xref: /linux/drivers/base/regmap/regmap.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <linux/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register_is_set && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register_is_set && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register_is_set && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317 
318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 	const u8 *b = buf;
321 
322 	return b[0];
323 }
324 
325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 	return get_unaligned_be16(buf);
328 }
329 
330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 	return get_unaligned_le16(buf);
333 }
334 
335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 	u16 v = get_unaligned_be16(buf);
338 
339 	memcpy(buf, &v, sizeof(v));
340 }
341 
342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 	u16 v = get_unaligned_le16(buf);
345 
346 	memcpy(buf, &v, sizeof(v));
347 }
348 
349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 	u16 v;
352 
353 	memcpy(&v, buf, sizeof(v));
354 	return v;
355 }
356 
357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 	return get_unaligned_be24(buf);
360 }
361 
362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 	return get_unaligned_be32(buf);
365 }
366 
367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 	return get_unaligned_le32(buf);
370 }
371 
372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 	u32 v = get_unaligned_be32(buf);
375 
376 	memcpy(buf, &v, sizeof(v));
377 }
378 
379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 	u32 v = get_unaligned_le32(buf);
382 
383 	memcpy(buf, &v, sizeof(v));
384 }
385 
386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 	u32 v;
389 
390 	memcpy(&v, buf, sizeof(v));
391 	return v;
392 }
393 
394 static void regmap_lock_hwlock(void *__map)
395 {
396 	struct regmap *map = __map;
397 
398 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400 
401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 	struct regmap *map = __map;
404 
405 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407 
408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 	struct regmap *map = __map;
411 
412 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 				    &map->spinlock_flags);
414 }
415 
416 static void regmap_unlock_hwlock(void *__map)
417 {
418 	struct regmap *map = __map;
419 
420 	hwspin_unlock(map->hwlock);
421 }
422 
423 static void regmap_unlock_hwlock_irq(void *__map)
424 {
425 	struct regmap *map = __map;
426 
427 	hwspin_unlock_irq(map->hwlock);
428 }
429 
430 static void regmap_unlock_hwlock_irqrestore(void *__map)
431 {
432 	struct regmap *map = __map;
433 
434 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435 }
436 
437 static void regmap_lock_unlock_none(void *__map)
438 {
439 
440 }
441 
442 static void regmap_lock_mutex(void *__map)
443 {
444 	struct regmap *map = __map;
445 	mutex_lock(&map->mutex);
446 }
447 
448 static void regmap_unlock_mutex(void *__map)
449 {
450 	struct regmap *map = __map;
451 	mutex_unlock(&map->mutex);
452 }
453 
454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
456 {
457 	struct regmap *map = __map;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&map->spinlock, flags);
461 	map->spinlock_flags = flags;
462 }
463 
464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
466 {
467 	struct regmap *map = __map;
468 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469 }
470 
471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
473 {
474 	struct regmap *map = __map;
475 	unsigned long flags;
476 
477 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 	map->raw_spinlock_flags = flags;
479 }
480 
481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
483 {
484 	struct regmap *map = __map;
485 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486 }
487 
488 static void dev_get_regmap_release(struct device *dev, void *res)
489 {
490 	/*
491 	 * We don't actually have anything to do here; the goal here
492 	 * is not to manage the regmap but to provide a simple way to
493 	 * get the regmap back given a struct device.
494 	 */
495 }
496 
497 static bool _regmap_range_add(struct regmap *map,
498 			      struct regmap_range_node *data)
499 {
500 	struct rb_root *root = &map->range_tree;
501 	struct rb_node **new = &(root->rb_node), *parent = NULL;
502 
503 	while (*new) {
504 		struct regmap_range_node *this =
505 			rb_entry(*new, struct regmap_range_node, node);
506 
507 		parent = *new;
508 		if (data->range_max < this->range_min)
509 			new = &((*new)->rb_left);
510 		else if (data->range_min > this->range_max)
511 			new = &((*new)->rb_right);
512 		else
513 			return false;
514 	}
515 
516 	rb_link_node(&data->node, parent, new);
517 	rb_insert_color(&data->node, root);
518 
519 	return true;
520 }
521 
522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 						      unsigned int reg)
524 {
525 	struct rb_node *node = map->range_tree.rb_node;
526 
527 	while (node) {
528 		struct regmap_range_node *this =
529 			rb_entry(node, struct regmap_range_node, node);
530 
531 		if (reg < this->range_min)
532 			node = node->rb_left;
533 		else if (reg > this->range_max)
534 			node = node->rb_right;
535 		else
536 			return this;
537 	}
538 
539 	return NULL;
540 }
541 
542 static void regmap_range_exit(struct regmap *map)
543 {
544 	struct rb_node *next;
545 	struct regmap_range_node *range_node;
546 
547 	next = rb_first(&map->range_tree);
548 	while (next) {
549 		range_node = rb_entry(next, struct regmap_range_node, node);
550 		next = rb_next(&range_node->node);
551 		rb_erase(&range_node->node, &map->range_tree);
552 		kfree(range_node);
553 	}
554 
555 	kfree(map->selector_work_buf);
556 }
557 
558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559 {
560 	if (config->name) {
561 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
562 
563 		if (!name)
564 			return -ENOMEM;
565 
566 		kfree_const(map->name);
567 		map->name = name;
568 	}
569 
570 	return 0;
571 }
572 
573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 		      const struct regmap_config *config)
575 {
576 	struct regmap **m;
577 	int ret;
578 
579 	map->dev = dev;
580 
581 	ret = regmap_set_name(map, config);
582 	if (ret)
583 		return ret;
584 
585 	regmap_debugfs_exit(map);
586 	regmap_debugfs_init(map);
587 
588 	/* Add a devres resource for dev_get_regmap() */
589 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 	if (!m) {
591 		regmap_debugfs_exit(map);
592 		return -ENOMEM;
593 	}
594 	*m = map;
595 	devres_add(dev, m);
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
600 
601 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
602 					const struct regmap_config *config)
603 {
604 	enum regmap_endian endian;
605 
606 	/* Retrieve the endianness specification from the regmap config */
607 	endian = config->reg_format_endian;
608 
609 	/* If the regmap config specified a non-default value, use that */
610 	if (endian != REGMAP_ENDIAN_DEFAULT)
611 		return endian;
612 
613 	/* Retrieve the endianness specification from the bus config */
614 	if (bus && bus->reg_format_endian_default)
615 		endian = bus->reg_format_endian_default;
616 
617 	/* If the bus specified a non-default value, use that */
618 	if (endian != REGMAP_ENDIAN_DEFAULT)
619 		return endian;
620 
621 	/* Use this if no other value was found */
622 	return REGMAP_ENDIAN_BIG;
623 }
624 
625 enum regmap_endian regmap_get_val_endian(struct device *dev,
626 					 const struct regmap_bus *bus,
627 					 const struct regmap_config *config)
628 {
629 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
630 	enum regmap_endian endian;
631 
632 	/* Retrieve the endianness specification from the regmap config */
633 	endian = config->val_format_endian;
634 
635 	/* If the regmap config specified a non-default value, use that */
636 	if (endian != REGMAP_ENDIAN_DEFAULT)
637 		return endian;
638 
639 	/* If the firmware node exist try to get endianness from it */
640 	if (fwnode_property_read_bool(fwnode, "big-endian"))
641 		endian = REGMAP_ENDIAN_BIG;
642 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
643 		endian = REGMAP_ENDIAN_LITTLE;
644 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
645 		endian = REGMAP_ENDIAN_NATIVE;
646 
647 	/* If the endianness was specified in fwnode, use that */
648 	if (endian != REGMAP_ENDIAN_DEFAULT)
649 		return endian;
650 
651 	/* Retrieve the endianness specification from the bus config */
652 	if (bus && bus->val_format_endian_default)
653 		endian = bus->val_format_endian_default;
654 
655 	/* If the bus specified a non-default value, use that */
656 	if (endian != REGMAP_ENDIAN_DEFAULT)
657 		return endian;
658 
659 	/* Use this if no other value was found */
660 	return REGMAP_ENDIAN_BIG;
661 }
662 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
663 
664 struct regmap *__regmap_init(struct device *dev,
665 			     const struct regmap_bus *bus,
666 			     void *bus_context,
667 			     const struct regmap_config *config,
668 			     struct lock_class_key *lock_key,
669 			     const char *lock_name)
670 {
671 	struct regmap *map;
672 	int ret = -EINVAL;
673 	enum regmap_endian reg_endian, val_endian;
674 	int i, j;
675 
676 	if (!config)
677 		goto err;
678 
679 	map = kzalloc(sizeof(*map), GFP_KERNEL);
680 	if (map == NULL) {
681 		ret = -ENOMEM;
682 		goto err;
683 	}
684 
685 	ret = regmap_set_name(map, config);
686 	if (ret)
687 		goto err_map;
688 
689 	ret = -EINVAL; /* Later error paths rely on this */
690 
691 	if (config->disable_locking) {
692 		map->lock = map->unlock = regmap_lock_unlock_none;
693 		map->can_sleep = config->can_sleep;
694 		regmap_debugfs_disable(map);
695 	} else if (config->lock && config->unlock) {
696 		map->lock = config->lock;
697 		map->unlock = config->unlock;
698 		map->lock_arg = config->lock_arg;
699 		map->can_sleep = config->can_sleep;
700 	} else if (config->use_hwlock) {
701 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
702 		if (!map->hwlock) {
703 			ret = -ENXIO;
704 			goto err_name;
705 		}
706 
707 		switch (config->hwlock_mode) {
708 		case HWLOCK_IRQSTATE:
709 			map->lock = regmap_lock_hwlock_irqsave;
710 			map->unlock = regmap_unlock_hwlock_irqrestore;
711 			break;
712 		case HWLOCK_IRQ:
713 			map->lock = regmap_lock_hwlock_irq;
714 			map->unlock = regmap_unlock_hwlock_irq;
715 			break;
716 		default:
717 			map->lock = regmap_lock_hwlock;
718 			map->unlock = regmap_unlock_hwlock;
719 			break;
720 		}
721 
722 		map->lock_arg = map;
723 	} else {
724 		if ((bus && bus->fast_io) ||
725 		    config->fast_io) {
726 			if (config->use_raw_spinlock) {
727 				raw_spin_lock_init(&map->raw_spinlock);
728 				map->lock = regmap_lock_raw_spinlock;
729 				map->unlock = regmap_unlock_raw_spinlock;
730 				lockdep_set_class_and_name(&map->raw_spinlock,
731 							   lock_key, lock_name);
732 			} else {
733 				spin_lock_init(&map->spinlock);
734 				map->lock = regmap_lock_spinlock;
735 				map->unlock = regmap_unlock_spinlock;
736 				lockdep_set_class_and_name(&map->spinlock,
737 							   lock_key, lock_name);
738 			}
739 		} else {
740 			mutex_init(&map->mutex);
741 			map->lock = regmap_lock_mutex;
742 			map->unlock = regmap_unlock_mutex;
743 			map->can_sleep = true;
744 			lockdep_set_class_and_name(&map->mutex,
745 						   lock_key, lock_name);
746 		}
747 		map->lock_arg = map;
748 		map->lock_key = lock_key;
749 	}
750 
751 	/*
752 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
753 	 * scratch buffers with sleeping allocations.
