigned long flags; 1350 1351 repeat: 1352 if (!CURRENT) { 1353 /* Nothing left to do */ 1354 return; 1355 } 1356 1357 floppy = CURRENT->rq_disk->private_data; 1358 drive = floppy - unit; 1359 1360 /* Here someone could investigate to be more efficient */ 1361 for (cnt = 0; cnt < CURRENT->current_nr_sectors; cnt++) { 1362 #ifdef DEBUG 1363 printk("fd: sector %ld + %d requested for %s\n", 1364 CURRENT->sector,cnt, 1365 (CURRENT->cmd==READ)?"read":"write"); 1366 #endif 1367 block = CURRENT->sector + cnt; 1368 if ((int)block > floppy->blocks) { 1369 end_request(CURRENT, 0); 1370 goto repeat; 1371 } 1372 1373 track = block / (floppy->dtype->sects * floppy->type->sect_mult); 1374 sector = block % (floppy->dtype->sects * floppy->type->sect_mult); 1375 data = CURRENT->buffer + 512 * cnt; 1376 #ifdef DEBUG 1377 printk("access to track %d, sector %d, with buffer at " 1378 "0x%08lx\n", track, sector, data); 1379 #endif 1380 1381 if ((rq_data_dir(CURRENT) != READ) && (rq_data_dir(CURRENT) != WRITE)) { 1382 printk(KERN_WARNING "do_fd_request: unknown command\n"); 1383 end_request(CURRENT, 0); 1384 goto repeat; 1385 } 1386 if (get_track(drive, track) == -1) { 1387 end_request(CURRENT, 0); 1388 goto repeat; 1389 } 1390 1391 switch (rq_data_dir(CURRENT)) { 1392 case READ: 1393 memcpy(data, floppy->trackbuf + sector * 512, 512); 1394 break; 1395 1396 case WRITE: 1397 memcpy(floppy->trackbuf + sector * 512, data, 512); 1398 1399 /* keep the drive spinning while writes are scheduled */ 1400 if (!fd_motor_on(drive)) { 1401 end_request(CURRENT, 0); 1402 goto repeat; 1403 } 1404 /* 1405 * setup a callback to write the track buffer 1406 * after a short (1 tick) delay. 1407 */ 1408 local_irq_save(flags); 1409 1410 floppy->dirty = 1; 1411 /* reset the timer */ 1412 mod_timer (flush_track_timer + drive, jiffies + 1); 1413 local_irq_restore(flags); 1414 break; 1415 } 1416 } 1417 CURRENT->nr_sectors -= CURRENT->current_nr_sectors; 1418 CURRENT->sector += CURRENT->current_nr_sectors; 1419 1420 end_request(CURRENT, 1); 1421 goto repeat; 1422 } 1423 1424 static void do_fd_request(request_queue_t * q) 1425 { 1426 redo_fd_request(); 1427 } 1428 1429 static int fd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1430 { 1431 int drive = MINOR(bdev->bd_dev) & 3; 1432 1433 geo->heads = unit[drive].type->heads; 1434 geo->sectors = unit[drive].dtype->sects * unit[drive].type->sect_mult; 1435 geo->cylinders = unit[drive].type->tracks; 1436 return 0; 1437 } 1438 1439 static int fd_ioctl(struct inode *inode, struct file *filp, 1440 unsigned int cmd, unsigned long param) 1441 { 1442 int drive = iminor(inode) & 3; 1443 static struct floppy_struct getprm; 1444 void __user *argp = (void __user *)param; 1445 1446 switch(cmd){ 1447 case FDFMTBEG: 1448 get_fdc(drive); 1449 if (fd_ref[drive] > 1) { 1450 rel_fdc(); 1451 return -EBUSY; 1452 } 1453 fsync_bdev(inode->i_bdev); 1454 if (fd_motor_on(drive) == 0) { 1455 rel_fdc(); 1456 return -ENODEV; 1457 } 1458 if (fd_calibrate(drive) == 0) { 1459 rel_fdc(); 1460 return -ENXIO; 1461 } 1462 floppy_off(drive); 1463 rel_fdc(); 1464 break; 1465 case FDFMTTRK: 1466 if (param < unit[drive].type->tracks * unit[drive].type->heads) 1467 { 1468 get_fdc(drive); 1469 if (fd_seek(drive,param) != 0){ 1470 memset(unit[drive].trackbuf, FD_FILL_BYTE, 1471 unit[drive].dtype->sects * unit[drive].type->sect_mult * 512); 1472 non_int_flush_track(drive); 1473 } 1474 floppy_off(drive); 1475 rel_fdc(); 1476 } 1477 else 1478 return -EINVAL; 1479 break; 1480 case FDFMTEND: 1481 floppy_off(drive); 1482 invalidate_bdev(inode->i_bdev, 0); 1483 break; 1484 case FDGETPRM: 1485 memset((void *)&getprm, 0, sizeof (getprm)); 1486 getprm.track=unit[drive].type->tracks; 1487 getprm.head=unit[drive].type->heads; 1488 getprm.sect=unit[drive].dtype->sects * unit[drive].type->sect_mult; 1489 getprm.size=unit[drive].blocks; 1490 if (copy_to_user(argp, &getprm, sizeof(struct floppy_struct))) 1491 return -EFAULT; 1492 break; 1493 case FDSETPRM: 1494 case FDDEFPRM: 1495 return -EINVAL; 1496 case FDFLUSH: /* unconditionally, even if not needed */ 1497 del_timer (flush_track_timer + drive); 1498 non_int_flush_track(drive); 1499 break; 1500 #ifdef RAW_IOCTL 1501 case IOCTL_RAW_TRACK: 1502 if (copy_to_user(argp, raw_buf, unit[drive].type->read_size)) 1503 return -EFAULT; 1504 else 1505 return unit[drive].type->read_size; 1506 #endif 1507 default: 1508 printk(KERN_DEBUG "fd_ioctl: unknown cmd %d for drive %d.", 1509 cmd, drive); 1510 return -ENOSYS; 1511 } 1512 return 0; 1513 } 1514 1515 static void fd_probe(int dev) 1516 { 1517 unsigned long code; 1518 int type; 1519 int drive; 1520 1521 drive = dev & 3; 1522 code = fd_get_drive_id(drive); 1523 1524 /* get drive type */ 1525 for (type = 0; type < num_dr_types; type++) 1526 if (drive_types[type].code == code) 1527 break; 1528 1529 if (type >= num_dr_types) { 1530 printk(KERN_WARNING "fd_probe: unsupported drive type " 1531 "%08lx found\n", code); 1532 unit[drive].type = &drive_types[num_dr_types-1]; /* FD_NODRIVE */ 1533 return; 1534 } 1535 1536 unit[drive].type = drive_types + type; 1537 unit[drive].track = -1; 1538 1539 unit[drive].disk = -1; 1540 unit[drive].motor = 0; 1541 unit[drive].busy = 0; 1542 unit[drive].status = -1; 1543 } 1544 1545 /* 1546 * floppy_open check for aliasing (/dev/fd0 can be the same as 1547 * /dev/PS0 etc), and disallows simultaneous access to the same 1548 * drive with different device numbers. 1549 */ 1550 static int floppy_open(struct inode *inode, struct file *filp) 1551 { 1552 int drive = iminor(inode) & 3; 1553 int system = (iminor(inode) & 4) >> 2; 1554 int old_dev; 1555 unsigned long flags; 1556 1557 old_dev = fd_device[drive]; 1558 1559 if (fd_ref[drive] && old_dev != system) 1560 return -EBUSY; 1561 1562 if (filp && filp->f_mode & 3) { 1563 check_disk_change(inode->i_bdev); 1564 if (filp->f_mode & 2 ) { 1565 int wrprot; 1566 1567 get_fdc(drive); 1568 fd_select (drive); 1569 wrprot = !(ciaa.pra & DSKPROT); 1570 fd_deselect (drive); 1571 rel_fdc(); 1572 1573 if (wrprot) 1574 return -EROFS; 1575 } 1576 } 1577 1578 local_irq_save(flags); 1579 fd_ref[drive]++; 1580 fd_device[drive] = system; 1581 local_irq_restore(flags); 1582 1583 unit[drive].dtype=&data_types[system]; 1584 unit[drive].blocks=unit[drive].type->heads*unit[drive].type->tracks* 1585 data_types[system].sects*unit[drive].type->sect_mult; 1586 set_capacity(unit[drive].gendisk, unit[drive].blocks); 1587 1588 printk(KERN_INFO "fd%d: accessing %s-disk with %s-layout\n",drive, 1589 unit[drive].type->name, data_types[system].name); 1590 1591 return 0; 1592 } 1593 1594 static int floppy_release(struct inode * inode, struct file * filp) 1595 { 1596 int drive = iminor(inode) & 3; 1597 1598 if (unit[drive].dirty == 1) { 1599 del_timer (flush_track_timer + drive); 1600 non_int_flush_track (drive); 1601 } 1602 1603 if (!fd_ref[drive]--) { 1604 printk(KERN_CRIT "floppy_release with fd_ref == 0"); 1605 fd_ref[drive] = 0; 1606 } 1607 #ifdef MODULE 1608 /* the mod_use counter is handled this way */ 1609 floppy_off (drive | 0x40000000); 1610 #endif 1611 return 0; 1612 } 1613 1614 /* 1615 * floppy-change is never called from an interrupt, so we can relax a bit 1616 * here, sleep etc. Note that floppy-on tries to set current_DOR to point 1617 * to the desired drive, but it will probably not survive the sleep if 1618 * several floppies are used at the same time: thus the loop. 1619 */ 1620 static int amiga_floppy_change(struct gendisk *disk) 1621 { 1622 struct amiga_floppy_struct *p = disk->private_data; 1623 int drive = p - unit; 1624 int changed; 1625 static int first_time = 1; 1626 1627 if (first_time) 1628 changed = first_time--; 1629 else { 1630 get_fdc(drive); 1631 fd_select (drive); 1632 changed = !(ciaa.pra & DSKCHANGE); 1633 fd_deselect (drive); 1634 rel_fdc(); 1635 } 1636 1637 if (changed) { 1638 fd_probe(drive); 1639 p->track = -1; 1640 p->dirty = 0; 1641 writepending = 0; /* if this was true before, too bad! */ 1642 writefromint = 0; 1643 return 1; 1644 } 1645 return 0; 1646 } 1647 1648 static struct block_device_operations floppy_fops = { 1649 .owner = THIS_MODULE, 1650 .open = floppy_open, 1651 .release = floppy_release, 1652 .ioctl = fd_ioctl, 1653 .getgeo = fd_getgeo, 1654 .media_changed = amiga_floppy_change, 1655 }; 1656 1657 static int __init fd_probe_drives(void) 1658 { 1659 int drive,drives,nomem; 1660 1661 printk(KERN_INFO "FD: probing units\n" KERN_INFO "found "); 1662 drives=0; 1663 nomem=0; 1664 for(drive=0;drive<FD_MAX_UNITS;drive++) { 1665 struct gendisk *disk; 1666 fd_probe(drive); 1667 if (unit[drive].type->code == FD_NODRIVE) 1668 continue; 1669 disk = alloc_disk(1); 1670 if (!disk) { 1671 unit[drive].type->code = FD_NODRIVE; 1672 continue; 1673 } 1674 unit[drive].gendisk = disk; 1675 drives++; 1676 if ((unit[drive].trackbuf = kmalloc(FLOPPY_MAX_SECTORS * 512, GFP_KERNEL)) == NULL) { 1677 printk("no mem for "); 1678 unit[drive].type = &drive_types[num_dr_types - 1]; /* FD_NODRIVE */ 1679 drives--; 1680 nomem = 1; 1681 } 1682 printk("fd%d ",drive); 1683 disk->major = FLOPPY_MAJOR; 1684 disk->first_minor = drive; 1685 disk->fops = &floppy_fops; 1686 sprintf(disk->disk_name, "fd%d", drive); 1687 disk->private_data = &unit[drive]; 1688 disk->queue = floppy_queue; 1689 set_capacity(disk, 880*2); 1690 add_disk(disk); 1691 } 1692 if ((drives > 0) || (nomem == 0)) { 1693 if (drives == 0) 1694 printk("no drives"); 1695 printk("\n"); 1696 return drives; 1697 } 1698 printk("\n"); 1699 return -ENOMEM; 1700 } 1701 1702 static struct kobject *floppy_find(dev_t dev, int *part, void *data) 1703 { 1704 int drive = *part & 3; 1705 if (unit[drive].type->code == FD_NODRIVE) 1706 return NULL; 1707 *part = 0; 1708 return get_disk(unit[drive].gendisk); 1709 } 1710 1711 int __init amiga_floppy_init(void) 1712 { 1713 int i, ret; 1714 1715 if (!AMIGAHW_PRESENT(AMI_FLOPPY)) 1716 return -ENXIO; 1717 1718 if (register_blkdev(FLOPPY_MAJOR,"fd")) 1719 return -EBUSY; 1720 1721 /* 1722 * We request DSKPTR, DSKLEN and DSKDATA only, because the other 1723 * floppy registers are too spreaded over the custom register space 1724 */ 1725 ret = -EBUSY; 1726 if (!request_mem_region(CUSTOM_PHYSADDR+0x20, 8, "amiflop [Paula]")) { 1727 printk("fd: cannot get floppy registers\n"); 1728 goto out_blkdev; 1729 } 1730 1731 ret = -ENOMEM; 1732 