754 	 */
755 	if ((bus && bus->fast_io) || config->fast_io)
756 		map->alloc_flags = GFP_ATOMIC;
757 	else
758 		map->alloc_flags = GFP_KERNEL;
759 
760 	map->reg_base = config->reg_base;
761 
762 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
763 	map->format.pad_bytes = config->pad_bits / 8;
764 	map->format.reg_shift = config->reg_shift;
765 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
766 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
767 			config->val_bits + config->pad_bits, 8);
768 	map->reg_shift = config->pad_bits % 8;
769 	if (config->reg_stride)
770 		map->reg_stride = config->reg_stride;
771 	else
772 		map->reg_stride = 1;
773 	if (is_power_of_2(map->reg_stride))
774 		map->reg_stride_order = ilog2(map->reg_stride);
775 	else
776 		map->reg_stride_order = -1;
777 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
778 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
779 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
780 	if (bus) {
781 		map->max_raw_read = bus->max_raw_read;
782 		map->max_raw_write = bus->max_raw_write;
783 	} else if (config->max_raw_read && config->max_raw_write) {
784 		map->max_raw_read = config->max_raw_read;
785 		map->max_raw_write = config->max_raw_write;
786 	}
787 	map->dev = dev;
788 	map->bus = bus;
789 	map->bus_context = bus_context;
790 	map->max_register = config->max_register;
791 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
792 	map->wr_table = config->wr_table;
793 	map->rd_table = config->rd_table;
794 	map->volatile_table = config->volatile_table;
795 	map->precious_table = config->precious_table;
796 	map->wr_noinc_table = config->wr_noinc_table;
797 	map->rd_noinc_table = config->rd_noinc_table;
798 	map->writeable_reg = config->writeable_reg;
799 	map->readable_reg = config->readable_reg;
800 	map->volatile_reg = config->volatile_reg;
801 	map->precious_reg = config->precious_reg;
802 	map->writeable_noinc_reg = config->writeable_noinc_reg;
803 	map->readable_noinc_reg = config->readable_noinc_reg;
804 	map->cache_type = config->cache_type;
805 
806 	spin_lock_init(&map->async_lock);
807 	INIT_LIST_HEAD(&map->async_list);
808 	INIT_LIST_HEAD(&map->async_free);
809 	init_waitqueue_head(&map->async_waitq);
810 
811 	if (config->read_flag_mask ||
812 	    config->write_flag_mask ||
813 	    config->zero_flag_mask) {
814 		map->read_flag_mask = config->read_flag_mask;
815 		map->write_flag_mask = config->write_flag_mask;
816 	} else if (bus) {
817 		map->read_flag_mask = bus->read_flag_mask;
818 	}
819 
820 	if (config && config->read && config->write) {
821 		map->reg_read  = _regmap_bus_read;
822 		if (config->reg_update_bits)
823 			map->reg_update_bits = config->reg_update_bits;
824 
825 		/* Bulk read/write */
826 		map->read = config->read;
827 		map->write = config->write;
828 
829 		reg_endian = REGMAP_ENDIAN_NATIVE;
830 		val_endian = REGMAP_ENDIAN_NATIVE;
831 	} else if (!bus) {
832 		map->reg_read  = config->reg_read;
833 		map->reg_write = config->reg_write;
834 		map->reg_update_bits = config->reg_update_bits;
835 
836 		map->defer_caching = false;
837 		goto skip_format_initialization;
838 	} else if (!bus->read || !bus->write) {
839 		map->reg_read = _regmap_bus_reg_read;
840 		map->reg_write = _regmap_bus_reg_write;
841 		map->reg_update_bits = bus->reg_update_bits;
842 
843 		map->defer_caching = false;
844 		goto skip_format_initialization;
845 	} else {
846 		map->reg_read  = _regmap_bus_read;
847 		map->reg_update_bits = bus->reg_update_bits;
848 		/* Bulk read/write */
849 		map->read = bus->read;
850 		map->write = bus->write;
851 
852 		reg_endian = regmap_get_reg_endian(bus, config);
853 		val_endian = regmap_get_val_endian(dev, bus, config);
854 	}
855 
856 	switch (config->reg_bits + map->reg_shift) {
857 	case 2:
858 		switch (config->val_bits) {
859 		case 6:
860 			map->format.format_write = regmap_format_2_6_write;
861 			break;
862 		default:
863 			goto err_hwlock;
864 		}
865 		break;
866 
867 	case 4:
868 		switch (config->val_bits) {
869 		case 12:
870 			map->format.format_write = regmap_format_4_12_write;
871 			break;
872 		default:
873 			goto err_hwlock;
874 		}
875 		break;
876 
877 	case 7:
878 		switch (config->val_bits) {
879 		case 9:
880 			map->format.format_write = regmap_format_7_9_write;
881 			break;
882 		case 17:
883 			map->format.format_write = regmap_format_7_17_write;
884 			break;
885 		default:
886 			goto err_hwlock;
887 		}
888 		break;
889 
890 	case 10:
891 		switch (config->val_bits) {
892 		case 14:
893 			map->format.format_write = regmap_format_10_14_write;
894 			break;
895 		default:
896 			goto err_hwlock;
897 		}
898 		break;
899 
900 	case 12:
901 		switch (config->val_bits) {
902 		case 20:
903 			map->format.format_write = regmap_format_12_20_write;
904 			break;
905 		default:
906 			goto err_hwlock;
907 		}
908 		break;
909 
910 	case 8:
911 		map->format.format_reg = regmap_format_8;
912 		break;
913 
914 	case 16:
915 		switch (reg_endian) {
916 		case REGMAP_ENDIAN_BIG:
917 			map->format.format_reg = regmap_format_16_be;
918 			break;
919 		case REGMAP_ENDIAN_LITTLE:
920 			map->format.format_reg = regmap_format_16_le;
921 			break;
922 		case REGMAP_ENDIAN_NATIVE:
923 			map->format.format_reg = regmap_format_16_native;
924 			break;
925 		default:
926 			goto err_hwlock;
927 		}
928 		break;
929 
930 	case 24:
931 		switch (reg_endian) {
932 		case REGMAP_ENDIAN_BIG:
933 			map->format.format_reg = regmap_format_24_be;
934 			break;
935 		default:
936 			goto err_hwlock;
937 		}
938 		break;
939 
940 	case 32:
941 		switch (reg_endian) {
942 		case REGMAP_ENDIAN_BIG:
943 			map->format.format_reg = regmap_format_32_be;
944 			break;
945 		case REGMAP_ENDIAN_LITTLE:
946 			map->format.format_reg = regmap_format_32_le;
947 			break;
948 		case REGMAP_ENDIAN_NATIVE:
949 			map->format.format_reg = regmap_format_32_native;
950 			break;
951 		default:
952 			goto err_hwlock;
953 		}
954 		break;
955 
956 	default:
957 		goto err_hwlock;
958 	}
959 
960 	if (val_endian == REGMAP_ENDIAN_NATIVE)
961 		map->format.parse_inplace = regmap_parse_inplace_noop;
962 
963 	switch (config->val_bits) {
964 	case 8:
965 		map->format.format_val = regmap_format_8;
966 		map->format.parse_val = regmap_parse_8;
967 		map->format.parse_inplace = regmap_parse_inplace_noop;
968 		break;
969 	case 16:
970 		switch (val_endian) {
971 		case REGMAP_ENDIAN_BIG:
972 			map->format.format_val = regmap_format_16_be;
973 			map->format.parse_val = regmap_parse_16_be;
974 			map->format.parse_inplace = regmap_parse_16_be_inplace;
975 			break;
976 		case REGMAP_ENDIAN_LITTLE:
977 			map->format.format_val = regmap_format_16_le;
978 			map->format.parse_val = regmap_parse_16_le;
979 			map->format.parse_inplace = regmap_parse_16_le_inplace;
980 			break;
981 		case REGMAP_ENDIAN_NATIVE:
982 			map->format.format_val = regmap_format_16_native;
983 			map->format.parse_val = regmap_parse_16_native;
984 			break;
985 		default:
986 			goto err_hwlock;
987 		}
988 		break;
989 	case 24:
990 		switch (val_endian) {
991 		case REGMAP_ENDIAN_BIG:
992 			map->format.format_val = regmap_format_24_be;
993 			map->format.parse_val = regmap_parse_24_be;
994 			break;
995 		default:
996 			goto err_hwlock;
997 		}
998 		break;
999 	case 32:
1000 		switch (val_endian) {
1001 		case REGMAP_ENDIAN_BIG:
1002 			map->format.format_val = regmap_format_32_be;
1003 			map->format.parse_val = regmap_parse_32_be;
1004 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1005 			break;
1006 		case REGMAP_ENDIAN_LITTLE:
1007 			map->format.format_val = regmap_format_32_le;
1008 			map->format.parse_val = regmap_parse_32_le;
1009 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1010 			break;
1011 		case REGMAP_ENDIAN_NATIVE:
1012 			map->format.format_val = regmap_format_32_native;
1013 			map->format.parse_val = regmap_parse_32_native;
1014 			break;
1015 		default:
1016 			goto err_hwlock;
1017 		}
1018 		break;
1019 	}
1020 
1021 	if (map->format.format_write) {
1022 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1023 		    (val_endian != REGMAP_ENDIAN_BIG))
1024 			goto err_hwlock;
1025 		map->use_single_write = true;
1026 	}
1027 
1028 	if (!map->format.format_write &&
1029 	    !(map->format.format_reg && map->format.format_val))
1030 		goto err_hwlock;
1031 
1032 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1033 	if (map->work_buf == NULL) {
1034 		ret = -ENOMEM;
1035 		goto err_hwlock;
1036 	}
1037 
1038 	if (map->format.format_write) {
1039 		map->defer_caching = false;
1040 		map->reg_write = _regmap_bus_formatted_write;
1041 	} else if (map->format.format_val) {
1042 		map->defer_caching = true;
1043 		map->reg_write = _regmap_bus_raw_write;
1044 	}
1045 
1046 skip_format_initialization:
1047 
1048 	map->range_tree = RB_ROOT;
1049 	for (i = 0; i < config->num_ranges; i++) {
1050 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1051 		struct regmap_range_node *new;
1052 
1053 		/* Sanity check */
1054 		if (range_cfg->range_max < range_cfg->range_min) {
1055 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1056 				range_cfg->range_max, range_cfg->range_min);
1057 			goto err_range;
1058 		}
1059 
1060 		if (range_cfg->range_max > map->max_register) {
1061 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1062 				range_cfg->range_max, map->max_register);
1063 			goto err_range;
1064 		}
1065 
1066 		if (range_cfg->selector_reg > map->max_register) {
1067 			dev_err(map->dev,
1068 				"Invalid range %d: selector out of map\n", i);
1069 			goto err_range;
1070 		}
1071 
1072 		if (range_cfg->window_len == 0) {
1073 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1074 				i);
1075 			goto err_range;
1076 		}
1077 
1078 		/* Make sure, that this register range has no selector
1079 		   or data window within its boundary */
1080 		for (j = 0; j < config->num_ranges; j++) {
1081 			unsigned int sel_reg = config->ranges[j].selector_reg;
1082 			unsigned int win_min = config->ranges[j].window_start;
1083 			unsigned int win_max = win_min +
1084 					       config->ranges[j].window_len - 1;
1085 
1086 			/* Allow data window inside its own virtual range */
1087 			if (j == i)
1088 				continue;
1089 
1090 			if (range_cfg->range_min <= sel_reg &&
1091 			    sel_reg <= range_cfg->range_max) {
1092 				dev_err(map->dev,
1093 					"Range %d: selector for %d in window\n",
1094 					i, j);
1095 				goto err_range;
1096 			}
1097 
1098 			if (!(win_max < range_cfg->range_min ||
1099 			      win_min > range_cfg->range_max)) {
1100 				dev_err(map->dev,
1101 					"Range %d: window for %d in window\n",
1102 					i, j);
1103 				goto err_range;
1104 			}
1105 		}
1106 
1107 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1108 		if (new == NULL) {
1109 			ret = -ENOMEM;
1110 			goto err_range;
1111 		}
1112 
1113 		new->map = map;
1114 		new->name = range_cfg->name;
1115 		new->range_min = range_cfg->range_min;
1116 		new->range_max = range_cfg->range_max;
1117 		new->selector_reg = range_cfg->selector_reg;
1118 		new->selector_mask = range_cfg->selector_mask;
1119 		new->selector_shift = range_cfg->selector_shift;
1120 		new->window_start = range_cfg->window_start;
1121 		new->window_len = range_cfg->window_len;
1122 
1123 		if (!_regmap_range_add(map, new)) {
1124 			dev_err(map->dev, "Failed to add range %d\n", i);
1125 			kfree(new);
1126 			goto err_range;
1127 		}
1128 
1129 		if (map->selector_work_buf == NULL) {
1130 			map->selector_work_buf =
1131 				kzalloc(map->format.buf_size, GFP_KERNEL);
1132 			if (map->selector_work_buf == NULL) {
1133 				ret = -ENOMEM;
1134 				goto err_range;
1135 			}
1136 		}
1137 	}
1138 
1139 	ret = regcache_init(map, config);
1140 	if (ret != 0)
1141 		goto err_range;
1142 
1143 	if (dev) {
1144 		ret = regmap_attach_dev(dev, map, config);
1145 		if (ret != 0)
1146 			goto err_regcache;
1147 	} else {
1148 		regmap_debugfs_init(map);
1149 	}
1150 
1151 	return map;
1152 
1153 err_regcache:
1154 	regcache_exit(map);
1155 err_range:
1156 	regmap_range_exit(map);
1157 	kfree(map->work_buf);
1158 err_hwlock:
1159 	if (map->hwlock)
1160 		hwspin_lock_free(map->hwlock);
1161 err_name:
1162 	kfree_const(map->name);
1163 err_map:
1164 	kfree(map);
1165 err:
1166 	return ERR_PTR(ret);
1167 }
1168 EXPORT_SYMBOL_GPL(__regmap_init);
1169 
1170 static void devm_regmap_release(struct device *dev, void *res)
1171 {
1172 	regmap_exit(*(struct regmap **)res);
1173 }
1174 
1175 struct regmap *__devm_regmap_init(struct device *dev,
1176 				  const struct regmap_bus *bus,
1177 				  void *bus_context,
1178 				  const struct regmap_config *config,
1179 				  struct lock_class_key *lock_key,
1180 				  const char *lock_name)
1181 {
1182 	struct regmap **ptr, *regmap;
1183 
1184 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1185 	if (!ptr)
1186 		return ERR_PTR(-ENOMEM);
1187 
1188 	regmap = __regmap_init(dev, bus, bus_context, config,
1189 			       lock_key, lock_name);
1190 	if (!IS_ERR(regmap)) {
1191 		*ptr = regmap;
1192 		devres_add(dev, ptr);
1193 	} else {
1194 		devres_free(ptr);
1195 	}
1196 
1197 	return regmap;
1198 }
1199 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1200 
1201 static void regmap_field_init(struct regmap_field *rm_field,
1202 	struct regmap *regmap, struct reg_field reg_field)
1203 {
1204 	rm_field->regmap = regmap;
1205 	rm_field->reg = reg_field.reg;
1206 	rm_field->shift = reg_field.lsb;
1207 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1208 
1209 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1210 
1211 	rm_field->id_size = reg_field.id_size;
1212 	rm_field->id_offset = reg_field.id_offset;
1213 }
1214 
1215 /**
1216  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1217  *
1218  * @dev: Device that will be interacted with
1219  * @regmap: regmap bank in which this register field is located.
1220  * @reg_field: Register field with in the bank.
1221  *
1222  * The return value will be an ERR_PTR() on error or a valid pointer
1223  * to a struct regmap_field. The regmap_field will be automatically freed
1224  * by the device management code.
1225  */
1226 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1227 		struct regmap *regmap, struct reg_field reg_field)
1228 {
1229 	struct regmap_field *rm_field = devm_kzalloc(dev,
1230 					sizeof(*rm_field), GFP_KERNEL);
1231 	if (!rm_field)
1232 		return ERR_PTR(-ENOMEM);
1233 
1234 	regmap_field_init(rm_field, regmap, reg_field);
1235 
1236 	return rm_field;
1237 
1238 }
1239 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1240 
1241 
1242 /**
1243  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1244  *
1245  * @regmap: regmap bank in which this register field is located.
1246  * @rm_field: regmap register fields within the bank.
1247  * @reg_field: Register fields within the bank.
1248  * @num_fields: Number of register fields.
1249  *
1250  * The return value will be an -ENOMEM on error or zero for success.
1251  * Newly allocated regmap_fields should be freed by calling
1252  * regmap_field_bulk_free()
1253  */
1254 int regmap_field_bulk_alloc(struct regmap *regmap,
1255 			    struct regmap_field **rm_field,
1256 			    const struct reg_field *reg_field,
1257 			    int num_fields)
1258 {
1259 	struct regmap_field *rf;
1260 	int i;
1261 
1262 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1263 	if (!rf)
1264 		return -ENOMEM;
1265 
1266 	for (i = 0; i < num_fields; i++) {
1267 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1268 		rm_field[i] = &rf[i];
1269 	}
1270 
1271 	return 0;
1272 }
1273 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1274 
1275 /**
1276  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1277  * fields.
1278  *
1279  * @dev: Device that will be interacted with
1280  * @regmap: regmap bank in which this register field is located.
1281  * @rm_field: regmap register fields within the bank.
1282  * @reg_field: Register fields within the bank.
1283  * @num_fields: Number of register fields.
1284  *
1285  * The return value will be an -ENOMEM on error or zero for success.
1286  * Newly allocated regmap_fields will be automatically freed by the
1287  * device management code.
1288  */
1289 int devm_regmap_field_bulk_alloc(struct device *dev,
1290 				 struct regmap *regmap,
1291 				 struct regmap_field **rm_field,
1292 				 const struct reg_field *reg_field,
1293 				 int num_fields)
1294 {
1295 	struct regmap_field *rf;
1296 	int i;
1297 
1298 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1299 	if (!rf)
1300 		return -ENOMEM;
1301 
1302 	for (i = 0; i < num_fields; i++) {
1303 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1304 		rm_field[i] = &rf[i];
1305 	}
1306 
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1310 
1311 /**
1312  * regmap_field_bulk_free() - Free register field allocated using
1313  *                       regmap_field_bulk_alloc.
1314  *
1315  * @field: regmap fields which should be freed.
1316  */
1317 void regmap_field_bulk_free(struct regmap_field *field)
1318 {
1319 	kfree(field);
1320 }
1321 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1322 
1323 /**
1324  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1325  *                            devm_regmap_field_bulk_alloc.
1326  *
1327  * @dev: Device that will be interacted with
1328  * @field: regmap field which should be freed.
1329  *
1330  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1331  * drivers need not call this function, as the memory allocated via devm
1332  * will be freed as per device-driver life-cycle.
1333  */
1334 void devm_regmap_field_bulk_free(struct device *dev,
1335 				 struct regmap_field *field)
1336 {
1337 	devm_kfree(dev, field);
1338 }
1339 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1340 
1341 /**
1342  * devm_regmap_field_free() - Free a register field allocated using
1343  *                            devm_regmap_field_alloc.
1344  *
1345  * @dev: Device that will be interacted with
1346  * @field: regmap field which should be freed.
1347  *
1348  * Free register field allocated using devm_regmap_field_alloc(). Usually
1349  * drivers need not call this function, as the memory allocated via devm
1350  * will be freed as per device-driver life-cyle.
1351  */
1352 void devm_regmap_field_free(struct device *dev,
1353 	struct regmap_field *field)
1354 {
1355 	devm_kfree(dev, field);
1356 }
1357 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1358 
1359 /**
1360  * regmap_field_alloc() - Allocate and initialise a register field.
1361  *
1362  * @regmap: regmap bank in which this register field is located.
1363  * @reg_field: Register field with in the bank.
1364  *
1365  * The return value will be an ERR_PTR() on error or a valid pointer
1366  * to a struct regmap_field. The regmap_field should be freed by the
1367  * user once its finished working with it using regmap_field_free().
1368  */
1369 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1370 		struct reg_field reg_field)
1371 {
1372 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1373 
1374 	if (!rm_field)
1375 		return ERR_PTR(-ENOMEM);
1376 
1377 	regmap_field_init(rm_field, regmap, reg_field);
1378 
1379 	return rm_field;
1380 }
1381 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1382 
1383 /**
1384  * regmap_field_free() - Free register field allocated using
1385  *                       regmap_field_alloc.
1386  *
1387  * @field: regmap field which should be freed.
1388  */
1389 void regmap_field_free(struct regmap_field *field)
1390 {
1391 	kfree(field);
1392 }
1393 EXPORT_SYMBOL_GPL(regmap_field_free);
1394 
1395 /**
1396  * regmap_reinit_cache() - Reinitialise the current register cache
1397  *
1398  * @map: Register map to operate on.
1399  * @config: New configuration.  Only the cache data will be used.
1400  *
1401  * Discard any existing register cache for the map and initialize a
1402  * new cache.  This can be used to restore the cache to defaults or to
1403  * update the cache configuration to reflect runtime discovery of the
1404  * hardware.
1405  *
1406  * No explicit locking is done here, the user needs to ensure that
1407  * this function will not race with other calls to regmap.
1408  */
1409 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1410 {
1411 	int ret;
1412 
1413 	regcache_exit(map);
1414 	regmap_debugfs_exit(map);
1415 
1416 	map->max_register = config->max_register;
1417 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1418 	map->writeable_reg = config->writeable_reg;
1419 	map->readable_reg = config->readable_reg;
1420 	map->volatile_reg = config->volatile_reg;
1421 	map->precious_reg = config->precious_reg;
1422 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1423 	map->readable_noinc_reg = config->readable_noinc_reg;
1424 	map->cache_type = config->cache_type;
1425 
1426 	ret = regmap_set_name(map, config);
1427 	if (ret)
1428 		return ret;
1429 
1430 	regmap_debugfs_init(map);
1431 
1432 	map->cache_bypass = false;
1433 	map->cache_only = false;
1434 
1435 	return regcache_init(map, config);
1436 }
1437 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1438 
1439 /**
1440  * regmap_exit() - Free a previously allocated register map
1441  *
1442  * @map: Register map to operate on.
1443  */
1444 void regmap_exit(struct regmap *map)
1445 {
1446 	struct regmap_async *async;
1447 
1448 	regcache_exit(map);
1449 
1450 	regmap_debugfs_exit(map);
1451 	regmap_range_exit(map);
1452 	if (map->bus && map->bus->free_context)
1453 		map->bus->free_context(map->bus_context);
1454 	kfree(map->work_buf);
1455 	while (!list_empty(&map->async_free)) {
1456 		async = list_first_entry_or_null(&map->async_free,
1457 						 struct regmap_async,
1458 						 list);
1459 		list_del(&async->list);
1460 		kfree(async->work_buf);
1461 		kfree(async);
1462 	}
1463 	if (map->hwlock)
1464 		hwspin_lock_free(map->hwlock);
1465 	if (map->lock == regmap_lock_mutex)
1466 		mutex_destroy(&map->mutex);
1467 	kfree_const(map->name);
1468 	kfree(map->patch);
1469 	if (map->bus && map->bus->free_on_exit)
1470 		kfree(map->bus);
1471 	kfree(map);
1472 }
1473 EXPORT_SYMBOL_GPL(regmap_exit);
1474 
1475 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1476 {
1477 	struct regmap **r = res;
1478 	if (!r || !*r) {
1479 		WARN_ON(!r || !*r);
1480 		return 0;
1481 	}
1482 
1483 	/* If the user didn't specify a name match any */
1484 	if (data)
1485 		return (*r)->name && !strcmp((*r)->name, data);
1486 	else
1487 		return 1;
1488 }
1489 
1490 /**
1491  * dev_get_regmap() - Obtain the regmap (if any) for a device
1492  *
1493  * @dev: Device to retrieve the map for
1494  * @name: Optional name for the register map, usually NULL.
1495  *
1496  * Returns the regmap for the device if one is present, or NULL.  If
1497  * name is specified then it must match the name specified when
1498  * registering the device, if it is NULL then the first regmap found
1499  * will be used.  Devices with multiple register maps are very rare,
1500  * generic code should normally not need to specify a name.
1501  */
1502 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1503 {
1504 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1505 					dev_get_regmap_match, (void *)name);
1506 
1507 	if (!r)
1508 		return NULL;
1509 	return *r;
1510 }
1511 EXPORT_SYMBOL_GPL(dev_get_regmap);
1512 
1513 /**
1514  * regmap_get_device() - Obtain the device from a regmap
1515  *
1516  * @map: Register map to operate on.