if ((raw_buf = (char *)amiga_chip_alloc (RAW_BUF_SIZE, "Floppy")) == 1733 NULL) { 1734 printk("fd: cannot get chip mem buffer\n"); 1735 goto out_memregion; 1736 } 1737 1738 ret = -EBUSY; 1739 if (request_irq(IRQ_AMIGA_DSKBLK, fd_block_done, 0, "floppy_dma", NULL)) { 1740 printk("fd: cannot get irq for dma\n"); 1741 goto out_irq; 1742 } 1743 1744 if (request_irq(IRQ_AMIGA_CIAA_TB, ms_isr, 0, "floppy_timer", NULL)) { 1745 printk("fd: cannot get irq for timer\n"); 1746 goto out_irq2; 1747 } 1748 1749 ret = -ENOMEM; 1750 floppy_queue = blk_init_queue(do_fd_request, &amiflop_lock); 1751 if (!floppy_queue) 1752 goto out_queue; 1753 1754 ret = -ENXIO; 1755 if (fd_probe_drives() < 1) /* No usable drives */ 1756 goto out_probe; 1757 1758 blk_register_region(MKDEV(FLOPPY_MAJOR, 0), 256, THIS_MODULE, 1759 floppy_find, NULL, NULL); 1760 1761 /* initialize variables */ 1762 init_timer(&motor_on_timer); 1763 motor_on_timer.expires = 0; 1764 motor_on_timer.data = 0; 1765 motor_on_timer.function = motor_on_callback; 1766 for (i = 0; i < FD_MAX_UNITS; i++) { 1767 init_timer(&motor_off_timer[i]); 1768 motor_off_timer[i].expires = 0; 1769 motor_off_timer[i].data = i|0x80000000; 1770 motor_off_timer[i].function = fd_motor_off; 1771 init_timer(&flush_track_timer[i]); 1772 flush_track_timer[i].expires = 0; 1773 flush_track_timer[i].data = i; 1774 flush_track_timer[i].function = flush_track_callback; 1775 1776 unit[i].track = -1; 1777 } 1778 1779 init_timer(&post_write_timer); 1780 post_write_timer.expires = 0; 1781 post_write_timer.data = 0; 1782 post_write_timer.function = post_write; 1783 1784 for (i = 0; i < 128; i++) 1785 mfmdecode[i]=255; 1786 for (i = 0; i < 16; i++) 1787 mfmdecode[mfmencode[i]]=i; 1788 1789 /* make sure that disk DMA is enabled */ 1790 custom.dmacon = DMAF_SETCLR | DMAF_DISK; 1791 1792 /* init ms timer */ 1793 ciaa.crb = 8; /* one-shot, stop */ 1794 return 0; 1795 1796 out_probe: 1797 blk_cleanup_queue(floppy_queue); 1798 out_queue: 1799 free_irq(IRQ_AMIGA_CIAA_TB, NULL); 1800 out_irq2: 1801 free_irq(IRQ_AMIGA_DSKBLK, NULL); 1802 out_irq: 1803 amiga_chip_free(raw_buf); 1804 out_memregion: 1805 release_mem_region(CUSTOM_PHYSADDR+0x20, 8); 1806 out_blkdev: 1807 unregister_blkdev(FLOPPY_MAJOR,"fd"); 1808 return ret; 1809 } 1810 1811 #ifdef MODULE 1812 1813 int init_module(void) 1814 { 1815 if (!MACH_IS_AMIGA) 1816 return -ENXIO; 1817 return amiga_floppy_init(); 1818 } 1819 1820 #if 0 /* not safe to unload */ 1821 void cleanup_module(void) 1822 { 1823 int i; 1824 1825 for( i = 0; i < FD_MAX_UNITS; i++) { 1826 if (unit[i].type->code != FD_NODRIVE) { 1827 del_gendisk(unit[i].gendisk); 1828 put_disk(unit[i].gendisk); 1829 kfree(unit[i].trackbuf); 1830 } 1831 } 1832 blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256); 1833 free_irq(IRQ_AMIGA_CIAA_TB, NULL); 1834 free_irq(IRQ_AMIGA_DSKBLK, NULL); 1835 custom.dmacon = DMAF_DISK; /* disable DMA */ 1836 amiga_chip_free(raw_buf); 1837 blk_cleanup_queue(floppy_queue); 1838 release_mem_region(CUSTOM_PHYSADDR+0x20, 8); 1839 unregister_blkdev(FLOPPY_MAJOR, "fd"); 1840 } 1841 #endif 1842 1843 #else 1844 static int __init amiga_floppy_setup (char *str) 1845 { 1846 int n; 1847 if (!MACH_IS_AMIGA) 1848 return 0; 1849 if (!get_option(&str, &n)) 1850 return 0; 1851 printk (KERN_INFO "amiflop: Setting default df0 to %x\n", n); 1852 fd_def_df0 = n; 1853 return 1; 1854 } 1855 1856 __setup("floppy=", amiga_floppy_setup); 1857 #endif 1858