1517  *
1518  * Returns the underlying device that the regmap has been created for.
1519  */
1520 struct device *regmap_get_device(struct regmap *map)
1521 {
1522 	return map->dev;
1523 }
1524 EXPORT_SYMBOL_GPL(regmap_get_device);
1525 
1526 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1527 			       struct regmap_range_node *range,
1528 			       unsigned int val_num)
1529 {
1530 	void *orig_work_buf;
1531 	unsigned int win_offset;
1532 	unsigned int win_page;
1533 	bool page_chg;
1534 	int ret;
1535 
1536 	win_offset = (*reg - range->range_min) % range->window_len;
1537 	win_page = (*reg - range->range_min) / range->window_len;
1538 
1539 	if (val_num > 1) {
1540 		/* Bulk write shouldn't cross range boundary */
1541 		if (*reg + val_num - 1 > range->range_max)
1542 			return -EINVAL;
1543 
1544 		/* ... or single page boundary */
1545 		if (val_num > range->window_len - win_offset)
1546 			return -EINVAL;
1547 	}
1548 
1549 	/* It is possible to have selector register inside data window.
1550 	   In that case, selector register is located on every page and
1551 	   it needs no page switching, when accessed alone. */
1552 	if (val_num > 1 ||
1553 	    range->window_start + win_offset != range->selector_reg) {
1554 		/* Use separate work_buf during page switching */
1555 		orig_work_buf = map->work_buf;
1556 		map->work_buf = map->selector_work_buf;
1557 
1558 		ret = _regmap_update_bits(map, range->selector_reg,
1559 					  range->selector_mask,
1560 					  win_page << range->selector_shift,
1561 					  &page_chg, false);
1562 
1563 		map->work_buf = orig_work_buf;
1564 
1565 		if (ret != 0)
1566 			return ret;
1567 	}
1568 
1569 	*reg = range->window_start + win_offset;
1570 
1571 	return 0;
1572 }
1573 
1574 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1575 					  unsigned long mask)
1576 {
1577 	u8 *buf;
1578 	int i;
1579 
1580 	if (!mask || !map->work_buf)
1581 		return;
1582 
1583 	buf = map->work_buf;
1584 
1585 	for (i = 0; i < max_bytes; i++)
1586 		buf[i] |= (mask >> (8 * i)) & 0xff;
1587 }
1588 
1589 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1590 {
1591 	reg += map->reg_base;
1592 
1593 	if (map->format.reg_shift > 0)
1594 		reg >>= map->format.reg_shift;
1595 	else if (map->format.reg_shift < 0)
1596 		reg <<= -(map->format.reg_shift);
1597 
1598 	return reg;
1599 }
1600 
1601 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1602 				  const void *val, size_t val_len, bool noinc)
1603 {
1604 	struct regmap_range_node *range;
1605 	unsigned long flags;
1606 	void *work_val = map->work_buf + map->format.reg_bytes +
1607 		map->format.pad_bytes;
1608 	void *buf;
1609 	int ret = -ENOTSUPP;
1610 	size_t len;
1611 	int i;
1612 
1613 	/* Check for unwritable or noinc registers in range
1614 	 * before we start
1615 	 */
1616 	if (!regmap_writeable_noinc(map, reg)) {
1617 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1618 			unsigned int element =
1619 				reg + regmap_get_offset(map, i);
1620 			if (!regmap_writeable(map, element) ||
1621 				regmap_writeable_noinc(map, element))
1622 				return -EINVAL;
1623 		}
1624 	}
1625 
1626 	if (!map->cache_bypass && map->format.parse_val) {
1627 		unsigned int ival, offset;
1628 		int val_bytes = map->format.val_bytes;
1629 
1630 		/* Cache the last written value for noinc writes */
1631 		i = noinc ? val_len - val_bytes : 0;
1632 		for (; i < val_len; i += val_bytes) {
1633 			ival = map->format.parse_val(val + i);
1634 			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1635 			ret = regcache_write(map, reg + offset, ival);
1636 			if (ret) {
1637 				dev_err(map->dev,
1638 					"Error in caching of register: %x ret: %d\n",
1639 					reg + offset, ret);
1640 				return ret;
1641 			}
1642 		}
1643 		if (map->cache_only) {
1644 			map->cache_dirty = true;
1645 			return 0;
1646 		}
1647 	}
1648 
1649 	range = _regmap_range_lookup(map, reg);
1650 	if (range) {
1651 		int val_num = val_len / map->format.val_bytes;
1652 		int win_offset = (reg - range->range_min) % range->window_len;
1653 		int win_residue = range->window_len - win_offset;
1654 
1655 		/* If the write goes beyond the end of the window split it */
1656 		while (val_num > win_residue) {
1657 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1658 				win_residue, val_len / map->format.val_bytes);
1659 			ret = _regmap_raw_write_impl(map, reg, val,
1660 						     win_residue *
1661 						     map->format.val_bytes, noinc);
1662 			if (ret != 0)
1663 				return ret;
1664 
1665 			reg += win_residue;
1666 			val_num -= win_residue;
1667 			val += win_residue * map->format.val_bytes;
1668 			val_len -= win_residue * map->format.val_bytes;
1669 
1670 			win_offset = (reg - range->range_min) %
1671 				range->window_len;
1672 			win_residue = range->window_len - win_offset;
1673 		}
1674 
1675 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1676 		if (ret != 0)
1677 			return ret;
1678 	}
1679 
1680 	reg = regmap_reg_addr(map, reg);
1681 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1682 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1683 				      map->write_flag_mask);
1684 
1685 	/*
1686 	 * Essentially all I/O mechanisms will be faster with a single
1687 	 * buffer to write.  Since register syncs often generate raw
1688 	 * writes of single registers optimise that case.
1689 	 */
1690 	if (val != work_val && val_len == map->format.val_bytes) {
1691 		memcpy(work_val, val, map->format.val_bytes);
1692 		val = work_val;
1693 	}
1694 
1695 	if (map->async && map->bus && map->bus->async_write) {
1696 		struct regmap_async *async;
1697 
1698 		trace_regmap_async_write_start(map, reg, val_len);
1699 
1700 		spin_lock_irqsave(&map->async_lock, flags);
1701 		async = list_first_entry_or_null(&map->async_free,
1702 						 struct regmap_async,
1703 						 list);
1704 		if (async)
1705 			list_del(&async->list);
1706 		spin_unlock_irqrestore(&map->async_lock, flags);
1707 
1708 		if (!async) {
1709 			async = map->bus->async_alloc();
1710 			if (!async)
1711 				return -ENOMEM;
1712 
1713 			async->work_buf = kzalloc(map->format.buf_size,
1714 						  GFP_KERNEL | GFP_DMA);
1715 			if (!async->work_buf) {
1716 				kfree(async);
1717 				return -ENOMEM;
1718 			}
1719 		}
1720 
1721 		async->map = map;
1722 
1723 		/* If the caller supplied the value we can use it safely. */
1724 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1725 		       map->format.reg_bytes + map->format.val_bytes);
1726 
1727 		spin_lock_irqsave(&map->async_lock, flags);
1728 		list_add_tail(&async->list, &map->async_list);
1729 		spin_unlock_irqrestore(&map->async_lock, flags);
1730 
1731 		if (val != work_val)
1732 			ret = map->bus->async_write(map->bus_context,
1733 						    async->work_buf,
1734 						    map->format.reg_bytes +
1735 						    map->format.pad_bytes,
1736 						    val, val_len, async);
1737 		else
1738 			ret = map->bus->async_write(map->bus_context,
1739 						    async->work_buf,
1740 						    map->format.reg_bytes +
1741 						    map->format.pad_bytes +
1742 						    val_len, NULL, 0, async);
1743 
1744 		if (ret != 0) {
1745 			dev_err(map->dev, "Failed to schedule write: %d\n",
1746 				ret);
1747 
1748 			spin_lock_irqsave(&map->async_lock, flags);
1749 			list_move(&async->list, &map->async_free);
1750 			spin_unlock_irqrestore(&map->async_lock, flags);
1751 		}
1752 
1753 		return ret;
1754 	}
1755 
1756 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1757 
1758 	/* If we're doing a single register write we can probably just
1759 	 * send the work_buf directly, otherwise try to do a gather
1760 	 * write.
1761 	 */
1762 	if (val == work_val)
1763 		ret = map->write(map->bus_context, map->work_buf,
1764 				 map->format.reg_bytes +
1765 				 map->format.pad_bytes +
1766 				 val_len);
1767 	else if (map->bus && map->bus->gather_write)
1768 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1769 					     map->format.reg_bytes +
1770 					     map->format.pad_bytes,
1771 					     val, val_len);
1772 	else
1773 		ret = -ENOTSUPP;
1774 
1775 	/* If that didn't work fall back on linearising by hand. */
1776 	if (ret == -ENOTSUPP) {
1777 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1778 		buf = kzalloc(len, GFP_KERNEL);
1779 		if (!buf)
1780 			return -ENOMEM;
1781 
1782 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1783 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1784 		       val, val_len);
1785 		ret = map->write(map->bus_context, buf, len);
1786 
1787 		kfree(buf);
1788 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1789 		/* regcache_drop_region() takes lock that we already have,
1790 		 * thus call map->cache_ops->drop() directly
1791 		 */
1792 		if (map->cache_ops && map->cache_ops->drop)
1793 			map->cache_ops->drop(map, reg, reg + 1);
1794 	}
1795 
1796 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1797 
1798 	return ret;
1799 }
1800 
1801 /**
1802  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1803  *
1804  * @map: Map to check.
1805  */
1806 bool regmap_can_raw_write(struct regmap *map)
1807 {
1808 	return map->write && map->format.format_val && map->format.format_reg;
1809 }
1810 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1811 
1812 /**
1813  * regmap_get_raw_read_max - Get the maximum size we can read
1814  *
1815  * @map: Map to check.
1816  */
1817 size_t regmap_get_raw_read_max(struct regmap *map)
1818 {
1819 	return map->max_raw_read;
1820 }
1821 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1822 
1823 /**
1824  * regmap_get_raw_write_max - Get the maximum size we can read
1825  *
1826  * @map: Map to check.
1827  */
1828 size_t regmap_get_raw_write_max(struct regmap *map)
1829 {
1830 	return map->max_raw_write;
1831 }
1832 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1833 
1834 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1835 				       unsigned int val)
1836 {
1837 	int ret;
1838 	struct regmap_range_node *range;
1839 	struct regmap *map = context;
1840 
1841 	WARN_ON(!map->format.format_write);
1842 
1843 	range = _regmap_range_lookup(map, reg);
1844 	if (range) {
1845 		ret = _regmap_select_page(map, &reg, range, 1);
1846 		if (ret != 0)
1847 			return ret;
1848 	}
1849 
1850 	reg = regmap_reg_addr(map, reg);
1851 	map->format.format_write(map, reg, val);
1852 
1853 	trace_regmap_hw_write_start(map, reg, 1);
1854 
1855 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1856 
1857 	trace_regmap_hw_write_done(map, reg, 1);
1858 
1859 	return ret;
1860 }
1861 
1862 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1863 				 unsigned int val)
1864 {
1865 	struct regmap *map = context;
1866 	struct regmap_range_node *range;
1867 	int ret;
1868 
1869 	range = _regmap_range_lookup(map, reg);
1870 	if (range) {
1871 		ret = _regmap_select_page(map, &reg, range, 1);
1872 		if (ret != 0)
1873 			return ret;
1874 	}
1875 
1876 	reg = regmap_reg_addr(map, reg);
1877 	return map->bus->reg_write(map->bus_context, reg, val);
1878 }
1879 
1880 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1881 				 unsigned int val)
1882 {
1883 	struct regmap *map = context;
1884 
1885 	WARN_ON(!map->format.format_val);
1886 
1887 	map->format.format_val(map->work_buf + map->format.reg_bytes
1888 			       + map->format.pad_bytes, val, 0);
1889 	return _regmap_raw_write_impl(map, reg,
1890 				      map->work_buf +
1891 				      map->format.reg_bytes +
1892 				      map->format.pad_bytes,
1893 				      map->format.val_bytes,
1894 				      false);
1895 }
1896 
1897 static inline void *_regmap_map_get_context(struct regmap *map)
1898 {
1899 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1900 }
1901 
1902 int _regmap_write(struct regmap *map, unsigned int reg,
1903 		  unsigned int val)
1904 {
1905 	int ret;
1906 	void *context = _regmap_map_get_context(map);
1907 
1908 	if (!regmap_writeable(map, reg))
1909 		return -EIO;
1910 
1911 	if (!map->cache_bypass && !map->defer_caching) {
1912 		ret = regcache_write(map, reg, val);
1913 		if (ret != 0)
1914 			return ret;
1915 		if (map->cache_only) {
1916 			map->cache_dirty = true;
1917 			return 0;
1918 		}
1919 	}
1920 
1921 	ret = map->reg_write(context, reg, val);
1922 	if (ret == 0) {
1923 		if (regmap_should_log(map))
1924 			dev_info(map->dev, "%x <= %x\n", reg, val);
1925 
1926 		trace_regmap_reg_write(map, reg, val);
1927 	}
1928 
1929 	return ret;
1930 }
1931 
1932 /**
1933  * regmap_write() - Write a value to a single register
1934  *
1935  * @map: Register map to write to
1936  * @reg: Register to write to
1937  * @val: Value to be written
1938  *
1939  * A value of zero will be returned on success, a negative errno will
1940  * be returned in error cases.
1941  */
1942 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1943 {
1944 	int ret;
1945 
1946 	if (!IS_ALIGNED(reg, map->reg_stride))
1947 		return -EINVAL;
1948 
1949 	map->lock(map->lock_arg);
1950 
1951 	ret = _regmap_write(map, reg, val);
1952 
1953 	map->unlock(map->lock_arg);
1954 
1955 	return ret;
1956 }
1957 EXPORT_SYMBOL_GPL(regmap_write);
1958 
1959 /**
1960  * regmap_write_async() - Write a value to a single register asynchronously
1961  *
1962  * @map: Register map to write to
1963  * @reg: Register to write to
1964  * @val: Value to be written
1965  *
1966  * A value of zero will be returned on success, a negative errno will
1967  * be returned in error cases.
1968  */
1969 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1970 {
1971 	int ret;
1972 
1973 	if (!IS_ALIGNED(reg, map->reg_stride))
1974 		return -EINVAL;
1975 
1976 	map->lock(map->lock_arg);
1977 
1978 	map->async = true;
1979 
1980 	ret = _regmap_write(map, reg, val);
1981 
1982 	map->async = false;
1983 
1984 	map->unlock(map->lock_arg);
1985 
1986 	return ret;
1987 }
1988 EXPORT_SYMBOL_GPL(regmap_write_async);
1989 
1990 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1991 		      const void *val, size_t val_len, bool noinc)
1992 {
1993 	size_t val_bytes = map->format.val_bytes;
1994 	size_t val_count = val_len / val_bytes;
1995 	size_t chunk_count, chunk_bytes;
1996 	size_t chunk_regs = val_count;
1997 	int ret, i;
1998 
1999 	if (!val_count)
2000 		return -EINVAL;
2001 
2002 	if (map->use_single_write)
2003 		chunk_regs = 1;
2004 	else if (map->max_raw_write && val_len > map->max_raw_write)
2005 		chunk_regs = map->max_raw_write / val_bytes;
2006 
2007 	chunk_count = val_count / chunk_regs;
2008 	chunk_bytes = chunk_regs * val_bytes;
2009 
2010 	/* Write as many bytes as possible with chunk_size */
2011 	for (i = 0; i < chunk_count; i++) {
2012 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2013 		if (ret)
2014 			return ret;
2015 
2016 		reg += regmap_get_offset(map, chunk_regs);
2017 		val += chunk_bytes;
2018 		val_len -= chunk_bytes;
2019 	}
2020 
2021 	/* Write remaining bytes */
2022 	if (val_len)
2023 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2024 
2025 	return ret;
2026 }
2027 
2028 /**
2029  * regmap_raw_write() - Write raw values to one or more registers
2030  *
2031  * @map: Register map to write to
2032  * @reg: Initial register to write to
2033  * @val: Block of data to be written, laid out for direct transmission to the
2034  *       device
2035  * @val_len: Length of data pointed to by val.
2036  *
2037  * This function is intended to be used for things like firmware
2038  * download where a large block of data needs to be transferred to the
2039  * device.  No formatting will be done on the data provided.
2040  *
2041  * A value of zero will be returned on success, a negative errno will
2042  * be returned in error cases.
2043  */
2044 int regmap_raw_write(struct regmap *map, unsigned int reg,
2045 		     const void *val, size_t val_len)
2046 {
2047 	int ret;
2048 
2049 	if (!regmap_can_raw_write(map))
2050 		return -EINVAL;
2051 	if (val_len % map->format.val_bytes)
2052 		return -EINVAL;
2053 
2054 	map->lock(map->lock_arg);
2055 
2056 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2057 
2058 	map->unlock(map->lock_arg);
2059 
2060 	return ret;
2061 }
2062 EXPORT_SYMBOL_GPL(regmap_raw_write);
2063 
2064 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2065 				  void *val, unsigned int val_len, bool write)
2066 {
2067 	size_t val_bytes = map->format.val_bytes;
2068 	size_t val_count = val_len / val_bytes;
2069 	unsigned int lastval;
2070 	u8 *u8p;
2071 	u16 *u16p;
2072 	u32 *u32p;
2073 	int ret;
2074 	int i;
2075 
2076 	switch (val_bytes) {
2077 	case 1:
2078 		u8p = val;
2079 		if (write)
2080 			lastval = (unsigned int)u8p[val_count - 1];
2081 		break;
2082 	case 2:
2083 		u16p = val;
2084 		if (write)
2085 			lastval = (unsigned int)u16p[val_count - 1];
2086 		break;
2087 	case 4:
2088 		u32p = val;
2089 		if (write)
2090 			lastval = (unsigned int)u32p[val_count - 1];
2091 		break;
2092 	default:
2093 		return -EINVAL;
2094 	}
2095 
2096 	/*
2097 	 * Update the cache with the last value we write, the rest is just
2098 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2099 	 * sure a single read from the cache will work.
2100 	 */
2101 	if (write) {
2102 		if (!map->cache_bypass && !map->defer_caching) {
2103 			ret = regcache_write(map, reg, lastval);
2104 			if (ret != 0)
2105 				return ret;
2106 			if (map->cache_only) {
2107 				map->cache_dirty = true;
2108 				return 0;
2109 			}
2110 		}
2111 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2112 	} else {
2113 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2114 	}
2115 
2116 	if (!ret && regmap_should_log(map)) {
2117 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2118 		for (i = 0; i < val_count; i++) {
2119 			switch (val_bytes) {
2120 			case 1:
2121 				pr_cont("%x", u8p[i]);
2122 				break;
2123 			case 2:
2124 				pr_cont("%x", u16p[i]);
2125 				break;
2126 			case 4:
2127 				pr_cont("%x", u32p[i]);
2128 				break;
2129 			default:
2130 				break;
2131 			}
2132 			if (i == (val_count - 1))
2133 				pr_cont("]\n");
2134 			else
2135 				pr_cont(",");
2136 		}
2137 	}
2138 
2139 	return 0;
2140 }
2141 
2142 /**
2143  * regmap_noinc_write(): Write data to a register without incrementing the
2144  *			register number
2145  *
2146  * @map: Register map to write to
2147  * @reg: Register to write to
2148  * @val: Pointer to data buffer
2149  * @val_len: Length of output buffer in bytes.
2150  *
2151  * The regmap API usually assumes that bulk bus write operations will write a
2152  * range of registers. Some devices have certain registers for which a write
2153  * operation can write to an internal FIFO.
2154  *
2155  * The target register must be volatile but registers after it can be
2156  * completely unrelated cacheable registers.
2157  *
2158  * This will attempt multiple writes as required to write val_len bytes.
2159  *
2160  * A value of zero will be returned on success, a negative errno will be
2161  * returned in error cases.
2162  */
2163 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2164 		      const void *val, size_t val_len)
2165 {
2166 	size_t write_len;
2167 	int ret;
2168 
2169 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2170 		return -EINVAL;
2171 	if (val_len % map->format.val_bytes)
2172 		return -EINVAL;
2173 	if (!IS_ALIGNED(reg, map->reg_stride))
2174 		return -EINVAL;
2175 	if (val_len == 0)
2176 		return -EINVAL;
2177 
2178 	map->lock(map->lock_arg);
2179 
2180 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2181 		ret = -EINVAL;
2182 		goto out_unlock;
2183 	}
2184 
2185 	/*
2186 	 * Use the accelerated operation if we can. The val drops the const
2187 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2188 	 */
2189 	if (map->bus->reg_noinc_write) {
2190 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2191 		goto out_unlock;
2192 	}
2193 
2194 	while (val_len) {
2195 		if (map->max_raw_write && map->max_raw_write < val_len)
2196 			write_len = map->max_raw_write;
2197 		else
2198 			write_len = val_len;
2199 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2200 		if (ret)
2201 			goto out_unlock;
2202 		val = ((u8 *)val) + write_len;
2203 		val_len -= write_len;
2204 	}
2205 
2206 out_unlock:
2207 	map->unlock(map->lock_arg);
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2211 
2212 /**
2213  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2214  *                                   register field.
2215  *
2216  * @field: Register field to write to
2217  * @mask: Bitmask to change
2218  * @val: Value to be written
2219  * @change: Boolean indicating if a write was done
2220  * @async: Boolean indicating asynchronously
2221  * @force: Boolean indicating use force update
2222  *
2223  * Perform a read/modify/write cycle on the register field with change,
2224  * async, force option.
2225  *
2226  * A value of zero will be returned on success, a negative errno will
2227  * be returned in error cases.
2228  */
2229 int regmap_field_update_bits_base(struct regmap_field *field,
2230 				  unsigned int mask, unsigned int val,
2231 				  bool *change, bool async, bool force)
2232 {
2233 	mask = (mask << field->shift) & field->mask;
2234 
2235 	return regmap_update_bits_base(field->regmap, field->reg,
2236 				       mask, val << field->shift,
2237 				       change, async, force);
2238 }
2239 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2240 
2241 /**
2242  * regmap_field_test_bits() - Check if all specified bits are set in a
2243  *                            register field.
2244  *
2245  * @field: Register field to operate on
2246  * @bits: Bits to test
2247  *
2248  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2249  * tested bits is not set and 1 if all tested bits are set.
2250  */
2251 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2252 {
2253 	unsigned int val, ret;
2254 
2255 	ret = regmap_field_read(field, &val);
2256 	if (ret)
2257 		return ret;
2258 
2259 	return (val & bits) == bits;
2260 }
2261 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2262 
2263 /**
2264  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2265  *                                    register field with port ID
2266  *
2267  * @field: Register field to write to
2268  * @id: port ID
2269  * @mask: Bitmask to change
2270  * @val: Value to be written
2271  * @change: Boolean indicating if a write was done
2272  * @async: Boolean indicating asynchronously
2273  * @force: Boolean indicating use force update
2274  *
2275  * A value of zero will be returned on success, a negative errno will
2276  * be returned in error cases.
2277  */
2278 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2279 				   unsigned int mask, unsigned int val,
2280 				   bool *change, bool async, bool force)
2281 {
2282 	if (id >= field->id_size)
2283 		return -EINVAL;
2284 
2285 	mask = (mask << field->shift) & field->mask;
2286 
2287 	return regmap_update_bits_base(field->regmap,
2288 				       field->reg + (field->id_offset * id),
2289 				       mask, val << field->shift,
2290 				       change, async, force);
2291 }
2292 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2293 
2294 /**
2295  * regmap_bulk_write() - Write multiple registers to the device
2296  *
2297  * @map: Register map to write to
2298  * @reg: First register to be write from
2299  * @val: Block of data to be written, in native register size for device
2300  * @val_count: Number of registers to write
2301  *
2302  * This function is intended to be used for writing a large block of
2303  * data to the device either in single transfer or multiple transfer.
2304  *
2305  * A value of zero will be returned on success, a negative errno will
2306  * be returned in error cases.
2307  */
2308 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2309 		     size_t val_count)
2310 {
2311 	int ret = 0, i;
2312 	size_t val_bytes = map->format.val_bytes;
2313 
2314 	if (!IS_ALIGNED(reg, map->reg_stride))
2315 		return -EINVAL;
2316 
2317 	/*
2318 	 * Some devices don't support bulk write, for them we have a series of
2319 	 * single write operations.
2320 	 */
2321 	if (!map->write || !map->format.parse_inplace) {
2322 		map->lock(map->lock_arg);
2323 		for (i = 0; i < val_count; i++) {
2324 			unsigned int ival;
2325 
2326 			switch (val_bytes) {
2327 			case 1:
2328 				ival = *(u8 *)(val + (i * val_bytes));
2329 				break;
2330 			case 2:
2331 				ival = *(u16 *)(val + (i * val_bytes));
2332 				break;
2333 			case 4:
2334 				ival = *(u32 *)(val + (i * val_bytes));
2335 				break;
2336 			default:
2337 				ret = -EINVAL;
2338 				goto out;
2339 			}
2340 
2341 			ret = _regmap_write(map,
2342 					    reg + regmap_get_offset(map, i),
2343 					    ival);
2344 			if (ret != 0)
2345 				goto out;
2346 		}
2347 out:
2348 		map->unlock(map->lock_arg);
2349 	} else {
2350 		void *wval;
2351 
2352 		wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2353 		if (!wval)
2354 			return -ENOMEM;
2355 
2356 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2357 			map->format.parse_inplace(wval + i);
2358 
2359 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2360 
2361 		kfree(wval);
2362 	}
2363 
2364 	if (!ret)
2365 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2366 
2367 	return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2370 
2371 /*
2372  * _regmap_raw_multi_reg_write()
2373  *
2374  * the (register,newvalue) pairs in regs have not been formatted, but
2375  * they are all in the same page and have been changed to being page
2376  * relative. The page register has been written if that was necessary.
2377  */
2378 static int _regmap_raw_multi_reg_write(struct regmap *map,
2379 				       const struct reg_sequence *regs,
2380 				       size_t num_regs)
2381 {
2382 	int ret;
2383 	void *buf;
2384 	int i;
2385 	u8 *u8;
2386 	size_t val_bytes = map->format.val_bytes;
2387 	size_t reg_bytes = map->format.reg_bytes;
2388 	size_t pad_bytes = map->format.pad_bytes;
2389 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2390 	size_t len = pair_size * num_regs;
2391 
2392 	if (!len)
2393 		return -EINVAL;
2394 
2395 	buf = kzalloc(len, GFP_KERNEL);
2396 	if (!buf)
2397 		return -ENOMEM;
2398 
2399 	/* We have to linearise by hand. */
2400 
2401 	u8 = buf;
2402 
2403 	for (i = 0; i < num_regs; i++) {
2404 		unsigned int reg = regs[i].reg;
2405 		unsigned int val = regs[i].def;
2406 		trace_regmap_hw_write_start(map, reg, 1);
2407 		reg = regmap_reg_addr(map, reg);
2408 		map->format.format_reg(u8, reg, map->reg_shift);
2409 		u8 += reg_bytes + pad_bytes;
2410 		map->format.format_val(u8, val, 0);
2411 		u8 += val_bytes;
2412 	}
2413 	u8 = buf;
2414 	*u8 |= map->write_flag_mask;
2415 
2416 	ret = map->write(map->bus_context, buf, len);
2417 
2418 	kfree(buf);
2419 
2420 	for (i = 0; i < num_regs; i++) {
2421 		int reg = regs[i].reg;
2422 		trace_regmap_hw_write_done(map, reg, 1);
2423 	}
2424 	return ret;
2425 }
2426 
2427 static unsigned int _regmap_register_page(struct regmap *map,
2428 					  unsigned int reg,
2429 					  struct regmap_range_node *range)
2430 {
2431 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2432 
2433 	return win_page;
2434 }
2435 
2436 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2437 					       struct reg_sequence *regs,
2438 					       size_t num_regs)
2439 {
2440 	int ret;
2441 	int i, n;
2442 	struct reg_sequence *base;
2443 	unsigned int this_page = 0;
2444 	unsigned int page_change = 0;
2445 	/*
2446 	 * the set of registers are not neccessarily in order, but
2447 	 * since the order of write must be preserved this algorithm
2448 	 * chops the set each time the page changes. This also applies
2449 	 * if there is a delay required at any point in the sequence.
2450 	 */
2451 	base = regs;
2452 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2453 		unsigned int reg = regs[i].reg;
2454 		struct regmap_range_node *range;
2455 
2456 		range = _regmap_range_lookup(map, reg);
2457 		if (range) {
2458 			unsigned int win_page = _regmap_register_page(map, reg,
2459 								      range);
2460 
2461 			if (i == 0)
2462 				this_page = win_page;
2463 			if (win_page != this_page) {
2464 				this_page = win_page;
2465 				page_change = 1;
2466 			}
2467 		}
2468 
2469 		/* If we have both a page change and a delay make sure to
2470 		 * write the regs and apply the delay before we change the
2471 		 * page.
2472 		 */
2473 
2474 		if (page_change || regs[i].delay_us) {
2475 
2476 				/* For situations where the first write requires
2477 				 * a delay we need to make sure we don't call
2478 				 * raw_multi_reg_write with n=0
2479 				 * This can't occur with page breaks as we
2480 				 * never write on the first iteration
2481 				 */
2482 				if (regs[i].delay_us && i == 0)
2483 					n = 1;
2484 
2485 				ret = _regmap_raw_multi_reg_write(map, base, n);
2486 				if (ret != 0)
2487 					return ret;
2488 
2489 				if (regs[i].delay_us) {
2490 					if (map->can_sleep)
2491 						fsleep(regs[i].delay_us);
2492 					else
2493 						udelay(regs[i].delay_us);
2494 				}
2495 
2496 				base += n;
2497 				n = 0;
2498 
2499 				if (page_change) {
2500 					ret = _regmap_select_page(map,
2501 								  &base[n].reg,
2502 								  range, 1);
2503 					if (ret != 0)
2504 						return ret;
2505 
2506 					page_change = 0;
2507 				}
2508 
2509 		}
2510 
2511 	}
2512 	if (n > 0)
2513 		return _regmap_raw_multi_reg_write(map, base, n);
2514 	return 0;
2515 }
2516 
2517 static int _regmap_multi_reg_write(struct regmap *map,
2518 				   const struct reg_sequence *regs,
2519 				   size_t num_regs)
2520 {
2521 	int i;
2522 	int ret;
2523 
2524 	if (!map->can_multi_write) {
2525 		for (i = 0; i < num_regs; i++) {
2526 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2527 			if (ret != 0)
2528 				return ret;
2529 
2530 			if (regs[i].delay_us) {
2531 				if (map->can_sleep)
2532 					fsleep(regs[i].delay_us);
2533 				else
2534 					udelay(regs[i].delay_us);
2535 			}
2536 		}
2537 		return 0;
2538 	}
2539 
2540 	if (!map->format.parse_inplace)
2541 		return -EINVAL;
2542 
2543 	if (map->writeable_reg)
2544 		for (i = 0; i < num_regs; i++) {
2545 			int reg = regs[i].reg;
2546 			if (!map->writeable_reg(map->dev, reg))
2547 				return -EINVAL;
2548 			if (!IS_ALIGNED(reg, map->reg_stride))
2549 				return -EINVAL;
2550 		}
2551 
2552 	if (!map->cache_bypass) {
2553 		for (i = 0; i < num_regs; i++) {
2554 			unsigned int val = regs[i].def;
2555 			unsigned int reg = regs[i].reg;
2556 			ret = regcache_write(map, reg, val);
2557 			if (ret) {
2558 				dev_err(map->dev,
2559 				"Error in caching of register: %x ret: %d\n",
2560 								reg, ret);
2561 				return ret;
2562 			}
2563 		}
2564 		if (map->cache_only) {
2565 			map->cache_dirty = true;
2566 			return 0;
2567 		}
2568 	}
2569 
2570 	WARN_ON(!map->bus);
2571 
2572 	for (i = 0; i < num_regs; i++) {
2573 		unsigned int reg = regs[i].reg;
2574 		struct regmap_range_node *range;
2575 
2576 		/* Coalesce all the writes between a page break or a delay
2577 		 * in a sequence
2578 		 */
2579 		range = _regmap_range_lookup(map, reg);
2580 		if (range || regs[i].delay_us) {
2581 			size_t len = sizeof(struct reg_sequence)*num_regs;
2582 			struct reg_sequence *base = kmemdup(regs, len,
2583 							   GFP_KERNEL);
2584 			if (!base)
2585 				return -ENOMEM;
2586 			ret = _regmap_range_multi_paged_reg_write(map, base,
2587 								  num_regs);
2588 			kfree(base);
2589 
2590 			return ret;
2591 		}
2592 	}
2593 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2594 }
2595 
2596 /**
2597  * regmap_multi_reg_write() - Write multiple registers to the device
2598  *
2599  * @map: Register map to write to
2600  * @regs: Array of structures containing register,value to be written
2601  * @num_regs: Number of registers to write
2602  *
2603  * Write multiple registers to the device where the set of register, value
2604  * pairs are supplied in any order, possibly not all in a single range.
2605  *
2606  * The 'normal' block write mode will send ultimately send data on the
2607  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2608  * addressed. However, this alternative block multi write mode will send
2609  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2610  * must of course support the mode.
2611  *
2612  * A value of zero will be returned on success, a negative errno will be
2613  * returned in error cases.
2614  */
2615 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2616 			   int num_regs)
2617 {
2618 	int ret;
2619 
2620 	map->lock(map->lock_arg);
2621 
2622 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2623 
2624 	map->unlock(map->lock_arg);
2625 
2626 	return ret;
2627 }
2628 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2629 
2630 /**
2631  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2632  *                                     device but not the cache
2633  *
2634  * @map: Register map to write to
2635  * @regs: Array of structures containing register,value to be written
2636  * @num_regs: Number of registers to write
2637  *
2638  * Write multiple registers to the device but not the cache where the set
2639  * of register are supplied in any order.
2640  *
2641  * This function is intended to be used for writing a large block of data
2642  * atomically to the device in single transfer for those I2C client devices
2643  * that implement this alternative block write mode.
2644  *
2645  * A value of zero will be returned on success, a negative errno will
2646  * be returned in error cases.
2647  */
2648 int regmap_multi_reg_write_bypassed(struct regmap *map,
2649 				    const struct reg_sequence *regs,
2650 				    int num_regs)
2651 {
2652 	int ret;
2653 	bool bypass;
2654 
2655 	map->lock(map->lock_arg);
2656 
2657 	bypass = map->cache_bypass;
2658 	map->cache_bypass = true;
2659 
2660 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2661 
2662 	map->cache_bypass = bypass;
2663 
2664 	map->unlock(map->lock_arg);
2665 
2666 	return ret;
2667 }
2668 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2669 
2670 /**
2671  * regmap_raw_write_async() - Write raw values to one or more registers
2672  *                            asynchronously
2673  *
2674  * @map: Register map to write to
2675  * @reg: Initial register to write to
2676  * @val: Block of data to be written, laid out for direct transmission to the
2677  *       device.  Must be valid until regmap_async_complete() is called.
2678  * @val_len: Length of data pointed to by val.
2679  *
2680  * This function is intended to be used for things like firmware
2681  * download where a large block of data needs to be transferred to the
2682  * device.  No formatting will be done on the data provided.
2683  *
2684  * If supported by the underlying bus the write will be scheduled
2685  * asynchronously, helping maximise I/O speed on higher speed buses
2686  * like SPI.  regmap_async_complete() can be called to ensure that all
2687  * asynchrnous writes have been completed.
2688  *
2689  * A value of zero will be returned on success, a negative errno will
2690  * be returned in error cases.
2691  */
2692 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2693 			   const void *val, size_t val_len)
2694 {
2695 	int ret;
2696 
2697 	if (val_len % map->format.val_bytes)
2698 		return -EINVAL;
2699 	if (!IS_ALIGNED(reg, map->reg_stride))
2700 		return -EINVAL;
2701 
2702 	map->lock(map->lock_arg);
2703 
2704 	map->async = true;
2705 
2706 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2707 
2708 	map->async = false;
2709 
2710 	map->unlock(map->lock_arg);
2711 
2712 	return ret;
2713 }
2714 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2715 
2716 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2717 			    unsigned int val_len, bool noinc)
2718 {
2719 	struct regmap_range_node *range;
2720 	int ret;
2721 
2722 	if (!map->read)
2723 		return -EINVAL;
2724 
2725 	range = _regmap_range_lookup(map, reg);
2726 	if (range) {
2727 		ret = _regmap_select_page(map, &reg, range,
2728 					  noinc ? 1 : val_len / map->format.val_bytes);
2729 		if (ret != 0)
2730 			return ret;
2731 	}
2732 
2733 	reg = regmap_reg_addr(map, reg);
2734 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2735 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2736 				      map->read_flag_mask);
2737 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2738 
2739 	ret = map->read(map->bus_context, map->work_buf,
2740 			map->format.reg_bytes + map->format.pad_bytes,
2741 			val, val_len);
2742 
2743 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2744 
2745 	return ret;
2746 }
2747 
2748 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2749 				unsigned int *val)
2750 {
2751 	struct regmap *map = context;
2752 	struct regmap_range_node *range;
2753 	int ret;
2754 
2755 	range = _regmap_range_lookup(map, reg);
2756 	if (range) {
2757 		ret = _regmap_select_page(map, &reg, range, 1);
2758 		if (ret != 0)
2759 			return ret;
2760 	}
2761 
2762 	reg = regmap_reg_addr(map, reg);
2763 	return map->bus->reg_read(map->bus_context, reg, val);
2764 }
2765 
2766 static int _regmap_bus_read(void *context, unsigned int reg,
2767 			    unsigned int *val)
2768 {
2769 	int ret;
2770 	struct regmap *map = context;
2771 	void *work_val = map->work_buf + map->format.reg_bytes +
2772 		map->format.pad_bytes;
2773 
2774 	if (!map->format.parse_val)
2775 		return -EINVAL;
2776 
2777 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2778 	if (ret == 0)
2779 		*val = map->format.parse_val(work_val);
2780 
2781 	return ret;
2782 }
2783 
2784 static int _regmap_read(struct regmap *map, unsigned int reg,
2785 			unsigned int *val)
2786 {
2787 	int ret;
2788 	void *context = _regmap_map_get_context(map);
2789 
2790 	if (!map->cache_bypass) {
2791 		ret = regcache_read(map, reg, val);
2792 		if (ret == 0)
2793 			return 0;
2794 	}
2795 
2796 	if (map->cache_only)
2797 		return -EBUSY;
2798 
2799 	if (!regmap_readable(map, reg))
2800 		return -EIO;
2801 
2802 	ret = map->reg_read(context, reg, val);
2803 	if (ret == 0) {
2804 		if (regmap_should_log(map))
2805 			dev_info(map->dev, "%x => %x\n", reg, *val);
2806 
2807 		trace_regmap_reg_read(map, reg, *val);
2808 
2809 		if (!map->cache_bypass)
2810 			regcache_write(map, reg, *val);
2811 	}
2812 
2813 	return ret;
2814 }
2815 
2816 /**
2817  * regmap_read() - Read a value from a single register
2818  *
2819  * @map: Register map to read from
2820  * @reg: Register to be read from
2821  * @val: Pointer to store read value
2822  *
2823  * A value of zero will be returned on success, a negative errno will
2824  * be returned in error cases.
2825  */
2826 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2827 {
2828 	int ret;
2829 
2830 	if (!IS_ALIGNED(reg, map->reg_stride))
2831 		return -EINVAL;
2832 
2833 	map->lock(map->lock_arg);
2834 
2835 	ret = _regmap_read(map, reg, val);
2836 
2837 	map->unlock(map->lock_arg);
2838 
2839 	return ret;
2840 }
2841 EXPORT_SYMBOL_GPL(regmap_read);
2842 
2843 /**
2844  * regmap_read_bypassed() - Read a value from a single register direct
2845  *			    from the device, bypassing the cache
2846  *
2847  * @map: Register map to read from
2848  * @reg: Register to be read from
2849  * @val: Pointer to store read value
2850  *
2851  * A value of zero will be returned on success, a negative errno will
2852  * be returned in error cases.
2853  */
2854 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2855 {
2856 	int ret;
2857 	bool bypass, cache_only;
2858 
2859 	if (!IS_ALIGNED(reg, map->reg_stride))
2860 		return -EINVAL;
2861 
2862 	map->lock(map->lock_arg);
2863 
2864 	bypass = map->cache_bypass;
2865 	cache_only = map->cache_only;
2866 	map->cache_bypass = true;
2867 	map->cache_only = false;
2868 
2869 	ret = _regmap_read(map, reg, val);
2870 
2871 	map->cache_bypass = bypass;
2872 	map->cache_only = cache_only;
2873 
2874 	map->unlock(map->lock_arg);
2875 
2876 	return ret;
2877 }
2878 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2879 
2880 /**
2881  * regmap_raw_read() - Read raw data from the device
2882  *
2883  * @map: Register map to read from
2884  * @reg: First register to be read from
2885  * @val: Pointer to store read value
2886  * @val_len: Size of data to read
2887  *
2888  * A value of zero will be returned on success, a negative errno will
2889  * be returned in error cases.
2890  */
2891 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2892 		    size_t val_len)
2893 {
2894 	size_t val_bytes = map->format.val_bytes;
2895 	size_t val_count = val_len / val_bytes;
2896 	unsigned int v;
2897 	int ret, i;
2898 
2899 	if (val_len % map->format.val_bytes)
2900 		return -EINVAL;
2901 	if (!IS_ALIGNED(reg, map->reg_stride))
2902 		return -EINVAL;
2903 	if (val_count == 0)
2904 		return -EINVAL;
2905 
2906 	map->lock(map->lock_arg);
2907 
2908 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2909 	    map->cache_type == REGCACHE_NONE) {
2910 		size_t chunk_count, chunk_bytes;
2911 		size_t chunk_regs = val_count;
2912 
2913 		if (!map->cache_bypass && map->cache_only) {
2914 			ret = -EBUSY;
2915 			goto out;
2916 		}
2917 
2918 		if (!map->read) {
2919 			ret = -ENOTSUPP;
2920 			goto out;
2921 		}
2922 
2923 		if (map->use_single_read)
2924 			chunk_regs = 1;
2925 		else if (map->max_raw_read && val_len > map->max_raw_read)
2926 			chunk_regs = map->max_raw_read / val_bytes;
2927 
2928 		chunk_count = val_count / chunk_regs;
2929 		chunk_bytes = chunk_regs * val_bytes;
2930 
2931 		/* Read bytes that fit into whole chunks */
2932 		for (i = 0; i < chunk_count; i++) {
2933 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2934 			if (ret != 0)
2935 				goto out;
2936 
2937 			reg += regmap_get_offset(map, chunk_regs);
2938 			val += chunk_bytes;
2939 			val_len -= chunk_bytes;
2940 		}
2941 
2942 		/* Read remaining bytes */
2943 		if (val_len) {
2944 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2945 			if (ret != 0)
2946 				goto out;
2947 		}
2948 	} else {
2949 		/* Otherwise go word by word for the cache; should be low
2950 		 * cost as we expect to hit the cache.
2951 		 */
2952 		for (i = 0; i < val_count; i++) {
2953 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2954 					   &v);
2955 			if (ret != 0)
2956 				goto out;
2957 
2958 			map->format.format_val(val + (i * val_bytes), v, 0);
2959 		}
2960 	}
2961 
2962  out:
2963 	map->unlock(map->lock_arg);
2964 
2965 	return ret;
2966 }
2967 EXPORT_SYMBOL_GPL(regmap_raw_read);
2968 
2969 /**
2970  * regmap_noinc_read(): Read data from a register without incrementing the
2971  *			register number
2972  *
2973  * @map: Register map to read from
2974  * @reg: Register to read from
2975  * @val: Pointer to data buffer
2976  * @val_len: Length of output buffer in bytes.
2977  *
2978  * The regmap API usually assumes that bulk read operations will read a
2979  * range of registers. Some devices have certain registers for which a read
2980  * operation read will read from an internal FIFO.
2981  *
2982  * The target register must be volatile but registers after it can be
2983  * completely unrelated cacheable registers.
2984  *
2985  * This will attempt multiple reads as required to read val_len bytes.
2986  *
2987  * A value of zero will be returned on success, a negative errno will be
2988  * returned in error cases.
2989  */
2990 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2991 		      void *val, size_t val_len)
2992 {
2993 	size_t read_len;
2994 	int ret;
2995 
2996 	if (!map->read)
2997 		return -ENOTSUPP;
2998 
2999 	if (val_len % map->format.val_bytes)
3000 		return -EINVAL;
3001 	if (!IS_ALIGNED(reg, map->reg_stride))
3002 		return -EINVAL;
3003 	if (val_len == 0)
3004 		return -EINVAL;
3005 
3006 	map->lock(map->lock_arg);
3007 
3008 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3009 		ret = -EINVAL;
3010 		goto out_unlock;
3011 	}
3012 
3013 	/*
3014 	 * We have not defined the FIFO semantics for cache, as the
3015 	 * cache is just one value deep. Should we return the last
3016 	 * written value? Just avoid this by always reading the FIFO
3017 	 * even when using cache. Cache only will not work.
3018 	 */
3019 	if (!map->cache_bypass && map->cache_only) {
3020 		ret = -EBUSY;
3021 		goto out_unlock;
3022 	}
3023 
3024 	/* Use the accelerated operation if we can */
3025 	if (map->bus->reg_noinc_read) {
3026 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3027 		goto out_unlock;
3028 	}
3029 
3030 	while (val_len) {
3031 		if (map->max_raw_read && map->max_raw_read < val_len)
3032 			read_len = map->max_raw_read;
3033 		else
3034 			read_len = val_len;
3035 		ret = _regmap_raw_read(map, reg, val, read_len, true);
3036 		if (ret)
3037 			goto out_unlock;
3038 		val = ((u8 *)val) + read_len;
3039 		val_len -= read_len;
3040 	}
3041 
3042 out_unlock:
3043 	map->unlock(map->lock_arg);
3044 	return ret;
3045 }
3046 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3047 
3048 /**
3049  * regmap_field_read(): Read a value to a single register field
3050  *
3051  * @field: Register field to read from
3052  * @val: Pointer to store read value
3053  *
3054  * A value of zero will be returned on success, a negative errno will
3055  * be returned in error cases.
3056  */
3057 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3058 {
3059 	int ret;
3060 	unsigned int reg_val;
3061 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3062 	if (ret != 0)
3063 		return ret;
3064 
3065 	reg_val &= field->mask;
3066 	reg_val >>= field->shift;
3067 	*val = reg_val;
3068 
3069 	return ret;
3070 }
3071 EXPORT_SYMBOL_GPL(regmap_field_read);
3072 
3073 /**
3074  * regmap_fields_read() - Read a value to a single register field with port ID
3075  *
3076  * @field: Register field to read from
3077  * @id: port ID
3078  * @val: Pointer to store read value
3079  *
3080  * A value of zero will be returned on success, a negative errno will
3081  * be returned in error cases.
3082  */
3083 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3084 		       unsigned int *val)
3085 {
3086 	int ret;
3087 	unsigned int reg_val;
3088 
3089 	if (id >= field->id_size)
3090 		return -EINVAL;
3091 
3092 	ret = regmap_read(field->regmap,
3093 			  field->reg + (field->id_offset * id),
3094 			  &reg_val);
3095 	if (ret != 0)
3096 		return ret;
3097 
3098 	reg_val &= field->mask;
3099 	reg_val >>= field->shift;
3100 	*val = reg_val;
3101 
3102 	return ret;
3103 }
3104 EXPORT_SYMBOL_GPL(regmap_fields_read);
3105 
3106 static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3107 			     unsigned int *regs, void *val, size_t val_count)
3108 {
3109 	u32 *u32 = val;
3110 	u16 *u16 = val;
3111 	u8 *u8 = val;
3112 	int ret, i;
3113 
3114 	map->lock(map->lock_arg);
3115 
3116 	for (i = 0; i < val_count; i++) {
3117 		unsigned int ival;
3118 
3119 		if (regs) {
3120 			if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3121 				ret = -EINVAL;
3122 				goto out;
3123 			}
3124 			ret = _regmap_read(map, regs[i], &ival);
3125 		} else {
3126 			ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3127 		}
3128 		if (ret != 0)
3129 			goto out;
3130 
3131 		switch (map->format.val_bytes) {
3132 		case 4:
3133 			u32[i] = ival;
3134 			break;
3135 		case 2:
3136 			u16[i] = ival;
3137 			break;
3138 		case 1:
3139 			u8[i] = ival;
3140 			break;
3141 		default:
3142 			ret = -EINVAL;
3143 			goto out;
3144 		}
3145 	}
3146 out:
3147 	map->unlock(map->lock_arg);
3148 	return ret;
3149 }
3150 
3151 /**
3152  * regmap_bulk_read() - Read multiple sequential registers from the device
3153  *
3154  * @map: Register map to read from
3155  * @reg: First register to be read from
3156  * @val: Pointer to store read value, in native register size for device
3157  * @val_count: Number of registers to read
3158  *
3159  * A value of zero will be returned on success, a negative errno will
3160  * be returned in error cases.
3161  */
3162 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3163 		     size_t val_count)
3164 {
3165 	int ret, i;
3166 	size_t val_bytes = map->format.val_bytes;
3167 	bool vol = regmap_volatile_range(map, reg, val_count);
3168 
3169 	if (!IS_ALIGNED(reg, map->reg_stride))
3170 		return -EINVAL;
3171 	if (val_count == 0)
3172 		return -EINVAL;
3173 
3174 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3175 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3176 		if (ret != 0)
3177 			return ret;
3178 
3179 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3180 			map->format.parse_inplace(val + i);
3181 	} else {
3182 		ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3183 	}
3184 	if (!ret)
3185 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3186 	return ret;
3187 }
3188 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3189 
3190 /**
3191  * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3192  *
3193  * @map: Register map to read from
3194  * @regs: Array of registers to read from
3195  * @val: Pointer to store read value, in native register size for device
3196  * @val_count: Number of registers to read
3197  *
3198  * A value of zero will be returned on success, a negative errno will
3199  * be returned in error cases.
3200  */
3201 int regmap_multi_reg_read(struct regmap *map, unsigned int *regs, void *val,
3202 			  size_t val_count)
3203 {
3204 	if (val_count == 0)
3205 		return -EINVAL;
3206 
3207 	return _regmap_bulk_read(map, 0, regs, val, val_count);
3208 }
3209 EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3210 
3211 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3212 			       unsigned int mask, unsigned int val,
3213 			       bool *change, bool force_write)
3214 {
3215 	int ret;
3216 	unsigned int tmp, orig;
3217 
3218 	if (change)
3219 		*change = false;
3220 
3221 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3222 		reg = regmap_reg_addr(map, reg);
3223 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3224 		if (ret == 0 && change)
3225 			*change = true;
3226 	} else {
3227 		ret = _regmap_read(map, reg, &orig);
3228 		if (ret != 0)
3229 			return ret;
3230 
3231 		tmp = orig & ~mask;
3232 		tmp |= val & mask;
3233 
3234 		if (force_write || (tmp != orig) || map->force_write_field) {
3235 			ret = _regmap_write(map, reg, tmp);
3236 			if (ret == 0 && change)
3237 				*change = true;
3238 		}
3239 	}
3240 
3241 	return ret;
3242 }
3243 
3244 /**
3245  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3246  *
3247  * @map: Register map to update
3248  * @reg: Register to update
3249  * @mask: Bitmask to change
3250  * @val: New value for bitmask
3251  * @change: Boolean indicating if a write was done
3252  * @async: Boolean indicating asynchronously
3253  * @force: Boolean indicating use force update
3254  *
3255  * Perform a read/modify/write cycle on a register map with change, async, force
3256  * options.
3257  *
3258  * If async is true:
3259  *
3260  * With most buses the read must be done synchronously so this is most useful
3261  * for devices with a cache which do not need to interact with the hardware to
3262  * determine the current register value.
3263  *
3264  * Returns zero for success, a negative number on error.
3265  */
3266 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3267 			    unsigned int mask, unsigned int val,
3268 			    bool *change, bool async, bool force)
3269 {
3270 	int ret;
3271 
3272 	map->lock(map->lock_arg);
3273 
3274 	map->async = async;
3275 
3276 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3277 
3278 	map->async = false;
3279 
3280 	map->unlock(map->lock_arg);
3281 
3282 	return ret;
3283 }
3284 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3285 
3286 /**
3287  * regmap_test_bits() - Check if all specified bits are set in a register.
3288  *
3289  * @map: Register map to operate on
3290  * @reg: Register to read from
3291  * @bits: Bits to test
3292  *
3293  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3294  * bits are set and a negative error number if the underlying regmap_read()
3295  * fails.
3296  */
3297 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3298 {
3299 	unsigned int val, ret;
3300 
3301 	ret = regmap_read(map, reg, &val);
3302 	if (ret)
3303 		return ret;
3304 
3305 	return (val & bits) == bits;
3306 }
3307 EXPORT_SYMBOL_GPL(regmap_test_bits);
3308 
3309 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3310 {
3311 	struct regmap *map = async->map;
3312 	bool wake;
3313 
3314 	trace_regmap_async_io_complete(map);
3315 
3316 	spin_lock(&map->async_lock);
3317 	list_move(&async->list, &map->async_free);
3318 	wake = list_empty(&map->async_list);
3319 
3320 	if (ret != 0)
3321 		map->async_ret = ret;
3322 
3323 	spin_unlock(&map->async_lock);
3324 
3325 	if (wake)
3326 		wake_up(&map->async_waitq);
3327 }
3328 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3329 
3330 static int regmap_async_is_done(struct regmap *map)
3331 {
3332 	unsigned long flags;
3333 	int ret;
3334 
3335 	spin_lock_irqsave(&map->async_lock, flags);
3336 	ret = list_empty(&map->async_list);
3337 	spin_unlock_irqrestore(&map->async_lock, flags);
3338 
3339 	return ret;
3340 }
3341 
3342 /**
3343  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3344  *
3345  * @map: Map to operate on.
3346  *
3347  * Blocks until any pending asynchronous I/O has completed.  Returns
3348  * an error code for any failed I/O operations.
3349  */
3350 int regmap_async_complete(struct regmap *map)
3351 {
3352 	unsigned long flags;
3353 	int ret;
3354 
3355 	/* Nothing to do with no async support */
3356 	if (!map->bus || !map->bus->async_write)
3357 		return 0;
3358 
3359 	trace_regmap_async_complete_start(map);
3360 
3361 	wait_event(map->async_waitq, regmap_async_is_done(map));
3362 
3363 	spin_lock_irqsave(&map->async_lock, flags);
3364 	ret = map->async_ret;
3365 	map->async_ret = 0;
3366 	spin_unlock_irqrestore(&map->async_lock, flags);
3367 
3368 	trace_regmap_async_complete_done(map);
3369 
3370 	return ret;
3371 }
3372 EXPORT_SYMBOL_GPL(regmap_async_complete);
3373 
3374 /**
3375  * regmap_register_patch - Register and apply register updates to be applied
3376  *                         on device initialistion
3377  *
3378  * @map: Register map to apply updates to.
3379  * @regs: Values to update.
3380  * @num_regs: Number of entries in regs.
3381  *
3382  * Register a set of register updates to be applied to the device
3383  * whenever the device registers are synchronised with the cache and
3384  * apply them immediately.  Typically this is used to apply
3385  * corrections to be applied to the device defaults on startup, such
3386  * as the updates some vendors provide to undocumented registers.
3387  *
3388  * The caller must ensure that this function cannot be called
3389  * concurrently with either itself or regcache_sync().
3390  */
3391 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3392 			  int num_regs)
3393 {
3394 	struct reg_sequence *p;
3395 	int ret;
3396 	bool bypass;
3397 
3398 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3399 	    num_regs))
3400 		return 0;
3401 
3402 	p = krealloc(map->patch,
3403 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3404 		     GFP_KERNEL);
3405 	if (p) {
3406 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3407 		map->patch = p;
3408 		map->patch_regs += num_regs;
3409 	} else {
3410 		return -ENOMEM;
3411 	}
3412 
3413 	map->lock(map->lock_arg);
3414 
3415 	bypass = map->cache_bypass;
3416 
3417 	map->cache_bypass = true;
3418 	map->async = true;
3419 
3420 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3421 
3422 	map->async = false;
3423 	map->cache_bypass = bypass;
3424 
3425 	map->unlock(map->lock_arg);
3426 
3427 	regmap_async_complete(map);
3428 
3429 	return ret;
3430 }
3431 EXPORT_SYMBOL_GPL(regmap_register_patch);
3432 
3433 /**
3434  * regmap_get_val_bytes() - Report the size of a register value
3435  *
3436  * @map: Register map to operate on.
3437  *
3438  * Report the size of a register value, mainly intended to for use by
3439  * generic infrastructure built on top of regmap.
3440  */
3441 int regmap_get_val_bytes(struct regmap *map)
3442 {
3443 	if (map->format.format_write)
3444 		return -EINVAL;
3445 
3446 	return map->format.val_bytes;
3447 }
3448 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3449 
3450 /**
3451  * regmap_get_max_register() - Report the max register value
3452  *
3453  * @map: Register map to operate on.
3454  *
3455  * Report the max register value, mainly intended to for use by
3456  * generic infrastructure built on top of regmap.
3457  */
3458 int regmap_get_max_register(struct regmap *map)
3459 {
3460 	return map->max_register_is_set ? map->max_register : -EINVAL;
3461 }
3462 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3463 
3464 /**
3465  * regmap_get_reg_stride() - Report the register address stride
3466  *
3467  * @map: Register map to operate on.
3468  *
3469  * Report the register address stride, mainly intended to for use by
3470  * generic infrastructure built on top of regmap.
3471  */
3472 int regmap_get_reg_stride(struct regmap *map)
3473 {
3474 	return map->reg_stride;
3475 }
3476 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3477 
3478 /**
3479  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3480  *
3481  * @map: Register map to operate on.
3482  *
3483  * Returns true if an access to the register might sleep, else false.
3484  */
3485 bool regmap_might_sleep(struct regmap *map)
3486 {
3487 	return map->can_sleep;
3488 }
3489 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3490 
3491 int regmap_parse_val(struct regmap *map, const void *buf,
3492 			unsigned int *val)
3493 {
3494 	if (!map->format.parse_val)
3495 		return -EINVAL;
3496 
3497 	*val = map->format.parse_val(buf);
3498 
3499 	return 0;
3500 }
3501 EXPORT_SYMBOL_GPL(regmap_parse_val);
3502 
3503 static int __init regmap_initcall(void)
3504 {
3505 	regmap_debugfs_initcall();
3506 
3507 	return 0;
3508 }
3509 postcore_initcall(regmap_initcall);
3510